The text is not legible.
September 19

[Signature]
UNIVERSAL
GEOGRAPHY,
or
A Description
of
ALL THE PARTS OF THE WORLD,
on a NEW PLAN;
according to the great natural divisions of the globe;
accompanied with
analytical, synoptical, and elementary tables.

BY M. MALTE-BRUN.

improved by the addition of the most recent information, derived from various sources.

VOL. I. - 3
containing the theory, or mathematical, physical, and political principles, of geography.

PHILADELPHIA:
JOHN LAVAL AND S. F. BRADFORD.
1829
THE AUTHOR'S PREFACE.

The design of the present Work is, to bring together, in a series of historical discourses, the whole of Ancient and Modern Geography, in such a manner as to furnish the reader with a lively picture of the whole terre-queous globe, with all its different countries—the memorable places which they contain—the tribes of men by which they have been successively peo-pled, and those which at the present moment are its inhabitants. It appears an immense undertaking, when we consider how many varied details require to be combined in a work of moderate size. It might even appear rash in its nature, when we contemplate the characters of the different subjects embraced in it—subjects which have usually been consigned to erudite rather than to elegant pens, and have been regarded as susceptible of no brilliancy of literary composition, or depth of philosophical remark.

The diffidence which the prospect of so many difficulties naturally creates, has, however, yielded to a thorough conviction, that the science of geogra-phy admits of being made very different from what it now is. We have thus reasoned: Is not geography the sister and the rival of history? If the one enjoys the empire of universal time, does not the other rightfully claim that of place? If the one has the power of recalling past generations, should not the other exert that of fixing in one scene the shifting pictures of history, by delineating to the mind the permanent theatre of the poor and brief transac-tions of mankind, strewed with the wrecks of numerous empires; and describe the course of nature, constantly occupied in repairing, by its bene-ficial operation, the ravages arising from human discord? Does not a description of the globe intimately connect itself with the study of human nature, human manners, and human institutions? Does it not offer informa-tion of the utmost importance to the political sciences? Is not this department always brought fully into view before a complete form can be given to any branch of natural history? And does it not supply literature with a boundless treasure of feelings and of images?

These considerations have cherished in our minds the hope of raising for geography a monument not worthy to rank along with the pleasing compositions by which history has been adorned. Many long years would indeed be requisite to confer on such a work that degree of perfection which it is natural to desire. In publishing it in a state short of this, we find ourselves excused by the urgent demands made on us for a "Treatise on Geography." The attempt now laid before the public will, we hope, with all its imper-fections, satisfy the wishes of those who complain that there is an absolute want of a work by which geography may be learned, without the risk of contracting a permanent disrelish for this branch of instruction.
We presume to trust that our compend may be qualified to serve as a
guide to any professor who is ambitious of teaching geography in a profita-
ble manner;—that in the more advanced seminaries it may be put into the
hands of pupils;—and that it will not be an unacceptable present to adults,
who have long passed their period of tuition, and wish to acquire instruction
by private reading.

It is the Author’s most ambitious wish, that his work may obtain the
suffrages of those real philosophers, who, in every science, set even less
value on its useful economical results, than on the intellectual enjoyment and
the improvement which the study of it implies.

The following is the arrangement of the present work: It will begin
with the general theory of geography, consisting of its Mathematical, Physi-
cal, and Political principles.—From astronomy we shall borrow the requi-
site information, respecting the figure, size, and motions of our planet; from
geometry, the views which are most necessary for understanding the art of
representing, in small plans, the exact form of the lands and the seas; we
shall explain the method of determining the actual distances of places, and
comparing with one another the measures employed in different countries.

Proceeding next to the physical picture of the globe, we shall take a view
of the leading features of nature; the mountains which diversify the surface
of the land, the seas which bound its outline, and the rivers and the valleys
by which it is intersected. We shall seek our way downward, through
caverns and through mines. We shall direct over the brink of the volcanic
crater an eye of interest and curiosity; and thus do our utmost to explore
the structure of the globe. After inquiring into the motions of the atmo-
sphere, and the laws of temperature, we shall distribute into their native
regions the animals, the plants, and all the beings that are nourished in the
exhaustless bosom of the earth. We shall conclude the picture by consider-
ing man in his natural and in his political condition. We shall classify
the races of our species according to the varieties which are marked in their
bodily appearance and character—according to the languages which they
speak—according to the creeds by which their minds are consoled, or
degraded and enslaved—and according to the laws which mark the progress
of civilization, or the profound darkness of utter barbarism.

What revolutions have the terrestrial globe undergone? This is a ques-
tion which equally interests the history of man and that of nature. But
is it a question which enters into the science of physical geography? is it a
question which, in the present state of our knowledge, we can profitably
discuss? We shall not certainly undertake to resolve the problem, or series
of problems, which it implies; but we shall present to our readers a view of
the leading facts which geologists employ to construct their brilliant, but
empty systems.

This philosophical theory of geography will occupy the first volume of
our work. The others, with the exception of one, will be devoted to a suc-
cessive description of all the parts of the world. In that department we
found it necessary to engage in long meditation, and in weighing opposite
considerations, before we could invent and fix upon the method which would
secure the greatest degree of solidity with the most agreeable manner. An
order purely geographical must apparently have destroyed the political and
moral connections of the different portraits which we had to present. An
order purely political would have injured the physical delineation of the moun-
tains, the seas, the rivers, and the climates. The great desideration was, to
reconcile, in some measure, with each other these two rival methods. For this
purpose, our mode of procedure must be varied according to the character of
the obstacles presented on different occasions, and the difficulties which they
create in following chiefly or exclusively one or the other of these two methods. In introductions prefixed to particular departments, we must give a sketch of the general features which a large division of the world possesses in common. We must place a view of the Alps in front of our description of Europe, and a view of the Cordilleras at the beginning of the division appropriated to South America. Do we find some nations which are politically separate, united in their origin, in their language, or in their history— we must collect them into one group, and survey them from one point of view. We must endeavour every where to form our subject into natural masses, easily embraced under one regular vista. Small states must be combined into natural groups; the provinces of great empires must be distributed in conformity with the direction of the mountains and the rivers; and the comparisons formed between the different divisions must not be permitted to encumber the current of our discourse, but reserved for exhibition in the form of synoptical and analytical tables.

Besides our general arrangement, it was necessary to find out the particular method best suited for the description of each country. After examining all the classifications which authors have given of the objects of special geography, we have found that a too rigorous adherence to these abstract methods has been the real cause of the pedantic dryness attached to books of geography. From this empty technical parade of science, geography, which ought to be a living picture of the universe, has been converted into the gloomy anatomy of a great subject in a dead and dismembered state. Thus it has been held in dread by the young, neglected by the learned, and scorned by the multitude.

From these considerations it has appeared our duty to follow the general principles of the art of writing, and, by varying according to the nature of the subject, not only the tone but the order of our descriptions, we have endeavoured to contrive, for the delineation of each country, a particular scale suited to the relative size and importance of its objects. Where one presents the spectacle of a smiling cultivation, we give a careful detail of its different productions. Where it is uncultivated, we draw an outline of the character impressed on it by nature. At one time, in an imaginary tour, we give an easy enumeration of the towns of the interior. At another, in the character of fire-side navigators, unfeathered by the dread of contrary winds or dangerous currents, we proceed from harbour to harbour, and from island to island. Does a particular nation act a leading part in the civilized world— we discuss its powers, its resources, its interests. Is it a savage horde that engages our notice— we take an interest in depicting its manners and mode of living.

Our choice of the towns and remarkable places on which we dwell, will be determined sometimes by degrees of political importance, sometimes by historical celebrity. We shall sometimes, in passing, take the liberty of discussing a point of critical geography, resolving a doubt, or correcting an error. We shall not even scrupulously deny ourselves and our readers the pleasure of occasionally mingling our topographical descriptions with passages of history, or with anecdotes tending to illustrate manners, and often serving to fix in the memory names of localities, which otherwise it would be difficult to retain. There is no reason why we should refuse to pick up a flower which obtrudes itself on our view. A description of the world should resemble the world itself, in which the most arid deserts present here and there a limpid fountain, or a refreshing shade.

From fifteen years of geographical reading and study, we have been fully convinced that this free and animated march is that which will enable geography to give the surest access to the sanctuary of historical knowledge,
which never could be afforded by any of those rigid abstract methods which are applicable only to the mathematical sciences. Our object is to write an agreeable and useful book, not to draw up an extended table of mere contents.

Adopting this plan for our "Universal Geography," we are far from denying the merits of methods different from our own. Let a new Varenius, in a purely mathematical geography, employ all the resources of the higher geometry; let another Bergmann discuss, in the language of chemistry and of natural history, the elements of an improved physical geography; let naturalists subdivide physical geography itself into branches corresponding to particular sciences, as the geography of plants, of minerals, and of animals; let the pupils and successors of Busching collect, with indefatigable patience, the materials of chorography and topography, the object of which is to give a particular description of each country, each canton, and each town; let them display, in immense columns of numbers, the details of that branch of political geography which is called statistics. Let others of the learned explore other parts, such as that of forming a Critical Comparison of the old geographers; or, the History of Voyages and Travels. Nothing is more useful to science—nothing more deserving of the esteem of the learned world, than labours thus consecrated to a single object. Nothing is more laudable than to give to each of these branches the most rigorous and scientific form which its particular nature will admit of. We have already shown some zeal in collecting, announcing, and appreciating labours of these different kinds, in our periodical work, entitled, Annales des Voyages de la Geographie et de l'Historie. But, as a universal geography cannot, without swelling to an undue extent, embrace all the details of every branch of geographical science, we must here content ourselves with gathering the flowers and the fruit of these learned discussions and laborious researches.

There is another view of the subject which we wish to lay before the readers of our work. The mathematical and physical principles of geography are immutable; but the state of human knowledge is variable, both in the materials furnished, and in the use which the mind is, at different epochs, qualified to make of them. Nations are extinguished, kingdoms destroyed, cities laid in ruins, and at last every trace of their former existence is effaced. We may therefore suppose a series of geographical works, each of which, though quite different from those which precede and follow, may be correct and complete for the year or the age to which it belongs. Under this point of view, custom has in some measure sanctioned a three-fold partition of the science. "Ancient geography" comprises all that precedes the 500th year of the Christian era, or the great migration of nations. The "geography of the middle age" extends from that period to the discovery of America; and this point begins the region of "modern geography." But if the subject were to be expressed in rigidly philosophical language, we should be obliged to make a distinction of geographies, corresponding to the number of nations and ages. Each of these may be considered as a separate body of knowledge. They are indeed imperfect and erroneous systems, compared with that of the present age; but it is interesting and important even for mere amateurs, to have an idea of the slow progress, and sometimes retrograde course of the science, in so far as that progress is known to us with certainty. We shall therefore accompany the present work with an "Outline of the history of discoveries, and of geographical systems." We shall first take up this science in her cradle. Moses and Homer present us with a picture of two most antique nations. Soon after this, the Phœnian sailor, guided by the light of the stars, traverses the Mediterranean,
and discovers the Atlantic Ocean. Herodotus relates to the Greeks what he has seen and heard, concerning different nations and countries. The extensive colonial system of Carthage, and the adventurous voyages of Pytheas of Marseilles bring the western world into view, and create conceptions respecting the north. The military glory of Alexander throws a brilliant light on the countries of the east. The Romans inherit the greater part of the discoveries made by the polished nations of antiquity. The Eratosthenes, the Strabo, the Ptolemies, arrange the materials still obscure and incomplete. Next comes the great migration of nations, to overturn the whole fabric of ancient geography. It was by losing their ascendancy that the Greeks and Romans learned how much more extensive the world was than their systems had represented it. The chaos thus produced, gradually gives place to regularity; and, with the rise of modern Europe, the elements of a new geography are formed. The spirit of travelling revives. It had already conducted, without profit, the Arabs to the Moluccas, and the Scandinavians to America. No science accompanied these people, to gather the fruit of their bold undertaking. Equally courageous, and better informed, the Italians and Portuguese, by the help of the magnetic needle, navigate the high seas with confidence. On every hand the barriers raised by prejudice, which contracted the horizon of geography, fall in pieces. Columbus now conducts us to a new world. By sea and by land, every nation eagerly follows in the career of discovery; and, by their united efforts, the veil is rent, and the globe, notwithstanding some partial shades, is now fully opened to the gaze of science.

This forms a subject which demands much perusal of old geographical works, and much attention to various ancient histories; but it cannot, in the eye of the general reader, be entitled to such a full description as the state of modern geography.

Even modern geography must be restricted within certain limits, which, without reducing it to a dry unmeaning nomenclature, will avoid the error of confounding it with other sciences. Intelligent minds, no doubt, often delight to bring together under the same point of view the results of sciences the most different from one another, in their origin and progress, as well as in the nature of their objects. Geography, like history, certainly ought not to be blamed for taking an interest in every thing that influences the fate of nations and of empires. It must also be granted that she confers, in her turn, a benefit on other sciences, by bringing their discoveries into notice, in order to place them in a new light. When political economy, for example, weighs in her balance the powers of a state, when she ascertains the existing relation which the superficial area of each canton bears to the number of inhabitants, the results of these laborious inquiries may often be of such a nature as to interest history. In the same way they may also interest geography. Such dry truths, when arranged in tables of political geography, acquire a lustre and an interest from the great geographical views with which they are associated. This species of interchange gives life to the whole republic of science and of literature. But the different regions of which that republic consists, have each its own language, its constitution, its separate interests. These objects are not to be confounded. Every discussion in politics, in religion, in morality—every research in history, chronology, or antiquities, which does not bear a direct reference to geographical changes—every calculation of the higher geometry—every superfluous quotation of the principles of chemistry or of physics—every detail in natural history which does not admit of any other description than the technical explanations of the naturalist, and which forms no essential feature in the physical picture of a country—is to be considered as foreign.
to a good universal geography, though entering with great propriety into special treatises on mathematical, physical, or political geography.

Our science, when disencumbered of all that diversity of foreign matter, is still a subject of vast extent; and to an author desirous of exhibiting it in an advantageous light, it presents thorns and difficulties in sufficient number. When we have read, compared, and formed a judgment on all the accounts given by travellers of every nation, accounts often false, and often unsatisfactory, when we have analyzed an immense multitude of travellers' journals, astronomical observations and dissertations, descriptions and notices, enumerations and official statements, together with the estimates and calculations made by individuals; when we have, with much labour searched out geographical documents, lost in memoirs of natural history, in monographs of medical, mineralogical, or botanical topography, often even in commercial almanacks and political journals;—we have not yet done all that is required. Much remains to be brought to light that lies hid in the archives of governments, or buried in the portfolios of individuals; and much knowledge which is even openly exhibited in the great book of nature, but has not yet found an attentive observer, requires to be discovered by original observations.

Since geographical knowledge, like every thing of a historical nature, is derived from many sources, varying in their degree of authenticity, it is indispensably necessary, in order to satisfy the inquiring reader, to give the names of such sources as have been consulted. The learned will thus judge what degree of credit they ought to repose in each instance. It is also an act of literary justice to make our readers acquainted with the names of those who have served as our masters and guides; names which to many will thus become known for the first time. Influenced by these considerations, we have at the bottom of each page given a reference to the principal passages in other authors, (generally original, rarely compilers,) on which our assertions are founded. At the same time, we have rigorously avoided such foot-notes as are injudiciously lavished in many learned works. None of our references will force our readers to make a halt. While one who is critically curious may, by means of them, bring our accuracy to the test, or obtain the means of extending his information on particular parts of our subject, another, whose object is to obtain as much interesting information as possible in the easiest manner, may peruse our work without suffering himself to be in any degree impeded by the references.
CONTENTS OF VOL. I.

BOOK I.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
</table>

BOOK II.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
</table>

BOOK III.

Continuation of the Theory of Geography.
Of Terrestrial Globes. Of their Construction and Principal Uses, . . . 29

Description of the Artificial Globe. Rules to choose a Globe, . . . 30
Construction of the Globe. Decrease of the Degrees of Parallels. First Meridian, . . . 31
Meridian and Anti-meridian. Longitude counted after the custom of Navigators. Reduction of Geographical Longitudes. 32
Reduction of Nautical Longitudes, 33
Common way of making Globes. Uses of the Globe. Distance of Places, 34
Lines East and West. Navigator’s Route. Loxodromic Line, . . . 56
Measure of the Surface of the Globe. Utility of the preceding Calculations, 37
Remark on these Calculations. Divergent questions resolved by the Globe. To find Geographical Positions, . . . 38
To find the Length of the Days. To find the Points of the Rising and Setting of the Sun. To Measure Distances. To Rectify the Globe. Another Method to find the Length of the Day, . . . 39
New Construction of Globes. Historical Remarks on Globes, . . . 40

BOOK IV.

Continuation of the Theory of Geography.
Of Geographical Maps. Of the Stereographic, Orthographic, and Central Projections, . . . 41

Different sorts of Geographical Maps, . . . 41
Developable Surfaces. Of Projections. Laws of Orthographic Projection, . . . 42
Tracing of the Parallels. Equatorial Projection or on a Meridian. Tracing of the Meridians. Tracing of Parallels, 44
Horizontal Projection. Tracing of the Meridians. To trace the Meridians by Points, . . . 45
Tracing of the Parallels. Properties of the Stereographic Projection. Measure of Distances on a Stereographic Map, . . . 46
Horizontal Projection and tracing of the Meridians. Projection of the Parallels. Central Projection, . . . 48
Properties of this Projection. Faults of all the Projections. Modification proposed by Lahire and Parent, . . . 49

BOOK V.

Continuation of the Theory of Geography.
Of Geographical and Hydrographic Maps by Conic and Cylindric Development. Of Projections by Proportional Parts, 50

Simple Conic Projection. Modifications of the Conic Projection, 50
Projection of De l’Isle de la Croyere. Method proposed by Euler. Projections of Murdoch, 51
Conic Globes. Alber’s Projection, 52
First method of Ptolemy. Second Method of Ptolemy, 53
Modification of Ptolemy’s Projection. Flamsteed’s Projection. Correction of this Projection. Tracing of Flamsteed’s Projection corrected, . . . 54
Scale of the Map. Remark on the Scale of the Map, 55
Cylindrical Developments. Of Loxodromic Lines. Construction of Flat Maps, 56
Properties of this Projection. Spindle of the Terrestrial Globe, 59

BOOK VI.

Continuation of the Theory of Geography.
Continuation and end of the Theory of Geographical Maps. Of the choice and assemblage of details, . . . 60

Choice of Projections of the Scale. Political and Physical Maps. Military Maps, 60
Tracing of a Nautical Route. To find the Direction of a Route, 64
Spherical curve of a Route, 65
Errors of Itinerary Distances. Simplicity of the Route. Value of Days of March, 66
Common defect of ancient Maps. Combination of discordant Distances, 68
Geographical Signs. Illumination. Orthography of Names, 69
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs of Physical Geography. Representation of Mountains. Method proposed for exhibiting Levels,</td>
</tr>
<tr>
<td>Value of this Method,</td>
</tr>
<tr>
<td>BOOK VII. Continuation of the Theory of Geography. First Sketches of Physical Geography. General Forms and Distribution of Continents and of Seas. External Configuration of Mountains, Valleys, Plains, and Coasts,</td>
</tr>
<tr>
<td>General Views of Physical Geography. Imperfect State of Observations,</td>
</tr>
<tr>
<td>Comparison of the Northern and Southern Hemispheres. Is a Southern Continent necessary for the Equilibrium of the Globe?</td>
</tr>
<tr>
<td>Direction of Peninsulas. Direction of the Continents. Proximity of the Pole. Contrasted Configurations,</td>
</tr>
<tr>
<td>Mountains. Upland Plains or Plateaus. Forms of Mountains. Needles, Peaks, &c.,</td>
</tr>
<tr>
<td>Volcanic Peaks. Perforated Mountains. Chains of Mountains and Insulated ones. Connexion of Chains,</td>
</tr>
<tr>
<td>Declivities of Mountains. Valleys in the form of Basins,</td>
</tr>
<tr>
<td>Inclination and level of Valleys. Passes, Defiles, &c. Low Valleys. High and Low Plains, Coasts Steep and Indented, etc.,</td>
</tr>
<tr>
<td>Coasts formed by Hills. Coasts formed by Downs or Flats. Islands, Flat, and Volcanic. Chains and Groups of Islands,</td>
</tr>
<tr>
<td>Chains of Mountains and Divisions of Waters. Submarine Chains,</td>
</tr>
<tr>
<td>General directions of the Mountains of the Earth. Great Chains of the Globe,</td>
</tr>
<tr>
<td>General inclination of Continents. Elevation of Mountains,</td>
</tr>
<tr>
<td>BOOK VIII. Continuation of the Theory of Geography. Of the interior structure of the solid parts of the Earth. Of banks or shelves, strata, caverns, and veins,</td>
</tr>
<tr>
<td>Strata, Beds, etc.,</td>
</tr>
<tr>
<td>Inclination of Parallel Strata. Strata Inverted and Shifted. Strata Concentric and Curved. Cavities and fissures of the Globe,</td>
</tr>
<tr>
<td>BOOK IX. Continuation of the Theory of Geography. Of simple substances which compose the solid part of the Globe. First Section, Saline, Earthy, and Inflamable substances,</td>
</tr>
<tr>
<td>Definition of simple and aggregate substances. Classification of minerals,</td>
</tr>
<tr>
<td>Carbonate of Lime, Talc. Marble, Calcareous Spar, Stalactites. Calcareous Alabaster, incrustations,</td>
</tr>
<tr>
<td>Carbonate of Soda, Muriate of Ammonia. Alum, Cryolite, Quartz. Sand and Gravel, Rock Crystal,</td>
</tr>
<tr>
<td>Silex, Oriental Agate. Opal, Jasper, common Silex. Situation of Hyaline Quartz. Situation of arenated Quartz,</td>
</tr>
<tr>
<td>Wails of Crystal. Precious Stones. Spinelles, Topaz, Emerald, Garnet, Diamond, Feldspar,</td>
</tr>
<tr>
<td>Decomposed Feldspar, Petrosilex, Amphibole, Mica, Glass of Muscovy,</td>
</tr>
<tr>
<td>Position of Mica. Talc, position of Talc. Tourmaline,</td>
</tr>
<tr>
<td>Lazulite, Jade, Asbestos, or Amiantus. Use of the Asbestos, Sulphur,</td>
</tr>
<tr>
<td>Anthracite, Carbon, Bituminous petrolium. Pitscoal,</td>
</tr>
<tr>
<td>Position of Pitscoal. Parallelism of the beds of Coal. Submarine Coals. Pit Coals, situated in Balsalt,</td>
</tr>
<tr>
<td>Jet, Elastic Pitch. Succinum, or Yellow Amber. Origin of Yellow Amber,</td>
</tr>
<tr>
<td>BOOK X. Continuation of the Theory of Geography. Of the simple substances which compose the solid part of the Globe. Section second. Of Metals,</td>
</tr>
<tr>
<td>General view of Metals. Platinum, property of Platins,</td>
</tr>
</tbody>
</table>
CONTENTS

Silver. Geographical extension of this metal. Its position. Quality of Silver. Sulphureted Silver, 105
Nickel. Copper, its Geographical extension. Position of Copper. Commemorative Waters, 107
Vitriol of Iron, Emery. Steel. Qualities of Iron, 110

BOOK XI.

