

------- ---
••ji~_ii.• ~• =-g=.,
•..•~~-~

---- .

by
, Voodoo Software
© 1991 Europress Software Ltd.

Manual Authors

Anthony Wilkes
Richard Lewis
Anthony Wilkes
Richard Lewis
Richard Vanner
Nick Harper

Programming and design

Project Manager
Demos and game

Write to Europress Software tor help with detective discs or other initial problems:
Customer Services, Europress Software Ltd, Europa House, Adlington Park,
Macclestield SK10 4NP.

Mandarin is the entertainment
label tor Europress Software Ltd

Manual typeset by 7.;?sU€.y€s Stockport

No material may be reproduced in whole or part without written permission from Europress Software. While every care
has been taken to ensure this product is correct, the publishers cannot be held legally responsible for any errors or
omissions in the manual or software. If you do find any, please teil us!

Now you can make your AMOS programs run like lightning with
AMOS Compiler. Typically most programs will double in
speed - some commands are more than 5 times faster. These
spectacular results will have everyone thinking you've
programmed in machine code!

In addition, AMOS Compiler comes with an incredible compactor
which will squash the size of your programs by up to 80% (60%
compression on average) - and in a matter of seconds! This
means that your programs take up less disc space - and they
load faster too.

With the incredible speed increases and program compaction the
AMOS Compiler will give your programs that professional edge.

AMOS Compiler at work on the AMOS Sprite Editor:
• It compiles in less than two minutes - or just 14 seconds if

you have a hard disc!

Compresses in 8 seconds from 147k to 86k - that's 58.5%
compression ... and it runs much faster too!

Inside the Compiler box:
AMOS Compiler, AMOS language updater, AMOS Assembler and
eight demonstration programs which show oft the power of the
Compiler. The comprehensive and easy-to-use manual will
provide you with all the assistance you'll need to develop
lishtnins-fast software of yOllr dreams.

If you're amazed by AMOS you'I/,beastounded by AMOS Compiler.

AMOS Compiler - ,(29.99 trom all good software retailers

AMOS Compiler written
by François Lionet
© 1991 Mandarin/Jawx.

AMOS Compiler in use

Compiling your programs is
simplicity itself: Click on
COMPILE then select
souree and destination -
thafs all there is to it'

The welcome disc will
enable you to activate the
AMOS Compiler and the
AMOS updater in seconds.

"I truly believe you can
write a commercial
game in AMOS with the
AMOS Compiler - now
my programs are
running too fast!"

- Amiga Computing

Contents
1: Welcome •••.....••...................••••••••..........•••......................••.. : 1

Making a disc back-up : 2
2: In the beginning 3
3: Quick start 5

How to use th is manual. 6
4: Updating to the latest version of AMOS ..•..•...................................... 7
5: Installing the 3D extension•••••.................................••••..••• 11
6: The Object ModelIer 13

Introduction 13
Loading the modelIer 13
Getting to know OM 14
The OM screen 14
Selecting shelves 15
Selecting parts of a bloek 18
Gluing blocks together 19
Saving objects 21
Customising blocks 21
Pulling lines 21
Pulling points 22
Groups 23
Surlace detail 26

7: The object modelIer tools 29
Part 1 Primary Commands : 29

Problem objects 39
Part 2 Bloek Commands 41

Surface anchor points .- 43
Pulling rules 43
Selecting the sensitivity of the pull tooi 45

Part 3 Group Commands 47
Part 4 Surface Detail 56

Attaching a surface to a lace 57
Positioning the surface . 58

Attaching a surface to a 2D block 59
Re-using surfaces 60
Cópying surfaces between objects and within objects 60

8: 3D Programming 63
Part 1 The 3D World 63

Space 63
The double buffered display 66
Angles 67
local coordinate system 68

The viewpoint 69
Choosing the best coordinate system 69

Part 2 The AMOS commands 71
Positions 71
Angles 71
Objects , 72
The display 72
The Redraw Loop 72
Loading and removing objects 73
Invoking objects 75
Object movement commands 75
Reading an object's position 77
Changing the attitude of objects 77
Bearing and range 79
Pointing an object. 80
Converting coordinates 81
Object visibility .. 82
Collision detection 82
Animation . 84
Surface animation : 86
Backgrounds 87
Memory 89

9: Hints & Tips 91
Appendix A: Copying OM 95
Appendix B: File structure••••.......•••...••.......•.....••••...•••••....•••••.......••• 97
Appendix C: The Utilities 99
Appendix D: AMOS Errors•••••......................... 103
Glossary 105

1: Welcome to
the world of 3D

There is something magie about a 30 game. It is as il there is an inlinity ol space to
explore just behind your monitor screen. With AMOS 30 we have tried to give you the
means to get behind the screen and create exciting and imaginative worlds ol your own.

AMOS is already by lar the most powerful languages for 16-bit graphics and with 30
we are literally adding another dimension.

We hope you wililike 30. It is based on one of the most sophisticated systems yet to
be developed and contains many leatures that are totally new.

Vet 30 is no harder to program than sprites and backgrounds. It uses the familiar
AMOS commands specially adapted lor 30 and optimised lor the best possible
performance.

At the heart ol 30 is the powerful 30 object modelIer (OM). With th is lascinating tooi
you can design 30 objects as complex as those in any 30 game, using a simple set of
mouse controls and a lully interactive display. You can even add pictures to the laces of
your objects that you can animate under program control.

We have had a lantastic year designing AMOS 30 . We can't wait to see your
programs. Now back up your discs and good luck with 30.

Anthoriy Wilkes Richard Lewis

Making a disc backup
Belare preceding any lurther, it's vital that you make an immediate back-up copy of the
enclosed discs. This will allow you to play around with the package to your heart's
content, without the risk of destroying something vital. The duplication procedure lor a
disc is extremely straightforward.

Start up your Amiga using your usual Workbench disco

2 Prepare a iorrnaned disc to hold your copy ol the disco Use the Initialise option trom
the Workbench.

3 Take the original disc and slide up the write-protect tab at the top right hand corner. A
smal! hole should now be visible in the corner of the disco This will stop your Amiga
writing to the master disc and will proteet it from any unlortunate mistakes during the
duplication process.

4 Insert the master disc into the Amiga's internal drive and select its icon with the mouse.

5 a) II you've got just a single drive, click on the Duplicate disc option Irom the
Workbench menu. You can now copy the disc by simply following the prompts as
they are displayed on the screen.

b) II you've two or more drives, place your blank disc into the external drive. Now
drag the icon representing the master disc directly over your target disc icon and
release the mouse button. This will initiate an automatic back-up of the disco

6 Alter the disc has been successlully duplicated, the new copy will be assigned a name
such as Capy af AMOS 30. lt's vital to change the label back to the original version
immediately, as the enclosed software occasionally relers to the various discs by
name. Remove the original disc and select the Rename option lrom the Workbench
menu. You can now delete the offending text using the normal cursor keys.

Note: II you are uncertain about any of these steps, you are recommended to carelully
re ad through the relevant section in the Amiga Users' manual supplied with your
computer. This contains a detailed breakdown of the entire procedure.

important: rne ODjeC!MOdelier orsc must be lelt so that it is read/writable The system
needs to update a small file on the disc every time it is run, so please ensure you don't
write proteet th is disco II you do, you'lI be asked to unproteet the OM disc so that it can
continue its laad.

2

2: In the beginning
Computer graphics, and especially 30, has a short history. Although the lirst computers
were developed in the late 40s and early 50s, notably at Cam bridge and Manchester in
Europe and at MIT in the USA, computer graphics had to wait until the 60s and the
pioneering OEC 340 display.

By the standards of the early pioneers, graphics of any sort required very powerlul
machines and very large memories. The memory-mapped raster display, the type used
exclusively in modern personal computers and workstations, took even longer. In the
early days no-ene could afford (or even address) enough memory lor a modern bitmap
and theearliest examples required a room lull of magnetic store.

From very early on it had been recognised that. given enough power and storage,
computers could be programmed to model the laws of opties and generate perspective
views ol objects in a simulated 30 space. The 30 line drawn cube rotating in real time with
hidden lines suppressed, exhibited at an early MIT conference, was an impressive sight. But
it was a long haul Irom there to the Ilight simulator displays ol the late 70s with lully shaded
landscapes and thousands of polygons refreshed at 30 frames a second.

Ouring the 80s as cheap personal computers entered the High Street, the world of
computer graphics became accessible to a much wider public. The early 8-bit, and
even today's 16-bit machines were no match for the special-purpose hardware
developed by companies like Evans and Southerland to run commercial simulations.
In many ways 30 graphics had to be redeveloped from scratch. In the main stream of
commercial 30 development hardware and software development go hand in hand.
The big 30 engines are based around sophisticated displays with much of the .30
number crunching built into the hardware. On an Amiga or an ST all the work, or nearly
all, must be done by the processor.

The best 16-bit 30 software gets results by exploiting every possible shortcut and by
using a whole variety of tricks to save processing time. Only cut-throat competition
between games programmers has made this possible and it has all happened over the
last lew years. The developers responsible for the graphics behind the best 30 games
have concentrated on one thing abave all: Speed.

30 itself is not especially hard. You need high-school maths and a good textbook.
The trouble is that the results you would get using traditional methads would be far toa
slow.
No-one today wants to go and make a GUp of eettee while they wait lor the next frame.
Because ol this it's not surprising that the 16-bit 30 of recent years has been written in
highly optimised assembler, and not structured so as to be usabie by the programming
public.

Added to this, the companies who undertook expensive 30 development have been
keen to proteet their investment by keeping their code under wraps. This is why it is not
until now that 30 tools aimed at programmers have generally become available.
AMOS 30 aims to change al! thaI. With th is package, anybody capable of a little
programming can create 30 games and other applications. And even non programmers
can design 30 objects.

3

3: Quick start
By the time you're reading this, you'lI be raring to go! Don't be too impatient though.
You'lI need to install the new AMOS 3D commands onto a working copy of your AMOS
programs disco The whole process takes about 10 minutes, but thankfully it only needs
to be done once. Here's a quick run-down of the general technique.

Make an immediate back-up of the two discs supplied. If you're unsure about this, full
instructions can be found in chapter 1.

Now place your new copy of the AMOS 30 Installation disc into the internal drive, and
boot up your Amiga in the normal way. After a few seconds, the AMOS Installation
program will be executed, and you'll be presented with the following screen:

IREADMEI
I UPDATE I
I JNSTAL.L. I ~

Figure 3.1

Read me
Displays a complete explanation of the 3D installation along with a fuillist of any updates
or changes to 3D. lt's a good idea to read this carefully belore continuing. (Use the
mouse to move up and down the text file.)

Update (see next chapter)
Updates your current version of AMOS Basic to the latest version.

Note: AMOS 30 will only work with versions of AMOS Basic from 1.3 upwards. So if
you're still using an earl ier version, it's essential to upgrade immediately using the
updater included.

WARNING: Don't update the original AMOS Programs disc! The updater will
automatically delete any existing .AMOS programs to make room lor the new version.
Use a back-up copy instead.

5

Inslall (see chapter 5)
InstalIs the 30 extension onto a copy ol the AMOS Programs disco It also instalts
example programs and objects onto the disco This will allow you to boot trom a single
disc with everything installed and ready to go. As mentioned previously, 30 should only
be instalied on versions ol AMOS lrom 1.3 onwards.

Booting the Object ModelIer
To run OM, simply insert the AMOS 30 Object ModelIer disc into the internal drive.
Switch on the computer and the program will load and run automaticaliy. After a short
delay the OM title screen will appear. Hit any key to begin your modelling session.

How to use this manual
The main documentation lor 30 is divided into two parts. First a tutorial and instructions
lor using the Object Modelier OM (chapters 6 and 7) and then a detailed account of the
Td (Three Oee) commands (chapter 8).

A glossary is inciuded 10 explain any unlamiliar terms.
Whether you are an experienced program mer or not, we suggest that you start with

the Object Modelier. Make a lewabjects and take a look at the examples. This wili give
you a good idea of the possibilities.

Once you have a fee I lor 30 objects read Chapter 8 entitled 30 Program ming. This
explains 30 coordinates and gives al! the background you need to use the Td
commands.

Once you have experimented a little with the language extension we suggest that
you read Chapter 9 on Hints and Tips. It could save you a lot of programming time.

6

4: Updating to
the latest
version of AMOS

The AMOS 30 commands can only be used with AMOS V1.3 or higher _There's no need
to worry if you've got a previous version. We've helpfully included a free update to
AMOS along with th is product. If you've been using the original AMOS V1.1 all th is time,
you should notice a number of significant improvements (see the What's new in AMOS
supplement).

Here's the procedure in detail, for updating to the new version:

The first job you must do is create a copy of your AMOS programs disc (see Making
a back-up). Once you've created a new AMOS Programs disc and have tested it
works, you'lI be ready to update th is disco

• Place the AMOS Installation disc into the internal drive and turn on your Amiga. The
30 installation program will automatically load into memory and the following
welcome screen will be displayed:

I~EADMEI

I UPDATE I
I JNSTAL.L. I ~

Figure 4.1

• Select the Update button with the left mouse button.

• The AMOS Updater program will be loaded and a new screen will be displayed:

7

UPDATE

Im\
Figure 4.2

o The process of updating is completely automatic. If you want to update to a hard disc
though, you'lI have to update a Iloppy disc lirst and then copy across the relevant
liles (see below).

o WARNING! The updater will automatically delete any non-essential program liles
Irom the backed-up AMOS disc! So it's vital to ensure that you've made a copy ot
the AMOS programs disc and are not using the original AMOS master.

o Start the updater by pressing the left mouse button when the pointer is over the
Update icon.

o You'lI be prompted to insert the copy of the AMOS programs disc (the one you
prepared earlier) into any available drive. 1I you've an external drive, you should keep
the Installation disc in OIO: and place the program disc into the extern al drive. This
will avoid the need to do any laborious disc swapping. (For unexpanded A500 users,
there are only 12 disc swaps during th is process.)

Your AMOS program disc will be updated to the new version of AMOS. Once the update
is complete, select the EXIT button.

Belore continuing, you are strongly recommended to make an immediate back-up ol
the new system onto a Iresh disco See Making a back-up for more details.

Installing AMOS onto a hard disc
o Follow the above procedure so that vou have a copy ol the new AMOS on a floppy

disco
o Boot up your Amiga lrom your hard disc as norm al

Enter the CLI or SHELL.
Insert your new copy of AMOS into the internal drive.
Set the directory to the internal drive:

8

You can now type the following line from the CU prompt (note the space between
AMOS1.3 and the filename INSTALL.AMOS. II a version higher than 1.3 is now
supplied then change the 1.3 to the correct version number.

RMOS1.3 INSTRLl.RMOS

• AMOS will load into memory and you'll be presented with the hard disc installation
program automatically. This program will be requesting you to select an option lrom
the main menu.

• Pull down the Installation menu by pressing the right mouse button and highlighting
the Installation text,

From the resulting menu list, move the mouse over the AMOS Master disc entry. This
will produce another menu list associated with installing files from the AMOS1.3
master to the hard disco

• Select the Just Install AMOS option lrom this menu.

When a file selector appears and requests you to select the drive you wish AMOS
installed onto, first use the right mouse button to change the directory list into a drive
list.

From the drive list that appears, select the one you want AMOS installed onto by
highlighting the drive name and clicking on the left mouse button.

• The files on the selected drive will now be listed in the file selector. When you're
happy you've selected the right drive, click with the left mouse button on the file
selector's OK button.

• Now wait lor the installation to finish.

When the installation is complete, automatic amendments to the hard disc startup-
sequence can be performed. Unless you know what this means (read below) we
strongly advise that you avoid th is option and select QUIT at this point.

9

• If you want to append a new assign command to your startup-sequence, then use the
file selector to find the startup-sequence you wish to add the line to, select it with the
left mouse button and click on OK.

Inserting an assign means that every time you boot your hard disc, the use of AMOS: at
the start of a filename will inform AmigaDos of where AMOS is located on the hard disco
For example:

assign AMOS_DATA: WORK:AMOS_Discs/Dala_disc

Will set up AmigaDos so that use of AMOS_DATA: will always look on the hard disc
partition WORK: and inside the folder path AMOS_DiscsfData_disc. In other words:

dir AMOS_DATA:

is the same as typing:

dir WORK:AMOS_Discs/Dala_disc

A word of warning though, you must be sure the startup-sequence you select is used by
the system on boot up. You must also be sure it doesn't finish its work before it reaches
the new assign at the end of the startup-sequence.

If you're unsure about the whole idea simply select Quit as th is option is not
essential,

10

5: Installing the
3D extension

Now that you have an AMOS programs disc containing the new version, you'lI need to
install a special extension of commands onto it. This extension adds on new commands
to AMOS (similar to the Compactor, Requester and Serial extensions).

If you havent already upgraded to the lalesl version of AMOS, now's the time to do
so. Jump back to the previous chapter on Upgrading 10the letest version of AMOS.

The installation procedure i~ very straightforward:

II using floppy discs, place a copy ot your Installation disc into the internal drive, and
re-boot your Amiga. The We/came program will now load into memory.

~ard disc users should boot from their hard disc, insert the Installation disc into OFO:
and double click on the disc icon. When.the window has displayed the programs on
the disc, double click on the We/came icon.

I ~:aD
IREADMEI

I UPDATE I
IIINSTALL ~

Figure 5.1

• You are now ready to install the AMOS 30 extension file onto your new AMOS
program disco

• Select the Install icon with the mouse and click once on the left button. This will
automatically load a separate Installation program from the disco

11

JNSTALL

I-I
Figure 5.2

• Now click on the Install button.

• Floppy disc users will be asked to insert their new AMOS programs disc into any
drive.

Hard disc users are presented with a file selector, from this you must double click on
the AMOS1.3 file (or higher version) located on the hard disco This then informs the
instalIer where to do the installation.

Follow the prompts at the base of the screen for a successful install.

• The instalIer will also create a folder called objects and a number of AMOS
programs. You don't need these to use AMOS 3D but they will show you what's
possible and are referenced within the manual. For now keep Ihem on Ihe disc unlil
you're ready 10 create 0 o~').objects and programs.

((",fM '(tV IrjMvV' ,Y

12

6: The Object
Modelier

Introduction
Object model/er (OM) provides al/ you need to design 30 objects.These objects can be
saved onto disc and loaded into your AMOS programs. The objects you create can be
just as complex and interesting as those in any 16 bit game. OM will also create objects
that can be drawn quickly, both by the modelIer itself and by the AMOS Td (Three Dee)
commands.

As an extra, to make your objects just that bit unusual OM provides a way of adding
pictures to the faces of your designs. Lastly, the disc library of examples provides a
wealth of original objeets iIIustrating both the simple and the more ad van eed aspeets of
object design.

This chapter is a tutorial style, step-by-step guide to OM which takes you through the
steps involved in creating an object and saving it to disco The following chapter gives a
juli description of each of the OM controls.

Loading the ModelIer
We begin by loading OM. Place the OM disc into the internal drive and reset (or switch
on) your computer. After a minute or two the intro screen will appear. Press any key to
reveal the OM panel and above it a dark space with a row of small shapes along the top.