Continuation of the Theory of Geography.
Of aggregate Substances which compose the solid part of the Globe First Part. Of Rocks, and Earths, and Volcanic Productions, 112
Classification of Rocks, 112
Principle of Classification. Crystallized Rocks. Granite, 113
Rocks of transition. Stratified structure. Stratified Calcareous rocks. Marbles ruminiform, shelly, etc. Chalk, 117
Argile or Clay. Slate, fermenting Clay. Marl, (Grès) Sandstone. Recomposed Granite, 118
Hypothesis of Werner. Of the Coagulation of Basalt. Earths of accumulation, 121
Volcanic productions. Stony and vitrified Lava, etc. Pumice stone, Scoria or dross. Pouzzolane, Volcanic ashes, 122
Volcanic Tufa, Decomposed Lava. Bozdes, Stone showers, 123

BOOK XII.

Continuation of the Theory of Geography. Of the Fossil Remains of Organic Bodies, Vegetable and Animal, 124
Mineralized bodies. Impressions. Petrified Vegetables. Impressions of Vegetables, 125
These vegetables are exotic. Bituminated Wood. Shells, 126
Towraine. Remarks upon the Shells in Germany. Shells of the North and South of Europe. Shells of Asia and Africa, 127
These animals are exotic. Pelagian and littoral Banks. Remarkable circumstances, 129
In Iceland and America. Mastodonte, a Fossil Animal. Bones of Rhinoceros, Hippopotamus, etc. Gigantic dimensions. Fossil remains of Carnivorous and Ruminating Animals, 131
Opoosum. Of the origin of Bones in Caverns. Origin of the Bones found in Gypsum Origin of the Bones found in the light soils, 132
Human Bones, 133

BOOK XIII.

Continuation of the Theory of Geography. Of Water in General. Of Springs, Rivers, and Lakes, 133
Of Water in General, 133
Springs. Vapours attracted by High Lands. Filtration of Sea-water, Filtration of Rain-water, 134
Motion of Running Water. Spouting Springs. Intermittent or Periodical Fountains. Fountains of Dearth and Plenty, 135
Subterraneous Waters. Streams, rivers, torrents, and rivulets, 136
Confined rivers. Cataracts and cascades. Height of cataracts. Periodical increase of rivers, 138
Increase of rivers parallel to the Equator. Increase of rivers running from north to south, and vice versa. Rivers disappearing under ground. Causes of the Phenomena. Mouth of rivers, 139
Mascaret. Pororocca. Lakes. Lakes absolutely isolated. Lakes which re-
CONTENTS.

Water-spouts. Trade-wind in the Atlantic Ocean. Winds in the Gulf of Guinea, ... 180
Regions of Calma. Tornadoes. Trade winds of the Pacific. Monsoons, or Half-yearly Winds of India, ... 181
Varieties in the Monsoons. How the Monsoons change. Double Winds. General Explanation of the Monsoons, ... 182
Explanation of particular circumstances. General conclusion. Utility and Pleasures derived from Winds, ... 183

BOOK XVII.

Continuation of the Theory of Geography. Of the Local Temperature of the Atmosphere, or of Physical Climates, ... 184
Physical Climate. Its Causes. Sensible and Latent Heat, ... 184
Reflection of Caloric. Internal Heat of the Globe. Central Fire, ... 185
Elevation of the Ground. General and Local Aspects. Effects of Aspect. Effects of the Course of the Sun, West and Eastern Aspects, ... 186
Warmest Aspect. Exposures parallel to the different parts of the Day. Positions of Mountains. Shelter given by Forests, ... 187
Effect of the Absence of Mountains. Temperature of Valleys. Unwholesome Valleys, ... 188
Effects of the Neighbourhood of the Sea. Influence arising from the Nature of the Soil. Different Aspect of the Sky, Influence of the Labours of Man, ... 189
Inconveniences of New Countries. Influence of Predominant Winds. General Principles as to the Nature of Winds, ... 190
Consequence of these principles. Diminution of Heat towards the East. East and West Coasts in the Torrid Zone. Examination of the Climates of Hippocrates, ... 191
Southern Climate. Contrary Examples, ... 192
Northern Climate. Eastern Climate. Western Climate. Objection, Local Examples, ... 193
Principles of Classification of Climates. Hot and dry Climate. Hot and humid Climate. Cold and dry Climate. Cold and humid Climate, ... 194
Modification of these Climates. Temperature of the Torrid Zone. Difference of the Equatorial and Tropical regions, ... 195
Seasons of the Temperate Zone. Seasons of the Frozen Zone, ... 196
The greatest cold of the Southern Atmosphere. Different Opinions. Causes of this phenomenon. Quantity of Southern Polar Ice, ... 197

Whether the General Temperature of the Globe changes, ... 198

BOOK XVIII.

Continuation of the Theory of Geography. Of the Revolutions which have taken place upon the Surface of the Globe, ... 198
General Views, ... 198
Two classes of Terrestrial Revolutions. Confusion of Supposed and Established facts. Causes which change the surface of the Earth. Decomposition by Air and Meteors, ... 199
Extension of Moving Sands. Labours of Man. Changes arising from Vegetables. Sinking down and Revolutions of Mountains, ... 200
General sinking of the Globe. Subsiding through excavations. Origin of Subterraneous Forests, ... 201
Lake formed by subsidings. Ground suspended over Lakes, ... 202
Mountains without cohesion. Effects of Cold. Skeletons of Mountains. Combined effects of these causes, ... 203
The sliding of Rocks. Effects of falling down. Whether it be possible to prevent or foresee falling down, ... 204
Effects of running Water. Excavations in Rocks by Water. Funnel. Drying up of the Lakes, ... 205
Breaking down of Dams. Do the Waters of the Sea diminish? ... 206
Manner in which the Sea produces changes. Changes in the Eastern part of the Mediterranean. Changes in the Gulf of Venice, ... 207
Changes in the Western part of the Mediterranean. Changes in the Atlantic Ocean. Changes upon the coast of Holland, ... 208
Changes upon the Danish coasts. Diminution of the Baltic. Physical Arguments, ... 209
Historical Arguments. Maps of the Middle ages. Diminution of the Baltic by the clearing of new grounds. Local changes. Example, ... 210
Effects of the Frost. Observations upon Western America. General conclusion. Remarks upon the old wrecks of ships. Volcanoes, ... 211
Description of Volcanic Eruptions. Ravages of the Lava. Geography of Volcanoes. Great Volcanic Chain of the Globe, ... 212
Volcanoes of the Indian Seas. Volcanoes of Europe. Volcanoes of the Atlantic Ocean, ... 213
Scattered Volcanoes. General results. Origin of Volcanic Fire. Earthquakes, ... 214
CONTENTS.

Description of their effects. Pressages of Earthquakes. Direction of Earthquakes. Generality of this phenomena. Shakings of the Sea. 213
Causcs of Earthquakes. The raising up of the Earth. 216
Of the new Volcanic Islands. Muddy Eruptions. The Sables. Conclusion. 217

BOOK XIX.
Continuation of the Theory of Geography. View of Geological Systems, or opinions regarding the Formation of the Globe. 218

Insufficiency of Geological Observations, 218
Vulcanists of Asia. Neptunist System of the Greeks. Whether there have been any pure Vulcanists in Greece. Philosophy of Atoms. System of Anaximenes. 221
Deluge of Deucalion and Ogyges. Hypothcsis upon the drying up of the Sea. Ideas of Palissy, 1581. 222
System of Buffon, 1745. Theory of Deluge, 1770-1810. Explanation of the Universal Deluge. 225

BOOK XX.
Continuation of the Theory of Geography. Of the Earth considered as the Residence of Organic Beings. 228

Influence of Temperature upon Vegetables. To what point plants support cold. 228
Plants which grow in hot waters. Moisture necessary to Vegetables. Pressure of the Atmosphere. Chemical nature of the Soil. 229
Lands which abound in Plants. Extent of Vegetation. Progress of Vegetation, 230
Epochs in the propagation of plants. Primitive centres of Vegetation. Migration of plants. 231
Sociable plants. Vegetation of the Frozen Zone. 232
Vegetation of the Temperate Zone. Country of the Vine. Cultivation of Corn and Grain. General aspect of the warm Temperate Zone. 233
Vegetation of the Torrid Zone. Appearance of the Vegetation in the Torrid Zone. 234
The Temperate Southern Zone. 235

BOOK XXI.
Continuation of the Theory of Geography. Of the Earth, considered as the Residence of Organic Beings. Of the Geographical Distribution of Animals. Section Second. 235
Geographical distribution of insects. Countries rendered uninhabitable by Insects. Fishes. Upon the situation of Fishes. 237
Migration of Fishes. Fresh Water Fishes. Fish in singular site. 238
Cetaceous animals. Geographical distribution of Cetaceous Animals. Remarks upon Reptiles. Birds in a Geographical point of View. 239
Animals generally spread over the Globe. The Dog, the Ox, the Sheep, the Horse. Three races of Horses; Persian, 241
Mongolian or Scythian race, Arab or African Race; the Ass, the Mog, its connection with the History of Man; the Cat, the Fox, 242
The Hare, the Rabbit, the Squirrel, the Stag. If there are any Stags in Africa, Common stags, small Quadrupeds, 243
Quadrupeds distributed in the Northern Hemisphere, the rein-Deer, the White or Polar Bear, Isatis or Polar Fox, Otter, Beaver, 244
The Marten, Lynx, the Elk, the Squirrels, Mountain Rats, &c. Quadrupeds belonging to the Ancient Continent, Camel with two Humps, Camel with one Hump. 245
The Gazelle, Antelope, etc. Jackall, Buffalo, Grunting Ox, Buffalo of Caffrica. Quadrupeds of the Torrid Zone of the Old Continent, Apes, 246
Countries of different Apes, Giraffa, Zebras, Rhinoceros with one and with two horns, Hippopotamus, Elephants of Asia and Africa, the Lion, 247
CONTENTS.

The Tiger, the Panther, the Leopard, the Ounce. Inference respecting the Animals of the Ancient Continent. Quadrupeds of the New World. Quadrupeds of North America, Bison, or Wild Ox. Musk Ox. Quadrupeds indigenous to South America. Lama, Tapir, the Antiguan, Agoutis, etc. Marmosets, Sagouins, etc. Small species of Animals in America. Character of the Zoology of South America. Quadrupeds of the Oceanic Countries. Kangaroos, Wombats, Stag Hog, Oorang-Outang, etc.

230

BOOK XXII.

Continuation of the Theory of Geography. Of the Earth considered as the Abode of Organic Beings. Section Third. Of Man in his Physical Capacity.

250

Dignity of Man.

250

251

252

253

People who put the Head out of form. If these Shapes became hereditary. Varieties in the different parts of the Body. Variety in the proportion of Feet and Arms. Different degrees of Strength. Five principal Varieties. General variety of the Old Continent. Eastern variety of the Old Continent.

254

255

256

257

258

260

261

262

General inference. Numerical proportions of Births and Marriages. Table of the increase of the Species.

263

Proportion of Births and Deaths in a given time. Numerical proportion of the two Sexes. Are there more girls born in the East? General proportion of Sexes, Ages, States, etc.

264

265

BOOK XXIII.

Continuation and Conclusion of the General Theory of Geography. Of Man considered as a Moral and Political Being; or Principles of Political Geography.

265

266

267

Turkish and Tartar Languages. Mongol, Manchou, etc. Tongues. Tagalic, Tai-tienne Languages, etc. Singular Custom. Languages of the Negroes. Breton Language. Coptic.

268

269

270

271

272

273

274

275
CONTENTS.

Productive Class. Mechanical, or Operative Class. Commercial Class. Class of Public Offices. Class of Mercenaries. Castes, 276
Orders of the State. Denomination of Sovereigns. Resources of the State. Value of Land, 277

BOOK XXV.

GENERAL ACCOUNT OF ASIA.

Name of Asia. Limits. The Tanais, 285
Western Limits according to Pallas. A preferable Line. Separation from America. South-east Boundary. Southern Limits. Dimensions of Asia, 286
II. Southern Region. Ill. Northern. IV. Eastern. V. Western Region, 288
Synoptic Table of Rivers, 289
Proportion of these Rivers, 290
Salt Lakes without outlet. In the Western Region. In Arabia and Persia. In the Central Regions, 291
Other Lakes. Plains of Asia. Connexion between the Nature of the Countries and their Climate. Increase of Cold to the East, 292
Influence of Climate on the People. Opinion of Hippocrates on the Asiatics, 293

BOOK XXV.

CAUCASIAN COUNTRIES.

Caucasian Isthmus. Etymology of Caucas. Elevation. Chains and Branches. Passes, 298
Classification of Caucasian Nations. Georgias. Leading Divisions, 300
Derbend. New Shmarshia. Peninsula of Apaferen. Springs of Naphtha, 313
Town of Baku. Table of Geographical Positions in Caucasus. Table of its Political Divisions, 314
BOOK XXVI.

TURKEY IN ASIA.

PART I.—Asia Minor, with the Coasts of the Black Sea, 315

General View. Mount Taurus in General. Taurus of Asia Minor, 316
Traces of Volcanoes. Rivers. Lakes. Climate. Productions—Of the Western Coasts, 318
Smyrna. Continuation of the West Coast. Site of Troy, 325
TABLE OF THE DIFFERENT APPLICATIONS OF ASIA, ASIA PROPER, AND ASIA MINOR, 328

TABLES OF DIVISION OF ASIA MINOR.

I. Most usual Divisions among the Greeks, 329
II. According to the Divisions of Constantine, 331
III. Turkish Divisions, 332

BOOK XXVII.

TURKEY IN ASIA.

PART II. Armenia. Mesopotamia, and Irac-Arabi, 335

General View. Mountains of Ararat. Tahelidir, Djanik, etc., 335

zike. Ruins of Anii. The Armenian Nation. Armenian Church, 338
Meshed-Ali, and Meshed-Housein, Basora, 345
TABLE OF DIVISIONS OF THE COUNTRIES ON THE EUPHRATES AND TIGRIS, 346
Ditto Ancient Divisions of Armenia, compared with those of the Fifth Century, 347

BOOK XXVIII.

TURKEY IN ASIA.

PART III. Syria and Palestine, 349
Works on Syria. Boundaries, 349
Their Religion. Origin. Manners and Government. Mutulas, 357
CONTENTS.

TABLE OF DIVISIONS OF SYRIA. Page
I. Under the Romans during the first three Centuries, 363
II. Division of Palestine among the Twelve Tribes, 364
III. Diocese of the East. Established by Constantine. IV. Kingdom of Jerusalem in the Twelfth Century. 1. Feudal Divisions, 365
2. Ecclesiastical Divisions. V. Present Divisions of Syria. Do. of Palestine, 366

BOOK XXIX.
TURKEY IN ASIA.

Part IV.—A General View of the Ottoman Empire, 357
Origin of the Ottoman Turks. Conquests of the Ottomans. First Siege of Vienna. Second Siege of Vienna, 357
Decline of the Ottoman Power. Present Prospects, 368
Frontiers of the Empire. Advantages of its position. Extent, 369
Population. Physical Constitution of the Turks. Their Language. Mode of Living, 370
Ayas. Corporations. Pashas. Tyranny in the Provinces, 374

TABLE of Longitudes and Latitudes of the principal places of Turkey in Asia, 379

BOOK XXX.
ARABIA.

Situation. Historical Sketch. Ancient Civilization. Appearance of Mahomet, 381

March. Towns of the Mountains. Canton of Sahan. Towns of the Plain. Aden, 393
Written Characters. Merits. Literary Studies of the Arabians. Education, 395
Religion. State of the Arts, 397

TABLE of Geographical Positions in Arabia, 398

BOOK XXXI.
PERSIA.

Its General Physical Geography.

A General View, 398
Ancient Political Divisions. Dynasty of the Sophis. Dismemberment, 399
Western Persia. Aga Mahommed, the Emouh. Futheh-All. Present Political State. Pandaria, 400
Plateau of Persia. Mountains of the North of Persia. Caspian Gates, 401
Mountains of the South. Gates of Persia. Salt and Sandy Deserts. Mount Talisman, 402
CONTENTS.

Vegetation in the Southern Mountains. Do. in the Central Plains. Agriculture. Famines. 405
Birds. 407

BOOK XXXII.

PERSIA CONTINUED.

Topographical Details on the Provinces and Towns.

Nakshi Roostam. Mourj-Aub, or Pasargade. Physical Geography of Parsistan. Substance called Luminum. Sea Coasts. Arabian Tribes. 419
Selistan. Khorasan. 421

BOOK XXXIII.

PERSIA CONCLUDED.

A moral and Political View of that Country.

TABLE of Geographical Positions of Persia. 433
TABLE of Ancient and Modern Divisions compared. 434
TABLE of the Different Nations which inhabit Persia. 486

BOOK XXXIV.

CASPIAN SEA.

Geographical Dissertation on it, and on the Ancient Mouth of the River Oxus.

Situation and Extent of the Caspian Sea. Charts. Ptolemy's Plan. 438
Mistakes on this Subject. Hypothesis of Subterraneous Communications. Shores. Qualities of the Water. 441
Birds. Fish. Seals. Islands. Different Names of this Sea. Discussion on the Mouth of the Oxus. General Error of the Ancients. 442
Testimony of Patroclus. 443
Concluding Observations. 445

BOOK XXXV.

AFGHANISTAN.

Names and Boundaries of this Country. 445
Mountains. 446
BOOK XXXVII.

SIBERIA.

A Physical Description.

Plan of this Description, 473
The Elk. Hares. Rats. Mice. Insects, Birds, 487
Fish of the Obi. Ditto of the Eastern Sea. Fossil Remains of Large Animals. Hypothesis to account for them, 488
CONTENTS.

Tables of Mathematical Geography.

I. Comparison of French and English Weights and Measures, . . . 491
 Old Weights and Measures of France, 492

II. Synoptical Table of the Planetary System, 492

III. Table of Climates, 493

IV. Table of the Decrease of the Degrees of Longitude, according to the Ancient or Nonagesimal Graduation, the Earth being supposed to be spherical, 493

V. Table of the Decrease of the Degrees of Longitude, according to the New or Centesimal Graduation, the Earth being considered as spherical, 494

IV. Table of the Decrease of the Degrees of Longitude, according to the New or Centesimal Scale, the Earth being supposed to be a spheroid, flattened $\frac{2}{3}$, . . . 494

VII. Table of the Decrease of the Degrees of Longitude, according to the New or Centesimal Scale, the Earth being supposed to be a spheroid, flattened $\frac{2}{3}$, . . . 495

VIII. Comparative View of Linear Measures, called (or equivalent to) Feet, 495

IX. A Comparative View of the Agrarian Measures used in the principal States of Europe, in Ancient French square feet (piede de roi) compared with the Arpent fixed by the Government for measuring the Lakes and Forests, and with the Hectare, or New Agrarian Measure of France, . . . 496

X. A Comparative Table of Itinerary and Topographical Measures, 497

XI. A Table of the different Measures of Antiquity, 498

XII. Comparative View of Principal Winds, 499

XIII. Table of the Decrease of Temperature, according to the Altitude, 501

XIV. Table of the most Remarkable Heights in different parts of the World, expressed in English feet, 502
SYSTEM

UNIVERSAL GEOGRAPHY.

BOOK I.

Theory of Geography. Of the Earth, considered as a celestial Body, and in its relations to the other celestial Bodies. Of Latitudes and Longitudes.

In exhibiting under one view the actual state of the science of Geography, the statement of general truths ought to precede the detail of particular facts. We shall therefore consider our planet in relation to its dimensions and physical structure, before entering upon the study of the different countries which cover its surface.

It belongs to astronomy to exhibit to our view the earth balanced by its own weight in the immensity of space, revolving, with all the other planets, around the resplendent luminary, which distributes to each of these celestial globes its portion of light and heat. It belongs also to astronomy to ascertain the laws which govern the solar system, and to trace the orbits of the different bodies which compose it; of Mercury, lost in the rays of the sun; of Venus and of Mars, in the neighbourhood of our earth, but which are not attended by any moon or satellite; of Vesta, Juno, Ceres, and Pallas, which are so closely connected with each other; and lastly, of Jupiter, Saturn, and Uranus, each surrounded by a magnificent train of satellites, or secondary planets. It is still farther the business of the astronomer, to demonstrate that the magnitude of the sun is 1,384,462 times greater than that of our planet, which, in this respect, is in like manner surpassed by Jupiter 1,281 times; by Saturn 995 times, and by Uranus 80 times; while all the other planets are inferior to it.*

As geography exclusively is our province, it is sufficient for us to borrow such notions belonging to astronomy, as are necessary for comprehending the terms employed in reference to geographical maps, and for conceiving the truth of the methods used in constructing these representations of our globe.

The spherical form of the earth is the fundamental principle of all mathematical geography. The proofs of this truth present themselves to the senses.† The phenomena of the heavens discover it to us; terrestrial appearances also render it obvious. We shall begin with the latter.

Were we placed in a vast plain of Arabia, or on the surface of the ocean, no mountain would there intercept the objects situate within the range of our vision. Why then do we not see elevated objects only diminish in apparent magnitude, as they recede from our view, without any portion being hid; as would certainly be the case if we were upon the same horizontal plane.

* See, in the Sequel of this Book, the Synoptical Table of the solar System. Consult LaPlace, Exposition du Systeme du Monde; Biot, Astronomie Physique.

† Parvanius, General Geography revised by I. Newton, b. I. sect ii. chap. 3. Mauperthius, Elements of Geography, chap. 2.

Vol. I.—A
with them? Why do towers, vessels, and mountains, when we recede from them, appear to sink below the horizon, commencing with the base? and why, on the contrary, when we approach them, do these objects show first their summits, and thereafter their middle, and last of all their lower parts? These phenomena, which every one has an opportunity of observing, prove evidently that every apparent plane upon the earth is a curve surface. It is the convexity of this surface which conceals from the eye of the spectator, upon the beach, the hull of the vessel of which he sees the masts and sails. But since we know that these things happen uniformly towards whatever part of the earth we travel, whether towards the east or towards the west, towards the north or towards the south; since we find that this assemblage of curve surfaces is no where sensibly interrupted, it is impossible to avoid drawing the conclusion, that the whole surface of the earth is, on all sides, nearly regularly curved; or, in other words, that the earth is a body approaching in figure more or less to a sphere.