Loading the OM from the Workbench
To run OM, close down any running programs and double click on the OM icon. After a
short delay The OM title screen will appear. Hit any key to begin your modelling
session.

Loading OM from the CU or Shell
To launch OM from the CU or the shell, make the directory containinq OM the current
directory, close down any running programs and type

After a short delay The OM title screen will appear. Hit any key to begin your modelling
session.

13

Memory
OM is a very large program and needs about 480k to operate. So if you're short of
memory, load it on its own.

Related files
OM requires a number of files in addition to the OM program itself. These files are
located in the OM directory. When you make co pies of OM, make sure you copy the
whole directory.

We recommend that you use a separate directory to store your objects and keep the
OM directory clear of other files, this will make copying OM easier in some
circumstances. As explained more ful!y in appendix A on Copying OM, each directory
that is used to store OM should contain a special file called '10' containing a unique two
character identifier. Every time you create a new OM directory you should run the
supplied program SlO and choose a unique identifier when requested. You can change
the identifier at any time, simply by running SlO again. If you don't do th is OM wil! create
an 10 file tor you but the identifier wil! not be unique and this may lead to problems when
it comes to copying objects.

Getting to know OM
The best way of getting to know any software is by using it. You may be daunted by the
idea of making 30 objects, after all, even professional software houses usually stick to
20 sprites and backgrounds. We think you wil! be pleasantly surprised by OM and to
prove it we wil! make a complete 30 object right away. The object we are about to make
is a 30 version of the letter T.

Oesigning on object with OM is a !ittle like building using a set ot bricks. OM provides
a small number of basic shape types which you can stick together to build more complex
forms. OM is more powerful than a building set though because each basic shape can
be stretched and moulded, sized and mirrored giving you access to building blocks of
every conceivable sort. As you will see, bloeks can also be decorated using OM's unique
surface detail feature.

The OM screen
The OM screen is divided into two parts. The upper seetion, the object display area, is
your window onto the 30 world. This is where objeets are assembied and decorated.
The lower portion is rtF!votF!rt to OM's nontrots and ths toets which you USQ to interact
with the display.

14

o o o

Figure 6.1

The display area
The display area (in default mode) is divided into 12 shelves. Each shelf can hold one object.
The top row of five shelves are known as the system shelves and hold the five basic shape
types (see below). These basic shapes are known as blocks (even though some of them are
simply flat surfaces). The next row, the user shelves, provide somewhere to put work in
progress. They can contain your custom blocks, half finished objects and so on. The
remainder of the display is divided into two larger work shelves. AII the modelling functions
operate on these areas.

System shelves_~ .!ID_1 __ g _1_ ?__I_IJ! __ Ip__
User shelves •..•

________ I 1__ I - _I - - - _I _

Work shelves •..•

Figure 6.2

Selecting shelves
One thing that may confuse you a little at first is that initially, except for the system
bloeks, the display area is completely blank. The shelves themselves are not shown in

15

any way. There is a reason tor th is which will become apparent as you get used to OM.
To see where the shelves are, move the pointer into the display area, hold the left
mouse button down and move the mouse around. You will see the shelves light up as
you move through them. Get used to their positions.

Most ot Ihe OM tools work on aselecled shelt, usually one ot the work shelves. You
teil OM which shelt (or shelves) to work on by selecting the one you want. To select a
shelt simply move the pointer somewhere inside and click the left mouse button. OM
draws a box around the shelf to show that it is selecled. Most OM commands work on a
single shelf, some work on a pair. No more than two shelves can be selected at a time.
The work shelves are the only ones used tor modelling, the others are simply for storage.

U5ing the OM tools
OM provides three types of taal:

Mulli-5helf 10015
An example of a multi-shelf tooi is the Copy tooi. To copy the contents of one shelf to
another, clijk (Ijft button) on the souree shelf, click on the destination shelf and finally
click on the 0"0 icon. Try th is now as follows:

First select the right hand system bloek, the small cube. Now click on the left hand
work shelf and then the 10"01 icon. You should see the cube appear in the work shelf.
Notice that it looks larger than before. This is because objects displayed on the work
shelves are moved closer so that you can work on them more easily. There is one other
multi-shelt tooi: The Unite tooi. We shall come to th is soon.

D o o

Figure 6.3
Copying a block

16

One-shot tools
These are by lar the most common tools. A one-shot tooi acts on the selected work
shelf. You invoke it by selecting the shell (il it's not al ready selected) and clicking on the
icon. Zoom is a one-shot tooI. Select the work shell containing the cu be and click the
~ icon. The display now changes to show a close-up view ol the cube lilling the
whole display. Click ~ again to resto re the display.

Slide tools
A slide taal works just like a one-shot except that you hold the left button down over the
icon while you slide the mouse about. The pointer stays stuck to the icon while some
aspect of an object changes. The Rotation icon 11 is a slide tooI. Make sure the work
shell containing the cube is still selected and hold the left button down over the rotation
icon. As you move the mouse you will see the cube rotate. Spenä a little time getting
used to the Rotation taal. Try to look at thê cube Irom every angle. This is the most
Irequently used tooI.

Squashing and stretching
Our next task is to turn our cube into the upright part ol the letter T. Belare we do th is
however we must align the cube so that it laces us straight on. There are special ways to do
this but lor the present the simplest way is to get a Iresh copy ol the cube Irom the system
shelves, copying the block just as you did belare. This time do not rotate the cube.

The next step is to turn the cu be into a group. Groups are a way ol combining several
blocks so that one taal can work on themall at the same time. We will say more about
groups later but lor now we must turn the cube into a group ol one block.

With the cube still selected, click with the right button on the C!:J icon. Little dots
should appear on all the vertices ol the cube. Now we can use the rest of the tools in the
group box on the right ol the panel, and in particular the stretching tools El and [::I],
These are bath slide tools and you will lind them quite intuitive to use, they stretch the
cube in the directions indicated by the arrows. With a little experimentation you should
be able to turn the cube into an upright post.

Incidentally, when you use the stretching toois, be very carelul about the orientation
ol the object you are stretching. You will see why il you try stretching blocks that lie at an
odd angle.

17

0 0 0 ~ (ÇJ

~l
Figure 6.4

Stretching a block

Selecting parts of a block

Figure 6.5
Component selection icons

A block is made up from a number of faces, for example a cube has six. Each face is
made up of four lines and every line has !wo end points or simply points. Many of the
OM tools work on one or more of these cornponents. See figure 7.2.2

Look in the component selection box in the lower left of the control panel. You will
see four pairs of buttons with a long vertical button to either side. The four select buttons
show a picture of a block with the different parts highlighted. These are the component
selection buttons. Click on the second from the top, the face selector. You will see one
of your block's faces highlight with a square (in some cases this square may
be transparent).

Click again to select a different face. Try also selecting lines and points (the bottom
two selection buttons). The only selection button that will have no effect is the top one,
theblock selection button. This is usually only used in objects containing more than
one block.

Experiment with the selection buttons a little. You will notice that they only select
visible parts of the block. To select a hidden part rotate the block so that you can see the
part you want. You will find that it is now selectable. The de-selection buttons marked
with an X, de-select the corresponding component. The remaining !wo buttons we will
come to later. (For a complete explanation of component selection see Chapter 7.2,
block selection tools.)

18

Gluing blocks together
To complete our letter T we must add another block to lie across the top of the upright
part. Multiple block objects are formed by gluing together the objects in the two work
shelves. This can be do ne for a pair of blocks ar for other multi-block objects.

First we select a face on each of the objects (one on each work shelf), then we select
the two shelves in turn and click on the !MI button. The new object appears on the last
shelf selected. You will see how this works when we join the two parts of our letter T.

Before we do this however we still have to make our second bloek. We do th is using
a neat trick: Copy the upright block to the right hand work shelf and turn it on its side.
We now have the block we want and we can go through the gluing procedure. We wish
to join the top of the tall block to the bottom of the horizontal bloek. Select the correct
face of each block using the selection buttons (don't farget to select the shelf in each
case). When bath faces are highlighted, select first the right wark shelf and then the left.
Then click (Ieft button) on the !MI icon on the far left of the control panel.

Figure 6.6
Selecting the faces to be joined

In fact there was no need to turn the top of the T on its side. When you glue objects
togllthw, OM autcrnatlcally handlee thie tor ycu.

The resulting two block object which appears on the left hand work shell will probably
look a little strange. Move it around with the rotation tooi and see if you can teil what is
wrong. The reason it looks strange is that OM \s not yet drawing the blocks in any
particular order. It is not yet taking account ol the tact that one ol the blocks is behind the
other in most views. We teil OM to correct th is by clicking on the lal tooI. After a
second or two the blocks will be displayed correctly

19

o o o

Figure 6.7
Joining the blocks

Before we save our letter T, we wiJl complete the section on selecting components by
trying out the Block Select tooI. Make sure the work shelf containing the T is selected
and click on the ,_, icon. You wiJl see that one of the two blocks is now a line drawing
rather than a solid object; rather like the graphics in old 30 games. The other bloek, the
solid one is the selected bloek. Now click on the 00 icon (opposite the block select
button) to deselect the block.

V Selected block

'-
Figure 6.8

Block selected

Click ,-, again. The situation is reversed. You might wonder why we show selected
blocks in this way. The reason is that whatever the attitude of an object, the selected
block is always visible; you can see it through the others. This makes editing easier in
more complex objects. ActuaJly there is an alternative way of highlighting selected
components and we wiJl come to this when we deal with surface detail later on. Now
click on the ~ icon (the one opposite the block select button) to deselect the bloek.

20

Saving objects
If all has go ne weil you should now have your first 30 object, the letter T like the one in
Figure 6.7. To save the object ensure the object is still selected, click onsthe [ID button
and wh en the file requester appears, type in a suitable name and·click on the
IO.!ll1 button.

Customising blocks
The number of interesting objects that you can create with the five basic shapes is of
course limited. In this section you will learn to make new basic blocks out of those
provided. Before you do this though, take a good look at the system bloeks by eopying
them to a work shelf and moving them around. Look at them in zoom mode and try-
positioning them by clicking on the 1<:=:>1, [QJ and !ili toois. You will notice that only two
of the bloeks have depth. The three on the left have no thickness. They are especially
useful for sueh things as the wings of spaceships.

Pulling lines
We illustrate line pulling using the cu be again. Copy th is block to the left hand work shelf
and select one of the faces. Now select one of the lines on that face. We will now pull
that line.

The tall button to the right of the selection box is the Pull tooI. It is a slide taal so you
must keep the left button down over it while you move the mouse around. When you do
this, do so gently using the tip of the icon

Selected line
Effect of pull tooi-L

Selected
face

Figure 6.9
Pulling a line

the etfects can be quite dramatic. The sensitivity of this control is greater in the lower
portion of the ieon.

Pulling Points
To illustrate point pulling use the live pointed shape, second Irom the right on the system
shelves. Select one of the three pointed laces and then one ol the lines touching the top
of the pyramid. Now select the top vertex with the point selector. Try using the Ifl tooi
aqarn. liJ

Effect of pull taal

: ,;(Selscted point

I /~ Selected linei .~ Selected face.>:>
I;?:::....---~·

After some experimentation you may be conlused about the rules lor pulling lines and
points in the 3D blocks. Here is an explanation:

Figure 6.10
Pulling a point

You can pull any line.
You can only pull points in certain cases. OM does not let you pull points that have to
be in a certain place to keep the laces Ilat. Blocks with bent laces are not allowed!
To pull a line you must have both a tace and a line selected (actually, selecting a line
automatically selects a lace but you will need to select laces to get access to all the
lines). When the line moves it moves in the plane of the face joined to the
selected face by the selected /ine. This may seem complicated but it's not. The
best way to think of it is to imagine that the selected lace is a door with the handle on
UIt! selecred line. pUlling the Ime IS like opening Ihe door.

It will probably take you a short time to get used to these rules. With a little thought you
can design any convex shape with the same number of laces, lines and points as the
original block

Finally, try pulling one of the points in the 5 pointed flat shape on the left system
shelf. This is the only way to change the shape of a 2D block. You will lind that you can
move the selected point anywhere within the plane of the block itsell. See ligure 6.11.

22

Selected point

Figure 6.11
Point pulling on a 20 bloek

Look at the custom blocks in fig 6.12. See what a wide range of shapes you can make.

Figure 6.12
'Some eustom bloeks'

Groups
Earlier, when we were using the stretching tools we touched on the topic of groups. Now we
will deal with the subject more fully. The group icons are located on the right of the panel.

Figure 6.13
Group ieons

So far we have learnt how to select individual blocks. When we are dealing with more
complex objects containing several blocks we will need a way of working on more than
one at the same time. Let's make a more complex object, the letter H. Can you see how
this can be done?

23

We use the horizontal block that formed the top of our T again. It is still in the right
work shelf with one of its faces already selected. Make sure the. T shelf is selected and
select the face which forms the bottom of the the upright strut. Now run through the
gluing procedure again. Click on the right shelf, click on the left shelf and then on the
I~I button.

When the new object appears, click on IsI to get the ordering right. Lastly rotate
the resulting object so that it is the right way up for a letter H. Next, to give the H a more
30 look, let's introduce a small gap in between the blocks. We could do this by moving
single blocks but because we are discussing groups let's try moving two blocks at a
time, say the right vertical block and the cross member.

To do this we need a way of telling OM which two blocks we mean. We will do this by
selecting the two blocks in turn and, as we do so, adding them to the group.

Select one of the two, say the vertical. Now click on C!:J in the group box with the
left mouse button. Then select the other block, the cross member and click Q:] again.
You will see that the points of the two blocks light up. We now have a group of two. Can
you guess what the c::::J button does? It removes a block from the group.

It's worth mentioning here that there is a shortcut to group selection which can save
time when you are working with complex objects. If you click with the right mouse button
on the Q:] icon, all the blocks in an object get added to the group. The same goes forc::::J; the whole group is cleared.

Each of the tools in the group box does something to the current group but many of
them require another piece of information. The tooi we are about to use, the [IJ tooi,
moves a group away from or towards a selected face. We say that it moves the group
normal to the face. The [IJ taal is a slide taal but if youclick on it now you will get a
message complaining that there is na block or face selected.

Select the block not in the group and then the face with the cross member attached
and try again. Gently move the mouse to the right. Do you notice what happens? The
whole group moves away from the selected face.

24

Selected face

Grouped blocks

Figure 6.14
Moving a group normal to a selected face

Now, as an exercise, try making a similar gap between the cross member and the other
vertical strut. We are aiming for Ihe effect in figure 6.15.

Figure 6.15
The completed letter H

While we are on the subject of groups, let's try some of the other group tools. Make sure
you have a group and a face selected. Now try the ~ button. Once again th is is a slide
tooI. It moves the group parallel to the selected face. This tooi is particularly useful wh en
you wish 10 position blocks after a join operation.

The [éJ taal just below, provides the one further operation that is needed; nrotates the
group in a plane parallel to the selected face. Now that you understand the concept of
groups, read the reference section on the group tooibox in Chapter 7.3.

25

Surface detail
We now come to a completely unique leature ol OM - the surface detail tooibox. With
surlace detail you can design pictures to decorate the laces ol your objects. To
demonstrate, let's get a Iresh cube onto the lelt hand work shell (you can save your
letter H il you wish).

Now using the lace selector, select one ol the laces. We are now ready to open the
surlace detail tooi box. Do so carelully so that the tools don't spill out all over the Iloor. At
the centre right ol the panel is a square area marked Surlace Detail. Click somewhere
inside and notice what happens.

Firstly the surface detail area is replaced with 1? new buttons. These are the tools.

Selected face
o

Figure 6.16
A surface detail editing section

Secondly a cri ss-cross pattern appears in the display area replacing the right hand work
shelf. This is the surface design matrix. Actually there is one more change: The square
pattern that identilies the currently selected lace ol the eube disappears and instead the
face is outlined with a laint dotted line. This is so that the surlace details will not be
obscured (you can switch between these two methods of face highlighting with the
~ button).

Let's design a simple detail. Move the mouse somewhere inside the matrix and drag
it a little way witll the leH outton down. When you release the button you should see a
line appear reflecting your 'drawing' move ment. Using th is technique you will find that
you can draw quite freely.

Now to design a surface detail. First of all let's clear the matrix. Cliek on the ~
bulton in the surface tooibox. Now draw a closed shape on the matrix. The shape must
be closed, that is, it must join up exactly and enclose a region of the matrix with no gaps.
II it is nol closed OM will teil you when it attempts to attach the surface to a bloek.

Now all that remains is to decorale our face. Click on the IEJ icon. The surface
should appear on the selected face. You will notice that the picture on the bloek is
somewhat different to the one on the matrix. It is solid and not a line drawino. This is
how surface detail works. lt's also why we had to be so careful about closing ou~ shape.

26

The shape mayalso have a ditierent orientation to the one on the matrix. Try clieking
on the ~ ieon. The shape will rotate. Now that you have a taste of surfaee detail, turn
to part four of the next ehapter for a full explanation of all the tools.

That ends the OM tutorial. Of course we have only covered a tiny fraction of the things
that you can do with OM. But now you have the general idea you will find that the next
chapter contains plenty of explanation.

Just a final word. At Mandarin (and at Voodoo Software) we are very keen to see
yaur abjects as weil as your programs. Feel free to send them to us a/ong with any
suggestians you may have for improving OM.

27

7: The object
modelier tools

This section is divided into four parts. Each part is concerned with a graup of contrals on
the OM panel. At the beginning of each part is an illustration of the panel contra Is
concerned. When you are more familiar with the commands, you will find the quick
reference card uselul as a reminder. Many ol the buttons are in lact two tools in one.
These are known as double commands. You use a different mouse button for each.

7.1: Primary Commands
The primary commands are those which operate on whole objects or shelves. Most are
located on the top raw of the panel.

Figure 7.2.2
Primary ieons

We discuss the use of these commands trom left to right, top to bottom. In some cases
the buttons invoke features such as surlace detail which are dealt with in one of the
other parts of th is chapter. Some ol the commands have elfects which depend on which
of the two mouse buttons is pressed. Unless otherwise specilied, clicking means
pressing the left mouse button.

I~ I The Unite or gluing tooi
This is a double commando

Left mouse button - Unite
Purpose This tooi unites the objects in the two work shelves to yield a compound

object.
Method Select the face on each of the objects where you want the join to take

place. Select the two work shelves, one after the other. Click on the Unite
button. The resulting compound object will appear in the last work shelf
selected. The contents of the other work shell will remain unchanged.
Note that no object can contain more than 8 blocks. The effect ol Unite
can be undone using the []J button.

Comments You will need to use the Precedence tooi Is Iafter a Unite operation.

29

Right mouse button - Unite and group
Purpose To unite two objects, order the blocks and select a group ready lor

positioning.
Method Proceed exactly as above. The effect is the same except that several

additional operations are performed:

• The selected block and lace on the destination shell remain selected.
• Theblocks added to the object Irom the souree shell are automatically selected as a group.
• The resulting object is automatically given correct precedence just as il
the ~~ tooi had been used.

Comments When you unite with the right button OM performs all the operations
necessary to prepare the new blocks lor linal positioning using the lace
relative move ment tools. This is such a common next step that OM
provides this sequence ol commands in a single operation.

10"0 I Copy tool/Copy group tooi

Lelt mouse button - Copy
Purpose This tooi copies the contents ol one shell to another, leaving the source

object intact.
Method Click on the source shell (the one you wish to copy trom) and then the

destination shell (the one you want 10 copy tol. Click on Copy.
Comments Copy always places an object on the target shell in its unrotated attitude.

II you want to copy an object at its current attitude, click on the rotation
tooi with the right mouse button lirst.

Right mouse button - Copy group
The right mouse button may be used with the Copy tooi to copy only the selected group.
This is covered under Group Commands, chapter 7.3.

I i i i îJ'l1 Precedence/CuUing tooi

This is a double commando

Lelt mouse button - Precedenee
Purpose To arrange the blocks comprising an object in such a way that the object

will be ordered correctly when viewed Irom any angle.
Method Click on the work shell containing the object to be treated. Click on the

Precedence icon with the left mouse button. This process can take a lew
seconds lor complex objects.

30

Comments Occasionally you will lind that th is operation lails, with blocks that should
be in lront appearing behind and visa versa. The usu al reason lor this is
that blocks have somehow become slightly embedded within one another.
For more inlormation on how to cure this problem, see Problem Objeets.

Mounting bloeks inside one another
It is possible to order an object correctly with one block inside
another (see the object struct). To see the inner block you can make
windows in the outer block using surface detail. To make this work you
must arrange lor the inner block to have a lower block
number than the outer bloek. You can display the block number ol each
block by selecting it and using the [1] button.
When you unite a block to an object, the new block is given the block
number zero. Using this lact you can arrange your blocks in the correct
order belore using (or re-using) the Precedence tooI.

Right mouse button - Culling
Purpose To compute surlace, block and object culling depths lor an object.
Method Click on this tooi using the right button. An object can be unculled by

reloading it into OM and saving it again.
Comments Culling is a way ol speeding up drawing in an AMOS program when

objects are so lar away that detail, or the whole object, is small compared
with the resolution of the screen. For each surface detail and bloek, OM
calculates the distance beyond which that component is toa small to be
worth drawing. When you run the object in a 3D program the details on
the surlaces and the blocks themselves will disappear, each at an
appropriate depth. A culling depth is also calculated lor the whole object.
Wh en it is displayed at a distance greater than th is it will be replaced by a
dot or a short line. In some types of program this can greatly speed up
object processing.

I lXI I Delete object tooi

Purpose Removes an object from a shelf.
Method Click on the shelf containing the object to be deleted and then click on the

Delete button.
Comments The effect of Delete can be undone using Undo.

I ..)(ï1 I Delete block/delete group tooi

This is a double commando

Lelt mouse button - Delete bloek
Purpose Removes the selected block from the object on the selected work shelf.
Method Click on the work shelf containing the object to be simplified. Click on the

31

I_ I button in the selection box until the block you wish to remove is
highlighted. Click on Oelete Block. The effect ol Oelete Block can be
reversed using Undo.

Right mouse button - Delete group
Comments The tooi may be used with the right mouse button to delete the current

group. This is covered under Group Commands, chapter 7.3.

~
~

Snap/Centre tooi

This is a double commando

Left mouse button - Snap
Purpose To tidy up an object by bringing nearby points together.
Method Select a block, a lace, a line or a point or the whole object (by selecting

only the shell). Click on the Snap icon using the Lelt mouse button. Snap
normally works only on the component selected. If no component is
selected, Snap works on the whole object.

Comments Because Snap brings points within a certain distance of each other
together, you can make Snap more or less sensitive by changing the
size of the object with the I!il tooi (see 7.3 Group Commands below).
Same care is needed with this taal however since it takes no account of
the Ilatness of laces. II you make an object very small and then Snap you
may get an object with bent laces. This will not necessarily display
correctly. Because Snap can introduce small errors it is a good idea to
wait until your object is complete belore using it. There is a temptation to
use Snap whenever you notice some small discrepancy in an object -
don'tl Or at least il you do, save a copy ol the unSnapped object lirst.

Right mouse button - Cent ring
Purpose To centre an object at a selected point or at its centre ol gravity.
Method Click on the icon with the Right mouse button. If a point on the object is

selected the object is centred about that point. Otherwise OM calculates
the Centre Of Gravity of Ihe whole object and makes this the object's
centre. The centre ol gravity of an object is a point, usually but not always
inside the object where all the object's mass acts (ol course our 30
objects only have notional mass). If you actually made the object out ol
same rea I material and you had a way ol balancing it on a spike, the
centre of gravity would be the point at which it just balances.

Comments The position of an object's cent re is important for two reasons. Firstly it is
the point about which Ihe object rotates, either under Ihe control ol the
rotation taal or under contral of an AMOS program. Secondly the centre of
an object is the point whose coordinates you specily when you use one of
the TD positioning commands.

32

Note that you may not always want an object to be centred about its
cent re of gravity. If you want an object to swing around a point at one of
its extremities for example, that is where its centre should beo You can
use the Group commands (with the whole object as a group) to perform
centring about non cent re of gravity points which are not vertices of the
object. If you use one of these tools to move an entire object the centre
stays where it is.
Note that the XYZ commands below do not move the centre of an object.
They simply move the existing centre to a different point on the shelf; a
subtie but important difference!

DJ Undotool
Purpose To undo the effect of the copy, unite, delete and undo commands. Both of

the work shelves and the user shelves have a 'memory' of the last
operation performed.

Method Click on the work shelf to be undone. Click on Undo.
Comments Clicking again on the icon will restore the undone object. Clicking a third

time will perform the undo again and so on.

~ Zoomtooi

Purpose Causes the whole display area to be devoted to the object on the selected
work shelf.

Method Click on the work shelf to be zoomed. Click on the zoom icon.
Comments Zoom is provided for two reasons. Firstly it lets you take a much closer

look at the object you are working on. Secondly it speeds up the system
by removing the other objects on the display area. The XYZ tools can be
used in zoom mode to move the object about and to bring it closer (or
further away). Use of the Zoom tooi will not affect the position of the
object in regular display mode. Zoom is also useful in situations where
you want to look squarely at an object, rather than from the side.

ID I XZ-Align tooi

This is a double command.

Purpose Used to align a face of an object parallel to the XZ-plane. See the
glossary for a description of 3D axes.
Select a work shelf and then one of the faces of the object on the shelf.Method

33

Click on the icon. The left mouse button causes Ihe selected lace 10 point
up. The right button makes it lace down. II no group is selected the whole
object is aligned, otherwise the alignment affe cts only the grouped blocks.
(see Group Commands)

Comments One important use ol this tooi is in conjunction with the Stretching and
Symmetry tools. The former can be used to stretch a group ol blocks
either horizontally or vertically. If the object being stretched is not in the
correct attitude, it can produce unwanted effects. The Align tools al/ow
you to select the correct attitude accurately. You can also use these to
make two laces parallel. To do th is you must define two groups and align
them separately with one ol the axes.

110 I VZ-Align tooi
This is a double cam mand.

Right mouse button - Quick mode

Purpose Works in exactly the same way as the XZ-Align taal. The same comments
apply. Lelt and right buttons produce opposite effects.

Method Select a work shell and then one ol the laces ol the object on the shell.
Click on the icon.

Comments See the comments lor the XZ-Align taal.

IB I XV-Align tooi
This a double command.

Purpose Works in exactly the same way as the XZ-Align tooI. The same comments
apply. Lelt and right buttons produce opposite effects.

Method Select a work shell and then one ol the laces ol the object on the shell.
Click on the icon.

Comments See the comments lor the XZ-Align tooI.

1071
[]!I Highlight mode tooi

Purpose
Method

Ta select the highlighting method used by OM to show selected components.
Click on the icon to change mode. The diagram in ligure 7.2.2 shows how
components are highlighted when selected. In the delault mode all surface
detail is suppressed when components are selected.

Comments Alternate mode is suitable lor surface detail editing where the selected
face must not be obscured. Otherwise default mode provides clearer
inlormation. II you want to look at a complete object without de-selecting
components, switch temporarily 10 Alternate mode.

34

I [iJ I File tooi
This is a double corn mand.

Purpose
Method

Comments

Ta load or save an object.
Click on the shelf containing the object to be saved, or the shelf into which
you wish to load an object. Now click on the File taal to bring up a
standard filename dialogue. At the top of the dialog is a path box
containing the current directory. Initially th is will be the directory from
which OM was launched. The path may be edited freely. Typing ENTER
or clicking on the disc icon causes the new directory to be read and
displayed in the list box. Filenames may be selected either by clicking in
the list box or by typing in the file name box ~oth). Once the path box
and the filename box are correct click on ~ to load or ~ 10 save.
~ cancels the operation.

Oirectories are indicated in the list box by an asterix against the
directory name. A double click loads the new directory. At the top of the
list is a special directory "Perent. Double clicking on this loads the
directory containing the current one.

Right mouse button - Quick mode
There is nothing more irritating than waiting lor a lile dialog to read a large
directory when you know what you want or when you want to change
directory immediately. Il you click on the File icon with the right button
instead of the lelt directory reading is suppressed and the dialog appears
immediately. You can always lorce a directory read with the Oill button.
When you save an object make sure that it is lacing the way you want it to
lace in your AMOS program. Of course you can rotate it under program
control but you will lind objects much easier to control il they all have the
same standard (unrotated) attitude.

The same applies to centring. Make sure that the rotation tooi swings
your object about an appropriate point. For details of centring see the
Snap/Centring tooi above. Il you want your object cu lied, be sure to click
the culling button belore each save.

File etructurc
Objects are multi lile entities. The details are explained in appendix B on
File Structure. When you save an object OM checks that all related .30T
and .30S files are present in the same directory and adds them if they are
not. Because of this the File tooi provides the safest way of copying
objects Irom one di sc or directory to another. For an alternative, see
appendix C describing the three Utility programs OL, PRUNE and SlO.

Disc Errors
OM uses AmigaOos and will respond with standard Intuition
messages to any errors, for example non existent devices. For th is

35

reason OM switches to the workbench or CL! screen during certain
operations.

Sometimes you may notice a brief flash during file operations. This is
perfectly norm al.

I '? I Info tooi

To display technical details of the object on the selected work shelf.
Hold the left button down over the icon for as long as you wish information
to be displayed.
Some of the AMOS commands allow points within an object to be
manipulated directly from within a program. Other commands make use
of other object cornponents such as faces and bloeks. The Info tooi
displays the information needed 10 identify these units. According to which
components have been selected within the current work shelf, the
following data will be displayed:

The radius of the object. This is actually the radius of the
circumsphere; the smallest sphere which will contain the
object. It provides a very useful guide 10 Ihe size of Ihe object.
The block number b
The face number fwithin the selected block
The line number Iwithin the selected face. The number in
parentheses is the length of the line. This can be very useful
prior to a Join operation.
The point number p1 within the selected block. The point
number p2 relative to the whole object.

The animation command uses p2 to identify points. If you want to place
blocks inside one another you will need to know the block number b.

Purpose
Method

Comments

R:r

8:b
F:f
L:I(len)

P(p1,p2)

SURFRC~
DETRll

A Surface detail tooi
Purpose To put OM into surface mode and display the surface detail editing

window. The ieons in rne surface detail panel box become active.
Only the object on the left work shelf may be the subject of this operation.

Method Click anywhere on the panel marked Surface Detail. The panel will be
replaced by a set of surface editing tools.

Comments For a lull description of surface detail editing see part 7.4.

IQgjI Colour combination tooi

This is a double commando

36

Purpose To select the colour combination for a bloek. It does not change the
palette in any way; it simply al/ows you to select which faces take which
colours out of the OM palette. There are up to 10 possible combinations
which vary according to the type of block selected.

Method Select a work shelf containing an object. Select one of the blocks. Click
on the icon repeatedly until the block shows in the desired colour
combination. The left button moves forward through the sequence, the
right button backwards.

Comments The purpose of th is function is to let you select the desired contrast
between faces and blocks. Once an object has been designed which
looks correct in the OM palette, a suitable palette can be designed from
within the AMOS program which uses the object or using OM's RGB
colour drafting tools. Note that objects use only colours 8, 9, 10, 11, 12,
13 and 14 leaving other colours Iree lor backgrounds and other effeets.
When you click on th is icon the combination number and the three colour
numbers are displayed. These are the colour numbers of the block's
faces. Any surface detail wil/ also be drawn in a combination of these
colours. If the block is one of the 2D blocks which have only two faces,
the third of the three displayed numbers should be ignored. (The third
colour of a block is actual/y always the logicalOR of the first two). Of
course you can make objects containing more than three colours by using
several blocks.

~ RGB tools

Purpose To al/ow the amount of red, blue or green comprising a given colour to be
adjusted. They also al/ow the colour number associated with object
components to be ascertained.

Method Click on a face of any object in the display area. Now hold the left button
down over one of the RGB icons. As you move the mouse from side to
side the intensity of the associated colour component changes.

Comments While the left button is down over one of the RGB contra Is OM displays
the fol/owing information:

C:c The colour number c of the colour being adjusted
R:r The amount of red rin the mixture (0 to (5)
G:g The amount of green gin the mixture (0 to 15)
B:b The amount of blue bin the mixture (0 to 15)

This information may be used in an AMOS program to generate a
suitable palette.

37

IEi] I Reset tooi

Causes OM to be reset to its initial state.
Click on the icon.
When you reset OM all work not previously saved will be lost. OM will ask
you to conlirm that you want to reset the system.

~ Quit tooi

Purpose
Method
Comments

Purpose This tooi implements an advanced software removal algorithm.
The OM software is careluJly removed and each byte is thoroughly
cleaned.

Method Click on the icon.
Comments You will be prompted to conlirm that you wish to leave OM.

I®I Rotation Tooi

Purpose
Method

This is a double commando

Comments

Ta rotate the object on the currently selected work shell.
Hold the left button down over the icon and move the mouse. A left/right
movement rotates the object about the y-axis, an up/down movement
rotates it about the object's x-axis.
Click with the right button to redeline the object's axes alter a
rotation operation. •
It is weil worth understanding clearly what happens when you use the
rotation tooi.

Lelt mouse button
With the lelt button OM uses a system known as Euler Angles. To
visualise Euler Angles imagine placing your object in the centre ol a
gramophone's turntable. Moving the mouse Irom side to side rotates the
turntable. Moving the mouse up and down tilts the object up and down,
buL always about me same axis refarlVe to me ouec: It you ratate the
turntable through a right angle and then move the mouse up and down
the effect would be to rotate the object in the plane of the screen.

In other words objects rotate about their own axes and not the fixed
screen axes. Using the left button alone, it is not possible to see the
object in every possible attitude. That's where the right button comes in.

Right mouse button
The right button lets you redefine an object's axes. Whatever the current
attitude of an object, pressing the right button over the rotation icon

38

causes its axes to be defined paral!el to ihe screen axes. In other words
OM now considers the object to be unrotated in its current attitude. You
can see this if you copy the object to another shelf; it will appear in exactly
the same orientation.

Whenever you save an object OM does this for you; the object is
saved in its current attitude.

I<:;::=;> I [ill [?J] XYZ Tools

These are double commands.

Left mouse button
Purpose To move the centre of a shelf in the direction indicated by the one of the

six arrows, left, right, up, down, towards the observer and away trom the
observer.
Click on one of the arrows.
Each click on one of the XYZ icons moves the shelf a standard distance
in the indicated direction. You are free to move shelves as far as you wish
in any direction. You should avoid bringing them too close though as this
may prevent correct drawing of the object.
The tooi moves the shelf and with it the object. 11does not change the
position of the object's centre relative to the object, to do that use the
Centring tooI. Note that there is no visual difference between increasing
the size of an object and moving it closer.

Right mouse button
II you hold the Right button down over one of the XYZ icons you can move objects
around continuously, rather than in jumps. AII four of the XY icons behave the same way
and move the shelf parallel to the screen. The two Z icons translate mouse up-down
movements into depth changes in the shelf.

Method
Comments

Problem objects
Sometimes, when you are modelling an object you may find it hard to make the blocks
appear with the correct precedence. A block may appear in front when it should be
behind, even etter u:sing the Precedence tooI.

II this happens to you, the reason will probably be that the laces you have glued
together using the Unite tooi have somehow become slightly embedded within one
another. The precedence tooi will not work properly unless the blocks are separate, that
is either butted up exactly or with a gap between them. The faces must not be broken.

To solve the problem move suspect blocks a little way apart and try the precedence
tooi again. Once you have found the problem you can bring the blocks together again
taking care not to push one inside the other.

Remember that OM does not complain il you move blocks through one another
(modelling certain objects would be hard otherwise). In fact there are some cases when
you actually want one block to be inside another.

39

This problem tends to erop up more often with objeets that you have been working on
lor a long time. Although OM is very accurate, many modelling operations can introduce
smal! errors, sometimes making the faces ol blocks slightly bent. OM constantly
attempts to remove these cumulative errors but it can not always do so, especially on
very smal! bloeks. II a face looks a little bent, or wrong in some other way, try
remodelling that bloek on its own. You ean always isolate individual bloeks using Group
Copy and Group Delete (see ehapter 7.3).

40

7.2: The Bloek level tools
The tools described in this section are located on the lower left of the OM panel.

Figure 7.2.1
Component selection and pull tools

These tools are grouped together because they all have something to do with the
components of objects.

Component selection tools
The four component selection icons each depict a block with a different component
highlighted.

Normal
·Mode

Alternate
Mode

Face
selected

Line
selected

Point
selected

No component
selected

Block
selected

n 1

Figure 7.2.2
Selected components

To the right of each of the selection icons is a smaller icon bearing the symbol [!].
These are the de-selection controls. They undo the effects of their corresponding
selectors.
AII tour selection tools werk in similar ways. They cause the indicated component on the

41

selected work shell to be highlighted. As you click on the selectors OM cycles through all
the possibilities lor that type ol component within a higher level selected component.
OM provides two alternative ways ol indicating selected components. The default mode
is usually the most appropriate. However if you are working on surlace detail, or you
wish to see the object with only minimal highlighting, you can change mode by clicking
on the ~ icon. This is located among the primary tools and not in the block level box.
For a description of the two modes see the Highlight tooi in chapter 7.1 .

I ~ I Slock selector

Some operations require a block to be selected. If the object contains only one block
there will be no visible effect of doing so. II there is more than one block, one ol them -
the selected block - is shown as asolid, the remainder being drawn as outlines. This
allows you to see the whole of the selected block even if there are other blocks in the
way.

As you click repeatedly on the block selector OM cycles through the blocks, selecting
each in turn. Stop at the block you wish to select.

I.., I Face selector

The lace selector cycles through the visible laces in the selected block highlighting each
in turn. II no block is currently selected, OM selects one for you. In delault mode the face
is highlighted with a square or triangular panel. II the selected block is one of the 20 flat
types, only one face can be visible at a time. In this case OM does not highlight the
selected face.