The object at which the first observers of the stars aimed in their researches was, without doubt, to find certain guides in the voyages which either curiosity or necessity prompted them to undertake. They remarked that the sun, their first guide, occupied, in the celestial hemisphere, a place opposite to certain stars, which every night were constantly visible over their heads, while other stars disappeared and re-appeared alternately. Their attention was particularly attracted by the pole star: they marked this point in the heavens, which, itself alone immovable, appears to serve as a pivot, or, according to the Greek expression, as a pole,* to the apparent motions of the heavenly bodies. They next traced a meridian line, that is, a right line in the direction from the sun at noon to the pole star; and however imperfect this first operation may have been, it was sufficient to mark out to them the four quarters of the world, usually denominated the cardinal points. Now, if they proceeded towards the north, they saw the pole star take a position more elevated in the heavens, with regard to the circle which on all sides bounded their view, and which is named the horizon.† Did they go towards the south, this same star appeared to sink, and others, before invisible, appeared successively to rise. It was therefore impossible that the line whose direction they followed, could be a straight line traced upon a horizontal plane; it could only be a curve, an arc of a circle, to which corresponded another arc of an imaginary circle in the heavens. But as the same changes of the horizon had every where taken place, it was natural to conclude that the earth had at least a circular form from north to south.

It was without doubt by some such reasoning that Anaximander, and some other of the ancient philosophers, were led to regard the figure of the earth as cylindrical.‡ Astronomical observations, by being multiplied, were rendered perfect. The motions of the heavenly bodies were calculated from fixed epochs; and the periodical return of eclipses was determined. It was then easily perceived, that the sun rises sooner to those who dwell more towards the east, and gradually later to others in proportion as they are removed to the west; for if an eclipse of the moon is observed at Paris and at Vienna, and if this eclipse begin when it is ten o’clock at night at Paris, it will be near eleven o’clock at Vienna before its commencement is observed; so that the sun must rise sooner to the inhabitants of Vienna, than to those of Paris. This, however, could not happen unless the surface of the earth were curved from east to west; for were it flat, the sun would begin to illuminate all parts of the face of it at the same instant.

Lastly, when by a series of observations, we are fully convinced that the eclipses of the moon are caused by the conical shadow of the globe of the earth, we have a complete confirmation of all the preceding proofs in favour of the rotundity of the earth; and we see at the same time, that the globe of the earth is not subject to any great irregularity; since, in all possible positions, its shadow upon the disk of the moon is found to be terminated by an arc of a circle.

* Πτέρν, a pivot, from πτερν, to turn. † From ιγκθω, to bound, to circumscribe. ‡ Arist. de Celo, lib. ii. cap. 13.
finally shut the mouths of all those who persisted in regarding the earth as a round plane, or a hemispherical disk. Navigators, such as Magellen and Drake, sailing from Europe, have pursued a course always towards the west (making only some deviations, in order to double the lands which stretch towards the south) and without quitting this general direction, have returned to the same place whence they set out. Upon a circular plane we might indeed perform a circular voyage, but that by continually changing the direction. Hermerkarl, when he wintered at Nova Zembla, confirmed what astronomers had concluded from the spherical figure of the earth;—namely, that the days and nights near the poles extend to several months. Finally, Cook, in approaching as near as possible to the southern polar circle, found that the voyage round was always diminished proportionally to the diminution of his distance from the pole; so that we have thus obtained an ocular proof of the rotundity of the earth towards the south pole, as well as towards the north.

So many united proofs, as well as the accuracy of so many astronomical observations, all of which have been made and calculated upon the supposition of the sphericity of our earth, leave no room for reasonable doubts upon the subject. Respect for the Sacred Writings, which, in speaking of the earth, employ expressions borrowed from ordinary language, sought not to induce us to reject a physical truth altogether foreign to the moral truths which religion teaches. In vain does ignorance demand of us how the earth can remain suspended in the air without any support. Let us look upon the heavens, and observe how many other globes roll in space. The force which supports them is unknown to us; but we see its effects, and we investigate the laws according to which these effects take place. Let us then lay aside all uneasiness concerning the antipodes, that is, the people of the earth whose feet are turned towards ours: there is upon the globe neither high nor low; the antipodes see, in like manner as we do, the earth under their feet, and the sky over their heads.

What would we gain by supposing, as Homer does, that under the earth are placed a range of columns guarded by Atlas, or by imagining it to rest upon nine pillars, as the Scandinavians believed, or upon four elephants, according to the opinion of the worshippers of Brahah? Upon what would these elephants, or these columns rest? Our thoughts, however far they proceed, must always at length stop short, and, affrighted, recoil from that infinity which surrounds us on every side, and which it is folly to attempt to comprehend. But some more reasonable observers will say, Do not the Andes and the Alps make it evident that the earth is an irregular body, and not at all round? We answer: The highest mountain known, which is Chimborazo, in Peru, rises to 21,424 feet above the surface of the sea. This height is nearly \(\frac{1}{6} \) of the earth's greatest circumference, and \(\frac{7}{10} \) of its axis. Upon an artificial globe of twenty-one feet in circumference, or \(6 \frac{1}{2} \) feet in diameter, Chimborazo could only be represented by a grain of sand less than one-twentieth of an inch in thickness. Irregularities so imperceptible do not deserve to be taken into consideration. We shall see, in the following Book, that the true differences which exist between our globe and a perfect sphere, are known, measured, and estimated. But before setting forth this result, deduced from observations the most scientific which have been made in modern times, it is necessary to point out more precisely some of the relations which connect this earth with the other heavenly bodies, and to show, according to Lalande and Biot, in what manner these astronomical principles are connected with mathematical geography.

From a simple view, we learn that the stars with which the nocturnal vault of the

† Volupsa, stroph. 2.

"Nio mán ek heima"
"Nio ividi."

\(\frac{5}{6} \) or about 6551 French metres.

§ It has since been discovered, that some mountains in Tibet rise about 5000 feet higher. The accuracy of the data of this admeasurement is, however, dubious.
heavens is bespangled, appear to move from east to west, each describing a portion of a circle. If we observe this motion more attentively, it appears to be performed about a point which alone remains immovable: this point has received the name Pole, which signifies a pivot. The star which is situated nearest to this point, is called the pole star. The celestial vault is conceived to present itself under the appearance of a sphere; there must therefore be, in the half which is invisible to us, another immovable point: this point is the south celestial pole, as that which we see is the north celestial pole. The imaginary line which passes through these two points, and through the centre of the world, is named the axis of the world, from a Greek word which signifies an axis. This line passing through our globe forms at the same time its axis, and marks upon the surface of the earth two points corresponding to the poles of the heavens, and which are denominated terrestrial poles. That which answers to the pole star, is called the north pole, or the arctic pole;* the opposite pole is named the south pole, or antarctic pole.†

The point of the horizon which corresponds to the north pole, is the north, and the opposite point is the south. The circle perpendicular to the horizon, which passes through these points, and consequently also through the poles, is called by astronomers the meridian; it divides the visible celestial hemisphere into two equal parts; so that the stars, at the moment when they appear upon this circle, are at the middle of their apparent course; it is the passage of the sun over this same circle which determines the instant of noon.

We have already spoken of the meridian line, or of the line which joins the north point of the horizon with the south. A line perpendicular to the meridian line, and conceived to be extended both ways till it meets the horizon, marks upon this circle two opposite points, each 90 degrees distant from the north and south; and to which are appropriated the names of east and west.

We may illustrate these definitions upon an artificial globe, or by means of figure 1.

Illustrations. Let the circle NEMO represent the horizon, and the point A the centre, at which the observer is placed; the letters a, b, c, and d, e, f, will indicate portions of circles which the stars appear to describe about the pole. Those stars whose polar distance is not greater than the arc PN, which measures the elevation of the north pole above the horizon, appear to describe complete circles, such as S h, i, k; the point N marks the north point of the horizon, M the south; and consequently MN represents the meridian line. The celestial meridian is represented by the semicircle MZN, of which the plane is supposed perpendicular to that of the horizon NEMO, and which passes through the points M and N. This circle cuts at the points c and e, the arcs a b c and d e f into two equal parts. The east point of the horizon is represented by the point E, and the west by the point O: it is from E towards O that the stars appear to move, passing in the middle of their course through some point of the celestial meridian.

The true cause of these appearances, is the motion by which the earth turns round its own axis, from west to east in the space of twenty-four hours. We proceed now to explain this motion by means of figure 2, which represents the globe of the earth. We shall suppose the point A to be the place of the observer, EMON his horizon, and the straight line P p to represent the axis round which the earth performs its motion of rotation.

It is easy to perceive, that the horizon of the observer, since it turns along with him during the rotation of the earth, must advance towards the stars successively, so as to give them the appearance of gradually approaching the horizon; in the same manner as a vessel leaving or approaching the land causes the objects on shore to appear to the eyes of an observer on board to be in motion.

As the plane MZN of the meridian turns at the same time with the horizontal plane NEMO, to which it is perpendicular, it must point successively to the same stars, which will then appear in the middle of that part of their course which they

* From the Greek word σκιώση, the bear, a constellation in the neighbourhood of the north pole.
† From the Greek words αυτή, opposite to, and σκιώση, the bear.
describe above the horizon. As soon as the star touches the western verge of the horizon, that star appears to set, and ceases to be visible until the motion of the earth has brought back upon it the eastern boundary of the same circle.

This explanation gives directly a reason for the diurnal appearing and disappearing of the stars, and of the sun. But in order to conceive the use which is made of these celestial appearances in astronomy and geography, it must be observed that these motions are measured only by \textit{angles}, without any regard to absolute length and real distances. For example, if the star \(\pi\), fig. 2, appear first in the horizon in the direction of the visual ray \(AF\), and be seen afterwards in the direction of the ray \(AG\), the eye of the spectator measures only the angular space \(FAG\); it determines only the arc of the circle comprehended in this angle, and not the length of the radius. This arc is estimated in degrees, and parts of a degree. The circumference of every circle, whether a great circle or a small, is supposed to be divided into 360 degrees; each degree is divided into 60 minutes, and each minute is subdivided into 60 seconds.

It is easy to see that we may, with regard to the heavenly bodies, substitute, for the plane \(NEMO\), which touches the earth, a parallel plane, passing through the centre. The reason is, that, when a star situated at \(I\) appears in the horizontal plane which touches the earth at the point \(A\), an observer, placed at the centre of the earth, would see the same star upon the line \(CI\), so that it would appear elevated only by the angle \(ICn\), which will be so much the smaller, according as the star is more distant. The figure renders this evident with regard to the star situated at the point \(H\). The distance of the stars being almost infinite, compared with the semidiameter of the earth, which separates the place of the observer from the centre of the globe, this angle becomes insensible for the fixed stars, and very small for the planets.

We may substitute then without error, fig. 3, instead of the preceding figure, assuming for the horizontal plane, with regard to the stars, the plane \(NEMO\) passing through the centre of the earth, and parallel to the plane, touching it in \(A\); or, what is the same thing, perpendicular to the radius \(CA\), drawn from this point to the centre of the earth. We may conceive, in the same manner, the plane of the celestial meridian \(MZ \alpha N\), to be extended indefinitely around the centre \(C\) of the earth, through which it ought necessarily to pass, since it passes through the axis \(Pp\). This plane determines upon the surface of the earth a circle \(FAp\), which passes through the poles; this circle is the terrestrial meridian of the place \(A\), and at the same time, of all the places situated upon its circumference.

We ought to observe here, that the horizon represented by the circle \(NEMO\), and which passes through the centre of the earth, is called the \textit{rational horizon}, to distinguish it from the circle, which is a tangent to the surface that bounds the view, and which is called the \textit{sensible horizon}.

The line drawn from the centre of the globe through the place of an observer, ascends in the heavens the position of a point \(Z\). This point is perpendicularly over the head of the observer, and is called the \textit{zenith}; the same line produced through the globe, marks, in the opposite part of the heavens, another point \(z\), which is called the \textit{nadir}.

The position of the line \(ZAC\), which is called the \textit{vertical line}, is ascertained by the direction which heavy bodies take in falling, as that of the horizontal plane is indicated by the surface which water at rest and of inconsiderable extent naturally presents. The vertical line, or that which is ascertained by a thread when stretched by a plummet, is perpendicular to a like surface. This is the proper place to point out the precise situation of the antipodes. As gravity tends every where towards the interior of the globe, it acts at \(a\) in the direction \(za\) opposite to \(ZA\); in both places bodies fall towards the surface of the earth. The people placed at \(a\), having their feet opposite to the feet of those who are at \(A\), are called the \textit{antipodes} of these last. The \textit{zenith} of the one is the \textit{nadir} of the other.

It follows from this definition, that the horizon must change its position relatively to the stars, when the observer changes his place upon the surface of the earth. If he removes, for example, from \(A\) to \(a\), fig. 4, directly along the
same meridian from north to south, the horizontal visual ray \(\text{NM} \), will become \(\text{sn} \), so that a star \(\text{E} \), situated upon the prolongation of the former ray, will appear to be elevated above the horizon, \(\text{sm} \) by the angle \(\text{EC} \), which is precisely equal to that formed by the radii \(\text{CA} \), \(\text{C} \) a drawn to the centre of the earth; for the angles \(\text{ACM} \) and \(\text{aC} \), being right angles, if we take from each the common angle \(\text{MC} \), it is evident that the remaining angles \(\text{MC} \) and \(\text{AC} \) are equal.

It was upon this principle that Posidonius, having observed that the star known by the name \text{Canopus}, appeared in the horizon at Rhodes, while it appeared at Alexandria in Egypt, elevated by the 48th part of the circle, or 7 degrees and a half, concluded that Rhodes was distant from Alexandria, in the direction of the meridian, by the 48th part of that circle. It is true that the Greek philosopher, from being ignorant that Rhodes and Alexandria are not under the same meridian, was wrong in imagining that, by this observation, he had determined the whole circumference of the earth. Still, however, his principle is true; it is the same that is employed at the present time in order to arrive at the most exact determinations; for, before measuring upon the earth the distance between any two points, it is necessary first to find, by means of observations made upon the same star, what ratio the arc \(\text{A} \) of the meridian passing through the two points of observation, bears to the whole circumference.

By this observation is ascertained the relative position, with regard to north and south, of one place \(\text{a} \) to another \(\text{A} \); but in order to determine in a manner more precise, the position of these places, there is required some fixed term of comparison. For this purpose we conceive a plane to pass through the centre of the earth at right angles to the axis of rotation, and to determine upon its spherical surface a circumference \(\text{GEF} \), fig. 5, every point in which is at the same distance from the poles \(\text{P} \) and \(\text{p} \).

\[\text{Equator.} \]

This circle is called the \textit{equator}. Now, if an observer be situated upon the equator, the two poles will be found exactly in the horizon; but according as he removes from this circle towards either pole, that pole to which he approaches, will rise above, while the other sinks below the horizon. Thus when he is at \(a \), fig. 4, the pole \(\text{P} \) appears elevated above the horizon by the angular space \(\text{PCn} \), and when he arrives at \(A \), this angle being increased by \(\text{NCn} \), becomes \(\text{PCN} \).

\[\text{Height of the pole.} \]

The height or elevation of the pole above the horizon of any place, is equal to the angular distance of that place from the equator, estimated in the direction of the meridian. For the angles \(\text{ACN} \) and \(\text{GCP} \), fig. 5, being right angles, if we take away the common angle \(\text{ACP} \), there remains the angle \(\text{ACG} \) equal to \(\text{NCP} \). By inspecting the same figure, we perceive that the height to which the points of the equator rise above the horizon is equal to the complement of the angle \(\text{ACG} \).

\[\text{Diameters of places upon the earth from the equator.} \]

It is sufficient, therefore to determine for any place the height of the pole above the horizon, in order to find the angular distance of that place from the equator.

In the regions of the globe, where one of the poles appears elevated above the horizon, the stars called \textit{circular}, that is, those stars which never set, furnish directly the means of determining the height of the pole. As they appear to describe circles about the celestial pole, each must appear equally removed from it in all directions; and as they twice pass the meridian during a diurnal revolution of the earth, namely, once above the pole, and once below it, we have only to measure their angle of elevation in each of these positions, and to take the arithmetical mean between the results, in order to obtain the elevation of the pole.

By measuring, for example, at Paris, during a long winter’s night, the two meridian altitudes of the pole star, we find that, when it passes above the pole, its altitude is 50° 37′; and that when it passes below, it is 47° 4′; the sum of these being 97° 41′; the mean is about 48° 50′, which is within a few seconds of the altitude of the pole at Paris, or of the distance of that city from the equator.

\[\text{Diameters of circles with regard to their meridians.} \]

It is not enough to know merely the distance of a place upon the earth from the equator; because this distance is common to all the places which are situated upon a circle traced upon the surface of the globe by a plane parallel to the plane of the equator, and passing through the place in ques-
tion. In order to distinguish places equally distant from the equator, it is necessary to know their meridians, the meridian being different for each place. The observation of the celestial motions may be here again successfully employed in the manner which we are now to point out. We have seen that the circles of the different meridians, PA_p, PL_p, PM_p, etc., fig. 6, intersect each other in the axis PC_p; but since all these meridians turn upon this line, they must also correspond successively to the same star; and the time which elapses between the passage of two meridians, containing between them any angle, will thus be to the time of the entire rotation, as the angle contained by these meridians is to the whole circumference of the circle. Hence, if we could measure the first of these intervals, in order to compare it with the second, we would be able to deduce the angle which the two proposed meridians formed with each other. To obtain this comparison, it is necessary that we should be able to indicate, by a signal visible at the same time at places under the two meridians, the moment at which a star appears upon one of these meridians, this instant must be noted, and a well regulated clock will measure the time which elapses between this passage and that of the same star over the other meridian.

When we have determined by this method the angle which the meridian PL_p, passing through the place L, makes with the meridian PA_p, passing through a given place A, the place L becomes entirely determined, provided that we already know its distance GL from the equator EGF; for it will necessarily be situated at the intersection of the semicircle PL_p and the parallel LM, drawn at this given distance.

The shortest distance from the place to the equator is termed its latitude. This distance is measured by an arc of the meridian comprehended between the place and the equator. Latitude is north for those places which lie between the north pole and the equator, and it is south for places in the opposite hemisphere.

The angle contained by two meridians, measured by an arc of the equator, or of a circle parallel to it, is termed the difference of longitude of the places situated under these two meridians. That we may estimate these differences in an absolute manner, it is necessary to assume a first meridian, the choice of which is altogether arbitrary, and has varied at different periods. The absolute longitude of a place is therefore the angle which the meridian of that place forms with the first meridian.

We have just seen that the determination of the difference of longitude of two places upon the earth requires the use of a signal visible at the same time at both places. It is evident, that for places separated by any considerable distance, the only signals sufficiently elevated must be sought among the stars. It is indeed by means of these celestial bodies that the geographer determines the position of places. We must therefore acquire some idea of their motions, particularly of the motions of the sun and moon.

Every attentive observer of the heavens cannot but have remarked that the sun, besides its apparent diurnal motion, which it has in common with all the stars, appears, in the course of a year, to change its place in a twofold manner. First, it appears to rise and to sink alternately towards one or other of the poles, or towards the north and south. Again, if we observe its place among the stars, it appears either that the sun recedes daily towards the east, or that the stars advance in the opposite direction; for the stars which we see at any time set immediately after the sun, are, on the following evening, lost among the rays of the setting sun; some days afterwards they re-appear in the east, and their rising precedes daily more and more that of the sun. At last, after a year, or about 365 days, the sun and stars are again seen in the same relative position.

The complexity of these motions is yet increased by the confusion presented by the apparent motions of the other planets; sometimes they seem to be hurried along by an impetuous whirlwind, at other times they appear to become stationary, or even to acquire a retrograde motion. The impossibility of reconciling this confusion of the heavens with the most simple principles of physical science, involved Ptolemy, Tycho-Brahé, and all others, who like them, maintained the doctrine of the immobility of our earth, in a labyrinth of contradictory hypotheses. Copernicus reduced this chaos into perfect order and regularity, by supposing, with some ancient philosophers, that while the earth turns upon its own axis from west
to east in the interval of a day, its mass having at the same time a motion in absolute space, likewise from west to east, performs, in a plane inclined to the equator, an entire revolution round the sun in the space of a year.

This double motion, which some minds still find it difficult to conceive, presents itself nevertheless to our view in the top which furnishes an amusement of childhood; at the same time that it turns, by a motion of rotation, upon the piece of iron, which, passing through it, forms its axis, it describes also upon the ground an orbit composed of curves which depend upon the impulse that it has at first received.

We proceed to the explanation of the apparent motions of the sun, according to the hypothesis of Copernicus. The axis of the earth, with regard to the plane of the ecliptic, that is, of the circle which the centre of the earth describes in its annual motion round the sun, remaining always parallel to itself, presents alternately each of its poles towards the sun. This phenomenon may easily be illustrated by fig. 7, in which the lines PP, which are parallel to each other, represent the axis of the earth, S the centre of the sun, and ABCD the elliptic curve which the earth describes about the sun. In consequence of this parallelism of the axis, the pole P, which is the one nearer to the sun when the earth is at B, becomes the more remote when the earth is at D; because in the former position the inclination of the part BP of the earth's axis is directed towards the inside of the curve ABCD; but in the latter it is directed towards the outside. At the two intermediate points, A and C, the axis PP is inclined neither towards the sun nor from it; but in every other point of the orbit ABCD, it necessarily takes an inclined position relatively to the sun. These different positions, being the cause of the difference of the seasons, deserve, however, to be explained more in detail.

Let us examine the position in which the pole P is directed towards the sun, and which is represented in fig. 8.

A single glance shows us that the surface of the earth is at every instant divided into two parts, the one illuminated by the sun, and the other deprived of its light. The common boundary of these two parts is determined by the great circle IL k, whose plane is perpendicular to the line SO drawn from the centre of the sun to that of the earth. To this line we suppose the sun's rays to be parallel; seeing that from the great distance of the sun, and the small diameter of the earth, all convergency or divergence become insensible. It appears evident, therefore, that the circle IL k, which is denominated the circle of illumination, embraces the whole surface which the earth presents to the sun. Hence we see that the equator ELF, being a great circle, and consequently divided into two equal parts by the circle of illumination; each point of the equator must necessarily be illuminated by the sun during half the time that the earth requires to perform its diurnal revolution. We see besides, that all the circles described by the different points of the arc PE are unequally divided by the circle of illumination, and that this inequality becomes more sensible according as the circles are farther removed from the equator. In this case the greater of the two portions lies upon the illuminated side of the earth; and it is only the smaller portion which lies upon the dark side: for all these points, therefore, the length of the day must exceed the length of the night. With regard to the whole region comprehended within the circle IK, described by the point I, there can be no night, since that circle lies entirely upon the illuminated side of the globe.

The other hemisphere EPF must necessarily present an appearance in every respect the reverse of that which we have now described. The length of the days must there diminish as we approach the pole; and the polar region, which lies entirely upon the dark side of the earth, is buried in perpetual night.

We see also, by the same figure, that while the earth revolves upon its axis, the point in which the line SHG, joining its centre with that of the sun, intersects its surface, traces upon it a circle, all the points of which come successively to receive the perpendicular rays of the sun; but if we remove from it towards either pole, we enjoy only the oblique rays. Hence it follows, the nearer a place is to the circle passing through the points G, H, the higher will the sun appear to rise above its horizon.
Let us now consider the length of the days and nights at the time when the earth is situated at the point A or C. In this position the solar ray SA or SC, Fig. 7, is directed towards the centre of the earth, in a line perpendicular to the axis; and the equator, as well as all the circles parallel to it, are divided into equal parts by the circle of illumination: but since the extent of the enlightened part of the earth is equal to that of the dark part, the length of the day must therefore be equal to that of the night, for every point of the surface of the earth. The seasons at which the centre of the earth is in these two positions, have been denominated the equinoxes; and as the sun is then in the plane of the equator, that circle has thus received the name of the equinoctial line, or simply of the line.