I c::::J I Line select or

The line selector cycles through the lines bordering the selected face highlighting each
in turn. If no block or face is currently selected, OM selects them for you. The selectec
line is indicated with a braken line drawn over it. 8ecause of colour contention it is
sometimes difficult to see the selected line. II th is happens, rotate the object 10 a new
attitude until you see the broken line.

I c=] I Point selector

This is a double commando

42

On 3D blocks the Point selector flips between the end points ol the selected line,
indicating the points with a small arraw. If no block, face or line is currently selected, OM
selects them lor you. On 2D Ilat blocks the selector cycles through each ol the points.

Surface anchor points
The point selector has another use which is dealt with in the section on surlace detail. II
you use the right button instead of the left, OM designates the selected point as a
surface anchor point. See chapter 7.4, Surlace Detail.

~ Pull tooi

This provides a means of altering the shape of a block by pulling a line or a point. If OM
were a 2D object editor th is would be easy. As it is, a 2D mouse and screen cannot
provide sufficiently good visual feedback to let you know how a line or a point is moving
in 3D space. The depth dimension conluses the situation. Additionally, OM has to
ensure that all faces remain flat. This places restrictions on certain operations.
To pull a point or line proceed as follows:

• Select the component you wish to pull (lins or point)
• Click on the upper part of the pull icon and hold the left button down

Gently move the mouse
Release the left button when you have affected the desired change.

The rules governing point and line pulling are given below. To make interesting shapes
you need to plan a sequence of operations. The method may seem a little awkward at
first. Persevere. With a little practice you will get the hang of the contrais. They pravide
enough flexibility to make any convex shape with a given number of points. Look at the
example objects. You will be surprised at the wide variety of shapes that can be made
from the simple basic types provided. Here are the rules:

Pulling rules

Point pulling
You een only pull pointe in eertuin cases. OM does not let you pull polnts that have to
be in a certain place to keep laces flat. Bleeks with bent laces are not allowed! II is
impossible for th is reason to pull a single point in the eight-pointed basic cube. Edit
eight pointers by pulling their lines.

• When you can pull a point ol a 3D block it always moves along the selected line,
praduced if necessary . When you pull one of the points ol a 2D (flat) block it moves
freely in the plane of the block.

43

Effect of pull taal

: \: / Selected point1·~./

: ~ Selected line

: ~ Selected face

1 ·9
1 /

1

Point pulling is the only way of changing the shape of flat blocks.

Figure 7.2.3
Point pulling on a 30 bloek

Selected point

Line pulling
Any line on a five or eight-pointed block can be pulled.
When you select a line in a selected face you identify two faces uniquely. The first is
the selected face, the second is the face attached to the selected face by the
selected line. We wilt calt these the primary and secondary faces respectively.

Figure 7.2.4
Point pulling on a 20 bloek

44

When you pull the line it moves in the plane of the secondary face. The best way to
think of this is to imagine that the selected face is a door with the handle on the selected
line. Pulling the line is like opening the door.

Selected line
Effect of pull tooi.r.

Selecting the sensitivity of the pull tooi
Sametimes you will want to make a big change to a point or line. Other times you will
want a small accurate change. The sensitivity of pull depends on the part of the pull icon
you click over. At the top the sensitivity is least; you can move one unit at a time. Further
down the icon the sensitivity increases. The sensitivity you have selected is displayed
(see below).

Selected
face

Figure 7.2.5
Pulling a line

Sensitivity: lenqth-denqthû-chanqe

-•T
•• Least

J lncreasinq sensitivity

•• Greatest

...•..-
Figure 7.2.6

Pull sensitivity

45

When you pull a point or a line the information displayed is very useful for making
symmetrieal bloeks. lf the bloek is one of the 30 bloeks the information is as follows:

Sensifivify is the pull sensitivity you have selected. The number is the size of the
smallest change the operation will resolve.
is the length of the produced or truncated line
is the length of the produced or truncated line prior to the pull operation
is the amount by which the produced or truncated line has changed

leng th
lengthO
change

If you want to perfarm two or more equal pulls so as to make a bloek symmetrieal,
change in bath cases should be the same.
If you are pulling a point of a 20 (flat) block the information is the same except each of
the numbers abave are coordinates of the farm (x,y). These teil you the coordinates of
the point as it changes.

~ Undotool

If you make amistake during a pull operation, this taal will undo it. A second click on
Undo restores the 'mistake'.

46

7.3: Group commands
Grouping is a way of identifying a selection of the bloeks eomprising an object.
Sametimes a group will be just one bloek that you want to single out for manipulation,
sametimes several bloeks and sametimes you will want to turn a whole object into a
group. A group is different from a seleeted bloek. In faet to use same of the group tools
you will need bath.

With the exeeption of the group defining tools 0 and D,the commands
described below work only on the selected group. You may define one group on each of
the two work shelves.

Figure 7.3.1
Group ieons

Group highlighting
OM indicates which bloeks belang to the current group by drawing a small dot at each vertex
(corner point) of eaeh bloek in the group. These dots show through any obseuring bloeks.

,---+_--,11 __ --,1Selecting a group

These are double commands.

You set up a group on the seleeted work shelf using the 0 and D eornrnands.
These work in two ways:

Left mouse button
lf you click on Q:] with the left mouse button any selected block is added to the
cutrent group. It you click on D with the lef! button eny eelected bloek ie delered
trom the current group.

Hight mouse button
ft you click on Q:] with the right button, OM makes a group out of all the bloeks in the
object. If you click on D with the right button the group is cleared eompletely.
Onee you have seleeted a group you are ready to use the group commands.

47

Face relative movement toets
One ol the most difficult aspects ol object design is judging the relative movement ol
blocks. You may think that you have achieved the effect you want Irom one point of
view, only to lind that it's wrong Irom another.

Modelling objects with OM is very like modeling with clay or some other mate rial. Of
course when you are making a physical object you see it in 3D. Your hands can leel the
shape and you can get a real leel lor the changes you are making. OM does its best 10 give
you as much visual feedback as possible but on a 2D screen there are bound 10 be
limitations.

Experience has shown that Ihe besl way ol expressing a change in Ihe relalive position of
blocks is by relerenee 10 some part of Ihe objecl ilsel!. Wilh a 3D objecl it is nol very precise
to say 'move Ihat block a bil 10 the lett'. lt's much better to say somelhing like 'slide that block
over that face' or 'lift Ihe block off that face'.

This is Ihe purpose ol Ihe lace relalive lools. They lel you specify changes relativa 10
somelhing you can see (anolher part of Ihe object) ralher Ihan relative to Ihe screen.

Suppose thai you have just glued two blocks together with the Unite 1001 (see chapler
7.1). Unile buis Ihe selected laces of the selecled blocks up against one another. OM can't
know exactly where the glued object should go so it puts it in the middle somewhere. You will
probably want 10adjust the exact position, perhaps by sliding Ihe blocks over one another or
by raising one above the other. This is where the three lace relative tools come in. They
provide Ihe Ihree operalions you will need to get the position and angle ol Ihe glued object
exactly right.

To slide one over a face ol Ihe other use ~
To raise or lower one over a lace ol Ihe ether (or normal 10 il) use DJ
To ratate one in the plane of a face of Ihe ether use [è]
Ol course these tools are uselul in many situations, nat just after a Unite. They can be used
at any lime, whenever you need 10move one or more blocks relative to an object.
Befere using the face relative tools OM needs 10 know two Ihings.

• Which blocks to move
• Which lace you wish 10move relalive 10; the anchor face.

You indicate which blocks you wish to move by turning them into a group using the [2J
and ~ buttons.

You indicate Ihe anchor face by selecting it using Ihe seleclion tools. (Note that the
anchor face may be any lace, even one on the group you intend to move)

Once you have a group and a lace selected you are ready to use the lace relative tools.
When you are changing Ihe relative position of groups you will lind it easier to judge Ihe

effect ol your changes il you Irequently aller Ihe attitude ol your object with the rotation tooI.
Objects came 10lile when Ihey rotste, and complex shapes become much easier 10grasp.

48

I ::.::1 Face relative Slide tooi

Purpose To move a group parallel to the selected face.
Method Select a group and an anchor face. Now hold down the left mouse bulton

over the Slide icon and move the mouse.
Comments Because an object can be in any orientation, the direction of mouse

movement does not always produce move ment in quite the same direction on
the screen. Experiment to find the best attitude for your object.

A group of
one block

Selected
face

Figure 7.3.2
Slide tooirn Face relative Normal tooi

Purpose To move a group normal to the selected face. Normal means at right
angles to.

Method Select a group and an anchor face. Now hold down the left mouse button
over the Normal icon and move the mouse.

49

A group of
one block

Selected
face

Figure 7.3.3
Normal tooi

I~ I Face relative Rotation tooi

Purpose To rotate a group in a plane parallel to the selected face.
Method Select a group and an anchor face. Now hold down the left mouse button

over the Rotation icon and move the mouse.
Comments Because of the amount of calculation involved, this operation is slower than

most. Move the mouse very gently until you get the feelof the commando

A group of

<«"~
Selected
face

Figure 7.3.4
Rotation tooi

50

Axis relative movement commands
These commands also move and rotate groups, but this time they do so relative to the
plane of the screen. It is best to use these tools in Zoom mode (see Part 1) which allows
you to look at an object head on rather than trom one side.

I+ I XV group displacement

Purpose To move a group parallel to the XY plane.
Method Hold the left button down over this icon and move the mouse left, right, up

and down.
Comments This command is most useful when used in conjunction with the

Alignment tools.

I/I Z group displacement

Purpose To move the group parallel to the Z-axis.
Method Hold the left button down over the [2] icon and move the mouse left

and right.
Comments This command is most useful when used in conjunction with the

Alignment toois.

[IJ Set rotation centre

Purpose To set a centre for the [J taal. The group rotates in a plane parallel to
the screen.

Method Hold the left button down over th is icon and move the mouse. A set of
cross hairs will appear and move following the mouse.

Comments This command does not affect the object in any way. It merely sets a
centre for the exis relative Rotation taal.
Don't get confused between this taal and the cent re I,Vol tooi in part
7.1. The centre set with this taal only applies to the Axis relative rotation
tooi below.

[J""".I:.... Axis relative rotation tooi

Purpose Ta rotate a group in a plane parallel to the screen using the centre of
rotation set with the set centre taal above.

51

\
Method Select a centre with the set centre tooi, then hold down the left mouse

button over this tooi and move the mouse, left and right.
Comments Because ol the amount ol calculation involved, this operation is slower

than most. Move the mouse very gently until you get the lee I ol the
commando

The 5ymmetry toets
The purpose ol these tools is to invert a group either vertically or horizontally. They do
not make groupssymmetrical. That can be do ne in other ways. A typical use for the
symmetry tools is to make objects where the block(s) on one side are a mirror image of
those on the other, like the wings ol an aeroplane. A second use of the command
undoes the effect of the first.

I+-I Vertical symmetry tooi

Purpose
Method
Comments

To turn a group into a mirror image ol itsell in the vertical direction.
With a group selected, click on this icon.
This command is most uselul when used in conjunction with the
alignment tools.

Figure 7.3.5
Vertical Symmetry

I -ft- I Horizontal symmetry tooi

Purpose
Method
Comments

To turn a group into a lateral mirror image of itsel/.
With a group selected, click on this icon.
This command is most useful when used in conjunction with the
alignment tools.

52

Figure 7.3.6
Horizontal Symmetry

Stretching tools
Sometimes the best way to shape a block or a group of blocks is to stretch it either
vertically or horizontally. This is the easiest way of making regular six-sided ligures and
certain sorts of pyramids. It works weil when the object is stretched along a main axis. If
you stretch a group at an arbitrary attitude you will often get very odd effects which are
difficult to correct accurately.

Another sort ol stretching tooi is the Sizing tooi (see below). This stretch es along all
axes simultaneously, which is the same thing as making it larger. The Stretching tools
work both ways, that is by moving the mouse Irom right to lelt you can compress as weil
as stretch.

Compressing an object or making it smaller with the Sizing taal has a side effect
which can alter the shape ol your object. Suppose you have an eight-pointed block 100
X 100 X 30. Now imagine making the object a quarter of its original size with the Sizing
taal. The dimensions will now be 25 X 25 X 7.5. Since OM works in integer arithmetic
(this makes it much faster) the 7.5 would be rounded down to 7.0.

Now imagine using the sizing tooi again to bring the block back to its original size,
that is, multiplying each dimension by 4. You would now have a block 100 X 100 X 28,
not quite the original shape. You will only get this effect if you make the object smaller,
let go of the mouse button and then make it larger as a separate operation. While you
hold the button down OM works Irom the original coordinates.

Warning: OM will let you compress a group to nothing and then beyond. II you do this
you create a very strange object that has no analog in reality. One property ol such
inside out objects is that the laws ol perspective are reversed. The parts which are
ostensibly lurther away look larger than the closer ones. What is really happening is that
the laces that OM draws are actually the laces that would be hidden in an ordinary
object. By all means use th is effect if you wish; it can be stomach curdling, but expect
the unexpected.

53

Itt I Horizontal stretching tooi
Purpose To stretch a group along the x-axis.
Method Hold the left button down over this icon. Move the mouse to the right to

stretch, to the left to compress.
Comments This command is most uselul when used in conjunction with the

Alignment tools.

[!] Vertical stretching tooi
Purpose To stretch a group along the y-axis.
Method Hold the left button down over this icon. Move the mouse to the right to

stretch, to the left to compress.
Comments This command is most uselul when used in conjunction with the

Alignment tools.

Sizing

I[§] I The 3 axis stretching or sizing tooi
Purpose To make a group larger or smaller.
Method Hold the left button down over this icon. Move the mouse to the right to

stretch, to the left to compress.

Aligning groups
The Alignment tools are not exclusively group toois. II no group is delined they align the
whole object on the selected work shell as described in Part 1. II a group is delined,
these three tools will operate on the group only. The main use lor th is is in lining up
blocks or groups ol blocks to make them lit together. .

Suppose you have an object in which there are blocks that you wish to but! up
against one another, or in which you want to make the laces ol two blocks parallel.
Usually you will achieve this by gluing blocks together with the Unite tooI. On occasion
though, you may want to do so without splitting up the object and regluing.

You can do so by selecting the blocks in turn as groups and aligning them separately
against one or other ol the axis pairs using the Align tools. There are many useful
variants of th is methad, for example placing groups ol blocks at right angles to one
another. For a description ol the Aligning tools see Part 1 of this chapter.

54

Copying and deleting groups
The copy and delete block tools as described under Primary Commands mayalso be
used to copy and delete groups as lollows.

ID~D I Copy group tooi
Purpose To copy a group ol blocks to another shell.
Method With a group selected, click lirst on the sou ree shell and then on the

destination shell.
Then click on the copy tooi button with the right mouse button.

Comments The blocks comprising the group will be copied just as they were in the
original object. The resulting object will be displayed unrotated, in its base
attitude. 1Iyou want to preserve the current attitude, click on the Rotation
tooi with the right mouse button first.

I ':Xi' I Delete group tooi

Purpose To delete a group of blocks.
Method With a group selected, click on the icon with the right mouse button.

55

7.4: Surface detail
OM's surface detail feature is one of its most powerful facilities. With it you can not only
add pictures to the faces of your objects, you can also add transparencies which allow
you to place windows and holes in objects. With judiciously placed surface detail you
can turn even a single block into a complex structure.

Many of the example 30 objects use this technique to create highly complex looking
objects from three or four blocks. Surface detail is fast too. You can achleve much
greater speed with decorated objects than you could by using lots of blocks. If the
feature is used effectively the resulting objects can look as if they contain dozens of
basic shapes.

Figure 7.4.1
Surfaee detail lcons

OM is brought into surface editing mode with the large surface detail button. The object
on the left work shelf is selected for surface editing and a square editing grid appears to
the right. Most of the regular OM contra Is remain active and an additional set, to the
lower right of the panel becomes active.

In the following it is assumed that surface detail mode has been selected.

Component seleetion
When the faces of objscts are selected using the face selection taal, OM places what is
actually a simple surface detail on the selected face and suppresses all other surface
detail. Ouring surface detail editing it is not appropriate to highlight selected faces in th is
way and the alternative highlighting methad is used instead (see figure 7.2.2).

In th is mode, which is automatically selected during surface detail editing, selected
faces are shown by means of a faint dotted outline. The simplest way of decorating a
face is as follows:

• Select the face you wish 10 decorale

56

• Draw a design consisting of closed edges on the editing window
Click on the IE icon to attach your picture to the face.

There are many variants of this procedure as you will appreciate when you understand
the function of the controls in the surface detail panel box.

Closed edges
Surface details consist of filled shapes. When you design a surface you do so by
outlining shapes on the editing grid. Because OM fills your shapes when it attaches
them to faces, your line drawings must not contain gaps where the colour can leak out.
OM will not attach a surface that contains unclosed edges. Closed edges must be drawn
with lines of the same colour.

Drawing on the editing grid
In the following we refer to the tools in the surface editing box to the lower right of the
panel. The first three icons in the box are virtual colour selectors. These are not colours
in the ordinary sense. The effect of a given virtual colour on a face will vary according to
the 'background' face colour. Shapes of different colours can overlap and there is a wide
range of possible effects. One of the virtual colours wil! yield a transparent area. The
other two wil! produce colours taken from the colours on the other faces of the same
bloek. The best way to find out how a given virtual colour behaves in a particular
situation is to experiment. Once you have selected a virtual colour, you can draw lines
between grid intersection points as follows:

Place the pointer over the grid intersection where the line is to start
• Hold the left button down and move to the the part of the grid wh ere the line is to end
• Release the left button
• Repeat the process until you have enclosed an area.

Attaching a surface to a face
This is easy. Simply click on the lî!I icon. Your drawing will be filled and attached to the
selected face of the object on the left work shelf.

Surface complexity
When you attach a new surfaee to R facs OM displays the following message:

Surface Complexity N

where N is a number. This number is a measure of the amount of work that 30 has to do
every time it draws the surface. Low numbers mean little work and high numbers mean
more. The complexity number can be a useful guide to the speed of your object and
hence that of any program containing it.

Complexity is not related only to the number ol lines or points in a surface and
relatively small changes to a surface can often significantly reduce its complexity.

57

Positioning the surface
Surfaces can be added to any face but see below for special discussion of flat blocks. In
the case of a four-pointed face, it is easy to see how the drawirig on the grid is mapped
onto the face. It is as if the grid were made of elastic and simply stretched over the face.

Figure 7.4.2
Stretching a surface over a 4 point face

Whatever the shape of the face, the design will be stretched to fit. When you click on the
transfer icon OM uses the four corners of the face as anc hor points and attaches one
corner of the grid to each. Because of th is there are four possible orientations for the
design. You can cycle through these by clicking on the [§] icon.

When you attach a surface to a three-pointed face things are not so simple because
there is a point left over. What OM actually does is to attach two corners of the grid, the
top left and the top right, to a single point of the face. This distorts the design. A square
tor example turns into a triangle. With a little practice you will learn how to compensate
for th is distortion when you design your surface.