The time which elapses during the earth's motion from the point A to the point B in figure 7, is denominated the astronomical spring, for the hemisphere EFP. As the earth, setting out from the spring equinox, advances in its orbit, the plane of the equator becomes more and more depressed in relation to the sun, which appears to rise towards the pole. When the sun has attained its greatest apparent altitude at the point B, the semi-axis BP of the earth has then its greatest possible inclination towards the sun, which at this season appears nearest to the pole P: that day is the longest of the year, and the summer of the hemisphere EFP commences. This situation of the axis appearing to remain the same for several days, this point is called the summer solstice. This is the position which we have examined in detail in figure 8, and which corresponds to the summer of our regions. The earth having arrived at the second equinox C, autumn commences in the hemisphere which we inhabit. At this season, the sun, appearing to descend in the heavens, returns to the plane of the equator, in which he again appears to perform his diurnal revolution. Having crossed the equator, the sun still appears to descend below it, while the semi-axis CP inclines, at the same time, more and more in the opposite direction, until the earth has reached D, the point at which the winter of the hemisphere EFP commences: the axis then remaining for several days almost in the same situation, this point is named the winter solstice. The position of the earth at this point may be examined by help of figure 9, which represents the winter of our regions. The duration of this season is determined by the time which the earth employs in returning to the point A. During this period, the pole P is approaching the sun, which consequently appears to ascend towards the equator, at which it arrives when the earth, returning to the point A, finishes its annual revolution.

In the opposite hemisphere EFP, the succession of the seasons is reversed, so that the spring of this hemisphere answers to the autumn of the other, and so on.

We remark farther, that the orbit of the earth ABCD, Fig. 7, being an ellipse or oval, in one of the foci of which the sun is situated, the earth employs a greater number of days in moving from the point of the spring equinox A, through the summer solstice B, to the point of the autumnal equinox C, than in describing the remaining part of its orbit. This circumstance gives to the northern hemisphere which we inhabit, the advantage of a spring and a summer a little longer than those enjoyed by the inhabitants of the southern hemisphere.

The first astronomers, in order the better to estimate this apparent motion of the sun, referred it to the constellations or groups of fixed stars through which the sun appears successively to pass, and which are twelve in number. The following are their names, and the characters which are used for representing them:

- Aries, Taurus, Gemini,
- Cancer, Leo, Virgo,
- Libra, Scorpio, Sagittarius,
- Capricornus, Aquarius, Pisces.

These representations of animals, which astronomers, in the infancy of the science, supposed to be traced upon the heavens, led them to give the name of Zodiac* to the zone which these twelve constellations occupy. Each constellation is called a sign. It is proper to remark, that, in consequence of a particular slow motion of the

* From zωδιος, an animal.
axis of the earth, the constellations no longer correspond to the same points of the orbit; but, as we confine the name of signs to the twelve divisions of the circumference of the circle which measures the whole revolution of the earth, and as these divisions, each of which contains 30 degrees, do not change, the spring equinox always corresponds to the first point of the sign Aries; the summer solstice coincides with the first point of Cancer; the autumnal equinox falls upon the first point of Libra; and the winter solstice upon the first point of Capricornus, although the constellations or groups of stars to which these names belong, have ceased to be connected with these seasons.

The tropics. The apparent motion of the sun, by which he recedes from the equator, sometimes towards the north, and sometimes towards the south, causes him to pass successively through the zenith of all the points of the earth's surface, comprised between the two circles GH and g h (Figs. 3 and 9) parallel to the equator, and upon which the rays of the sun fall vertically at the two solstices. These limits, at which the sun appears to stop and to retrace his steps, have received the name of tropics—that is, circles of return.* That which corresponds to the summer solstice, is called the tropic of Cancer, and the other, the tropic of Capricorn.

Polar circles. The circles IK and i k, which circumscribe towards each pole, the part of the earth's surface deprived of the solar rays when the sun is in the opposite hemisphere, are denominated polar circles; the one is called the arctic, and the other the antarctic polar circle.

Terrestrial zones. The surface of the earth is thus divided into five zones, or belts, by the polar circles and the tropics: those which are enclosed by the polar circles, being deprived of the heat of the sun for a great part of the year, and during the other part, receiving its rays but very obliquely, have deservedly received the name of frigid, or frozen zones. Two other zones, one in each hemisphere comprehended between the polar circle and the tropic, receive the sun's rays less obliquely than the frozen zones, but never vertically; these are the temperate zones. Lastly, the zone comprehended between the two tropics, each point of which passes twice under the sun in the year, and which receives constantly the solar rays, in a direction very little oblique, has obtained the name of the torrid zone. We shall elsewhere recur to the physical qualities of these great regions of the globe.

Climates. The ancient geographers frequently made use of a division of the earth into climates, which was founded upon the length of the day, compared with that of the night at the summer solstice. The climates are counted by the difference of half an hour, until we reach the polar circle, where the differences succeed each other more rapidly; from that circle to the pole they are reckoned by the month.†

The contrast of the seasons, in the hemispheres situated to the north and to the south of the equator, has given rise to certain distinctions which it is necessary to know, as they are sometimes met with in ancient books of geography. The people who live under the same meridians, and at the same latitude, on opposite sides of the equator, are called aequatoriali; they reckon the same hours at the same instant, but they have opposite seasons. Those who live under opposite meridians, upon the same side of the equator, and at equal distances from it, are called aequatrorialis; they reckon at the same instant opposite hours, the one having midnight when the other have mid-day; but lying towards the same pole, they enjoy the same seasons.

The ancient geographers distinguished the inhabitants of the earth likewise according to the direction of their shadows. They called heteroepicsi those who inhabit the temperate zones, because their shadows, being always turned towards that pole which is elevated above their respective horizons, fall consequently in opposite directions. The inhabitants of the frozen zones, who, at one time of the year, enjoy the presence of the sun for upwards of twenty-four hours,

* From tertia, a return.
† See, at the end of the volume, a Table of the Climates.
‡ From aequis, opposite to, and same, a habitation.
§ From xois, about; and eis, a habitation.
 From iveris, different, and iveris, a shadow.
see that luminary make a complete circuit round the heavens, so as to project their shadows in all directions; hence they have been called perfici.* Lastly, the inhabitants of the torrid zone are called amphici or ascii,† because their shadows, which are almost nothing at mid-day, are directed by turns towards either pole.

We pass to a distinction of more importance. In considering local phenomena, we distinguish three positions of the sphere, that is, of the assemblage of different circles which we have now pointed out, and which serve to determine the relative positions of the heavenly bodies.

To the inhabitants at the equator, the sphere is said to be right, because the plane of that circle passing through their zenith is, with regard to them, perpendicular to the horizon; and hence the heavenly bodies, which, in their apparent diurnal motion, describe parallels to the equator, appear to rise and to descend vertically in reference to the horizon.

To the people who dwell between the equator and the poles, the sphere is said to be oblique, because the equator cutting their horizon obliquely, the apparent courses of the heavenly bodies can never be perpendicular nor parallel to their horizon.

Lastly, at either pole, the horizon coincides with the equator, so that the heavenly bodies describe circles parallel to the horizon: to an inhabitant of the pole, therefore, were there any such, the sphere would appear parallel.

As the limits of the zones and of the climates depend upon the inclination of the axis of the earth to the plane of the ecliptic, it is of importance to determine this inclination. We may easily discover it by observing at one and the same place the greatest and least altitude of the sun, when it passes the meridian at the summer and winter solstices. For, since in both cases the sun is equally distant from the equator, on the one side and on the other, this circle must cut the meridian at a mean altitude between the extreme altitudes of the sun; and the difference of these altitudes will be double of the angular distance to which the sun recedes from the equator towards the north and south. We shall determine at once, therefore, this distance, and the position of the equator above the horizon, as soon as we have obtained the latitude of the place of observation.

At Paris, for example, the sun rises, at the summer solstice, to 64° 39' above the horizon, and to 17° 42' at the winter solstice. The sum of these altitudes is 89° 20', of which the half is 41° 10': this is the height of the equator above the horizon of Paris; and, taking its complement to a right angle, or to 90°, we find that the distance of the equator from the zenith, or the latitude of Paris, is 48° 50'.

By subtracting the one of these altitudes of the sun from the other, we find a difference of 46° 56', of which the half, or 23° 28', is equal to the number of degrees to which the sun recedes from the equator towards either pole. Such is the angle which the planes of the equator and ecliptic make with each other.

This is what is called the obliquity of the ecliptic. It is not invariable; observations, joined with the calculation of the forces which produce the motions of the planets, have shown that the inclination of the terrestri al equator is subject to a diminution of about 50" in a century, till it reaches a certain limit which is not yet exactly determined, after which time it begins to increase.†

The terrestrial zones vary therefore in proportion to this change. By assuming the mean of the present obliquity of the ecliptic, we find that if we divide the surface of the earth into 10,000 equal parts, the torrid zone will occupy 3823 of these parts, the two temperate zones, 5191, and the two frigid zones the remaining 387 parts.

The two combined motions of the earth produce in the estimation of time a difference that influences the methods by which geographical positions are determined. We distinguish several kinds of days and of years.

The tropical or solar year is the time which the earth, setting out from one of the equinoxes, occupies in describing the ecliptic, so as to return to the same point: it comprehends 365 mean days, 5 hours, 48 minutes, 46 seconds. It is de-

* From *συν* and *πέρα*; see above.
† From *από*, *ἀπό*, or from *α*, *ἄνωθεν*, and *ἐκ*.
‡ Laplace, Système du Monde, p. 111 et 197.
nominated the *tropical year*, because this interval of time must elapse, in order that each season may return in the same order as before. In consequence of the apparent motion of the poles, or of the axis of the earth, the equinoctial points, as well as all the other points of the ecliptic, appear to have a retrograde motion with regard to the stars. This motion is denominated the *precession* of the equinoxes. Astronomers have estimated it at about 50" in a year; which lengthens the annual revolution of the earth by 20° 24", when it is compared with the stars. The period of this revolution is named the *sidereal year*, and consists of 365 days, 6 hours, 9 minutes, and 12 seconds.

Mean day. The length of the astronomical *mean day*, which is divided into twenty-four hours, is determined by the interval which elapses between two consecutive passages of the sun over the meridian of the same place, supposing this apparent motion of the sun to be performed with an uniform velocity. But it is necessary to observe, first, that our earth does not occupy quite 24 hours in its rotation, because that in the same time which it employs in revolving round its axis, it advances in its orbit towards the east about a degree in space, corresponding to four minutes of time, or more exactly to 3 minutes 55 seconds. Hence it follows that the interval between two passages of a fixed star over the same meridian, which measures the true time, is only 23 hours 56° 4". The sidereal day can scarcely be employed for measuring time in civil life, because the sidereal hours never coincide with the solar hours.

Solar day. We make use therefore of the *solar day*, that is, of the time of a revolution of the earth about its axis, in reference to the sun; but this time is not the same at all the points of the orbit, or at all seasons of the year. This inequality arises from two distinct causes: the oblique position of the ecliptic with regard to the equator, and the inequality of the apparent motion of the sun in the ecliptic. The obliquity of the ecliptic causes the arc of the equator, which passes the meridian in the same time with the diurnal arc of the ecliptic, to be not always equal to it, but to be sometimes greater and sometimes less. With regard to the second cause, we observe that the sun, being placed in one of the foci of the elliptic orbit of the earth, appears to move more slowly in the six northern signs than in the six southern; and this difference of velocity is sufficient to render unequal the diurnal arcs of the equator. It arises from the union of these two causes, that the length of the solar day, compared with the time of the earth's rotation, is sometimes less and sometimes greater than twenty-four hours; and this inequality will always be greatest when the two causes which we have just explained concur in accumulating the differences in the same direction. The series of these differences form what is called the *equation of time*, or the quantity which must, at certain seasons, be added to, and at other seasons, subtracted from, the hour indicated by clocks, which are regulated by the sun, and mark the true time, if we wish to get the mean or astronomical time. Now, it is for mean time that the astronomical tables are constructed, by help of which we calculate the motions of the stars, and from these motions deduce the geographical positions of places.

Mean or astronomical time.

We have now considered the earth in relation to the sun; but it is also very closely connected with the moon. This satellite of our planet performs its revolution round the earth in 27 days 7 hours, 43' 11": this time is usually called a *periodical month*. It is observed, that the moon employs a little more than this time to return to the sun after each conjunction. The true cause of this difference is, that the earth, and consequently the moon its satellite, advances in the ecliptic, while the moon describes her orbit; so that before the moon comes into the same position relatively to the sun, 2 days and about 5 hours elapse, beyond the time required for completing a revolution. The whole time occupied in returning to the sun is 29 days 12 hours, 44' 3" 10'". This space of time is called a *synodical month*, or lunar month. It commences from the moment when the moon is directly between the sun and the earth, in which position the moon is said to be in conjunction. This aspect is represented in figure 10, where S represents the sun, T the earth, and L the moon.

In describing its orbit, the moon takes, with regard to the sun, many situations;
from which arise the aspects, or phases, which it assumes. The moon being an opaque body, can be seen only in as far as it reflects the light that it receives from the sun; it can be visible to us, therefore, only when it begins, after having passed the point L, to turn towards the earth a portion of its enlightened disk. This portion increases according as the moon recedes from the sun, until it arrives at L'; the opposite point of its orbit, when the earth being between it and the sun, we see the whole enlightened hemisphere; the moon then appears full, and is said to be in opposition with the sun.

The conjunction and opposition of the moon with regard to the sun, or the new and full moon, are what are called the syzygies. When the moon is distant from the sun a fourth part of the circumference, as at i or i', it is in quadrature, and shows only one-half of its enlightened hemisphere. It is the first or last quarter, according as the round edge of the enlightened part is towards the west or east.

One would be led to suppose that the moon, every time it comes into conjunction with the sun, ought to conceal from us the whole, or, at least, a part of the disk of the sun; and that every time it is in opposition, it ought to pass through the shadow which the earth projects behind it; so that there would be, in the former case, an eclipse of the sun, and in the latter, an eclipse of the moon. These phenomena do not, however, occur at every new and full moon; and the reason is, that the plane of the moon's orbit is inclined to that of the ecliptic, and that these two planes meet one another only in their line of common section, which passes through the centre of the earth. It is evident that the moon is not in the plane of the ecliptic, except when it passes through one or other of the extremities of this line, that is to say, when it is in the nodes of its orbit. When the conjunctions and oppositions coincide with the nodes, there are eclipses; in the opposite case no eclipse happens. We shall comprehend better these particulars by comparing figure 10, which represents, in a geometrical plane, the orbits of the earth and of the moon, with figure 11, which shows their section or profile, along the line ST. This line ST represents the plane of the ecliptic, and L that of the lunar orbit. We proceed now to point out in what manner the observation of these phenomena enable us to determine the longitude of a place upon the earth.

We know, that in order to find the difference of longitude between two places, it is only required to ascertain precisely the hour which is reckoned at the same instant at each of these places, by the observation of some instantaneous phenomenon which can be seen at both.

The eclipses of the moon appear at first view the most favourable phenomena; for the entrance of the moon into the shadow of the earth takes place at the same instant for all the points of the hemisphere which is then turned towards the moon; that is, for all the places where the eclipse can be observed; besides, the spots visible upon the lunar disk, afford the means of making several observations upon the same eclipse, by marking with precision the time of the disappearing of each spot at its entrance into the shadow, or the immersion, and that of its re-appearing at its passing out of the shadow, or the emersion: supposing that we have determined at each place the true time of this observation, the difference of these times, converted into degrees of the equator, will give immediately the difference of the longitudes. If all the results obtained do not exactly agree, the mean of all the observations is commonly taken; but it is much better to examine in detail the circumstances which have accompanied each observation, appreciating accordingly the relative accuracy of each, and to compare only those which are free from all suspicion of inaccuracy.*

There is no absolute need of corresponding observations. The astronomical almanacs, such as the Connaissance des Tems of the French, the Nautical Almanack of the English, or the Calendrier du Navigateur of the Danes, give the results of the calculations of eclipses made before-hand for a known point.

It is in this manner that M. Lalande has determined the longitude of Casbin, a city

* Burg, in Zach, Astronomical Correspondence, iv. 639. Olmstead, Researches upon the Geography of the New Continent; passim.
in the north of Persia, from the eclipse of the moon which happened on the 30th June, 1787, and was observed at that place by the astronomer Beauchamp. The end of the eclipse, or the total emersion of the lunar disk from the shadow of the earth, having taken place at Casbin at 7 hours 45' 30", true time, and the calculation giving for Paris, 4 hours 36' 38", the difference, which is 3 hours 8' 52", is equal to the difference of the longitudes of Paris and Casbin. If we convert it into degrees, allowing 15 for an hour, which gives 15 minutes of a degree for a minute of time, and 15 seconds of a degree for a second of time, we shall have, for 3 hours, 8' 52" in time, an arc of 45° 13'. This is the longitude of Casbin relatively to the meridian of Paris, as deduced from the above observation. But eclipses of the moon present this great inconvenience, that the instant when the lunar disk enters into the true shadow of the earth, the instant which marks the commencement of the eclipse, can never be assigned with precision; we cannot, therefore, be certain of not erring a few seconds of time in the determination of the phases of an eclipse of the moon; for this reason, the use of lunar eclipses for determining longitudes is now generally abandoned.

Cassini was the first who, in 1668, proposed to make use of the eclipses of the satellites of Jupiter, for the purpose of finding longitudes. The theory of these eclipses is the same with that of the eclipses of the moon; for the satellites of Jupiter, when placed in circumstances similar to those which produce the eclipses of the moon, fall, in like manner, into the shadow of their primary planet: if we observe at the same time, at several places, their immersions and emersions, we may make the same use of these, for the determination of the longitudes, as of the eclipses of the moon. There are two other planets, Saturn and Uranus, which are also accompanied by satellites, but their smallness and their distance, permitting them to be seen only by means of powerful telescopes, render the observation of their eclipses almost impracticable, or, at least, of little use. Even the satellites of Jupiter do not all equally well answer the purpose of the observer; for here, as in the eclipses of the moon, the precise moment of immersion and of emersion is always a little uncertain; particularly in the second and third satellites.*

The use which may, nevertheless, be made of these satellites of Jupiter, has induced astronomers to frame tables for predicting their immersions, in order that corresponding observations may not be necessary.†

The eclipses of the sun are no less proper than those of the moon, for determining longitudes: it is sufficient for this purpose that we observe at each of the places of which we wish to know the difference of longitude, the commencement or the termination of one and the same eclipse; but the calculation is not so simple as in the case of a lunar eclipse. M. de Lalande, by great care and attention, has, by means of solar eclipses, corrected the positions of a great number of places. The calculation becomes more difficult, only because the relative situation of the sun and moon is not the same for the different points of the earth’s surface at which these two bodies are visible at the same time. The case of the moon is the same as that of the clouds, which, seen from a particular point, appear situated under the sun, and project their shadow over a limited space, beyond which the sun shines in all its splendour. This spectacle varies continually, according as, from one instant to another, the sun, the cloud, and the spectator, change their situations. To employ the observation of a solar eclipse for the discovering of longitudes, it is necessary to determine several aspects of it, but particularly the beginning and the end; to deduce from thence the middle of the eclipse, and to obtain from the astronomical tables the proper data for fixing the respective positions of the lines described by the centre of the sun and that of the moon during the eclipse, in order that we may be able to calculate the instant when these two bodies were in conjunction. If we know then what hour at a given place corresponded to this same instant, the difference of these times indicates that of the longitudes.

† Table of the Satellites of Jupiter, by M. Delambre.
The eclipses of the sun do not give the longitudes of places with much precision; that of the 6th September, which was observed with the greatest care by three astronomers, exemplifies this remark. M. de Lalande deduces from it the longitude of Naples 47° 3' in time; — M. de Wurm, 47° 40', and M. Trieuwecker, 47° 20'.

The celestial phenomenon which most frequently occurs, is that which is called an occultation, or the passage of a star behind the disk of the moon; it is, at the same time, one of those which may be observed with much precision. It is necessary to determine by observation the moment when the centre of the moon is in conjunction with the star; this fixes the absolute position of the moon; next, either by means of the calculations made before hand in the astronomical almanacks which predict these phenomena, or by the comparison of corresponding observations, we must find what hour it was, at the moment of this conjunction, at a place whose position is known. The difference of longitude is then obtained as in the other methods.

It is evident that all these methods amount to this proposition, “To determine for the place of which the longitude is sought, the position of a celestial body at a given moment, and to deduce from this position what hour it was at the same instant at another place of which the situation is known beforehand.” Hence it follows that, without waiting for a celestial phenomenon, the change alone of angular distance between two heavenly bodies whose motion is known, should be sufficient to determine our place upon the earth. But it is also evident that the angular distance must change by the motion of one or both of the bodies with such rapidity as to present variations very considerable in the space of 24 hours. The moon alone affords us these advantages; as its motion in its orbit is at the rate of nearly 15° a day, a change of a single minute of a degree in its position, corresponds to a little less than 2' of time, or 30' of a degree in longitude. Now, by help of the very accurate instruments which we now possess, we can, by taking the angular distance of the moon from a star; or from the sun, ascertain with great precision the position of that body, and consequently can determine within a few seconds what hour it is, under a given meridian, at the moment of observation.

This method, denominated that of lunar distances, which was first suggested in 1514, by Werner, of Nuremberg, and developed in 1524, by Apian, a native of Saxony, was approved of, and recommended by various astronomers, and among others by the celebrated Kepler; but the imperfection of the astronomical tables which showed the motions of the moon, rendered the practice of it uncertain. The endeavours of Mers to bring it into use, were not successful. Recommended anew, and better taught, in 1750, by Tobias Mayer, this method was employed with much success by the celebrated Danish traveller Niebuhr; it has since been brought to great perfection by the labours of Borda, Delambre, Burg, Maskelyne, and more especially of Laplace. Ingenious instruments, constructed with the greatest care, tables calculated with astonishing accuracy, and a variety of forms, now facilitate this operation, which has come into universal use, and, at sea, has justly superseded all the other methods.

To lunar observations, however, is joined the use of time-keepers, which serve in the intervals during which observations of the distance of the moon from the sun, or from a star, cannot be obtained. These instruments would alone accomplish the end proposed, if it were possible to construct them with such accuracy, that when once regulated to the time under a given meridian, their motion would remain exactly the same during the whole continuance of

* Zach, Correspond. i. 73. note. † Russel. Voyage d'Entrecasteaux, ii. 244.
‡ They who wish to become thoroughly acquainted with this subject, must consult the memoirs of geometors, among others that Upon the Calculation of Eclipses, subject to Parallaxes, by M. Lagrange, printed in German, in the Ephemerides of Berlin, for 1782, but has been published in French only, in the Connaissance des Temps for 1818. M. Arago observes, that there is found in it the groundwork of most part of the analytical calculations that have since been published.
¶ Werner, note in Ptolom. Geog. lib. i.
the voyage; for they would then at all times point out the hour under the said meridian. Even to the present time the efforts of Harrison, of Julien-le-Roi, of Berthout, of Armand, and of other celebrated artists, have not succeeded in giving to chronometers this absolute uniformity of motion; they have approached, however, so near to this perfection, that, notwithstanding the perpetual agitation of the vessel, the derangement which the rate of these clocks suffer, is insensible even during a long voyage. The imperfections to which these instruments are still liable, are, besides, remedied by observing with care the quantity which they gain or lose in a given time, and by correcting their rate when we arrive at a place of which the longitude is known.