58

Figure 7.4.3
Stretching a surface over a 3 point face

This is easier than it sounds. It is a simple matter to modify a surface until you achieve
the effect you want. When you use the orientation tooi, the surface rotates as belore, but
this time there are only three positions. Whatever the position, it is always the top
corners of the grid that are collapsed into a single point.

Attaching surfaces to 2D (flat) blocks

Figure 7.4.4
Stretching a surface over a 20 face

The two laces ot a 20 block can be selected like any other lace but in th is case the lace is
not highlighted. The reason lor th is is that only one can be visible at a time. When youuse
the attach tooi lor a 20.block, OM chaos es which lour points to use as anchors. In same
cases you will want to use a different set of anchor points. You can do this as lollows:

59

1 Select the face to receive the surface
2 Use the point selector to select the first of the four anchor points
3 Click on the point selector again but this time using the right mouse button. OM will

display a message to confirm that the anchor point has been correctly designated.
4 Repeat steps (2) and (3) until you have nominated all four points. Two of the points

may be the same if required.

Re-using surfaces
Surfaces live in the same folder as your object and have the extensions .3ds. When you
save an object OM automatically saves all its surfaces. You might wonder why surfaces
are not saved as part of objects. The reason is that objects and surfaces exist in a
many-to-many relationship. The same surface can be used many times on the same
object and many times over different objects. An object can have many surfaces. A
single surface can be attached to many objects.
. OM never keeps more than one instanee of a given surface iM memory at the same
time. The same applies to AMOS. This means that objects use much less memory than
they otherwise would. You will find that surfaces gene rally consume very little memory.
They are also very fast.

Copying surfaces between objects and within objects
It is good practice to exploit 3D's ability to use the same surface in many places. The
same surface can look utterly different when it is attached to a different shaped face and
you will also save a lot of memory and diso.space (as weil as design time).

Suppose you have an object containing a surface that you would like to use again.
Proceed as follows:

Copy your new object to one of the User shelves. Now load the object containing the
surface you wish to use and select the face sporting the surface. Next select surface detail
editing mode and click on IE to copy the surface to the editing grid. Finally, copy the new
object to the left work shelf, select the face and click on Iî!] to mount the surface.

The surface tooibox
When you enter surface detail mode by clicking on the large icon, the tools in the
surface tooibox become active. As follows:

Line colour selectionl
colour flip tools

Left mouse button
These are double commands.

60

Purpose
Method

These buttons select the virtual colour of the lines drawn into the editing grid.
Click on one of the buttons

~ selects virtual colour 1

~ selects virtual colour 2

~ selects virtual colour 3

Right mouse button
Purpose To swap the virtual colours of lines al ready on the editing grid.
Method Click with the right button on one of the three icons.

~ swaps virtual colours 2 and 3

~ swaps virtual colours 1 and 3

~ swaps virtual colours 1 and 2

Comments As mentioned above, a shape drawn with a particular line colour on the
editing grid wil! produce an effect on the target face which depends on the
block colours. Sometimes you wil! find that this is not the effect you want.
Instead of changing the virtual colour of every line on the grid, use these
tools, swapping colours until you have the effect you want.

I I1 * I Line editing selectors

Purpose

Method

To cause subsequent lines drawn into the editing grid to be added to the
detail or deleted from it.
To draw new linee click on the B button. To delete exletinq ünee click on
the IEl button.They remain in
force until a new mode is selected.

11+ I Transfer tooi
Purpose
Method

To add the detail on the editing grid to the selected face of the object.
Select a face. Click on the icon.

61

Comments This tooi checks to ensure that the edges formed by the lines on the
editing gridare closed. Each closed edge must be built out of lines of the
same colour. If the edges are not closed OM wil! display a message and

leave the target face unchanged.

Edit tooi
To transfer the detail on the selected face of the object to the editing grid.
Select a face of the object containing a surface detail. Click on the icon.
Some combinations of block colours and virtual surface line colours are
incompatible. In such circumstances, no surface wil! be visible.

~ Surface attitude tooi

Purpose
Method
Comments

Purpose To rotate Ihe surface on the selected face in jumps of approximately a
right angle.

Melhod Select a face sporting a surface detail. Click on the icon.

'_I Grid clear tooi
Purpose To clear the surface detail editing grid (but not the selected face).
Method Click on the icon.

1:1:<1 Surface removal tooi

Purpose To remove a surface detail from the selected face (but not from the
editing grid).

Method Select a face. Click on the icon.

[IJ Line Undo tooi

Purpose Ta delele the last drawn line(s) from the editing grid.
Method Click on the icon.

IX I Quit Surface detail tooi

Purpose To end a surface editing session. This button removes the surface tooibox
and grid, ending the surface editing session.

62

8: 3D Programming
The objects you create in OM come to life when they are brought under program control
with the AMOS 30 extension. We suggest you read th is chapter in the order it is
presented so that you approach your program ming in the correct way. You must lirst
understand how the 30 world works, th is will make using the commands easier. Refer to
the glossary for more explanation of unfamiliar words.

a.i: The 3D World
Introduction
In th is section we introduce the basics of 30 programming. 30 graphics has a reputation
tor being difficult. We hope you'lI ag ree with us that actually it's na harder than working
with sprites and backgrounds. In AMOS 30 we have provided a set of commands that
give you the power of 30 without all the maths and bit crunching. With 30 you can
concentrate on writing programs and let us take care of the details.

To get the best out of 30 though, you will need to know some geometry. We start
with some basic concepts and a little terminology.

The programs TO_Simple.AMOS, TO_Loop.AMOS and TO_View.AMOS which are
used as examples throughout this manual can be found on the AMOS 30 disc you
prepared during the installation procedure.

Space
Most people know how to read a graph. It has two axes (Figure 8.1.1), the x-axis and the
y-axis. The point where the axes meet is called the origin. The two axes, which are
marked with ascale, allow you to identify any point on the graph.

Any point can be reached by starting at the origin, travelling a distance along the x-
axis and th en another distance at right angles, parallel to the y-axis. These two
distances are called the x and y coordinates of the point. They are written (x,y). Figure
8.1.1 shows a lew points with their coordinates marked (notice that some of the
coordinates are negative). A graph like the one in Figure 8.1.1 is an example of a
coordinate system.

63

YAXIS

30

(-20,20) • 20 • (20, 20)

10 • (20, 10)

X AXIS
-30 -20 -10 10 20 30

-10

(-10, -20). -20

-30 • (30, -30)

Figure 8_1_1

I
If you have programmed any 20 graphics you will have used a coordinate system, the

screen coordinate system or simply screen coordinates. Often, screen coordinates have
the origin in the top left corner with the y-axis increasing down the screen. This is
appropriate because of the way screen memory is laid out (see Figure 8.1.2).

X AXIS

YAXIS

--
INCREf$ING MÉMÓRY

X AAIS

Figure 8_1_2 Figure 8.1.3

In 3D graphics we use a screen coordinate eyetern 100, the one shown in Figure 6.1.3.
Notice that the origin is roughly in the centre, with x and y axes that go negative as weil
as positive. Notice also that the y-axis increases in the upward direction like the
conventional graph of Figure 8.1.1.

20 coordinate systems like Figure 8.1.3 are fine for flat pictures. For 30 though we
need something more to representdepth: an extra dimension. We ca" th is dimension
the Z dimension and we measure it as you would expect, along the z-axis.

64

We now come to our first problem. How do we draw a 30 graph on two dimensional
paper? Weil the answer is that we can't. To draw properly in 30 we would need to draw
inside a tank, perhaps filled with treacle. The best we can do on a flat page is to make a
perspective drawing of a 30 graph, like the one in Figure 8.1.4. As you will see, this 30
coordinate system is exactly like our 20 graph, except that it has one more axis. This is
zero at the origin and increases as you travel into the distance. In the other direction, out
of the paper, the z-axis becomes negative.

YAXIS

With this 30 coordinate system we have a way of naming any point in space. To do so
we use three numbers: x, y and z. written (x.y.z), Now look at Figure 8.1.5. This shows a
30 coordinate system with a cube at its centre.

Figure 8.1.4

YAXIS

Figure 8.1.5

65

ZAXIS

XAXIS

The cube is 200 units on each side and the eight corners or vertices of the cube are
marked with letters of the alphabet. Can you work out the 3D coordinates ot the
vertices? The answers are:

A=(1 00, 100,-1 00)
B=(1 00,100,100)
C=(-1 00,100,100)
D=(-1 00,100,-100)
E=(1 00,-1 00,-1 00)
F=(1 00,-1 00,100)
G=(-1 00,-1 00,100)
H=(-1 00,-1 00,-1 00)

This coordinate systern is called the wortd coordinate system. II is where we build our
3D world. We look at this world through a window, the computer screen.

We are now ready to look at a simple 3D program. Load the program
TD_ Simpte. AMOS.

The double buffered display
In 3D graphics we usually use a double buffered display. This consists of two screens,
one lor showing the graphics and a hidden one where we draw the next Irame. Once we
have a new picture, we swap the screens over, displaying the new one and use the old
display screen to prepare the next Irame. You don't have to do things this way but it
does give the best results because you never see graphics as they are being drawn. To
set up a double buffered display we use the lollowing two lines of Basic:

Double Buller
Auloback 0

These are the lirst two lines of the program. The next line is a Td LaAD commando This
loads the object disco Once you have loaded an object definition like the disc you can
have as many instances of it as you wish. You could have half a dozen discs on the
screen, all based on one object.

To build an object instance you use the Td OBJECT commando Td OBJECT is the
lourth line of the example program. It tells 3D to build an object based on the delinition. It
also tells 3D where to place it in world coordinates and what attitude to give it.

As you wil! see the Td 08JECT command is lollowed by eight parameters. The firet
is the object number (1 in th is case). You can choose any number for th is between 1 and
20. It is used to reler to the object in other commands. The second tells 3D to base
object 1 on the disc we have just loaded. The next three numbers are simply the object's
position in world coordinates, x,y and z. The last three are the attitude." We will discuss
these later.

Now all that remains to do is to set up an appropriate colour palette, draw the object
to the hidden screen and then swap screens to make it visible. The commands:

Palette """,,,$111,$001,$777
Td cis

66

Td REDRAW
Screen Swap

do this.
Now run the program. You should see something like Figure 8.1.6.

Figure 8.1.6

Setting up a moving 30 display
The TO-Simple.AMOS program can easily be turned into a loop that constantly redraws
the disc and swaps screens. To see any change though you would need to move or
rotate the object in between frames.

Load the program TO_Loop.AMOS. This is the basic redraw loop used to create a
moving display. The REM statement tells you where to move your object(s). If you run
th is program now all you will see is a disc in the middle of the screen. Press Control-C to
quit the endless display loop.

Angles
In 3D you can rotale objects about each of the axes x,y and z. The commands that do
th is rotate objects not about the world axes but about a set ofaxes based on the centre
of the object. This local coordinate system is a little like the local coordinate system
described below. For now, imagine that our disc is like the cu be in Figure 8.1.5 sitting in
the middle of its coordinate system. You can rotate about the x-axis, the y-axis and the
z-axis. We call these angles A,B and C.

The units used to describe angles in 3D are a special sort called VRUs (Voodoo
Rotation Units). They are explained more fully in the sections on Positieris and Angles.
VRUs di vide up the circle into 65,536 divisions. 90 degrees for example is the same as
16384 VRUs.

Let's add a statement to the TO_Loop.AMOS program to rotate the disc about the x-
axis. Just below the REM statement which says 'Move your objects here' add the
command:

67

Td ANGLE 1,A,O,O
A=A+1000

If you run the program now you will see the disc rotate. The four parameters following Td
ANGLE are the object number (as defined in the Td OBJECT command) and then the
three angles A, Band C. The program works by increasing A by 1000 each time the
object is displayed.

At th is stage you should be ready to try some of the other move ment and angle
commands. Try replacing the Td ANGLE command above with other commands such
as Td MOVE. You will find the Td commands quite like the Sprite commands. The only
real difference is that there is an extra dimension.

One problem you will probably encounter is that of losing objects. 30 space is big,
much bigger than a 20 screen. In 30 space it's easy to lose objects, and, as you will find
out, just as easy to get lost yourself! Consequently it is important to limit the distances
you work with. We will be saying more about th is later on.

The local coordinate system
50 far we have described the basic coordinate system used in 30 graphics: the world
coordinate system. Now we must leam about one more: the local coordinate system. To
see why we need another coordinate system let's consider a typical example. Suppose
you're in the cockpit of the fighter aircraft A in Figure 8.1.7. An enemy plane B comes
into view. You line it up in your sights and fire.

WORLD Y

Figure 8.1.7

Let's relate that to our world coordinate system. Each of the obiects, your plane and the
enemy, will have a position (x.y.z), We might imagine a missile firing system which takes
both sets of coordinates and computes apath. This would be very inconvenient. Instead
it would be belter to teil our missile system something like: target straight ahead, range
15 mi/es. This also fixes the mlssile's position, but in a m~re appropriate way.

68

When we look through our sights we are in tact using a coordinate system, but this
system is based around our position. lts origin is our craft and its z-axis is a line pointing
straight ahead. The x and y axes are the same as the sighting lines on our sights.
Obviously this is a much beller coordinate system so lar as you are concerned. (Ol
course mission control on the ground might preIer to think in terms ol world co-ordinates;
your local coordinate system has Iittle meaning lor them).

This new system is called the local coordinate system and it is worth noting that the
coordinates ol the same point in world coordinates and in local coordinates may bare
little relation to one another. Your plane may be pointing anywhere. Your z-axis could be
pointing in the same direction as the world x-axis, or il you are in the middle ol a nose
dive, your z-axis would be pointing in the same direction as the world's y-axis. In many
situations the local system will be pointing at a crazy angle.

The viewpoint
In AMOS 30 you can detine up to 20 abjects at different positions in world coordinates.
One ol those objects, object 0 is special; it is your own viewpoint. You can move your
viewpoint around just like any other object. Whatever it sees you see.

Let's try another example. Load the program TD_ View.AMOS. This program lets you
fly around the 30 world using the mouse. Movement in th is demo is controlled as
tollows:

Mouse up/down Fly lorwards and backwards in the directions you're
poinling
Turn on a point either left or righl

Moves you up and down

Faces you direclly al the spinning disc. Useful il you
get lost or confused!

Mouse leftlright
Mouse up/down
holding left mouse button
Right mouse button

Try running the program. You should be able to swing the viewpoint round by moving the
mouse trom side to side and zoom in on the disc by moving the mouse away trom you.
We sometimes use a special name lor the local co-ordinate syslem based on the
viewpoint; we cal I it the observer co-ordinate system or just observer co-ordinates.

As you get more advanced you will lind that there are many interesting things that
you can do with the viewpoint. For example you can have two viewpoints by changing
object zero's position and generating two separate views of the same world at the same
time. See TO_View2.AMOS

Choosing the best coordinate system
Much ot the time you will be dealing in world coordinates. The positions of objects are
defined using th is system and in many programs these are all you will need except lor
controlling the viewpoint. Local coordinates become uselul when you want to make
somelhing happen al some position relative to the viewpoint or another object.

To make a 30 shoot'em-up inleresling il is best to make sure that attacking ships
appear from the direction thaI the player is looking. You might decide to make a ship

69

aUack from a point straight ahead, say at (0,0,10000) in local co-ordinates. You would
convert to world co-ordinates and then use Td OBJECT.

30 provides a family of commands to do all the conversions you need. You can
convert from world to local (Td VIEW), local to world (Td WORLO) and even world to
screen coordinates. In fact 30 aliows you to convert to and from the coordinate system
of any object, not just the viewpoint. When you use Td WORLO or Td VIEW you can
specify the object number of any object, not just object zero.

Now th at you understand co-ordinate systems you are al! set to re ad the next
section, the AMOS commands. At Voodoo we have been really impressed with the
creativity of AMOS users. We are expecting to see some fantastic 30 programs. Please
take the trouble to send us your creations. Good luck!

70

8.2: The AMOS commands
AMOS 30 provides a comprehensive set ol commands lor handling the 30 objects
either Irom the example object library or created by Object Modelier (OM). AII the
commands begin with the letters Td.

Positions
AII distances are measured in VLUs (Voodoo length units). VLUs do not correspond to
any particular physicallength. But to give you an idea of scale, a typical object might be
500 to 2000 VLUs across. The standard cube in OM is 360 VLUs on each side.

Objects can be positioned and moved anywhere within a box ol 16,000,000
VLUs square. The box is centred araund the world coordinate origin (0,0,0) and so
the most distant object Irom the origin would not be lurther away than
(8000000,8000000,8000000). In practice it is best to keep objects quite close to the
world origin. II your program uses objects that are fixed in world coordinates this is the
natural thing 10 do.

II you are working with objects which are all moving, the size ol the world need not
prevent you from writing programs in which you appear to travel lor enormous distances.
In this kind of 3D work it is usual to normalise all positions every lew hundred frames. Ta
do this you simply subtract the coordinates of the viewpoint (object 0) Irom all the objects
(including object 0). This simply moves the whole scene to a new location and has na
visual effect at all. It merely keeps the numbers manageable. You will lind that when you
are tree to raam in 30 space the numbers can get out ot hand quite quickly!

Angles
These are measured in VRUs or Voodoo Rotation Units. The reason we don't use more
norm al units such as degrees or radians is to allow fine accuracy while at the same time
keeping all numbers in integer form. Oecimal (or Iloating point) numbers are much
slower to work with and 30 graphics needs to be tast.

One complete circle (or 360 degrees) is 65536 VRUs. This may seem a funny
number but ij's net. Ij is the largest number that can be held in one word of memory. The
following formulae convert from VRUs to degrees and back again:

Ta convert degrees to VRUs: multiply by 182

To convert VRUs to degrees: divide by 182

Ta specily a direction in 30 space you need at least two angles. To specify an object's
attitude (including object 0, the viewpoint) completely, you need three angles. These
describe rotation about the X, Y and Z axes, We denote these th ree angles by the letters
A, Band C.

For example to place an object in the world at (1000,2000,3000) pointing straight up
we would use:

Td OBJECT 1 ,"object-name", 1000,2000,3000, 16384,0,0

71

The first parameter is the object number, the second is its name. The next three are its
x, y and z coordinates and the last three are its angles, A, Band C.

Objects
Objects are created using Object ModelIer (OM). The data stored when you save an
object under OM is cal!ed an Object Definition. Object definitions are packed tight to
save space. Wh en you use the Td commands to display an object, 30 uses the object
definition to create a new structure in memory called an Object Instance. It is this
structure that you address when you use all the other Td commands.

An object instance is a version of the object optimised for speed. You can have
several object instances for a single object definition. For example, suppose you design
a 30 missile. You wil! probably want to be able to display more than one missile at a
time. To do so you only need load the missile once. After that you can create as many
instances as you wish. These are quite independent of each other, but they are all
based on the same object definition.

The command that loads an object is Td LaAD. The command that creates the
instanee is Td OBJECT. When you create an instance you give it an object number.
After that, you always refer to the object by its number. This gives you a unique way of
addressing different instances of the same object. An object number can be any number
you choose between 1 and 20. Object 0 is the viewpoint.

The display
The view from the viewpoint (object 0) can be displayed on a 16 colour screen up to 256
lines high, see the end of th is section for more information on object colours.

You can also make use of multiple screens on the Amiga - see the AMOS Screen
Open commando Any 30 objects that you define will be drawn only when you use the Td
REDRAW commando When choosing a screen height, bare in mind that this wil! affect
the speed of the 30 system. Bigger screens mean slower graphics although in many
situations there may not be a very great difference. If you're a PAL user (256 lines), it's
best to keep to a 200 line height. This wil! allow NTSC users to see your creations.

Td SCREEN HEIGHT (Set the screen height tor 30 drawing)

Td SCREEN HEIGHT n

Example:

Td SCREEN HEIGHT 130

n is in raster lines.

The Redraw loop
Al! 30 programs contain a redraw loop. This is a sequence of instructions which sets up
a double buffered display and repeatedly redraws all objects. For an explanation of
double buffering, see your main AMOS manual.

72

Td REDRAW (Draw al! current visible 30 objects)

Td REDRAW

This draws all current visible 30 objects and any background. You must explicitly teil 30
to refresh the display. AII your calculations and object movements must be done in a
loop. Here is a typical sequence of instructions for setting up a moving display:

Redrawloop:
Double Buffer
Autoback 0
Repeat

Rem Do all your calculalions and object positioning here
Wail Vbl : Rem This command is oplional
Td cis
Td Redraw
Rem You can draw on top ol the 3D objects here
Screen Swap

Until False

The Wait Vbl command is sometimes required to prevent Ilicker in simple programs. You
will find that in programs with several objects the Wait Vbl can be dispensed wilh.

Td cts (Clear the 30 display area with extra speed)

Td cts
This command is a last screen clear lor Ihe part ot the current screen specilied in Td
Screen Height. If required you can use this command to avoid erasing any 2D graphics
(such as a control panel) below the 3D display.

Loading and removing objects
3D objects, even simple ones, are complex structures. They contain much more than a
simple list of points. The structure of an object is described in appendix B but here we
must mention that each object is built up from up to three types of disc file: Object,
template and surface. The only one of these files that you need to know about is the
object file.

3D will load any other files as necessary. The only reason we mention this here is
that 30 must know where to find all the files. By default they are held in the directory
objects which must be in the same directory as your AMOS_System directory.

If you wish to change the name or location of your object directory use the Td DIR
commando

Td DIR (Set the object directory name)

7'"

Td DIR folder$

This tells 30 to look in fo/der$ for object files. Naturally the string must be a valid
pathname.

Example:

Td Dir "Otherobjects"

Tells 30 to look for its objects in the directory Otherobjects, on the current drive.
II you use the AMOS compiler you will need to know about another file called c3d./ib.

This is the 30 run-time library and contains most of the graphics system. II you distribute
compiled programs to your Iriend the AMOS_System directory ol your disc must contain
c3d.lib or 30 will not work.

Td LOAD (Load the named object)

Td LOAO file$

Loads the named object. The name should be the same as the one you chose when you
designed the object. This command only loads the object. Nothing is displayed. To
display a loaded object use Td OBJECT and Td Redraw.

Note that although you supply a single name, 30 may load several files. This is
completely automatic. See appendix B lor an explanation of the different file types.

Td CLEAR ALL (Remove any loaded objects)

Td CLEAR ALL

Removes any instances of the loaded objects, then removes all the objects. If you have
been loading many objects and are no longer using some of them, use this command
and reload the ones you need. This will ensure that the maximum amount of memory is
free.

Note the difference between Td CLEAR ALL and simply using Td KILL to kill all the
"bie"t inetencee. Tho lottor cernmond dooo not rcrnovc thc object dllfinitiolli),

Td KEEP ON/OFF (Store or keep loading objects)

Td KEEP ON
Td KEEP OFF

While developing large AMOS-30 programs involving lots of objects it is often frustrating
waiting lor the objects to load each time the program is run.

Ta speed up develapment, Td Keep On tells 30 to keep your objects in memory once

74

they are loaded. Objects wil! remain in memory lor use by any 30 program until a Td
Clear Al! or Td Keep 011 instruction is issued.

When using Td Keep On remember that every object you load wil! use up valuable
memory. Even if you start editing a different program, any objects loaded after a Td
Keep On wil! stil! be present.

Td Keep 011 tel!s 30 notto keep objects in memory, but to load them each time a
program is run. Td Keep is Off when 30 starts.

Invoking objects

Td OBJECT (Create an object)

Td OBJECT n,name,x,y,z,A,B,C

Creates an object instance based on a previously loaded object definition. You choose a
number n between 1 and 20 to reler to the object instance. You also supply details ot its
starting position and attitude.

n
name
x,y,z
A,B,C

the object number (between 1 and 20, your choice)
the name ol the object
the world coordinates of the object's starting position
the attitude ol the object (see Angles above)

No objects wil! be drawn until you execute the Td REORAW commando Remember that
object zero is the viewpoin1.

Td KILL (Remave an object)

Td KILL n

Removes an object instance. n is the object number supplied wh en the instance was
created using Td OBJECT. This command only removes the instance, not the object
delinition. To remove al! instances and al! object delinitions use Td CLEAR ALL.

Object movement commands
There are two basic ways ol moving an object. You can either place an object at an
absolute location in world coordinates or you can specify a change in its position. Aside
trom Td OBJECT which sets an object's initial position, there is only one command to
set absolute coordinates, Td MOVE. The remainder ol the movement commands are
object relative.

For example Td MOVE REL lets you specify a change to be made to an object's
current position. This change would be made every time the command was executed.
The alternative lorm ol Td MOVE uses the same type ol movement string as the ones
used to move sprites. II you are unlamiliar with these, consult chapter 14 ol your AMOS
manual and read the the section entitled STOS compatible animation commands.

Like the AMOS sprite commands many of the Td movement commands work on one
coordinate at a time. When you use sprites you supply one movement lor the x direction

75

and one for y. In 3D work there is an extra dimension z so you wil! usual!y need a
command for x,y and z.

Td MOVE (Move an object)

Td MOVE n,x,y,z

This moves object n to the absolute position (x,y,z) in world coordinates.

Example:

Td Move 4,100,100,3000

Td MOVE REL (Move an object relative to its current position)

Td MOVE REL n,dx,dy,dz

This command operates in a similar fashion to Td Move. The movement it applies
though, is relative to the object's current position. For example:

Td Move Rel 2,0,100,0

This wil! move object 2 a hundred VLUs upwards. If the same command is executed
again the object will move another 100 VLUs. If you place a command like th is in your
main redraw loop (see above) it wil! have the effect of moving the object in the y
direction with a constant speed. Of course the object would only move up the screen if
your viewpoint is behind it and pointing in the (0,0,0) direction. If your viewpoint is above
for example and you are looking down onto the object it wil! appear to be coming straight
at you.

Td FORWARD (Move an object forwards)

Td FORWARD n,d

This moves object n forward d VLUs each time it is executed. If you place a Td
FORWARD command in your main object loop, object n wil! move forward with constant
speed. TIle olrecüou (urwäru Is me ereenen mat me Object is pomtlng. When you design
an object using OM, you should save it front forward, pointing straight at you. The
attitude of an object when it is saved defines the forward direction.

Td FORWARD can be very useful. Because it always moves an object in the
direction it is pointing, you can make objects execute smooth turns simply by changing
the attitude gradual!y using Td ANGLE or Td ANGLE REL.

76

your object closely. However be warned, 3D collision detection is not easy for 3D to do
and it takes time. The more zones you have the slower your program will run.

Zones are useful for more than just collision detection. If you define a very large zone
around two objects you can use them to detect whether they have come within a certain
range. This can help with strategy routines.

One point to remember when using zones is that 3D can only check the zones once
per frame, that is, once each time you call Td COLLI DE. If your objects are moving so
fast that they pass through one another between one frame and the next, Td COLLI OE
might not register an overlap. If you run into th is problem, make your zones bigger.

Don't forget that object 0 is the viewpoint. You can set zones around the viewpoint
just like any other object.

Td SET ZONE (Oefine a zone)

Td SET ZONE n,zone,x,y,z,r

This command defines a invisible spherical zone around an object.

n the object number
x, y,z the position of the centre ol the zone.
zone the zone number - 0 lor the lirst zone, 1 for the second and so on.
r the zone radius

Because the zone is defined relative to the object, we use alocal coordinate system
centred on the object. To understand this, think of your object as sitting at the centre of a
set of 3D axes. Now choose x, yand z so that the zone surrounds the part of the object
you want to be sensitive to collisions. If you are just setting a single zone for each object,
x, yand z should probably all be zero.

When you rotate an object using one of the Angle commands 30 automatically
rotates the eentres of all the zones as weil.

=Td COLLI DE (Detect acollision)

This function has two forms:

=Td cOLLlOE(n1 ,n2)

This tells you whether objects n1 and n2 have collided. If they have the function returns
n2. Otherwise it returns -1 .

=Td cOLLlOE(n)

This tells you whether any object has collided with object n. II there has been a colli sion
the function returns the number of the object it collided with. Otherwise it returns -1. If
you have several objects th is command is equivalent to calling the first form of Td
COLLI DE once for each object other than object n. Expect it to take longer. It is wastetul

83

Td ANGEL REL n,dA,dB,dC

This command changes an object's current attitude by dA, dB and dC. II you place this
command in your main redraw loop the object will rotate smoothly.

Reading an object's attitude

=Td ATTITUDE (Return an object's attitude)

=Td ATTITUDE A(n)
=Td ATTITUDE B(n)
=Td ATTITUDE C(n)

Td ATTITUDE is a lunction. You supply an object number n (the one you supplied in Td
OBJECT) and Td ATTITUDE returns an angle A,B or C. The angle the tunetion returns
depends on which form you use.

String Commands
·Objects can be moved and rotated using string commands similar to those available to
AMOS sprites. Consult your AMOS manual lor the syntaxof these strings. One thing to
note about the 30 string commands is that, unlike sprites, it is inappropriate to change
the positions and angles ot objects under interrupts. The 30 string commands change
the positions and angles of objects every time Td Redraw is called.

Td MOVE (Set up an animation movement string)

Td MOVE X n,string
Td MOVE Y n,string
Td MOVE Z n,string

This acts on object n and applies the movement command in string. The movement
string follows the same rules as those for sprites. There is a separate command for x, y
and z.

Much of the AMAL animation language is inappropriate and only a subset applies.
See STOS compatible animation commands in chapter 14 of your AMOS manual.

Example:

Td Objecl1, "cube" ,0,0,2000, 10000,10000,10000
Td Move Z 1,"(1,-100,18)(1,100,18)l"
Rem Place your redraw loop here

Td ANGLE (Set up an angle animation string)

Td ANGLE A n,angle$

78

Td ANGLE B n,angle$
Td ANGLE C n,angle$

Like Td MOVE, there is a separate command lor A, Band C. Td ANGLE applies the
changes specilied by the movement string angle$to either A, B or C.

Bearing and range
In a good deal ol 30 work it is necessary to know the bearing and/or range between one
point in space and another. The points might be the centre ol an object, the viewpoint or
something else.

The bearing of one point Irom another is the direction of the second point as seen
Irom the lirst. The range is the distance between them. For example, suppose you want
to program a lire and lorget missile. You wil! know which object you want to shoot down
and you will know where you want the missile to start. You still need to know which
direction to point it in and perhaps how last to make it travel. The bearing of the target
trom the missile's launch position gives you the direction. You might also use the range
(the distance between the two) to calculate a suitable speed for the missile.

Ta specify a bearing in 30 space you only need two angles, not three. Ta see why,
imagine yoursell on a rotating gun turret. The turret moves like a swivel chair. The angle
of swivel is one of the angles, B. The other angle A is the angle of elevation, that is the
angle between the ground and your line of sight to the target.

Once you have these two angles it's easy to make your missile fly in a path to the
target; just use Td ANGLE A,B,D and then Td FORWARD.

=Td BEARING (Return a bearing and range)

There are two farms of this function. Each of the forms, returns either A, B or R (the
range), just like Td ATTITUDE. However there is a further refinement that you can use to
save time. Whenever you use one of the farms of the function to return A, B or R, Td
BEARING actually works out all three and remembers the others (It has to do this
because they are all interdependent).

To find out what the others were you simply use Td BEARING again but th is time
without any parameters. In other words Td BEARING A on its own returns A, as it was
the last time Td BEARING was used in full.

The same goes lor Td BEARING Band Td BEARING R. The bearing/range
caicuanon ts qune a long one 50 th is is weil worth doing. The results A,B and Rare also
calculated by the command Td FACE (below). Alter using Td FACE you can read A,B ar
R just as if you had just called Td BEARING.

The lirst form of this lunction is:

=Td BEARING A(n1 ,n2)
=Td BEARING B(n1 ,n2)
=Td BEARING R(n1 ,n2)

79

This returns the bearing/range of object n2 from object n1. Either n1 or n2 can be object
0, the viewpoint.

=Td BEARING A(n,x,y,z)
=Td BEARING B(n,x,y,z)
=Td BEARING R(n,x,y,z)

This returns the bearing/range of the point (x,y,z) in world coordinates trom object n.
(Remember that object 0 is the viewpoint).
AII bearings can be worked out with just one call to the Td Bearing function. Example:

B1=Td Bearing A(2,3)
B2=Td Bearing B
B3=Td Bearing R

=Td RANGE (Return only the range between two objects)

=Td RANGE(n1 ,n2)

This function just returns the range between two objects n1 and n2, that is the distance
between them. It does not calculate any angles. If you need the range and the bearing
between two objects, use Td BEARING (which calculates both) instead.

Pointing an object

Td FACE (Point an object at another)

Td FACE is just like Td BEARING. It calculates A, Band R between two objects (or an
object and a point). However Td FACE also rotates the first object so that it points to the
second object (or point). You can get exactly the same effect as Td FACE by using Td
BEARING to find A and B, and then using Td ANGLE.

There are two forms of the command:

Td FACE n1,n2

This points Object nt at object nZ.

Td FACE n.x.y.z

This points object nat the point (x,y,z).

After using Td FACE you can read A,B or R just as if you had just called Td BEARING.
(see Td BEARING)

80

Converting bet ween coordinate systems
AMOS 30 makes use of three coordinate systems. These are:

The World Coordinate System.
• Local Coordinate Systems.
• The Screen Coordinate System.

In many situations you will find that you need to convert coordinates trom one system
into another. For example, suppose you want to make an attacking ship come out of the
distance straight ahead of the player. You will know where you want the ship to appear,
say 10,000 VLUs in front of the viewpoint; ie (0,0,10000) in local coordinates.

However, when you start a new object using Td OBJECT you specify the world
coordinates not the local coordinates. You will need a way of converting between the
two. If you think about this conversion you might come to the conclusion that all you
would need to do is to add the position of the viewpoint (object 0) to (0,0,10000). This
would not be correct because it does not take into account the attitude of the viewpoint.

Fortunately 30 provides functions for doing th is (as weil as other coordinate system
conversions). The conversion functions must be called once for each coordinate x,y and
sometimes z. Like Td BEARING you can leave out the parameters after the first call.
This is faster for the same reasons.

=Td SCREEN (Convert world coordinates to screen coordinates)

=Td SCREEN X(x,y,z)
=Td SCREEN Y(x,y,z)

This takes the coordinates of a point (x,y,z) in world coordinates and converts them to
AMOS screen coordinates.

30 will work out bath X and Y values automatically when you call one of these
functions. So the quickest way to calculate X and Y is to do the following:

SCX=Td Screen X(10,10,1000)
SCY=Td Screen Y

=Td WORLD (Convert local coordinates to world coordinates)

=Td WORLO X(n,x,y,z)
=Td WORLO Y(n,x,y,z)
=Td WORLO Z(n,x,y,z)

This takes a point (x,y,z) expressed in local coordinates relative to object n and converts
it to world coordinates. The object n does not have to be the viewpoint (object 0). It can
be any object. Because of this you can use Td WORLO to get the world coordinates of
any point as seen trom object n's point of view. For example you could use it to write a
routine that makes debris from a ship's engines trail behind it.

As with Td Screen, this command will also generate all X, Y and Z values with just
one call. For example:

81

ZW=Td World Z(5,x5,y5,z5)
XW=Td World X
YW=Td World Y

=Td VIEW (Convert world coordinates to local coordinates)

=Td VIEW X(n,x,y,z)
=Td VIEW Y(n,x,y,z)
=Td VIEW Z(n,x,y,z)

This is the opposite ol Td WORLO. It takes a point in world coordinates and converts it
to local coordinates, relative to object n. This lunetion is most often used with object
zero, the viewpoint (hense its name). It can be used with any object.

AII three values are worked out with a call to any ol these tunetlens. For example:

ZV=Td View Z (3,x3,y3,z3)
YV=Td View Y
XV=Td View X

Checking an object's visibility
As any graphics program mer knows, speed is all important In 30 graphics especially
you won't want 10 waste a microsecond drawing anything not absolutely necessary.

30 objects take a long time to process and it takes some time even lor 30 to decide
that an object can't be seen and therelore should not be drawn. The Td VISIBLE
tunetion gives you an easy way of telling whether an object, or any part ol it is on screen.
II it's not you may be able 10 delete il and save 30 time. It is surprisingly easy to leave
objects hanging around after they have served their uselul purpose. Don't!

=Td VISIBLE (Return whether an object is visible)

=Td VISIBLE(n)

This lunetion returns 1 il object nis visible and 0 il it's not.

Collision detection and zonAS
30 collision eeteetion works using zones. A zone is a sphere whose centre is attached

to an object. Ta set up collision detection between two objects you first use Td SET
ZONE, at least once lor each object Once you have do ne this you can use Td COLLI OE
to lind out whether the two zones have overlapped.

For many purposes a single zone centred on each object is enough. However most
objects do nol have a very spherical shape and you may want your collision detection 10
be more accurate. For this reason 3IJ lets you deline many zones around each object,
each witn its own centre and radius.

II you use several zones you can make a compound zone that hugs the shape of

82

your object closely. However be warned, 30 collision detection is not easy lor 30 to do
and it takes time. The more zones you have the slower your program will run.

Zones are uselul lor more than just collision detection. II you deline a very large zone
around two objects you can use them to detect whether they have come within a certain
range. This can help with strategy routines.

One point to remember when using zones is that 30 can only check the zones once
per Irame, that is, once each time you call Td COLLIOE. II your objects are moving so
last that they pass through one another between one Irame and the next, Td COLLI OE
might not register an overlap. II you run into this problem, make your zones bigger.

Don't larget that object 0 is the viewpoint. You can set zones around the viewpoint
just like any other object.

Td SET ZONE (Define a zone)

Td SET ZONE n,zone,x,y,z,r

This command delines a invisible spherical zone around an object.

n the object number
x, y,z the position ol the centre ol the zone.
zone the zone number - 0 lor the lirst zone, 1 lor the second and so on.
r the zone radius

Because the zone is delined relative to the object, we use alocal coordinate system
centred on the object. To understand this, think ol your object as sitting at the centre of a
set of 30 axes. Now choose x, yand z so that the zone surrounds the part of the object
you want to be sensitive to collisions. If you are just setting a single zone for each object,
x, yand z should probably all be zero.