Such are the principal methods with which astronomy furnishes the navigator and traveller, for determining the longitude and latitude of the places which they visit. We have unfolded only the general principles upon which these observations are founded; it is proper that we now take a rapid view of the errors to which these methods are subject, pointing out at the same time, the corrections to be applied for removing them.

The errors arising from optical illusions first present themselves to our notice. It is known that a ray of light is refracted, when it passes from a rarer into a denser medium. Hence the heavenly bodies are never seen in the true places which they occupy, the rays which enter the eye making their elevation above the horizon appear greater than the truth, by a quantity that increases according as they are nearer to the horizon. The state of the atmosphere with respect to density, influences this phenomenon. It is necessary to determine the quantity of this error for each degree of altitude above the horizon, in order that we may subtract it from the observed altitudes which are always greater than the true, except in the case of the body being in the zenith, because then the rays of light traversing the strata of the atmosphere perpendicularly, suffer no refraction.

Different physical causes, as heat, humidity, the density of the atmosphere, make refraction vary in different climates; the laws of these variations are yet unknown, and form the object of researches of importance to the improvement of astronomy.†

We have seen above, that, on account of the smallness of the diameter of the earth, compared with the immense distance of the fixed stars, the observation of the altitudes of these bodies may always be referred to the centre of the earth, by supposing the rays of light to fall upon all the points of the earth in directions parallel to each other, and by neglecting consequently the angle AIC, Fig. 2; but this angle becomes sensible for the sun, the planets, and particularly for the moon, since in neglecting it we would estimate the position of each of these objects below its real situation with regard to the centre of the earth. To render all observations capable of comparison, astronomers have agreed to consider the true place of a heavenly body, that in which it would be seen were it observed from the centre of the earth. On the other hand, they denominate the apparent place of a heavenly body, that point of the celestial sphere to which it is referred when observed from the surface of the earth. The difference in the result of these two observations will depend, as we see, upon the angle AIC, under which the chord of the terrestrial arc which joins the two observers, would be seen from the centre of the heavenly body. This angle is called the parallax. It amounts for the sun to 8″.6, and for the moon it varies from about 54″ to 63″. The effect of parallax being contrary to that of refraction, we must add it to the observed altitude, in order to refer the altitude to the centre of the earth.

We cannot enter into a detailed explication of the corrections required by the tables which are used for calculating the observations of longitude. The celestial bodies, though they obey laws which are immutable, are yet subject in their motions to the effects of their mutual attraction, which are called perturbations. Hence result

† A. de Humboldt, Voyage, partie astronomique, i. p. 109. Essai sur les Refractions. "traité d'Astronomie de Biot, &c. &c."
many small motions of acceleration, or of retardation, of which the period is sometimes more than a century, and the equations are difficult to be ascertained with exactness. The progress of the higher geometry, the theories of De La Place, and the calculations of Delambre, of Bürg, and of other astronomers, have reduced to quantities almost insensible, the discrepancies perceived by means of corresponding observations.

There was, till of late years, another source of uncertainty, namely, the imperfection of instruments, which often caused the most scrupulous observers | Instruments. to err half a minute in the determination of an observed angle. At the present time, not only has mechanical skill introduced great accuracy in the construction of instruments, but the ingenious invention of the repeating circle of Mayer, which was brought to perfection by Magellau and Borda, enables observers, by taking the multiple of the observed angle, to increase at pleasure the rigour with which its magnitude is determined, and to diminish the possible error almost to a second.

The two methods of finding the latitude, which we have already pointed out, are not sufficient for the purpose of navigators, who, in order to calculate their longitude by lunar distances, require to know at the same instant under what latitude they are placed. This inconvenience has been in part remedied by solar tables, calculated before hand, and which give for every day of the year the place of the sun. The principle upon which the construction of these tables is founded, consists in presenting first the mean values of all the principal elements calculated for the beginning of the year, and then to give the means of deducing for any other instant, either the true or the mean values of these elements. In all these calculations, the first thing to be known, is the mean longitude of the sun, and of his perigee, or of his apogee, for the instant which is assumed for the commencement of the tables. These initial values are called the epoch of the astronomical tables. By help of these tables then, we can find the position of the sun in his orbit at any instant, and may obtain the latitude of a place, on any day, by subtracting from the altitude of the sun, his distance from the equator, if he is above that circle, or by adding it, if he is below, and then taking the complement of the result to 90°. But, in order to multiply the means of determining the latitude, astronomers, having first fixed the position of their observatory, have calculated the distance of the principal stars from the equator, and the time which elapses between their respective passages over a given meridian, and that of the point of the ecliptic which corresponds to the spring equinox. The results of these calculations have been arranged in tables, by the aid of which the stars may be substituted for the sun in determining latitude.

These observations require that the position of the meridian be previously known. The pole-star indicates it nearly in the northern hemisphere of the earth; but the most universal and accurate method of finding it is afforded by the motion of the sun. Let us suppose the sun to be in one of the solstitial points; in which point it remains for some time apparently at the same distance from the equator, and appears to describe a circle parallel to the equator, whereof the part $d e f$, Fig. 1, which lies above the horizon, is divided by the meridian into two equal portions. The altitude of the sun is, therefore, precisely the same when observed before and after its passage over the meridian at equal intervals of time: on the other hand, if we take in the morning the altitude of the sun, and watch the moment in the afternoon when it returns to this same altitude, the hour of its passage over the meridian must necessarily lie in the middle between these two instants.

The length of shadows furnish the most simple method of determining the altitude of the sun. It is easy to see that this length depends not only upon the height of the objects by which the shadows are projected, but also upon that of the sun, relatively to the plane upon which the objects stand. If upon this horizontal plane, we raise the vertical line AD, Fig. 12: the solar ray being directed along SD, the shadow will fall upon AC, and its length will depend upon the angle SAC, which

* Bosseut, Histoire des Mathématiques, ii, 489.
evidently corresponds to the height of the sun above the horizon. When the sun, after having passed the meridian, returns therefore to the same altitude on the other side, and in the direction S'D, the shadow AB and the vertical line AD, will be again of the same length with the shadow AC; and if we take the middle position of the shadow between the direction of the one and of the other, by dividing the angle BAC into two equal parts, by the straight line AN, we shall find the meridian. If the length of the staff AC is now measured, and that of its shadow, we shall be able to find the altitude of the sun, by the resolution of the rectilinear triangle CAD, which is rectangular at A, and in which the sides AD and AC are known, so that we may calculate the angle ACD, which is the altitude sought. The meridian altitude will be obtained, if we measure the length of the shadow when it falls in the direction of AN. It was by such means that the first astronomers determined the

Gnomon.

altitudes of the heavenly bodies. This rude instrument is called a **Gnomon**; but it has been abandoned since the instruments which measure angles immediately by arcs of the circle, have been brought to perfection. These last are employed even in determining the meridian, by combining them with pendulum clocks, of which the motion is very regular. Having observed in the morning an altitude of the sun, we mark at the same time the hour, then we watch the instant in the afternoon when the sun is at the same altitude, and taking half the interval, we find the time which has elapsed between the passage of the sun over the meridian, and either of the observations.

If, for example, the clock indicates for the same altitude, in the morning 8 h 45' 30", and in the afternoon 3 h 23' 12"; the interval between these two instants is 8 h 37' 42", of which the half is 3 h 18' 51", and this added to the time of the first observation, namely 8 h 45' 30", gives 12 h 4' 21", for the hour which the clock must have indicated at the instant when the sun passed the meridian. The observation of these **corresponding altitudes**, many times repeated, serves to regulate the clock, and to ascertain exactly the moment of the sun's passage over the meridian, whence the direction of the meridian line may be immediately determined.

The observation of equal altitudes may be employed at every other season of the year, as well as at the solstice, by applying to the result a small correction for the change which the sun's declination undergoes in the interval between the two altitudes, and which causes the length of that interval to vary. A great many circumstances influence this kind of observations, and renders them more or less subject to error, particularly when made on shipboard. The details must be sought for in works which treat professedly of these subjects.*

The position of the heavenly bodies relatively to the meridian, and their bearings from the north and south, and east and west points of the horizon, inasmuch as the former serves to ascertain the true hour, and the latter to fix the true north and south points, contribute to facilitate or to verify, the operations by which we determine the position of places upon the earth.

Horary angle.

The **horary angle** of a heavenly body, is the angle which is formed at the pole, at the instant of observation, between the meridian of the place of the observer, and the circle of declination or hour circle, passing through the body. This last circle is nothing else than the meridian of the body. The horary angle is measured by the arc of the equator which has passed, or will pass, under the meridian of the observer, between the instant of observation, and the moment when the heavenly body is upon this same meridian.

Azimuth.

The **azimuth** of a body, is the arc of the horizon intercepted between the south point, and that in which a vertical circle passing through the zenith and the body, cuts the horizon.

Amplitude.

Amplitude is the arc of the horizon intercepted between the point where the body rises or sets, and the true east or west point. The former is called **easter** amplitude, the latter **wester** amplitude. The horary angle, the azimuth, and the amplitude, contribute in several ways to the determination of longitudes and latitudes; the first serves to ascertain the true hour, by only one observation of

the altitude of the sun, and so gives the means of regulating the chronometer; the other two indicate to the navigator how much the magnetic needle deviates from the true north and south line; they teach also the method of placing a geographical map due east and west. Upon these relations of the heavenly bodies to the meridian and horizon, are likewise founded various subsidiary methods for calculating by approximation the latitude of a ship at sea; but as these methods, though ingenious, are very subject to error, and are seldom used in geography, we shall not stop to describe them.

To all these methods which the observation and calculation of the celestial motions furnish, for determining geographical positions, is now added the use of signals made by gunpowder. In a very elevated place, during a serene night, a quantity of powder is from time to time inflamed in the open air; two observers, each provided with a clock, and stationed at the places of which the difference of longitude is required, mark with care the appearance of these flashes,—an appearance which, notwithstanding the distances, is instantaneous at the two places, as a consequence of the prodigious velocity of light. The difference of the times indicated by the two clocks, will give the difference of longitude sought.

Let us conclude this sketch, which is necessarily dry, of the methods by which longitudes and latitudes are determined, with observing to those of our readers who have no taste for such matters, that the exact knowledge of positions is the groundwork of all geography; and that without this knowledge, the most splendid description would only possess a merit altogether illusory.

BOOK II.

Its oblate figure. Basis of the new metrical System.

The active curiosity of man did not rest contented with having demonstrated that the earth is a moving sphere; but proceeded to ascertain the exact dimensions of the planet which had been assigned to him in the immensity of space. An arc of the celestial meridian being measured, it was natural to conclude, that as this arc ought to correspond to a similar meridional arc on the surface of the earth, it would be necessary only to measure this latter curve, in order to find the dimensions of the entire circle, and consequently of the circumference of the globe.

We have already seen the wide difference of the apparent results of the different measures of the earth, undertaken by Eudorus, Archimedes, Possidonus, and Erastothenes; we have pointed out the method of reconciling those measures, by referring them to different stadia; but we shall not at present enter on a formal discussion of the very intricate question whether those operations have been actually executed by the persons to whom they are ascribed, or if the Greeks have merely availed themselves of the science of a more ancient people, and

* Roccet, Voyage d’Entrecasteaux, ii. 27, sqq.
† Puisant, Traité de Géodésie, p. 300, sqq.
§ Puisant, Géodésie, p. 399. Zach. Astron. Corresp. M. Schumacher, Professor of Astronomy at Copenhagen, has lately brought this method to singular perfection. In the measurement of the arc of the meridian, and of the perpendicular to that arc, which is committed to his superintendence by the King of Denmark, he has made use only of a luminous signal.
¶ The author here refers to the History of Geography, the Part first published in French, but which is to be the last of this translation.
taken credit for discoveries which they did not fully comprehend. In our opinion, the *stadium* being a measure of local and real distance, and not merely an astronomical modulus, it is probable that we are indebted to the Egyptians and Babylonians for the computations of the circumference of the earth, in *stadia* of 1111 and 833 to a degree, whilst the results found by using *stadia* of 700 to a degree, and other hypotheses, may be very well considered as the work of Erastostenes, Possidonius, and other Greek astronomers.

It was observed, in the foregoing book, that Possidonius committed an error in taking for an arc of the terrestrial meridian that which connected Alexandria and Rhodes, since those places, which were the points of comparison, have not the same longitude. If we except this error, the method of Possidonius was the true one.

Erastostenes made use of a *gnomon* placed vertically in the centre of a concave sphere; *he knew that at Syene, the sun, at the time of the solstice, projected no shadow; he remarked that at Alexandria, the gnomon, at the same instant, projected its shadow over the fiftieth part of a circle; he hence concluded the latitude of Alexandria to be 7° 12' north of Syene, which must have been situated under the tropic. But according to the moderns, the latitude of Syene is 24° 5'; consequently that of Alexandria would be 31° 17', which is not far from the truth. However carefully this observation was made, the Greek astronomer could not adopt it as a solid basis for the measurement of the earth, as the two points which he compared are not situated under the same meridian.

The measures of a degree, attributed to the Arabians, exhibit, in like manner, equivocal results, and which cannot be reconciled with the truth but by means of arbitrary computations.

After the revival of letters, the European astronomers made many fruitless attempts to measure accurately a degree of the meridian. † In 1617, *Snellius*, after having determined the celestial arcs, comprised between Alkmaer, Leyden, and Bergen-op-Zoom, by the difference of the altitudes of the pole in those three places, calculated the terrestrial meridional distances of the three parallels, by means of a series of triangles connected together, and the base whereof was actually measured; he thus found that the value of a degree of the meridian was 55,021 toises, or 58,639 English fathoms, of six feet each. ‡ *Norwood*, an English astronomer, in 1635, measured with the utmost care a degree of the meridian between London and York; he found the degree to be 57,310 toises, or 61,078 fathoms, which result is a very near approximation. However, fifteen years afterwards, *Riccioli*, a celebrated Italian astronomer, pretended to have found by a measurement carried on in the environs of Bologna, that a degree of the meridian was 62,900 toises, or 67,086 fathoms; but this result is far from exact, as there is an excess of almost 6000 toises, or 6395 fathoms above the real value.

It was by applying the telescope to instruments used in the taking of angles, that *Picard*, of the Academy of Sciences of Paris, was enabled to carry on with the necessary precision, the new measure of a degree which he commenced in 1669. He chose for the theatre of his operations, the space contained between *Sourdun* in Picardy, and *Malecisme*, on the borders of Gâtinais and Hurepoix. ‡ In order to ascertain the itinerary distance which separates those two points, situated under the same meridian, he connected them by a series of triangles, Fig. 13; he observed successively all their angles, which furnished him for each a method of verification, as the sum of the angles of every triangle, is constantly equal to 180°.

He scarce ever obtained this sum, but the inevitable errors amounted only to a few seconds.

Trigonometrical operations. A triangle is indeterminate, if only the angles be given, and we can obtain no more than the ratio of the sides; but one side being known, the rest are easily found. Picard therefore measured with a precision till then un-

* Cleomed, Meteor. I.
† Fernel, about the year 1530, divined with sufficient exactness, by a very imperfect method, the value of a degree between Paris and Amiens, which he computed to be 37070 toises. This wonderful coincidence has not yet been explained.
‡ Picard, Mesure de la Terre, 161.
known, a distance of 5683 toises, or 6035 fathoms, on the road of Villejuif, at Ferney. With this base, represented by AB, in the triangle ABC, he calculated the side AC; and with this he found CD, in the triangle ACD;* and thus he proceeded from triangle to triangle, as far as Sourdon. Here again was measured a right line RS, as a base of verification. The line LM, IN, IG, verified by means of this base, gave only a difference of one or two toises from the first measure. New triangles were afterwards carried on, as far as the Cathedral of Amiens, where the operation ended.

It was then necessary to find the length of the line which joins those points, and its position with respect to the meridian of Paris, in order to ascertain the distance in the direction of this meridian; and also to determine accurately the amplitude of the arc measured on this circle, that is, how many degrees and parts of a degree it contained, in order to deduce its ratio to the whole circumference.

In this second part of this operation, which depended on the observation of the stars, he attached himself to that which is placed in the knee of the constellation of Cassiopea. He preferred this star, because, not being far distant from the zenith, it was less affected by refraction, which in his time was attended with much doubt. By this means he found that the difference of latitude between Malvoisine and Sourdon, near Amiens, was 1° 11' 57''; that it corresponded in the direction of the meridian, to a distance of 58,430 toises, or 62,272 fathoms; and hence he concluded the length of the degree to be 57,064 toises, or 60,816 fathoms.

He found also, between the cathedral of Amiens and Malvoisine, a difference in latitude of 1° 22' 55'', and a distance of 78,680 toises, or 85,084 fathoms, which gave for the degree 57,057 toises, or 60,815 fathoms; he chose the mean of both these results—57,060 toises, or 60,812 fathoms.

The circumference of the earth, like every other circle, is divided into 360 degrees; and by dividing a degree into twenty parts, called sea leagues, each of which is equal to 2064 toises, or 2052 fathoms, it will be found that the circumference contains 7200 of those leagues.

Its diameter, deduced from the circumference, is 2392 sea leagues, and its radius, or a right line drawn from the centre to the surface is 1146. Multiplying the circumference by the diameter, we find that the surface contains 16,502,400 square leagues.

The accuracy of Picard's operation, seemed to remove all doubt respecting the dimensions of the earth, when the important experiments made by M. Richer at Cayenne in 1672, showed that the figure of the earth was not perfectly spherical, and that consequently the degrees were not equal. His pendulum clock, regulated at Paris by the mean motion of the sun, after being transported to the island of Cayenne, which is only about 5 degrees from the equator, was found to lose every day 2 minutes, 26 seconds. The length of a pendulum, which at Cayenne beat seconds exactly, being marked upon an iron bar, which was brought to France, it was observed that the pendulum of Cayenne was 1 line shorter than that of Paris, which measured 36.862 lin. or, more exactly, 440.57 lines,† or 39,156 English inches.

This experiment proved that the force of gravity was less at Cayenne than at Paris; for when the pendulum which regulates the clock, deviates by its motion from the vertical position, the force which attracts it is equal to gravity; and the interval of time it takes to return to that situation, is so much shorter, if the power of gravity augments, and so much longer if it diminishes. The index cannot point to a second, till after the pendulum has completed an oscillation, or after one fall in the vertical. Thus, if during a revolution of the stars, the index does not mark a sufficient number of seconds, the pendulum employs more time to regain its vertical situation and gravity, the power which impels it, is diminished.

* Short example of the calculation.—In the first triangles it was found by observation that \(\angle A = 54^\circ, \angle B = 35^\circ, \angle C = 90^\circ, \angle D = 55^\circ, \angle E = 40^\circ, \angle F = 30^\circ \). By measurement, AB was found to contain 5683 toises; therefore, by the rule of proportion, we find AC = 10,012 toises, 5 feet, and so on.

† A line is the twelfth part of a French inch.
This experiment, the importance of which was foreseen by the Academy of Sciences,* perfectly coincided with the reasoning of mathematicians, who began to consider the earth as depressed towards the poles; and the cause of the augmentation of gravity, or the attracting force, was explained by the depression of the surface, which therefore approaches nearer to the centre.

Huygens's theory.

Huygens, a Dutch mathematician, had the glory of divining that truth, even before the experiment of the pendulum was known. Considering that bodies which revolve round a centre, or an axis, acquire a centrifugal force, which tends constantly to make them fly off from this centre or axis, as we observe in a stone whirled about in a sling, he concluded, that the fluid diffused over a considerable part of the surface of the earth, could not assume a form perfectly spherical, as it must be affected at the same time by the force of gravity impelling it towards the centre. He supposed, therefore, that the earth must be depressed towards the poles, and that the axis of rotation was shorter than the equatorial diameters, by \(\frac{1}{27} \), which is equal to about four sea leagues. This consequence, deduced from the centrifugal force by Huygens, may be made sensible to the eye, by turning rapidly a wet bladder round an axis, which then assumes the form of a spheroid flattened towards the extremities, contiguous to the axis.

Newton's theory.

The immortal Newton, who, by profound reflection on the laws of the planetary motions ascertained by Kepler, discovered the principle of universal gravitation, no longer considered gravity at the surface of the earth as a constant force, every where directed towards the centre of our globe, but as the result of the mutual attractions of all the particles of the earth to each other; he found that this force varied a little in intensity and direction, from the earth not being perfectly spherical. If the figure of the earth depended upon gravity, gravity would regulate itself according to the figure which the earth had; this accelerating force, as to terrestrial bodies, ought to be perpendicular to the surface, and proportional to the distance; the earth having once assumed the oblate figure, this figure alone independently of the centrifugal force, ought to render gravity weaker under the equator than under the poles. Newton, calculating on this principle, and supposing the earth homogeneous in all its parts, found, for the quantity of depression, \(\frac{1}{450} \), or 10 sea leagues.†

Those conclusions, differing as to the quantity of the result, but agreeing with respect to the alteration which the figure of the earth ought to undergo in consequence of the centrifugal force, have been developed by the most delicate and profound calculations. Of these we can only here point out the results. It has been demonstrated, that the earth could not be a homogeneous mass, but that its density ought to increase in descending to the centre and that, in all cases, an elliptical figure satisfies the laws of the equilibrium of fluids.

At the same time, the theory of the diminution of gravity towards the equator, was confirmed by a great number of observations on the pendulum, from Lapland to the Cape of Good Hope;§ and from their general agreement it has been concluded, that the depression of the globe is equal to the 333d or 336th part of its axis.||

The theory of the depression of the earth might also be verified by measures taken on the terrestrial globe; for it results from this theory, that the degrees of latitude cannot be equal throughout the whole extent of the meridian, but that they ought to be augmented, in the flattened part of the meridian, that is, towards the poles, and diminished in the convex part of the same meridian, or near the equator. Those consequences, which flow from the fundamental notions of elementary geometry, were however for some time mistaken.

* Lalande, Abrégé d'Astronomie, art. 742 and 805.
† Clairaut, Theorie de la Figure de la Terre. Maclaurin, Memoir on the Flux and Reflux of the Sea. D'Alembert, Recherches sur le Systéme du Monde, &c.
§ Laplace, Système du Monde, p. 250. Stenberg, Exposition de la Mesure d'un Degré.
by men of very great merit, such as Cassini, and d'Anville. It may not therefore be improper to insist a little on the demonstration.

A degree of the meridian is the portion Aa, Fig. 14, of that curve, when the radii $CA, C'a$, which intercept that part of the arc, form an angle ACa, equal to the 360th of the circle. In consequence of this definition, it is easy to perceive that the radii $CA, C'a$ perpendicular to the tangents, will meet at the same distance in the curve only when this curve is a circle; that to the same arc will correspond the same angle, and that in this case the degrees throughout the whole extent of the curve will be of the same length. But this does not apply to curves whose curvature is not uniform. In the ellipse, for example, if we take two arcs of the same length, as Mm, and Nn, Fig. 15, one in the most convex part, and the other in the flattest part of the figure, the perpendicular Mc, nc, drawn to the extremities of the former arc, will meet nearer in this arc, than the perpendiculars NC, nc drawn to the extremities of the other arc. The angle Ncn is therefore visibly less than the angle MCm, and consequently if the latter be equal to one degree, the arc Nn, equal in length to Mm, does not correspond to a degree. To obtain this angle in the part NP of the curve, it is necessary to take in a space greater than Mm. Therefore the terrestrial degrees must be greater in the flattest part of the globe, if we would have them correspond to the celestial degrees which are all equal, not being real arcs, but only angular distances.

We may also reason in the following manner:—The point where two verticals meet, is the centre of the terrestrial arc contained between them; if this arc were a right line, the verticals would be parallel, or would meet only at an infinite distance. The greater the curvature of the arc, the more the verticals converge, therefore they meet at a less distance. Thus the part of an ellipse near its great arc being the most curved, the verticals which are perpendicular to it, will meet at a smaller distance. The radius of the arc intercepted between them will be shorter, and consequently, the absolute length of the arc itself will be less. On the contrary, near the small arc, the verticals meet at a greater distance, showing that the radius of the intercepted arc, and the arc itself, are longer.

By not tracing those notions to their source, the contrary was concluded at the commencement of the last century, because it was supposed that the degrees were determined by the angles MoM', NoN', formed by the lines drawn to the centre of the ellipse EPQ; but this hypothesis was not conformable to the principles of the operation, for the lines OM and $O'M'$, ON and $O'N'$, not being perpendicular to the curve, differ entirely, both in magnitude and direction, from the verticals to which are referred the points of the celestial arc.

The measures of Cassini having seemed at first to indicate a diminution of the degrees from south to north, several learned Frenchmen maintained, by means of the paralogism above cited, that this diminution was a proof of the depression at the poles; the mathematicians demonstrated that it was rather a proof of the contrary. The error of the principle was at length discovered, and it has not been since revived by but entire strangers to geometry. But Cassini and D'Anville, in deducing from the pretended diminution of the degrees towards the north, the natural conclusion, affirmed that the earth swelled out in its polar direction; or, in other words, that the terrestrial ellipsoid performed its revolution round its major axis; which was contrary to the theory of gravity and the equilibrium of fluids.

In France, the notion prevailed for forty years, that the earth is a spheroid protracted towards the poles. At length, the Academy of Sciences resolved to ascertain the truth of the theoretical conclusions on the subject, and selected from their own body two companies of mathematicians, who were dispatched, the one in 1736 to Peru, and the other in 1737 to the polar circle, to measure a degree of the meridian in the regions bordering on the equator and the pole. The results obtained by these companies, compared with each other, and with the degree measured in France by Picard, though they did not entirely agree

† Bosset, Hist. des Mathématiques, p. 273.
with respect to the quantity of the depression of the earth at the poles, yet they completely dissipated all doubts of the fact.* The degree measured at the polar circle exceeded that of the equator by 669 toises, or 703 fathoms; and the French degree, though smaller than that of the polar circle, still surpassed that of the equator by 307 toises, or 327 fathoms.

The Cassinis themselves, after having verified their measures, had the candour to avow that they had fallen into some slight errors, and that the degrees measured by them in France concurred to prove the depression of the globe towards the poles.† It was not enough that the science of mathematicians had described, in a general way, the figure of our globe, they further endeavoured to discover the exact quantity of that depression, the existence of which had been proved by so many experiments. But, in this investigation, the accumulation of the materials only increased the difficulty of the question. The degrees successively measured in different parts of the world gave very different quantities for the depression. This was demonstrated with great perspicuity by an Italian mathematician, by comparing the twelve best measures known for half a century back.‡ We shall first give the results of those measures, with the names of the astronomers to whom we are indebted for them:

<table>
<thead>
<tr>
<th>Names of the Countries</th>
<th>Latitude whence the measurement commenced</th>
<th>Value of the degree measured</th>
<th>Names of the Observers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peru</td>
<td>00° 00'</td>
<td>36,753 tois.</td>
<td>Bouguer, La Condamine, &c.</td>
</tr>
<tr>
<td>Cape of Good Hope</td>
<td>33° 13'</td>
<td>57.197</td>
<td>Lacaille.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>39° 12'</td>
<td>56,888</td>
<td>Mason and Dixon.</td>
</tr>
<tr>
<td>Ecclesiastical State</td>
<td>43° 1</td>
<td>56,979</td>
<td>Boscowich and Maire.</td>
</tr>
<tr>
<td>France</td>
<td>43° 31'</td>
<td>57,043</td>
<td>Cassini and Lacaille.</td>
</tr>
<tr>
<td>Piedmont</td>
<td>44° 44'</td>
<td>57,137</td>
<td>Beccaria.</td>
</tr>
<tr>
<td>France</td>
<td>45° 45'</td>
<td>57,050</td>
<td>Cassini and Lacaille.</td>
</tr>
<tr>
<td>Hungary</td>
<td>45° 57'</td>
<td>56,881</td>
<td>Liegsung.</td>
</tr>
<tr>
<td>Austria</td>
<td>48° 43'</td>
<td>57,086</td>
<td>Idem.</td>
</tr>
<tr>
<td>France</td>
<td>49° 23'</td>
<td>57,074</td>
<td>Picard and Cassini.</td>
</tr>
<tr>
<td>Holland</td>
<td>52° 4'</td>
<td>57,145</td>
<td>De Thury and G. Cassini.</td>
</tr>
<tr>
<td>Lapland</td>
<td>66° 20'</td>
<td>57,405</td>
<td>Maupertuis, &c.</td>
</tr>
</tbody>
</table>

Note. One toise is equal to 1.06575 English fathoms.

Frisi endeavoured to calculate a regular curve according to Newton's theory, which might correspond to those twelve degrees, but he found them either too great or too small; the errors which should be supposed in the measurement in order to reduce them to a regular ellipse, whose minor axis would be to the major in the ratio of 230 to 231, amounted to more than 100 toises, or 106 fathoms the degree, and for the degree of Hungary to more than 200 toises, or 218 fathoms.

Frisi also endeavoured to find, by binary and decimal combinations, a mean term between the different depressions pointed out by the measures; but as a severe criticism of the accuracy of each measure did not precede his combinations, we shall not here cite any of the results; we shall only observe that, by choosing, among his binary combinations, the six in which we can have confidence, we find for the mean term a depression almost identical with that furnished by the observations of the pendulum and the late French measures. Here is the comparison:

The difference of the axes, or the absolute value of the depression, being taken for unity, the first degree combined with the third, gives for the major axis of the earth 505 similar parts; with the fourth, 553; with the seventh, 292,3; with the ninth, 290,4; with the tenth, 307,4; and with the eleventh, 270. Therefore the mean term of the depression is equal to 1/37.

The acknowledged impossibility of finding one regular curve which would correspond with the different degrees measured, produced differ-

* Bouguer, Figure de la Terre. Maupertuis, Elémens de Géographie, &c.
† Cassini et de Thury, Méridienne de l'Observatoire royale vérifié, 1744.
ent opinions among philosophers. The operation of M. Maupertuis in Lapland was first condemned as uncertain, either on account of the negligence with which it was conducted, or because the arc measured was not of sufficient extent, or, lastly, on account of the doubts which this mathematician himself had entertained with respect to the result of his measurement. The same judgment should be passed on the measure of Father Liesganig, executed with very inaccurate instruments, and where-in it is now demonstrated† that there is a confusion of two stars nine degrees distant from each other, and other constant errors from 10 to 12 seconds, which correspond to 150 toises, or 160 fathoms; consequently this measurement does not deserve to be taken into consideration. Not being aware of this error in the operation of Liesganig, some very excellent mathematicians have given themselves the useless trouble of attempting to reconcile the irregularity of the degrees of Austria and Hungary with the general theory.‡

The measures which might be safely relied on, took in but a small portion of the globe. Neither Frisi nor the other philosophers who have written on this subject, were acquainted with the degree measured in the year 1702, in China, in the 40th degree of latitude, by the Jesuit Thomas, the value of which degree was found to be 56,987.899 toises, or 60785 fathoms of six feet each; which, by supposing a depression of \(\frac{\pi}{172} \), would differ only 23,983 toises, or 26 fathoms, in excess from the value presumed. But this measurement being susceptible of several interpretations, there can be no great harm in neglecting it.§

Some persons have been tempted to doubt of the possibility of measuring a degree of the meridian with perfect accuracy. The errors inseparable from the nature of the instruments then employed, might amount to 3 or 4 seconds for the celestial arc, or 60 toises for the terrestrial degree.|| The attraction of mountains, which deranged the plumb line by which the vertical is determined, excited the most restless doubts. This effect of gravitation, a striking proof of Newton's general theory, might affect measurements in other respects executed with the greatest care, since a deviation of the vertical line, of 15 seconds only, at both extremities of the arc measured, would cause an error of 500 toises, or 533 fathoms, which quantity is greater than the presumed difference of the two extreme degrees under the equator and the pole. But Newton had estimated this attraction at two minutes, for a mountain three English miles in height and six broad. This estimate, it is true, has appeared excessive. By the observations which Bouguer and La Condamine carefully made in 1737, in Peru, near the mountain of Chimborazo, the plumb-line deviated \(\frac{\pi}{172} \) seconds in consequence of the attractive force of that mountain, which, according to Newton's theory, should have produced an effect 13 times greater; but the nature of the volcanic rocks of that mountain renders the experiment dubious.† Similar effects have been observed in the Pyrenees, the Alps, the Apennine mountains, and in Scotland, where Maekelyne repeated those observations with the utmost precision, and obtained a result which approaches nearer to Newton's theory.** It is very possible that this attraction may have affected the measures taken by Lacaille, since that astronomer performed no experiment to determine the effect of the mountains of the southern part of Africa, on the plumb-line of the instrument which he made use of.

At length, a simple and decisive idea presented itself to the mind of some superior geniuses, who were fatigued with the interminable dispute of the earth's depression. It was supposed that the curvature of the terrestrial spheroid might be subject to some slight irregularities. Why should nature, which is not fond of geometrical figures, have made the earth a perfect and regular

* He makes the degree in his Figure of the Earth, 57,405, and in the Elements of Geography, 57,438.
‡ Dubourguet, Traité de Navig. p. 283, 308, &c.
†† D'Alembert, Encyclopédie, Fig. de la Terre. Bouguer, Fig. de la Terre, Sect. i. § 4. &c.
‡‡ Bouguer, Fig. de la Terre.
** Philosophical Transactions, 1775, p. 500.

Vol. I.—D
ellipsoid? Buffon was one of the first who proposed this opinion:** Condamine seems to have favoured it;† and Maupertuis, who at first had loudly rejected it, at last only doubted of it;‡ Lacaille, whose measures did not agree with any other, naturally inclined to an explanation which justified his operations. However, natural philosophers in general still objected to this opinion, which was feebly supported by those who had advanced it.

M. Klügel’s hypothesis.

A more serious attempt to maintain the regular ellipsoid, was made by M. Klügel, a German mathematician. To demonstrate that all the degrees accurately measured, even that of Lacaille, might be applied to a regular ellipse, he supposed a small difference existed between the minor primitives axis of the terrestrial ellipsoid, PP Fig. 16, and the actual axis of rotation, IIw; whence would result for example, that the Cape of Good Hope, might have been originally nearer to the south pole, or, more accurately speaking, that the southern extremity of the axis of rotation has changed its position with respect to the equator Eq. Therefore the southern degree a b, although more distant from the pole of rotation w than the northern degree from the pole II, might nevertheless be in the same situation with respect to the true minor axis of the ellipsoid PP; and would consequently have the same absolute value, notwithstanding the difference of latitude.§ It is obvious what revolutions would take place on the earth, if this hypothesis had any foundation. It is evident that the major axis of the globe would no more coincide with the plane of the equator; and is it possible, according to the laws of hydrostatics, that the terrestrial ellipsoid could perform its revolution round any other axis than its real minor axis? But, whatever objections may be made to M. Klügel, his hypothesis appears so ingenious, and would be so fruitful in interesting results for physical geography, that we thought proper to give an idea of it here.

Such were the doubts of astronomers and mathematicians respecting the figure of the earth, when a political project afforded an opportunity for undertaking a new measure of the arc of the meridian, which, passing through the capital, traverses France.

The National Convention ordered that a uniform and permanent system of weights and measures should be established. The philosophers proposed to found the basis of this system upon nature, and to take as the primitive unity of measure, or metre, the ten millionth part of a quadrant of the terrestrial meridian, that is, the space between the equator and the pole. It was said that a metrology founded on such a basis would belong to every age and nation. But how were they to find precisely the length of the fourth part of the meridian? They could not deduce it from the ancient measures, for these contradicted each other; it was therefore determined that the new metrological system should be rendered more authentic by founding upon new operations, conducted with a precision till then unknown, and directed by the most able astronomers. Delambre and Mecchain were appointed to measure the arc of the meridian intercepted between the parallels of Barcelona and Dunkirk. These two celebrated geometers measured the angles of 90 triangles with the new repeating circles which Borda had constructed; they observed with these instruments, 5 latitudes at Dunkirk, Paris, Evau, Carcassonne, and Barcelona. The two bases near Melun and Perpignan were measured with platina and copper rules, and were found to agree, to a few inches, with the measures calculated. Minute attention prevented or rectified the smallest errors. The most eminent of the French mathematicians, together with a number of others sent from different countries, verified and sanctioned all the calculations. No further doubt, therefore, can be entertained respecting the results of this vast enterprise, which commenced in 1792, and terminated, as to the measurement, in 1798.

Results. It has been proved, that the degrees of the meridian diminish towards the south, and increase towards the north. But this augmentation of the terrestrial degrees does not follow a regular and constant progression. Therefore no meridian whatever can be a regular ellipse. It is probable, that the earth itself is

* Nat. Hist. tom. i. p. 165.
† Rapport sur les Méesures du Pérou, p. 262.
‡ Lettres Physiques.
§ Klügel, Dimensions de la Terre, &c. in the Astronomical Collections of Berlin, iiii. 164, 169.
not a solid of revolution, that is, circumscribed by the revolution of an individual ellipse round its centre. However, these irregularities which appear extremely small in comparison with the mass of the earth, may, without inconvenience, be overlooked.

The meridian of France, which Mesers. Biot and Arago have lately prolonged, by a very tedious operation, as far as the Isles of Ivica and Fromentera,* gives, if we consider it apart,† for the quantity of the depression \(\gamma_{TT}\), and, by comparing it with the degree of Peru, it would give \(\gamma_{TT}\).

This latter result, adopted by the commission of weights and measures, coincides with what was found by observing the pendulum. It agrees also with several celestial phenomena, the cause whereof is the non-sphericity of the earth; for this planet being swelled towards the equator, the attraction of the sun and moon is there more powerful than towards the poles; and, as the plane of the equator is inclined to the ecliptic and lunar orbit, this additional attraction communicates to the axis a progressive motion, which causes the equinoctial points to retrograde, and an alternate motion, by which it oscillates around the position it would have by virtue of the first motion. The latter is called the precession of the equinoxes, and the former the nutation. M. Burg, a celebrated German astronomer, having calculated, at the request of M. de Laplace,‡ the causes of those perturbations, and the influence of the earth's depression, found the latter to be \(\gamma_{077}\).

The degree measured at the polar circle by the French academicians in 1737, was that which differed the most from the general result deduced from all the other data. We have already mentioned, that considerable errors were suspected in the operation, and this has been since demonstrated. M. Melanderheim, a learned Swedish astronomer, undertook to get a new degree measured by M. Svandal, one of his pupils, and for that purpose the repeating circle was employed, and all the delicate methods of modern geodesia. The French academicians had measured only an arc of 57°, but M. Svandal extended the operation to 1° 37′. By the definitive result of this measure,§ a degree of the meridian is found to be 57°, 209 toises, or 60,970 fathoms, in latitude 66° 20′, or 196 toises, shorter than that which was measured in 1737. This, compared with the French degree, gives for the depression \(\gamma_{TT}\), and with that of Peru \(\gamma_{TT}\). We may also, by different hypotheses, combine this measure with a depression of \(\gamma_{TT}\). Thus there is no essential difference between this result and that which was adopted by the French mathematicians.||

Observations made on the planets, which are several millions of leagues distant from us, have concurred to establish our ideas respecting the oblate figure of the terrestrial spheroid. The alteration of the spherical figure, resulting from the rotation of a celestial body on its own axis, appears also in the planet Jupiter, where it is so sensible that the difference of both diameters of the disc may be discerned by means of a telescope. This difference is almost \(10′\); and when we compare the exact measure of this depression, the dimensions of Jupiter, and the time of his rotation with those of the earth,‡‡ we find for this latter planet a flatness proportional to \(\gamma_{TT}\); which still coincides with the grand French measure.

* Notice of the operations carried on in Spain. Mercury, Jan. 7, 1810.
† Laplace, Système du Monde, p. 62.
‡ Laplace, Système du Monde, p. 218.
‖ Since the publication of this work, the King of Denmark, full of zeal for the progress of the Sciences, has ordered an arc of the meridian to be measured which passes through Jutland, Fionia, Holstein, and Lauenbourg, and which contains 4 degrees of latitude. This measurement it entrusted to one of the ablest modern astronomers, M. Schumacher of Copenhagen. At the same time, the celebrated M. Gauss of Gottingen, is directed to measure an arc of the meridian of 3 degrees in Hanover. This operation will likely be connected with that of the Dunes.

It is known that, since the publication of this volume, in 1812, (second edition,) the English and French mathematicians have connected together the grand and magnificent geodetical operations of France and England.

By these measures, the curve of the earth is exactly determined from the Shetland islands to the island of Fromentera. See the Notice published by M. Biot — Author's note.

It must not be dissembled, that this accord, which apparently ought to have been universal, was affected by some new doubts suggested by two German mathematicians, by reason of the geodesical operations of the English. The two measurements in the East Indies, the one by Burrow, under the tropic, the other by Lambilson at 12° north latitude, have furnished results which combine tolerably well with those of the French measures, though they are still more favourable to Newton's theory.* But the measure of 8 degrees by Major Mudge† in England, gives, according to the German mathematicians, considered by itself, a depression under the equator of \(\frac{1}{4} \) th. This singular result seems to prove decidedly, that the spheroidal figure of the earth is subject to irregularities which can only be determined by multiplied measurements.‡

Geographical conclusions. We may therefore consider the quantity of the earth's depression as sufficiently determined for geographical purposes. There are few geographers indeed, who, in the construction of maps on a small scale, have paid attention to the depression or ellipticity of the earth. Maupertuis, Murdoch, and others, have indeed calculated tables, which give the increase of the degrees of longitude on an elliptic spheroid.§ The geographer Bonne demonstrated to Rizzi Zannoni,|| that in his large map of Europe, he ought to have made allowance for the effect of ellipticity, which was then presumed to be \(\frac{1}{17} \). But the measures and calculations have now changed one of the elements of this question. The depression of the earth, reduced to the \(\frac{1}{17} \) th of the equatorial diameter, not producing between this diameter and that which passes through the poles more than a difference of about 7 leagues, would give for a spheroid, the major axis of which would be 3 feet, a difference of only 1\(\frac{1}{2} \) line, or about \(\frac{1}{4} \) of an inch, a quantity which it would be extremely difficult to observe with precision in the construction of globes. They may therefore be made perfectly spherical. In topography and special hydrography the effect of ellipticity is perceptible not only in the degrees of latitude, but also in those of longitude; it is the duty of a careful geographer to attend to it, by following the methods which several late works give for expressing those differences.¶ The tables annexed to this volume give all the necessary details for ascertaining the absolute value of each degree of longitude and latitude, as also for the comparison of the new metrical system with the ancient measures. However, we cannot terminate this short historical account of the investigations relative to the figure of the globe, without placing before the reader the principal results of the great French measure.

Basis of the New Metrolody.

<table>
<thead>
<tr>
<th>In Metres.</th>
<th>In French Feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The fourth part of the meridian</td>
<td>10,000,000</td>
</tr>
<tr>
<td>The Decimal degree</td>
<td>100,000</td>
</tr>
<tr>
<td>Myriametre</td>
<td>10,000</td>
</tr>
<tr>
<td>** Kilometre</td>
<td>1,000</td>
</tr>
<tr>
<td>Hectometre</td>
<td>100</td>
</tr>
<tr>
<td>Decametre</td>
<td>10</td>
</tr>
<tr>
<td>Metre</td>
<td>1</td>
</tr>
</tbody>
</table>

New Astronomical Divisions.

The fourth of the meridian	100°
Degree	100'
Minute or prime	100"
Second	100"

* Zach. Corresp. xii. 488—493.
‡ Laplace, Mecan. Célèste, ii. 144. Since the publication of this work, few memoirs have appeared on this subject, at least to our knowledge; but the opinion, supported by so many physical probabilities, that the earth is composed of two unequal hemispheres, seems to have been rejected by Laplace. Note of the Author.—Much light will be thrown on this subject by the labours of Mudge, Colby, Kater, Macculloh, &c. who have been employed lately in extending the British arc of the meridian to Shetland, combining it with the French arc, and determining the length of the pendulum at different points.
|| Refutation of a work of M. Rizzi Zannoni, entitled, Dissertation on different points of Geography, by M. Bonne, in a rare work, communicated by M. de Lalande to M. de Zach. Corresp. i. 186.
¶ Puissant, Traité de Géodésie, p. 125, et seq. Dubourg, Traité de Nav.
** The name adopted is Kilometre; but it is a barbarism: the proper expression is Kilometre.
Mathematical Geography.

Compared with the ancient Astronomical Measures.

1 Centesimal degree equal to 54°
1 Minute 39' 6"
1 Second 0' 324"

Dimensions of the Globe.

Radius of the equator or semi-major axis of the terrestrial ellipsoid 6,375,599 3,371,226
Radius of the semi-minor axis 6,356,662 3,261,432
Depression at the poles, or excess of the equatorial above the polar radius 19,088 9,794
Radius of the earth supposed to be spherical 6,366,206 3,266,329
Circumference of the ellipsoid under the meridian at Paris 39,999,867 20,522,960
Circumference under the equator 40,059,948 20,533,717

Note. The French metre is 39.371 English inches; the toise, according to General Roy, is 1.0657 English fathoms.

Principal Degrees.