When you rotate an object using one of the Angle commands 30 automatically
rotates the centres of all the zones as weil.

=Td COLLI DE (Detect a collision)

This function has two forms:

=Td cOLLlDE(n1 ,n2)

This tells you whether objects n1 and n2 have collided. II they have the tunetion returns
n2. Otherwise it returns -1 .

=Td cOLLlDE(n)

This tells you whether any object has collided with object n. II there has been acollision
the lunction returns the number of the object it collided with. Otherwise it returns -1. If
you have several objects this command is equivalent to calling the first form of Td
COLLIDE once lor each object other than object n. Expect it to take longer. It is wasteful

83

to use this lorm ol the command il some ol your objects are nowhere near object n and
therelore won't collide with it. It takes 30 as long to decide that a pair ol objects have not
collided as it does to register acollision.

=Td ZONE (Return information about a zone)

=Td ZONE X(n,z)
=Td ZONE Y(n,z)
=Td ZONE Z(n,z)
=Td ZONE R(n,z)

Returns the x coordinate of the zon e's cent re in world coordinates.
Returns the y coordinate ol the zone's centre in world coordinates.
Returns the z coordinate ol the zon e's centre in world coordinates.
Returns the zone's radius

This lunction returns inlormation about zone zon object n. Td ZONE can be very uselul
il you want to draw zone circles around objects when you are debugging your program.

Td DELETE ZONE (Remove a previously defined zone)

Td OELETE ZONE en, zn

This command removes zones set up using the Td Set Zone instruction. II zn is positive
or zero the command will remove zone number zn trom the object number n, il zone
number zn does not exist then an AMOS error will occur.

II zn is negative 30 will remove all the collision zones lrom an object. No error will
occur il no zones exist.

Animation
In 30 we use the word animation to mean something that changes the appearance of an
object, not simply movement. 30 provides commands to perlorm two completely
different types ol animation: Shape animation and surface animation.

Shape animation
Shape animation changes the shape ol an object by moving one or more ol the vertices.
These are the corners ol the blocks that make up an object. We will reler to them as points.

When you design an object using OM you can use the Selection tools to select the
points ol each block, one after another (in some cases you will need to select a block,
lace and line lirst). When a point is selected you can use the Info tooi to display the point
number. You will 600 eornethlnq like:

P(3,10)

This te lis you that the point you have selected is point 10 (don't worry about the lirst
number). The most useful command Td ANIM REL lets you grab a point and pull it into a
new position. You don't specify the new position; instead you say how much you would
like it moved.

For example il your object is the pyramid ol Figure 6.10, you can pull the top vertex
up a little by specilying a change ol (0,50,0). To pull it left you would use (-50,0,0) and so on.

Ol course by using Td ANIM you can end up with some very strange looking objects.

84

You can also easily produce objects that don't work. For example if you move only a
single point on a cube you will bend at least one of the faces. This will confuse 30 and
you may get unexpected results. OM applies rules to keep faces flat but there are no
such checks on Td ANIM REL. 30 does exactly what you ask, however silly. When you
design an animation tt's a good idea to try it out under OM first.

A great many good effe cts can be obtained by moving all the points in a particular
block. For example you could make a hatch slide open on a spaceship. To do this you
must use the same Td ANIM command for each point.

Td ANIM REL (Applya change to a point - relative to the points position)

Td ANIM REL n,p,x,y,z,finished_flag

This command applies a change (called a delta) to point p of object n. The change to be
applied is specified by x, y and z. The change is applied to the object as it was saved
under OM. If you have rotated the object in your program Td ANIM REL will rotate the
change too so that the effect on the object is the same.

Often, animation effects involve changing several points. If you are using several Td
ANIM REL commands in one place (or in a loop) you can save 30 time by using
finished_flag. If finished_flag is 0, 30 expects more ANIMs. When finished_flag = 1,30
assumes that there are no more ANIMs coming and processes all the points together. In
other words, finished_flag should be zero except on the last Td ANIM REL commando
Note that every object has its own finished flag.

Actually, if you are about to change the attitude of the object before the next Td
REORAW you can keep finished_flag zero even on the last point. This will also save a
little time.

One word of warning: Td ANIM REL is there because we want you to be able to
animate objects. However not everything that you try will work, especially if you are
making big changes to an object. The best way to find out what you can and can't do is
to experiment.

Td ANIM (Applya change to a point)

Td ANIM n,p,x,y,z,finished_flag
I

This command moves point n'umber pn in object n to coordinates x,y,Z.
The flmshed_flagparameter is Ihe same as Ihe tlag In Td Anim Rel above.

Td ANIM POINT (Return the position of a point)

=Td ANIM POINT X(n,pn)
=Td ANIM POINT Y(n,pn)
=Td ANIM POINT Z(n,pn)

These three functions return the X, Yand Z coordinates of animation point pn in object n.
Before you animate an object, its points will always be in the position they were in when

85

the object was saved by OM, regardless ol the object's rotation.
X,Y and Z are co-ordinates in the object's local system; they don't change when you

move or rotate the object, only when you change its shape.

Surface animation
Surlace animation is much more like the sart ol anirnationyou use on sprites. It provides
a way ol changing the surlace detail on a lace, 'on the Ily' and under program control. II
you show a sequence ol surlaces in quick succession you can give the appearance ol
movement.

This leature can be used to create all sorts ol interesting effects. For example you
could have a damage surface detail that gets attached to the wing ol a ship wh en it gets
hit with a missile. This could be a transparent shape with a jagged outline, so as to look
as if a hole has been blown in Ihe wing.

Transparent animated surface detail can also be used to open windows or portholes
on objeets to reveal something inside. You eould also add a horrible grinning face to a
30 creature.

Let's discuss the firsl example, the damage surface detail. We will suppose Ihat you
have already designed your ship and a suilable damage surface detail 10 go on Ihe wing.
Firsl ol all we will need a way of identilying Ihe lace we want to animate. Ta do this
under OM, select the face using the Face Selection taal and click on the Inlo icon. You
will see somelhing like:

R:1000 8:2 F:3

This tells us Ihat Ihe face we have selected is face 3 of block 2 (the first number is the
object's radius whieh we don't need here). Now we know where 10 pul our damage
detail.

The next stage is to store the damage surface away where it can be accessed by
your program. This is do ne by attaching it to a simple object, say a cube (which can be
used 10 store up to six surfaces). We will never actually display the cube; we will simply
use it to hold Ihe surfaee until we need it. When you do this be sure 10 make a note of
the number ol the lace holding the surface. Now we can save both objecls (the ship and
Ihe cube) and quil OM.

Now back 10 your 30 program. Obviously you will be loading the ship, but you must
also Td LOAO the cube. Once Ihe cube is loaded the damage surlace is accessible to
30. Ta attach the damage surface to your ship, use Td SURFACE wilh Ihe bloek anrl
lace uuonuaüon yau notec earl/er. As soon as yau do this the surface will appear.

Td SURFACE (Copya surface)

Td SURFACE name1 ,b1 ,11to n2,b2,f2,rt

This is Ihe surface copying commando

name 1
b1
f1

Ihe name of Ihe source object (the one conlaining the surface to be copied)
the block number within name1

the face number within b1

86

n2
b2
f2
rt

the object number ol the destination object
the block number within n2
the lace number within b2
Rotation angle. Legal values range between 0 and 3.

Notice that the source object is relerred to by its name. This allows surlaces to be
copied lrom objects that are merely loaded, not displayed, so as to save memory. The
destination object is relerred to by its object number, the one you choose in the Td
OBJECT commando

Td Surlace can be used to do most surlace animation, but one additional command
may be needed for flat blocks. Il you apply a surface detail to a flat block using Td
Surface, 3D will automatically lix the lour surlace detail anchor points so that they are
evenly distributed around the block (see the Object ModelIer Surlace Detail section lor
an explanation of surface anchor points). If you want to control which anchor points are
used lor surface detail use the command:

Td SURFACE POINTS (Set surface detail anchor points)

Td SURFACE POINTS pO,p1,p2,p3

Specilies that point numbers pO,p1,p2,p3 are to be used as anchor points lor all future
surface animation on Ilat blocks. Note that il you specily a point that does not exist in the
block, the error will only be detected when you try to apply the surface using Td Surlace.

Il you want 3D to go back to lixing the surface points automatically, use the
command:

Td SURFACE POINTS OFF (Clear currently defined anchor points)

Td SURFACE POINTS OFF

Alter this instruction any previously selected points will be lorgotten and 3D will
automatically place surfaces evenly on flat blocks. Of course any surfaces you have
al ready attached will continue to use the designated anchor points.

Backgrounds

Td BACKGROUND (Disp/aying a background)

This command lets you place a background behind all your 3D objects. Backgrounds
come alive with 3D objects in front ol them. You can also use th is command to create a
landscape or horizon.

Td BACKGROUND source,x1 ,y1 ,width,height to x2,y2 [,plane]

source screen number containing the images(s)

87

x1,y1
width
height
x2,y2

x,y coordinates of the image in the souree screen
width of the image
height of the image
screen coordinates of the image on the current AMOS screen. You can
use this to move the image around, 30 will handle the clipping lor you.

Optional parameter
plane Specifies the destination screen bitplane to start drawing the

background. II omitted plane is O.

The destination screen is always the currently selected AMOS screen (usually the
screen on which you are drawing your 30 objects). The number ol bitplanes drawn by
Td Background is read automatically from the sou ree screen. Each bitplane takes some
time to draw, so if you can get away with using a 2,4 or 8 colour background (1,2 and 3
bitplanes respectively) your programs will run much laster. See the Screen Open section
of your AMOS manual to find out how to open a screen with 2,4 or 8 colours.

Usually you will want to draw backgrounds behind 30 objects, in order to do so use
the Td Background command after the Td Redraw instruction.

II you want to drawan image in Iront ol 30 objects, lor example the circular
windscreen ol a spaceship, use Td Background before the Td Redraw. The image must
contain only colours 8-15 and 0, you will be able to see your 30 objects where the image
is colour O.

The optional plane parameter tells 30 to start drawing a background at a given
bitplane. Naturally you can't teil Td Background to draw to more bitplanes than there are
in the destination screen.

Background colours
30 draws objects in colours 8-14. Colour 15 is reserved lor your special graphics (lor
example sights). Background can be drawn in any colours.

II you draw in colours 8-15 belore you use Td REORAW, 30 will place objects behind
and not overwrite your image. In other words, bitplane 3 is used as a mask by 30. The
same applies to backgrounds.

Display problems
When program ming in 30 you may sometimes find that what appears on Ihe screen is
not what you expected. If this happens your problem could be one of Ihe following.

Interleaving objects
When you design objects under OM you have the freedom to place blocks wherever you
like. You could have two letter U shapes, made out ol eight pointed blocks which lit
inside each other tor example. We would say that these shapes are interJeaved.

With whole objects this is not possible. Each one must be drawn as a whole by 30.
They must not be mixed up together. 1Iyou are uncertain, there is a simple test that will
teil you whether two objects are interleaved:
Imagine wrapping the objects up tightly in ceilophane so that it stretches in Ilat plan es

88

over all the protruding vertices. If you did this to a letter T for example you would get a
roughly triangular shape. Now ask whether or not the cellophane surrounding the two
objects will touch. If It does the objects are interleaved and you may get unwanted
effects at certain angles.

Object precedence
When you design an object under OM and use the precedence tooi to order the blocks,
the modelIer prepares all the information necessary to generate correct views of the
object at any attitude. Without this 30 would not know which blocks 10 draw in front and
which behind (actually 30 has to chop up blocks too sometimes!). This information
depends on the precise position of each block and takes some time to prepare. When
you display several objects under AMOS, 30 also calculales the precedence between
whole objecls.To keep 30 running last, a more approximale melhod is used 10 order the
objects than the one used to order the blocks within objects. This method is based on
the centre of gravity of each object. II the centre ot one object is lurther away than the
centre of another the first is drawn behind the second.

Hememberthat the centre of an object is the point about which it rotates. It is also the
handle that you use to position objects using the Td positioning commands.

The centre can be positioned anywhere inside or outside the object by using either
OM's Centring tooi or the Group movement tools.

Occasionally you can run into situations where this ordering methad produces
incorrect results. It you come across this problem, with an object appearing in trant when
it should be behind, consider the positions of the objects' centres. You will probably find
that the object which visually should be in front actually has its centre behind.

You can get around Ihe problem by giving one of the objects a centre position which
guarantees that it will appear behind when it should. Remember that the centre can be
anywhere, outside the object as weil as inside.

Memory
30 needs at least gOk ol memory. The basic memory is allocated (if it's not allocated
al ready) by the lirst use of a 30 commando This gOk is actually very little tor a 30 system
with the power of 30, Nonetheless there will be times when you will want to release the
storage lor other things. You can do this using Td QUIT.

=Td QUIT (Release memary)

=Td QUIT

Unload the 30 extensions along with all objects and release all 30 memory.

Td ADVANCED (Access ta the object structures)

TDADVANCED

Td AOVANCEO is provided tor advanced programmers who wish to experiment with the
aclual 30 object structures in memory. The Td Object command builds such a structure

89

called an Object Frame lor each instanee. 1Icontains a basic block ol data delining Ihe
instanee including a poinler 10 each block struclure known (as Ihe Layers). Td
AOVANCEO can also be used 10 obtain the base address ol 30's static data area.

=Td Advanced n

1I n is zero Ihe lunetion returns the 30 data segment address. Otherwise it returns the
address ol Ihe Frame lor object n. Neediess 10 say we can't predict the results of
monkeying with the 30 structures.

90

9: Hints & Tips
This section contains advice on 3D programming and how to make the most of the OM
and TO commands. The information contained here will help you to make your 30
programs fast and to keep them interesting. Some of the topics covered are quite
advanced and will not concern everybody. It is not hard to create interesting demos and
games using 3D but of course, to mimic the best 30 games takes patience and
experience.

Speed
Good 30 graphics should be as fast as possible. Regardless of whether your application
is actually a fast moving arcade game or not you should do everylhing you can 10 keep
the frame rate up (the number of pictures per second). This will make your graphics
smoother and more enjoyable to look at.

30 graphics takes time. It takes 30 a certain amount of time to draw every block of
every 30 object. It also takes same time just to decide not to drawan object or a block
that is oft screen. The actual amount of time taken depends very much on the
circumstances. Here are some facts:

Distant objects
If an object is a long way from the viewpoint you may see little more than a dot.
Nonetheless, 30 will still have a lot to do and this will take some time. If your application
contains sequences where objects get very smalI, use depth culling, which is a way of
stripping objects of unnecessary detail when this is small compared with screen
resolution. OM can set up depth culling for you.

Objects in the middle distance
Lots of applications contain objects that are seen in the middle distance, that is where
they cover a smallish area of the screen. These are much faster than objects that are
close up. The time taken to drawan object is related to the screen area it covers. Bear in
mind that if you halve the distance of the viewpoint to an object, its screen area will
increase by 4.

Ideally objects should spend most of their time in the middle distance, only occasionally
getting close to the viewpoint. Don't let too many objects come close at a time.

Close objects
These take the longest amount of time to draw. They are objects that cover most of the
screen and require lots of clipping. This all takes time. Of course it adds drama to a
game when the objects come close enough to touch. However it is often even more
dramalic if they don't stay Ihere for toa long. Even if your frame rate slows down a Iittle
as a ship rushes past the viewpoint, you will still retain the impression of smooth
graphics as it speeds up again quickly.

91

Invisible objects
Objects can be invisible because they are outside the lield ol vision or beeause they are
obscured by other objects. In the lirst case, 30 can often teil quite early on as it
proeesses an object that it won't be visible and can save most ol the calculation (this is
known as first rejection). 1I it's only just outside the lield ol vis ion though lirst rejeetion
may not be so easy. If you know that an object is not going to be seen, move it weil out
ol the way (or kill it completely).

In the second case, where one object obscures another, there is less that 30 can do.
In the worst cases 30 may draw the more distant object eompletely only to cover it up
again with the closer one! One ol the best ways to waste time is by having several
objects close up which obscure one another.

Object complexity
The time it takes to render an object rises steeply with its eomplexity. A six-bloek object
may take more than twice the time of two three-block objects. You should look on blocks
as being like gold dust. Use the absolute minimum and when you do decide to use an
extra block get lull value out ol it. For example avoid objeets where blocks have many
points and lines in common. Objects often look complex and interesting according to
how busy they are. Try to design objeets with lots of visible laces. Actually, with a little
thought you ean use surlace detail transparencies to increase the apparent complexity
of objeets with very lew bloeks. Surface detail is very fast especially if it's simple. Look at
the example objects and take them apart. See how eeonomically the designer has used
his bloeks.

The Compiler
When you lirst start writing a 30 game you will probably lind the speed of 30 sufficient.
After all the 30 code itself is among the laste st there is. As your program grows though
you will probably lind that things start to slow down. AMOS is a very last BASIC but it
still has an enormous amount to do. Every statement has to be interpreted each time it is
executed. That is where the compiler comes in. It won't speed up the actual 30 drawing
but it will cut down drastically on that interpretation overhead, and a lot more besides.
Aside lrom that, be sure that you are using the fastest AMOS commands. Use integers
rather than floating point (30 itself uses integers throughout) If you need slow
trigonometrie functions like Sin and Cos create a table and use that rather lhan the
funetions themselves.

Keeping a game busy
In a 20 game you know where you stand. If you draw a sprite you usually know that the
player ean see it. 30 objects are not like that - you have to make sure they can be seen.
It's easy to arrange beautilul flight paths and attack sequences lor your ships, only to
lind that the player is miles away or looking in the other direction.

The answer is to bring the mountain to Mohhamed and not the other way round.
Many arcade style games contain a routine which generates new eharacters as others
die. A 30 vers ion ol this type ol routine should lind out the position and attitude ol the
viewpoint and generate new objects somewhere that they will be seen, perhaps

92

appearing out of the distance or from one side. A good technique is to check all your
objects regularly to see whether they are visible or likely to become so.

If an object is miles away kill it olf and generate a new one, or better still, simply
move it in one jump to a position just olf stage. It is often very elfective to have your
objects tend to head for the viewpoint when they're not doing anything else. This will at
least keep them in range.

If you want to give an impression that 30 space is filled with objects you don't
actually have to do this. AII you have to do is fill the portion of space that the player can
see. In other words, don't imagine that you can set up a 30 world full ol objects lor the
player to explore. No home computer is anything like powerful enough for this. Some
games give this impression but they do it by the sort ol trickery we have been
discussing.

Housekeeping
AII games have to do sorne housekeeping. Numbers must be kept in range, dead entries
deleted from arrays and so on. A typical piece ol 30 housekeeping is to check every so
often that objects have not wandered olf into the inlinity ol 30 space. This sort of routine
does not need to be called every Irame. Belore you put code into your redraw loop ask
yourself whether it really needs to be executed that often. If the code is more than a
statement or two it's probably much cheaper to increment a counter and do a job once
every few frames. A lot of games would be faster if th is technique was used more often.