Ancient degree of latitude under the equator 110,614 56,753
Ancient degree of latitude at 45° N. latitude 111,117 57,011
Ancient degree of latitude at the pole 111,612 57,264
New degree of latitude under the equator 97,532 51,078
New degree of latitude at 50° N. (new meas.) 100,006 51,310
New degree of latitude at the pole 100,449 51,538

On a Sphere with a depression of 1/3

New degree of longitude at 0° of latitude 100,000 100,140
Id. at 50° N. latitude (new div.) 70,711 70,992
Id. at 90° latitude 1,571 1,577

The minuteness of those differences by which our terrestrial ellipsoid has been proved to deviate from a perfect globe, strikingly exhibits the accuracy and nicety of the methods employed by astronomers and mathematicians. What delicate instruments must have been used, what rigorous calculations made, in order to determine, within a few toises of the truth, the dimensions of this vast globe, in comparison of which our body is but an atom! Let not this discovery, at least, be attributed to the ancients! If some learned men have pretended to see clearly, in some vague phrases of the ancients, a notion of the polar depression,* there are others who have as clearly discovered the idea of an equatorial depression;† those two opposite opinions, therefore destroy each other. Whether the ancients were acquainted with the depression of the globe.

The notion even of the ellipticity of the terrestrial globe could not arise but from a clear idea of universal gravitation. It was therefore reserved for the genius of modern geometry to draw the human mind into this bold and subtle research.

Book III.

Continuation of the Theory of Geography. Of Terrestrial Globes. Of their Construction and Principal Uses.‡

To fix well in the mind the different parts of knowledge which form the study of geography, it is necessary to have before our eyes an image of the earth and its parts, on a small scale. The most simple of these representations is the artificial terrestrial globe; it is the earth in relief, with its seas, continents, and islands. The mountains, rivers, and principal towns, are also indicated on it. All these points

* Freret, Mem. de l’Acad. des Inscriptions, tom. xviii. p. 112.
† Burnet, Theoria Telluris Sacra, p. 26, 136, 137.
‡ Bion, Usage des Globes, 1718. Schiebel, Instruction sur l’usage des Globes Artificiels, (en Allemand,) 1779 and 1785.
have on the artificial globe their *true position*; they are represented in their totality, and relatively to each other, as they are situate on the earth itself, according to astronomical observations and geodesic measures. A geographical map can only give perspective views of a part of the globe, in which there are always more or less of errors of convention.

We find in the artificial globe the material image of those mathematical circles which serve to give us an idea of the various relations of the earth with the heavenly bodies, and of terrestrial places with each other. Thus, on the surface of the globe, ought to be indicated, the terrestrial equator, the tropics, the polar circles; then, by weaker lines, the other parallels to the equator, from 5 to 5, or from 10 to 10 degrees, according to the size of the globe. We also find the meridians indicated from 5 to 5, or from 10 to 10; they are numbered at their point of intersection with the equator. The parallels to the equator are also numbered at the place where they cut that meridian which has been chosen for the first. The ecliptic is also marked on good globes.

The poles are indicated by two points, on the axis of which the globe turns. These two points are fixed to a circle of metal which surrounds the globe from one pole to the other, so that on turning the globe, every terrestrial spot passes under this circle. It serves, therefore, as a *general meridian*, and is so called. The degrees of latitude, and even, on large globes, the minutes and seconds, are marked on the general meridian.

The bearers, or feet of the whole machine, support a circular band of metal or wood; it cuts the globe, in whatever position it may be placed, into two hemispheres, one superior, the other inferior; and thus represents the rational *horizon*. This artificial horizon has several circles traced on its surface; the inmost marks the number of degrees of the twelve signs of the zodiac; on it are the names of those signs and the days of the month. Another circle is divided into thirty-two parts, which mark the points of the compass.

The quadrant for taking heights is intended as a substitute for the compass in different researches. It is a little plate of copper attached to the general meridian, and divided into 90 degrees, which serves to measure the distance and position of the places without the compass. The *horary circle* is fixed on the north pole; it is divided into 24 hours, and bears a moveable needle, which turns round the axis of the globe. There is also at the foot of the globe a *compass*, which should be fixed in the parallel and meridian of the horizon.

Globe-makers, and especially those of Paris, have been so careless of late years, in the delicate construction of that instrument, that a lover of geography cannot be too scrupulous in examining the quality of a globe before he purchases it. He should ascertain the complete correspondence of the divisions marked on the circles. The degrees of the equator and the ecliptic should be equal with each other, and with those of the quadrant. The same equality should exist between the degrees of the general meridian and the horizon, represented by the interior circle of the circular band of the middle. These divisions are examined, by intercepting with a compass a certain number of degrees, and by trying if, with the same opening of the compass, the same number of degrees can be intercepted everywhere. The globe should be at an equal distance from the general meridian and from the horizon, and far enough from them never to rub against those circles; which only happens in the very worst globes. The globe should be balanced perpendicularly on the two points which represent the poles. This is known, if, when turned, it stops as soon as the hand is taken from it. The equator should, in all positions, cut the meridian, and, if there be one, the horizon, into two equal arches; it ought therefore always, on turning with the globe, to coincide with the points where the quarter of those circles begin. In the parallel sphere, it should always preserve the most exact parallelism with the horizon. In like manner, the tropics and polar circles should everywhere coincide with the latitudes that belong to them.

The network, or assemblage of the lines representing the circles of longitude and

* It commonly goes to 114 degrees, or to the arch equal to the diameter.
latitude, should correspond exactly in all its joinings; which is very seldom the case even in large globes; the surface of the paper pasted on the globe being rarely connected with perfect exactness.

The globe serves, generally speaking, to recapitulate the elements of mathematical geography. In order to show its use, we shall now explain its primitive construction. The most simple and most exact way of constructing a globe is to draw immediately on its surface, by the means we are about to describe, the circles, lines, and points, which it ought to represent.*

Let us suppose that two points diametrically opposite, have been fixed to represent the poles, and that the axis of rotation is to pass through them: taking one of these points for a centre, at an equal distance from each, a circle must be described, which will be the equator; another great-circle will be drawn through the poles to represent the first meridian, which will be divided into 90 degrees, setting out from the equator towards each pole: afterwards, setting out from this meridian, the circumference of the equator must be divided from degree to degree. These two circles being determined, it is easy to mark on the globe a place, the latitude and longitude of which may be learnt from the geographical tables; for it will be sufficient to mark the former on the first meridian, and through the point where it falls, must be described, taking the pole for the centre, the circle parallel to the equator, passing through the proposed spot; then drawing through the point of the equator on which the longitude falls, and through the poles, a semicircle, the meridian will be had, whose junction with the parallel marks the position of the place.

It is thus that the circles of latitude and of longitude are traced on the globe, at the distance of 10 or 5 degrees from each other. With respect to these circles, the following remark may be perhaps a little too elementary for most of our readers.

The circles of latitude are parallel to the equator; they diminish therefore necessarily till the last circle of latitude is identified with the point of the pole itself. The circles of longitude, or the meridians, go from pole to pole, and cut the equator perpendicularly; they are equal, with a very slight difference. The degrees of latitude are counted only on the circles of longitude, and vice versa. The degrees of latitude are, therefore, little arches of \(\frac{1}{360} \) of a circle of longitude, intercepted by two circles of latitude. They would of course be equal without this small difference, which proceeds from the depression, and makes them increase a little towards the poles. The degrees of longitude are little arches of \(\frac{1}{180} \) of a circle of latitude, intercepted by two circles of longitude. Therefore the degrees of longitude go on diminishing in proportion as the circles of longitude come near each other; and at the point where all these circles, till then convergent, cut each other, that is, at the pole there is no more longitude.

The reckoning of the latitudes begins at the equator. This commencement is naturally determined by the circumstances of the earth's motion. It is otherwise with the longitude; for all the meridians being great circles, nature furnishes no motive for choosing one in preference to any other, as a term from which to begin to count, or as first meridian. We need not be surprised, therefore, that geographers have varied much in their choice.

Ptolemy fixed his first meridian at the Fortunate Isles, (now the Canaries,) because it was the most western limit of the countries known in his time; and as their extent from east to west was more considerable than from south to north, the former received the name of longitude, or length, the latter that of latitude, or breadth, which they still bear. This first meridian of the ancients is not known with certainty, as its position depends on the precise meaning of the appellation Fortunate Isles, a point which we shall discuss in the history of geography.

In order to render the manner of expressing longitudes in French geography uniform, Louis XIII. ordered, by an express declaration, that the first meridian should be placed in the Isle of Ferro, the most western of the Canaries. Delisle, one of the first who endeavoured to give precision to geographical determinations, fixed the longitude of Paris 20 degrees east of that meridian. When, by more rigorous ob-

* Varrnicius, General Geography, b. iii. chap. 32, prop. 5.
servations, it was known that the difference of longitude between Paris and the principal town of the Isle of Ferro was 20° 5’ 50”, it was necessary to advance the first meridian 5° 50” to the east of that point, so that it is now a circle of mere convention, which passes through no remarkable point.

The Dutch had fixed their first meridian at the Peak of Teneriffe, a mountain situated in the island of that name, and then esteemed the highest in the world.

Gerard Mercator, a famous geographer of the 16th century, chose the meridian which passes through the island Del Corvo, one of the Azores, because in his time it was the line on which the magnetic needle suffered no variation. It must be confessed, that it is the most natural and the most commodious point of departure with respect to maps of the world.

Geographers have only agreed together in maintaining an abuse, that is, in understanding by the name of the meridian of a place, only the half of the great circle corresponding with the celestial meridian; the other half, which is in the opposite hemisphere, with respect to the poles, is sometimes called the anti-meridian.

According to the custom of geographers, the longitudes begin to be counted from the eastern side of the first meridian, and are reckoned in the same direction over the whole circumference of the equator, till they return to the western side of the meridian. In this way of counting the longitudes may rise to 360°.

Longitudes counted after the custom of navigators. These conventional arrangements have not been adopted by mariners. Astronomical observations having become of general use in navigation, and the tables which indicate the moment of the celestial phenomena, and the position of the heavenly bodies at different epochs, being always calculated for the meridian of the principal observatory of each nation, navigators found it more convenient to refer to this meridian the points of the routes they followed. Thus French mariners count from the meridian of the observatory of Paris; the English from Greenwich; the Spaniards from Cadiz. Let us observe, moreover, that mariners estimate the longitude from the difference of the time which elapses between the passage of the meridians through the same heavenly body, or from the difference of hours counted at the same moment in two different places. If one has advanced towards the east, one counts more than under the meridian from which one set out; the contrary happens when one advances towards the west. It is necessary, therefore, when we convert a difference of time into a difference of longitude, to indicate if it be oriental or occidental. In this way of counting, the longitude is marked by the side nearest the first meridian, so that the longitudes only embrace the semi-circumference, or do not rise beyond 180°: and the globe is divided into two hemispheres with respect to the first meridian; in the hemisphere situated to the west, the longitudes have the denomination of occidental; and in the other oriental.

All marine charts are established according to this system of numeration.

These diversities in the manner of estimating the longitude, necessitate calculations of reduction. We are obliged, before using a map, to examine what is the meridian adopted by the geographer, “which often embarrasses even learned persons.”

When we have to do with longitudes reckoned according to the method of geographers, that is, by making the entire tour of the globe by the east, we must take the difference of longitude of the two meridians to be compared; and if the meridian from which we wish to set out is to the west of the other, this difference must be added to all the longitudes counted from the other; in the contrary case it must be retrenched.

For example, Moscow is 35° 12’ 45” from the meridian of Paris, how many is it from that of Greenwich? Add the difference, which is 2° 20’ 15”, and you will have the result 37° 33’. Here is another: Paris is 20° from the meridian of the Isle of Ferro, how many is it from the Dutch meridian of Teneriffe? This meridian being a degree more to the east than the other, retrench 1° from the given longitude, and you will have 19°. In this calculation there happen two particular cases. The re-

* D’Alembert, dans l’Encyclopédie.
sult by addition may surpass 360°; for example, Madrid is 35° 57' 40'' from Paris, counting in the manner of geographers, how many from the Isle of Ferro? You find, on adding the difference of the meridians, 37° 57' 40''; but as this sum exceeds the value of the whole circle, you see you have passed a second time through the meridian of the Isle of Ferro. You must, therefore, retrench 360°, and you have 13° 57' 40''. In the same way it sometimes happens, that the given longitude is less than the difference of the meridians to be retrenched from it; in this case 360° are added to the longitude, the difference is then retrenched, and the sum required is found. For example, the Isle of Gomera is 32° from the Isle of Ferro, you ask how much it is from the meridian of Teneriffe? Add 360° to 32°, retrench the difference, and you have 35° 32°, which is the longitude required. The reason of these operations is perceived on repeating them on the globe.

The reduction of longitudes, reckoned according to the practice of navigators, is much more in use. In setting out from the same meridian, all the oriental marine longitudes, as far as 180°, remain the same as in the manner of reckoning adopted by geographers. With respect to the occidental marine longitudes, it is sufficient to deduct them from 360°, to bring them to the numeration of geographers. Here is an example: Venus's Point, in the island of Ottoman, has been determined by navigators to be 151° 50' 30'' of western longitude from the meridian of Paris. If from 360° we take off 151° 50' 30'', the difference, which is 208° 9' 30'', will be the longitude according to geographers. It is evident that, by an inverse operation, we may transform into nautical longitude the geographical longitudes above 180°, by deducting them from 360°.

If we set off from two different meridians, we must observe on what side the meridian to which we wish to refer the longitudes is placed with respect to the other. We must retrench their difference from all the longitudes of the same denomination as that side, and we must add to all those of a contrary denomination. An example will make this rule more easy. The meridian of the observatory of Paris being 2° 20' 1' 15'' to the east of that of Greenwich, all oriental longitudes with respect to Greenwich must be diminished by that quantity to be referred to the meridian of Paris, and the occidental longitudes must be augmented by that quantity. It is thus that the longitude of the Cape of Good Hope being 18° 23' 15'' to the east of the meridian of Greenwich, becomes 16° 3' to the east of that of Paris; on the contrary, Cape Horn, placed by the English at 67° 21' 15'' west of Greenwich, is 69° 41' 30'' west of Paris.

In these reductions, as those of the geographical longitudes, it may happen that the points to be reduced fall between two meridians, or between their opposite meridians. The place which is oriental with respect to one, then becomes occidental with respect to the other. In the first case, we can no longer retrench from the longitude to reduce the difference of the two proposed meridians; we must do the contrary, and change the denomination. In the second case, the number which results from the addition of the difference of the meridians, to the longitude wanted from the meridian we wish to change, surpasses 180°, because it is beyond the meridian opposed to that to which the longitudes are referred; it must, therefore, be retrenched from 360°, or from the entire circumference, to make it go off from a side contrary to the same meridian; the longitude consequently changes its denomination again.

Dover, for example, is 1° 18' 30'' to the east of Greenwich. Subtracting this longitude from the difference of the meridians 2° 20' 15'', there will remain 1° 3' 45'', which is the occidental longitude of Dover with respect to the meridian of Paris. Here is an example of the second case: At Turtle Isle, situated in the Pacific Ocean, the English count 177° 57' west longitude. Adding to this 2° 20', we find 180° 17'. The place is, therefore, 17' beyond the meridian opposed to that of Paris; and by retrenching 180° 17' from 360°, we have 179° 43' of east longitude with respect to the meridian of Paris.

When the principal circles of longitude have been traced on the globe, and places known by observations have been marked on it, which are generally the capitals of states, the most frequented ports, and most salient promontories, it only remains to fill up the intermediate spaces, by drawing from the best geographical maps the

Vol. I.—E
BOOK THIRD.

sinuosities of shores, the course of rivers, and the chains of mountains. But as all
the materials of these designs must be taken from maps, of which we shall explain
the construction in the following Books, it would be premature to treat here more at
length of the rules to be observed in choosing the best, and in transferring them to
the globe with the greatest exactness. We shall only remark, that the
method of delineating geographical outlines immediately on a ball of cop-
ner, wood, or any other matter, is only employed by lovers of the science who wish
to join instruction with amusement, or by geographers who are particularly employed
by some great nobleman. The globe-makers use a method less tedious, less expen-
sive, which allows them to multiply copies. They have a general map of the world
drawn and engraved, and distributed into slips, that is, spherical segments, with which
they cover the ball destined for a terrestrial globe. The way of tracing these slips
will be indicated in its place.

Uses of the
globe.
Distance of
places.
The first use that is made of the globe, is to determine the distance
from one place to another. The shortest distance of two points on the
sphere, is measured by the arc of the great circle which joins them; and
as all great circles are equal, the degrees of any one of them contain the same num-
er of itinerary measures as those of the meridian. We take, therefore, with a com-
pass, the opening of the arc comprised between the points proposed, and carry it to
the meridian or the equator, which are graduated.

If, for example, the arc comprised between two places marked on the globe, and
brought to the meridian, contain 10° 45', we shall have the shortest distance between
these points in itinerary measures, by converting the degrees and minutes into mar-
ine leagues of 20 to a degree. We first obtain 200 leagues for the 10°, and each
minute being equivalent to a third of a league, or a nautical mile, the 45' will give 15
leagues: thus the total result will be 215 marine leagues.

In delicate operations, however, it is better to use calculation, which gives a more
precise result. Let us consider, for example, the spherical triangle API, Fig. 6,
formed by the meridians AP and PL of the places A and L, whose distance we re-
quire, and by the arc of the great circle AL, which joins them. In this triangle, we
know the sides AP and PL, which are the distances of the points A and L from the
pole P, or the complement of their latitudes, and the angle APL, which is measured
by their difference of longitude; the rules of spherical trigonometry will give us, in
degrees and parts of degrees, the side AL, which we can convert into itinerary mea-
sures. In the case where the places A and L are in different hemispheres, one of
their distances from the pole will be greater by 90° than the latitude of the place
itself.*

If the places of which we wish to know the distance have the same meridian, it
is only necessary to take the difference of their latitudes, and to convert it into itine-
rary measures. A difference of some minutes in latitude has no sensible effect on

* Some of our readers will be pleased, perhaps, with an example of this sort of calculation.
The distance from Paris to Philadelphia is required. Longitude of Philadelphia, 77° 36' 0" W.
Long. of Paris, 0° 0' 0". Difference of Long. A = 77° 36' 0". Lat. N. of Paris, 48° 50' 15"; therefore the complement B = 41° 9' 45". Lat. N. of Philadelphia, 39° 56' 37"; there-
fore the complement C = 50° 3' 30". Multiply the tangent B by the cosine A, you will have a
tangent which we shall call x. It must be subtracted from C if A is below 90°, and added if
A is above. There results the quantity we shall call y. Now, as the cosine x is to the cosine
B, so the cosine y is to the cosine of the distance required D. The calculation is made by means
of the Tables of Sines.

\[\text{Log. tang. } B = 9.94165 \]
\[\text{Log. cos. } A = 9.33190 \]
\[\text{Log. tang. } x = 9.27365 \]
Therefore \(x = 10° 37' 48" \)
\(C = 30° 3' 30" \)
\(\therefore y = 39° 29' 15" \)

\[\text{Log. cos. } x = 9.99249 \]
\[\text{Log. cos. } B = 9.87670 \]
\[\text{Log. cos. } y = 9.88790 \]
\[\text{Log. cos. } D = 9.77211 \]
therefore \(D = 55° 42' 50" \)
\(= 1074 \text{ leagues, } 20 \text{ to a degree}. \)

See the trigonometry, and the general formulas in Puissant, Traité de Géodesie, art. 89. Comp.
art. 30.
the result; thus, we should hardly mistake more than a league in measuring the distance from Paris to Algiers on the meridian of Paris, though it is 41' more to the west than that of Algiers.

It would be a great error to take the difference of longitude in degrees of two places, situated on the same parallel, for the measure of their distance; this can only be done when the places are situated on the equator, which is a great circle; but its parallels being small circles, the radius of which diminishes as we approach the poles, it follows from the principle stated above, that the absolute length of their arc does not give the true measure of the shortest distance from the extremities of those arcs; this distance can only be measured by a great circle passing through the two extreme points. For as the radius of the parallel is shorter than that of the great circle, the arc of the parallel must necessarily have a greater curvature than that of the great circle comprised between the same points, and is consequently longer. Here is a striking example: Petersburgh is almost under the same latitude as the isle of Kodiak, in Russian America; the difference of longitude is about 180°, equivalent under this parallel to 1800 marine leagues; but the shortest distance between these two places is, counting on a meridian that is almost common to them, 60 degrees of latitude, equivalent to 1200 leagues. It is true that, to take advantage of this, it would be necessary to cross the eternal ice of the pole. Thus, in geography as in politics, the straight road is not always the most advantageous.

It is necessary, therefore, in many cases, to measure the distances on the parallels, and consequently, to know exactly the value of the degrees of longitude marked on the parallel circles. The globe renders the diminution of these degrees towards the poles sensible to the eye; our tables indicate it in detail: * But we should know the mathematical principles of it. The length of the degrees marked on the parallels is proportionate to the radii of the circles; but the radii of the equator, and of its parallels, are perpendiculars let fall from the different points of the meridian on the diameter of each of these circles, as in Fig. 6. the lines EC and HK. Consequently, if we take the radius EC for the length of the degree of the equator, and if we divide it into twenty parts, representing marine leagues, the number of these parts which the radius HK of the parallel LM may contain, will indicate the value of the degree of this parallel in leagues. Hence it results, that, to determine the length of the degrees on each parallel, we have only to describe on a line EC, which represents the length of the degree of the meridian, or of the equator, a quarter of the circle EP, divide it into degrees, and let perpendiculars fall from each point of division on the radius CP; these lines will mark the respective lengths of the degree of the parallel for each latitude.

As the line HK is the sine of the arc PH, and the cosine of the arc EH, one of which indicates the distance from the parallel HM to the pole, and the other the latitude of that parallel, it is evident that, taking for unity the degree of the equator, that of any parallel whatever will be the cosine of the latitude given by the trigonometrical tables. For example, the latitude of Paris is 48° 50', and the cosine of this angle 0.658 of the radius; multiplying this number by 20 marine leagues, we have for the value of the degree of the parallel 13 leagues. In the latitude of Petersburgh, or 60°, the degree of longitude is reduced to 10 leagues, because the cosine of 60° is the half of the radius.

We have mentioned what is to be understood by north and south, east and west; it is by studying the globe attentively that we come to understand perfectly the value of those terms. Two terrestrial points, situated under the same meridian, are directly north and south of each other, and all the intermediate points, that is to say, all the points of the line of distance, are equally north and south of each other, and all reciprocally on the same point of the compass. In like manner, any two points whatever, taken under the terrestrial equator, are directly east and west of each other, and all the intermediate points are equally so, and are reciprocally on the same point of the compass.