Smooth movement
Although 30 is last, no 30 system can be as last as 20 graphics such as sprites and
scrolling backgrounds. Smooth movement depends on many things but a display will always
look jerky if objects move too far across the screen between one frame and the next.

30 objects look great coming out of the distance. They can also look good passing
across the field of vision. It is bad practice though to have objects executing a path
which is largely on screen and in which they are displayed at very different positions in
consecutive frames. Even if the frame rate is high this will look jerky because the eye is
not getting enough information to construct the illusion of movement.

Another very important point that has considerable bearing on smoothness concerns
how you handle velocity. In 30 graphics every frame takes a dilferent amount of time to
draw. If you make an object move by adding the same amount to its position every
Irame it will constantly appear to be changing speed. Remember that distance = velocity
* time. To obtain smooth constant velocity you should time each frame and uso a
number proportional to this lor your frame by frame position change. Even th is is not
quite accurate because you cannot know how long a frame will take until it is over.
Nonetheless the method does usually produce good results.

Flight paths
The following is a very useful technique for generating interesting flight paths for objects
in 30 space. Suppose you want to program a dog fight between two ships A and B (one
might be the viewpoint). Start the objects off some distance Irom one another and give
them some reasonable velocity in a random direction using the TO Forward command in

93

your redraw loop. Every 10 frames or so take the bearing of A from B. Now, over a few
frames gradually adjust B's attitude to that it ends up facing A. Do exactly the same thing
the other way around for the other object, but not on the same time scale, say every 13
frames. With a little experimentation and adjustment you can achieve some very
graceful effects. Add a little randomisation to the time intervals, veloeities and so on for
variety.

Normalisation
Normalisation is a way of keeping a game's action from straying too far away from the
work origin. This is sometimes necessary if you want to keep the numbers reasonabie
and not stray out of 3D's world. Normalisation depends on the fact that an arrangement
of 3D objects is completely unaffected if everything is shifted in space to a different
location (of course the viewpoint must be shifted toa). Normalisation can be do ne as
often as you like but every 100 frames or so is usual. Simply subtract the coordinates ol
the viewpoint x, y and z lrom the position ol every object and set the viewpoint's position
to (0,0,0).

Viewpoint contra.
This is the method you use to control the position and attitude of the viewpoint with the
mouse or joystick, and it can be a tricky business. Unless you are an expert don't
attempt to write acontrol system which gives the operator Ireedom to point and travel in
any direction. A little experimentation will show you why.

Limit the view angle. Allow the viewpoint to rotate about the y-axis freely but prevent
it Irom looking straight up or down or nearly so. Instead, move the viewpoint up and
down physically. This will give an intuitive feel to the controis. Think carefully about how
you want the mouse to affect the viewpoint's attitude. Should a movement ol the mouse
to the left turn the view through a certain angle and then stop? Or should it start the view
spinning until the mouse moves back?

In lact neither of these is very satislactory. A jerk on the mouse should start the
viewpoint spinning but the rotation should be heavily damped and not carry on lorever.
For best results, use a combination. Move the viewpoint through an angle directly and
give it a little damped rotational velocity.

Relative velocities
A problern that you may run into concerns the relativG veloeities of abjecte and the
viewpoint. II the viewpoint is allowed to travel toa last it will be uncontrollable and objects
will Ilash by belore you have time to react. II the viewpoint can't move last enough it will
seem to take forever to get anywhere. You should think carefully about the distances
you work with. A typical object should be possible to reach in a reasonable time at a
speed which does not cause it to Ilash by once you get there.

94

Appendix A
Making copies
of OM

OM is a complex program and consists of more than just a single program file. The OM
disc will auto boot, but it can be used as an auxiliary disc when you have booted from
your favourite system disco OM can also be copied to another directory on a floppy or
on a hard disco

If you wish to make another autoboot OM disc, simply copy the disc in the usual
way. Otherwise, here is what to do:

Copying OM to a directory on another floppy or
hard disc

• Make a new directory on the destination disc and copy everything in the OM
directory of the OM disc to it. If you wish you can also copy the example object
directory examples which is located within the OM directory. From the CL! the
command:

>copy OM:om 10 di rna me

will copy OM alone. dirname is the name of your new OM directory. The command:~Dmmm~============3~~
>copy OM: 10 dirname all

will copy the examples directory as well.

• Add the OM font to your fonts directory. The OM font is called xfont and is located in
the fonts directory of the OM disco A font consists of a file, in th is case xfonUont and
a directory containing a file tor each point size. In th is case the directory is called
xfont and the only file within it is called '8'.

95

It is essential that you copy the font; OM won't work without it! If you are using
one or more floppy drives, your boot disc wil! contain a directory called fonts This
wil! have the device name FONTS: assigned to it. From the CU, the command

>copy OM:fonls 10 fonts: all

wil! copy the font.

Setting the ID
There is one further thing that you must do every time you make a new OM directory,
whether by copying the whole disc or by installing OM in a hard or floppy directory.

To make sure that OM doesn't get confused about surface files (see Appendix B -
File Structure) you must also run the utility program SlO (or SetlO). AFTER you have
copied the OM directory, make it the current one, type SlO and enter a unique two
character identifier when requested. This identifier wil! form the first two characters of
all surfaces generated with that copy of OM.

96

Appendix B
File structure

1Iyou are using 30 at aH seriously, or you wish to swap objects with friends, you should
read the foHowing.

The example objects and the objects that you design yourself appear on the disc
directory as single files. When you load an object you supply the filename and OM or
AMOS does the rest. In tact objects are made up ct several components, each with its
own disc file. 1Iyou are interested in the reason lor this it is explained below.

There are three types of file in all. Object files, Template Iiles and Surlace liles. You
can teil which are which by the three character exlension which follows Ihe file names;
Ihese are .300 lor objects, .30Ttor templates and .30S for surfaces.

When you refer la an object in 3D you don't need to supply the extension. 3D adds it
for you (Ihis is a little like many word processors which add an extension like .ooe to
the end of file names). You also don't need to know about lemplates or surfaces as 30
takes care of all that 100. The only fact that you should be aware of is thaI Ihe surface
and tempiale files must be in the directory containing your objects. If you copy an objecl
you will have 10 copy ils surfaces and tempiales 100. A simpier way to copy an object is
to load it under OM and then save it again to another disc or directory.

Surface files (.3DS)
These conlain the surface details that you design 10 decorale the faces of your objects.
There is one surface file for each unique picture Ihat you design. When you copy a
surface Irom one object to another OM uses the same surlace lile lor both objects.

Template files (.3DT)
The purpose of these is a little less obvious. They contain details ol the structure of the basic
building blocks. There is one lor each oIOM's basic block types and there are others which
go with some of the example objects. Once again, when you grab a block lrom an existing
object to use in a new one 30 shares the template rather than creating a duplicate.
Templates describe basic bloek slructure. When you customise a block using the OM lools,
you don't affect the template itsell, only the way it is used in your object.

Here is a summary of the three typoe of file:

Type File extension Contents

Object .300 AII intorrnation having to do with the object as a
whole, along wilh the nam es of all associated liles.

Template .30T Inlormation relating to an individual block type. There
is a relerence 10 a template lor every block in an object.

97

Surtace .30S A description ol an individual surtace detail. There is a relerence
to a surtace lor each decorated lace in an object.

As you can see, the inlormation describing an object may be spread over several files.
One might weil ask why th is is not held in a single lile; the reason is as lollows:

The relationship between objects and object lil es is 'one to one', that is there is one
object lile lor every object and visa versa. The corresponding relationship between
objects and surlaces however is many to many. For example an object can reler to
many surtaces and many objects can refer to the same surtace. The same goes lor
templates. It would be wastelul to use up disc space and memory by holding the same
surface or template over and over again lor different .objects (or the same object). For
this reason 30 keeps only one copy of each. When you load an object under OM or
AMOS, 30 checks to see whether it al ready has a copy of its surlaces and templates
before loading them. Of course the same block or surtace may not look the same in
dilferent objects but to 30 they are essentially the same.

The file structure of objects has important implications when it comes to copying or
deleting objects because template and surtace files must also be copied for the object to
be complete. This is the reason for the OL (Object Look) utility which asks lor an object
name and lists its templates and surtaces so that these can be copied or deleted. An
alternative way ol copying an object is to load it into OM and then save it again to
another disc or directory.

Surface names
It would be very tiresome il, every time you saved an object you had to invent names lor
all its surtaces. It would also be annoying if you had to supply a name every time you
created or changed a surtace. It would also be unsatisfactory to name surlaces after
their objects (perhaps with an extension) because many objects can have the same
surface (lor example the damage surlace detail described under Td Surface). Instead
OM generates nam es for surfaces based on sequential numbering. These have the lorm

<2-characler-identifier><sequence-number>.3DS

Both the two character identifier and the current sequence number is held in the OM
directory in a file called id. The file contains the following

dirid(xx),surgen(yy)

where xx is your identilier and yy is the sequence number ol the last surtace saved.

WARNING:lf you wish to swap objects with someone who also has a copy ol 30, or you
simply want to keep several OM directories it is important to use different identiliers. This
can be done either by editing the file or by using the supplied utility SlO (Set Identilier).

98

Appendix C
The utilities

30 comes with three utilities to help you maintain your Object files. These programs are
all stored in the C directory of the OM disc and should therefore be run from the CLI. It
will help you to understand the utilities beller if you first re ad the appendix on File
Structure.

OL (Object Look)
OL accepts an object name, examines the .3DO file and reports the names of the
templates and surfaces associated with it. The template and surface files will have the
extensions .30T and .308 respectively. When you delete an object, don't delete its
templates and surfaces unless you are certain that they are not referenced by any other
object. Templates are few in number and should not be deleted. Unreferenced surfaces
can be removed with the PRUNE utility.

OL must be run from the CU in the directory containing the object (.300) file. You
can follow the OL command directly with the name of the object you wish to examine, or
simply type OL and have the program ask you for the object name. Example call from
the CU:

1> CD OM:om/examples
1> OL
object name:
Templates:
Surfaces:

st ruct
pS,p5
sO.139.2,sO.139.4,sO.139.10

-.

For the regular AMOS users, Ihe same program can be found on your inslalIed disc -
Objecl_Look.AMOS. You'll find this easier 10 use as it sports a handy AMOS file selector.

SID (Set Identifier)
SlO allows you 10 choose Ihe two charactsr identifier on which OM bases the surface
names that it generales. It reports the current identifier and asks for a new one. It then
updates the 10 file.

The 10 file is located in the OM directory and not in directories containing the objects
themselves. It is very important that each copy of the OM directory contains a unique 10
file. If two 10'5 are the same OM will get confused about which surfaces are which and
may overwrite existing ones.

SlO should be run from the CU in the OM directory. Example call from the CU (sets
1010 rx):

99

1> CD DM:om
1>SID
Gurrenl ID is pq Change 10 : rx

'.

PRUNE (Clean up an object directory)
In 30, each surface detail has a separate .30S lile. II any of the surfaces belonging to a
given object have been copied to other objects, the surlace will become multi-user; it will
be shared by several objects.

When an object is deleted its surfaces should be left intact in case they belang 10
other objects as weil. Because ol this, an object directory that has been in use lor a time
can accumulate 'orphan' surlaces that are not attached to any object. This can happen
eilher because all associated objects have been deleted or because surfaces have been
re-edited, leaving the aid ones without an owner.

The PRUNE program looks at every object and surlace in the current directory and
cross relerences them to build a list ol any unattached surfaces. II it linds any, it will ask
whether to delete them. PRUNE will also list any objects that contain non existent
surlaces (see note below).

PRUNE should be run lrom the CLI in the directory conlaining the objects to be
examined. Example call from the CLI:

1> GD DM:objects
1> PRUNE
Searching for free surfaces in currenl
directory .. ,
Unattached surtaces:

pqB4001.3DS

Delele? y

Deleliny pq84001.3DS
Thank you

100

Missing surface files
We al! make mistakes and sometimes a surface can get deleted accidently. If this
happens, any object which uses it wil! fail to load, either under OM or via Td Load. There
is no way of getting Ihe deleled surface back but you can make the object loadable
again by supplying a surface of the same name as the deleted one.

The best way 10 do this is to run PRUNE which wil! report al! missing surfaces. Once
you know the names of your missing surfaces you can copy any exisling surface giving
the new copy Ihe name of the missing one. The object should now laad with the copied
surface in the place of the lost one.

101

Appendix D
AMOS 3D error
messages

3d background souree screen is current screen: The souree screen for Td
background can't be the current screen.

AMOS screen not compatibie with 3d: 30 wil! only work with screens that are 200
pixels wide, al leasl as high as Ihe 30 screen height and have at least 1 G colours.

Bad ObjectiTemplate/Surface file: The specilied lile is eilher corrupled or is not a
valid 30 file.

Block does not exist: You have specified a block number that does not exist in the
given object.

Can't change screen size while objects exist: You must killof! all your objects
belare trying to change the size of the screen.

Can't load 3d code: The 30 extension can't find the main 30 code file c3d./ib. Check
your AMOS .Env file and make sure c3d.lib is present in the AMOS_System directory.

Directory string too long: The pathname you have supplied 10 the TO Dir command is
toa long.

Face does not exist: You have specified a face number that does not exist in the
given object.

Invalid 3d screen size: The 30 screen height ranges from 1 to 256 lines.

Invalid object number: Valid object numbers range Irom 0 to 20. Object 0 is the
viewpoint, it can't be created or killed.

Not enough memory tor 3D: 30 has run out of memory.

Object already exists: You have Iried to invoke an object which al ready exists.

Object al ready loaded: You have Iried to laad the same object twice. This message
will never occur if Td Keep is On.

103

· Object does not exist: You have specified the object number of an object which does
not exist.

Object file not found: 3D can't find an object file you require. Check the object name
is correct and, if you have changed the 3D object directory, check the directory you
have specilied is correct.

Object not ioaded: The object name you have specified has not been loaded using Td
Laad

Point does not exist: The point you have specified does not exist in this object. Check
the object number and the point number.

Surface file not found: 3D can't find an object's surface file. Use the OL utility 10 list
out all the files the object uses.

Syntax error in string: A movement or angle string is incorrect.

Template file not found: 3D can't find an object's template file. Use the OL utility to list
out all the files the object uses.

Too many objects: There are toa many objects loaded and 3D can't cape! This
message should never occur, if it does check you haven't gat lots of unused objects
loaded,

Too many planes for 3d background: The background sou ree screen has more
plan es than the current screen.

Zone parameter(s) out of range: The 3D collision zone you have specified is toa big.

104

Glossary
Throughout th is manual we have tried to keep the language free of unnecessary joxquiz.
AII the same, 30 graphics is quite a technical subject and so we have provided th is
glossary to explain unfamiliar terms.

20: A space with two dimensions. A flat piece of paper or a computer display
is an example of a 20 space.

30: A space with three dimensions. The physical world is an example of 30
space.

ANGLES A,B,C: These are the angles used in Td angle commands.

A is the angle about the x-axis
B is the angle about the y-axis
C is the angle about the z-axis

Angles are measured in VRU's (Voodoo Rotation Units)

Axis: Ascale on a coordinate system used to measure distances in a particular
direction. In 30 we use three AXES, the x-axis running left to right, the y-axis, drawn
vertical and the z-axis pointing into the distance. The word is also used to describe a line
(an imaginary one) about which a point or object is rotated.

Bloek: One of the basic shapes used to build 30 objects

Coordinate system: A set of AXES usually set at right angles to one another. A
coordinate system gives you a way to express the position of points and objects.

Depth culling: A methad of reducing the complexity of objects as they get further away.
Culling is used in 30 to speed up the display of distant objects.

Dimension: The direction measured by a given axis in a coordinate system.

Doubl" buff"ring' A method of graphics rendering in which two screens are used. One

screen is displayed while a new scene is prepared on the other. When the new scene is
complete, the hidden screen is displayed and drawing begins on the other and so on.

Faee: One of the flat areas on a bloek.

Graph: A representation of a coordinate system, usually in two dimensions.
Group: One or more of the blocks comprising an object can be selected as a group.
Many of OM's commands work on groups.

line: A straight edge bordering a face,

105

Local coordinates: A set of coordinates based around a particular object. The
Observer Coordinate System is an example of local coordinates.

Object: This word is used in the 30 manual to reler to the lundamental unit of 30
design. An object consists ol blocks and surface details.

Object component: The parts of an object.

Observer coordinates: A coordinate system based on the 30 camera.

Origin: The point at which the axes meet in a coordinate system.

Perspective: A way ol drawing 30 scenes on a Ilat surface like a piece ol paper or a
computer display. 30 generates perspective views. There are other ways of doing the
same thing, lor example archetechet's 'Orthographic' prajection. Perspective is the most
realistic because it is a perspective image that appears on the eye's retina.

Point: The place where two or more lines meet. In this context a point is the same as a
vertex.

Projection: The result ol translerring a point or object Irom a coordinate system into a
system with a different number ol dimensions.

Rotation: The process ol moving a point or an object through an angle relative to an
AXIS OF ROTATION.

Shelf: An area of the OM graphics screen used to hold objects.

Surface detail: A picture which can be attached to one or more laces. Each surface
detailed designed with OM and attached to a saved object is written to a disc lile which
ends in the extension .30S.

Td: The word Td (Three Oee) precedes all the AMOS 30 commands.

Template: A disc lile containing information concerning the structure ol a block. The
names ol all templates begin with the letter p or f (lor Ilat), are lollowed by a number
equal to the number of points in the shape and enrl with thg gl(tgnsion .3DT. Every bleek
in a 30 object relers to a template.

Transformation: A translormation is the calculation applied to a point to lind its position
in a different coordinate system or to lind its position after an operation such as ratation.

Translation: Translation means change in position.

Vertex I vertices: Any place on an object where lines meet at a point, lor example the
corners of a cube.

106

Viewpoint: The point in 30 space from which 30 views its internal world. In 30 the
viewpoint is an object like any other and has object number zero.

VLU: VLUs or Voodoo Length Units are used in 30 to measure lengths.

VRU: VRUs or Voodoo Rotation Units are used in 30 to measure angles. 65536 VRUs
is the same as 360 degrees.

World cc(ordinates: A coordinate system used to rep rese nt the whole 30 world.

107

~ :"'.",.-:nc......•.•_-
Total Map Editor For Your Amiga
Now you. can design your own map based games like
Rainbow Islands and Gauntlet.

TOME consists of a new powerful map editor and an
AMOS extension which provides 27 new commands for
AMOS.

First you can create the tiles from 16x16 up to 32x32
pixels in size using the Mini Art package included. Then
use the icon-driven editor with its 51 main functions to
create screen layouts or multi-screen maps up to 960
screens in size (which only occupy 64k of memory!).

Now you can call up AMOS and scroll around the maps
using the 27 commands at your dispos al.

TOME has been created by Aaron Fothergill, editor of
the very successful AMOS Club. Please send a cheque
or postal order tor E24.99 (E19.99 tor AMOS Club
members) payable to Shadow Software at 1 Lower Moor,
Whiddon Valley, Barnstabie, North London EX32 BNW.

This is not a MANDARIN product. Shadow Software are
soley responsible tor this product and its customer support.