If we take two places which are neither under the same meridian, nor under the equa-

* See the Tables annexed to this volume.
tor, whatever be otherwise their relative position, none of the intermediate places will be, with respect to the other places, on the same point of the compass. For the arc of a great circle which measures the distances, is an arc of a vertical circle which passes by the zenith of the places in question; but every vertical circle which is itself neither a meridian, nor perpendicular to the terrestrial meridian, (like the equator,) will cut all the intermediate meridians under angles unequal among each other. But it is these angles of position which determine the point of the compass on which a place is relatively to another. Therefore, as all the intermediate places between the two places in question will offer angles of position unequal in degrees, each of them will be on another point of the following place from what the preceding place was from it. Thus, in following the shortest route, between two places situated out of the equator, and under different meridians, the point of the compass would change at every step. This is demonstrated by Fig. 17, where PEp represents a meridian, EGI the equator, HLQ a parallel, and HKI the great circle perpendicular to the meridian in H. We perceive, also, that all the great circles perpendicular to the same meridian, meet in two opposite points I and i, which are the poles of that meridian. These great circles must, therefore, continually approach each other; and it is only in a very small space, on each side of the meridian PEp, that the circles IEI and IHi can be considered as parallel with each other; and hence, too, it can only be in a small extent that the lines east and west, or the perpendiculars to the meridian, can be considered as parallel.*

As the great circle IHK, perpendicular to the meridian p'EP, cuts the other meridians under angles different for each, while the parallel HLQ meets them all at a right angle, it is evident that, in going from the point H to the point L on the parallel, we turn off every moment from the direction we at first followed, to place ourselves at a right angle with the different meridians we cut, and which all unite at the pole P. We cannot, therefore, trace on the terrestrial surface a parallel to the equator, or advance directly east or west, but by means of a compass, or still more exactly, by determining the meridian from place to place, and keeping one's self always in the same latitude.

This difference between the points east and west of the globe, and those of each place in particular, has an influence on navigation and on maritime charts. The navigator endeavours, as much as possible, to sail on the same point of the compass, at least for a certain time, otherwise he cannot know where he directs his course. Moreover, he must first direct his course so as to reach the spot he wishes to go to; and secondly, he should go by the shortest way possible. If a vessel sails always east and west under the equator, its route will be an arch of the equator, and consequently the shortest road between two places situated under the equator. If a vessel be directed constantly north or south, it will describe an arc of the meridian, and at the same time the shortest road between the place of departure and that of arrival. If a vessel, out of the equator, sails constantly east or west, it will describe a parallel to the equator. Therefore, if the place of its destination is to the east or west of that of departure, and under the same parallel, the vessel would arrive there indeed, by sailing always on the same point of the compass; but sometimes by a very tedious course.

If, on the contrary, a vessel is directed constantly towards the same point of the compass, that point not being one of the four cardinal points, it will describe on the globe a curve, which does not return into itself, but which is indefinitely prolonged in a spiral manner, always approaching the pole, without ever reaching it. The loxodromic line may be also defined to be, a species of logarithmic spiral described on the surface of the sphere, having the meridians for its radius.

This line was discovered by Nonnius, a Portuguese mathematician, who was asked by a navigator what was the cause of a phenomenon, which undoubtedly would astonish those who had not read what we have just mentioned. It is asked, why going constantly on the point east to reach a place really situated to the east of another, (by the shortest route,) one never gets there, but, on the contrary, always gets the farther from

* See afterwards Projection of the Maps of Cassini.
The reason is, that by always following the same point of the compass out of the equator, and changing the meridian, we do not describe the arc of the great circle which measures the distance of two places, but a spiral or loxodromic curve, which will never pass by the spot required.

It is necessary to go on the loxodromic curve which passes by both places, or on a line which cuts the intermediate meridians under an angle equal to the angle of inclination of the loxodromic curve which passes by the two places.*

There are two points on the globe where there is neither east nor west; these are the two poles. The globe may also be considered with respect to the extent of its surface. We have seen, that it is 16,501,200 square marine leagues, supposing the earth a sphere. If we wish to know the extent of any zone whatever contained between parallel circles, geometry teaches us, that the surface of a spherical zone is to the area of the sphere as the distance of the parallels which bound it is to the diameter; and this distance answers on the diameter to the difference of the sines of the latitudes of each parallel, as is seen on Fig. 6, by the line CK, difference between CP and KP. If, for example, we wish to estimate the zone comprised between the 48th and 49th parallels, and in which are Paris and its environs, we say,

\[
\begin{align*}
\text{The sine of } 49^\circ & \text{ being } 0.755 \\
\text{That of } 48^\circ & \text{ being } 0.743 \\
\text{The difference } & \text{ is } 0.012
\end{align*}
\]

Reduced to half 0,006, shows us that this zone contains the $\frac{1}{320}$ or $\frac{1}{16}$ of the total area of the globe; which being estimated at 16,501,200 square leagues, we conclude that the zone contains 99,007 square leagues.

With this datum, we shall easily calculate the extent of each space comprised between two parallels and two given meridians; it is necessarily in the same relation to the entire zone, as the difference of longitude of the two meridians is to the entire circumference: we find consequently the value of the quadrilateral bounded by two meridians a degree east, and by the 48th and 49th parallels, by taking the 360th part of the number 99,007, which indicates the total area of the zone. This quadrilateral is about 275 square leagues.

As all maps are divided by the meridians and parallels into quadrilaterals, which have commonly 1, 5, or 10 degrees, it is plain that a similar calculation for each zone and each quadrilateral, comprising a degree of longitude and a degree of latitude, would give a series of results, by the help of which one might estimate almost directly, either on the globe or maps, the extent of each terrestrial region.

We should only have to examine how many quadrilaterals, of an equal value in degrees, were inscribed or circumscribed in the figure of the country we wish to measure, take the value in square leagues from the table, and then estimate that of the strips which might happen to fall out of the limits of these quadrilaterals. By these means, borrowed from spherical trigonometry, we should avoid the errors which almost necessarily happen when we wish to make use of the scale of a common map for measuring, according to the rules of plane trigonometry, the square surface of the different regions of the earth. Maps which represent a spherical surface on a plane surface, inevitably give the spaces too large or too small either in the centre or the circumference. Their scales or modules of measure cannot be applied uniformly to their surface.

A German geometer† has calculated from these principles, *tables of the square surface of the zones*, of which we shall insert a translation at the end of this work. We shall now show, by an example, the use of these calculations.

The state of Pennsylvania is limited to the north by the parallel of 42°, and to the south by the parallel of $39^\circ 43' 25''$; it extends, in the direction of the longitudes,

from 2° east (of Washington,) to 356° 37' 30'' west. There is to the north only a small triangle towards the lake Erie, and a strip comprised in the bend of the Delaware, which extend beyond this figure; but as the surfaces to be added are very nearly balanced by the corners of the neighbouring states which enter into the quadrilateral, it may be considered as equal to the total surface of Pennsylvania. Now the four zones from 40° to 40° 30', from thence to 41° to 41° 30', and to 42°, should, according to the tables, have a surface of 217,345,077 square leagues, 20 to a degree. But the zone between 39° 48' 25'', and 40°, is only 16° 35'' in breadth. We must multiply, therefore, the surface of the entire zone of half a degree, which, according to the tables, is 55312 square leagues, by \(\frac{16° 35''}{30} = \frac{995''}{1800''}\). Which gives for the surface of this small zone 30599.11 square leagues; a sum which, added to that of the four zones of half degrees, forms a total of 24794.88 square leagues for the surface of the whole terrestrial zone comprised between the latitudes 39° 43' 25'' and 40°. Now, Pennsylvania only occupying on this zone 5° 21' 30'' of longitude, the area of the entire zone is to that of Pennsylvania as 360° to 5° 21' 30'', or as 1,296,000 to 19,290; which gives for the surface of Pennsylvania 3690.48 square leagues, of 20 to a degree. It is evident, that this calculation might be abridged, if we knew, by the tables, what is the surface of a quadrilateral comprised between two meridians and two parallels, distant each by one degree, or half a degree: these quadrilaterals being counted, a simple multiplication would give the result required, allowance being made for the value of the incomplete quadrilaterals, which is easily estimated.

Remark on these calculations. Geometers will perceive, that these variations are rigorously exact, only on the supposition of the earth being spherical. The inequality of the degrees, which results from the ellipticity of the earth, occasions a slight difference between the area of a zone taken on a spheroid, and another taken on a sphere. But this difference, which depends on the quantity of the total depression of the globe, is very insensible, and amounts on a zone of 100,000 square leagues, under a mean latitude, only to 2 or 300 square leagues at most. Moreover, the geometers who have proposed algebraic formulæ to calculate the surface of the zones of the ellipsoid, and who have promised to publish tables calculated according to those formulæ, are of opinion that the irregularities of the terrestrial spheroid are not yet sufficiently known to be determined exactly.

Divers questions resolved by the globe. We have considered the globe under its principal geometrical relations, and it remains for us, according to the ancient custom of geographers, to show how various elementary questions are resolved by means of the artificial globe. But our readers are aware, that exact solutions of these problems can only be found by calculation; and besides, the questions commonly solved by the globe, are mostly either too vague or too foreign to geography to deserve any mention in this work. We shall confine ourselves to some short indications.

To find geographical positions. To find on the artificial globe the latitude of any terrestrial place, the globe must be made to turn round its immovable axis till the fixed meridian be brought on that place; and the degree marked on the meridian at that point will give the latitude of the place. The longitude of the same place will then be found on the equator, at the point where this circle passes under the meridian. If we wish, on the contrary, to determine the position of a place, the longitude and latitude of which are known, we have only to make the point of the equator, which is at the given longitude, pass under the meridian, and, taking on the same latitude, we shall have the geographical position of the place.

The dial, which is commonly adapted to the north pole of the globe, serves to show the hour in one part of the earth when it is noon in another; for, by placing the latter under the meridian, after having fixed at noon the needle of the dial, and making the globe turn till the meridian is on the place, the hour of which is required, the needle will indicate on the dial the hour wanted: it is *afternoon* if the globe has been turned to the east, and *forenoon* if it has been turned to the west.

If we wish to know the length of the longest day for all the points of a hemisphere, the northern, for example, we must place the meridian so that the border of the arctic polar circle touches the horizon of the globe; this horizon will then be confounded with the circle of illumination. If we bring into the meridian any point whatever of the proposed hemisphere, and then fix the needle of the polar dial at twelve, and make the globe turn towards the east till the point marked enters the horizon, the needle will stop at the hour at which this point passes from the enlightened to the obscure part. The number of hours gone over on the dial will be half of the duration of the day required. By placing the pole nearer the horizon, we shall give this circle the position which the circle of illumination takes in the times which precede and follow the solstices, and we shall find, as above, the length of the day in each country. In this position of the globe, all the points which are at the same time on the western border of the horizon, are those which see the sun rise at the same moment that those on the eastern border see it set.

The directions of the winds with respect to the meridian line, and the names assigned to them, are generally marked on the horizon. By this means we may ascertain the position of a place with respect to the sun at the moment when it appears to rise or set, by observing on what point of the horizon the given place passes from the obscure to the enlightened part, or from this into the other. The globe, thus turned, affords the means of representing physically all the phenomena of the annual motion of the earth. It is sufficient to put in a dark room a globe with a taper, which answers perpendicularly to the centre of the horizon, and at a pretty considerable distance relatively to the diameter of the globe; we shall then obtain the same phenomena as the sun produces during the rotation of the earth, according to the different positions which the axis of the earth takes with respect to that luminary.*

The distance of two places is measured by placing one of those points on the meridian, then bringing above it the fixture of the circle of heights, and making this arc of a circle turn round its fixture, till it passes by the other point proposed. The number of degrees and parts of degrees marked at this point being reduced into itinerary measures, will give the distance required.

If we wish to know on what line one of these places is situated with respect to the meridian of the other, we must first place the globe so that the second point may answer to the centre of the horizon, that is to say, we must rectify the globe for that point. This is done by taking its latitude, and making the meridian move in its encastrement with the horizon, till the elevation of the nearest pole is equal to this latitude. The horizon is then, with respect to the globe, in the position which the rational horizon of the place proposed, occupies on the earth. The globe being thus rectified, the fixture of the circle of heights is brought back on the place in question, and is afterwards made to pass by the first point. The number of degrees and parts of degrees comprised on the horizon, are then counted from the circle of heights to the meridian, either on the north or south side, and we have the measure of the angle formed with the meridian by the arc of the great circle which joins, by the shortest way, the two points proposed.

The problem of finding the duration of the longest day for any place, may also be resolved by substituting the rational horizon of the place for the circle of illumination. For this purpose the globe must be rectified for the place in question, and be placed in the meridian, the needle of the polar dial must be placed at XII, and then the degree on which the declination of the sun at the proposed moment falls, being marked, the globe must be turned till the point which corresponded to that degree of the meridian is in the horizon. The number of hours which the needle has passed over the dial, will be the number of those which elapse between the passage of the sun to the meridian, and its rising and setting. It is plain that the point taken under the meridian, at the same distance from the equator as the sun, goes over on the globe the same route as that luminary. The same process would make known the time that would elapse, in any place what-

* Kiel, Institut, Astron. p. 89.
ever, between the passage to the meridian, and the rising or setting of a heavenly body, whose declination is given; only the point that answers to this declination must be marked on the meridian. To determine the duration of twilight, we must trace, by means of the circle of heights, 18° below the horizon, a circle parallel to it, and determine the instant when the point taken on the globe to represent the sun, reaches that circle.

All these problems would be more easily explained if our globes were constructed after the new method proposed in part by G. Adams, but executed and perfected by Covens.† Our readers will be able to judge of it from Fig. 18, of which we will give a short explanation. The great circular support ABC, which in common globes represents the horizon, here represents the ecliptic. On this broad band are two divisions; consecrated, one to the motions of the sun, the other to those of the moon. In the first we observe a subdivision indicating the 365 days of the common year, and another for leap year. A small artificial sun moves at will on the ecliptic. The exterior division of the ecliptic shows the longitude and latitude of the moon for each day of her age. The great brass circle PNM, perpendicular to the ecliptic, is a meridian circle, and especially the cohere of the solstices. The axis of the terrestrial globe is fixed in this circle at the points FK, and inclined on the ecliptic under an angle of 66° 32'. In the poles of the ecliptic at the points L and G, rise two pins which bear a circle of celestial latitude.

To this moveable circle are attached two stars, also moveable, and which can be placed under any celestial latitude or longitude we please. The semicircle FOP is the half of a circle of declination. CBD is the celestial equator, which forms with the ecliptic an angle of 23° 26'. These are the celestial circles which do not turn with the globe, and which represent, as it were, an abridgment of the armillary sphere. On the globe itself, is a moveable semi-meridian RTQ. It is divided into degrees, counted on one side from the pole to the equator, and on the other in the inverse order. A great circle, VSW, is so fixed as constantly to preserve a perpendicular position on the meridian RTQ, at the same time that it may be made to coincide therewith; it serves to represent the rational horizon of any place whatever. Almost on the globe itself, in the plane of the equator, is a horary circle XYZ, attached to the meridian. The moveable sun performs the functions of the needles in the common globes.

It is easy to conceive the advantages of this new construction. In the first place, it gives a much clearer idea of the horizon, as being a circle independent of the motion of the earth. To rectify the globe, or to place it at the height of the pole of a place, it is sufficient to bring the proposed place under the meridian RTQ, and then to push the horizon VSW to a distance of 90 degrees. On this globe the celestial circles are better distinguished from the terrestrial; the annual motion of the sun is better represented; in short, students will derive, from the study of such a globe, more precise ideas of the relations of our planet with the heavenly bodies which surround it.

We might here indulge in an historical digression on the successive improvements in the construction of globes, from that of Rogerker, immortalized by the commentary of Edrius, down to the time of Blaeuw and Coronelli, who first made globes of elegant forms and considerable dimensions. We might investigate the origin of these instruments which were known to the ancients; inquire whether Atlas was the inventor of them, and whether the two famous capitals of the temple of Solomon† were a pair of globes;—whether Albert Durer, or Henry Glarean, first taught the art of drawing and engraving spherical segments, and of pasting them on a ball.§ We might show that the means of multiplying globes by en-

* G. Adams, Treatise describing the construction and use of new Celestial and Terrestrial Globes, Lond. 1766.
graving must have been generally known in 1530, since the cosmography of Gemma Phrysius was accompanied by a similar instrument, as our modern books are with an atlas;*—and finally, we might be allowed, perhaps to describe the most famous terrestrial globes, such as that of Coronelli, framed at the expense of the Cardinal d’Estrees, and placed first at Marly, then in the king’s library at Paris;† that of Gottorp, composed by Olearius between 1654 and 1664, and which Peter the Great brought in a frigate, to adorn his new capital; that of Cambridge, which is 18 feet in diameter, being six feet more than any of the preceding; and many others, celebrated for their size or magnificence. But these historical researches would lead us too much from our subject. We shall only remark, that the copper globe placed in the library of the Institute, though incomplete with respect to modern discoveries, leaves all other great globes very far behind in the beauty of its execution. Bonaparte had one made, now in the Thuilleries, which does great honour to MM. Poisson and Mentelle.

Among the globes that come into the market, we distinguish those of Lapic and Poisson at Paris, made of a homogeneous mass of papier mâché. Those of Sotzmann, published by Frantz at Nuremberg, are also esteemed, as well as those of Cary and Jones of London.

Besides armillary spheres and artificial globes, there are two other instruments of which the use may be recommended to young persons. One is the planispheres of Fortin, which represents the true planetary system in a new and more perfect manner; one can even perceive in it the ellipticity of the orbit of the earth. The other is the geocyclic machine of Loyssel, calculated to demonstrate the motion of the earth. The use of it is explained in Mentelle’s Elementary Cosmography. A taste for study should be excited in youth by this sort of scientific sports; but to expect a detailed description of them here, would be to appreciate but imperfectly the object of our work.

BOOK IV.

Large globes are costly and inconvenient instruments; small ones do not exhibit sufficient details. It became necessary, therefore, to have recourse to pictures, which, on a plane surface, might give a representation of the globe and its parts. These representations embrace either the whole earth or a part of the world, or a single country. In the first case they are called maps of the world, and when they have a circular form, planispheres; those of the second class are called general maps; the others are special maps. Among the special maps, some represent a province on a large scale, with all its remarkable places; these are choro-graphic maps. If the designer has entered into all the details of the nature of the ground, or has even traced out insulated habitations, and the direction of roads and rivers, they are topographical maps. It is plain that these sorts of maps must necessarily embrace a small district, and approach insensibly to geometric plans. Custom sometimes confounds these denominations. Geographical maps, properly so called, are also distinguished from those that are appropriated to a particular use; such are hydrographic charts, destined for mariners, mineralogical maps, and others.†

† De la Hire, Descript. les Globes de Marly, 1703.

Vol. I.—F
The figure of the earth prevents the possibility of giving a general picture, in which the distances of places, and the relative extent of regions, might be preserved in their mutual relations. There are curved surfaces, which can be extended on a plane without rent or duplication, and which for this reason are called developable surfaces; such are those of cones and cylinders; but others, like those of the sphere and spheroids, cannot be so extended. The earth being a spheroid, its surface cannot coincide rigorously with a plane; and thence results the impossibility of marking on a map at the same time, and in their natural relations, the extent of countries, the distances of places, and the similitude of configurations. Geographers are obliged to have recourse to various constructions, to represent, at least in an approximative manner, each of these relations in particular.

Of projections. These constructions have received the name of projections; a name applied in general to designs, the object of which is to indicate on a plane the dimensions of the sphere, and of the bodies it contains. They are of two kinds: some are real perspectives of the globe, or of the parts of its surface, taken from different points of view, and on different planes; the others are only a kind of developments, restrained to approximative laws, and appropriated to the relations which it is wished to preserve in preference. It is of the projections in perspective that we shall now occupy ourselves in this Book. Let us first explain the general theory of projection, as well as it can be done without the help of the higher geometry.

Projection, in the language of perspective, signifies the representation of an object on the perspective plane, or the plane of the picture. For, in every picture, there is supposed between the object to be represented and the point of view, a plane which intercepts all the rays of light directed from each of the visible objects to the point of view. Then we conceive a multitude of points of intersection of those rays with the plane of the picture. The assemblage of these points is the image of all that lies under the view of the spectator. Each point of intersection is the perspective of the point whence emanates the ray of light, which having traversed the perspective plane, terminates in the point of view. In order that the perspective of a plane figure, as of a square, of a circle, &c. be a similar figure, two things are requisite; first, that the point of view should be in the axis of the figure; secondly, that the plane of the picture be perpendicular to that axis. If the plane to be represented is in another more perpendicular to that of the picture, it can only be represented by a straight line. A solid cannot be seen entirely in a single point of view, two at least are necessary. In order that a sphere be divided into two equal surfaces by simple perspective, the point of view must be at an infinite distance. The straight line, drawn from the centre of the globe to the point of view, is the axis of the great circle which separates the visible hemisphere from that which is not. It is called the optical axis.

The projection of the sphere is commonly divided into orthographic and stereographic.

Orthographic projection is that where the surface of the sphere is represented by a plane which cuts it through the middle, the eye being placed vertically at an infinite distance from the two hemispheres. Here are the principal laws of this projection:† 1st. The rays by which the eye sees at an infinite distance are parallel. 2d. A right line perpendicular to the plane of projection, is projected through a single point, which is that where this line cuts the plane of projection. 3d. A right line which is not perpendicular to the plane of projection, but parallel or oblique to it, is projected by a straight line terminated by perpendiculars brought on the plane of its extremities. 4th. The projection of the line is the greatest possible when it is parallel to the plane of projection. 5th. Thence it follows evident- ly, that a line parallel to the plane of projection is projected by a line that is equal to it; but that, if it is oblique to the plane of projection, it is projected by a line less than it. 6th. A plane surface, if it is perpendicular to the plane of projection, is projected by a simple straight line; and this straight line is the line itself, where it cuts

† D'Alembert, Encycl. Meth. art. Projection.
the plane of projection. 7th, Thence it is evident, that the circle, the plane of which is perpendicular on the plane of projection, and which has its centre on that plane, ought to be projected by the diameter which is its common section with the plane of projection. 8th, It is also evident, that an arc of a circle, the extremity of which would answer perpendicularly to the centre of the plane of projection, ought to be projected by a straight line equal to the sine of that arc, and that its complement is projected by a line which is simply the versed sine of that arc. 9th, A circle, parallel to the plane of projection, is projected by a circle that is equal to it; and a circle oblique to the plane of projection is projected in an ellipse.

Stereographic projection is that where the surface of the sphere is represented on the plane of one of its great circles, the eye being supposed at the pole of that circle. In the stereographic projection the globe is considered as a transparent solid. The hemisphere represented is that which is opposed to the hemisphere in which the eye is supposed to be. Here are the principal laws of stereographic projection.

1st, Every great circle, passing by the centre of the eye, is projected in a straight line. 2d, A circle placed perpendicularly opposite the eye, is projected by a similar circle. 3d, A circle placed obliquely with respect to the eye, is projected by another circle, the radius of which increases in the ratio of the obliquity. 4th, If a great circle is projected on another great circle, its centre will be on the line of the measures, that is to say, on the projection of the great circle, which passes through the eye, and which is perpendicular to the circle to be projected, and to the plane of projection. The centre of the projected circle will be distant from the centre of the primitive circle, or of projection, by the quantity of the tangent of its elevation above the primitive plane, or the plane of projection. 5th, A small circle will be projected through another circle, the diameter of which (if the circle to be projected surrounds the pole of the primitive circle) will be equal to the sum of the semi-tangents of the greatest and smallest distance from the pole of the primitive circle, these tangents being taken each in the line of the measures of the same side of the centre of the primitive circle. 6th, In the stereographic projection, the angles which the circles make on the surface of the sphere are equal to the angles which the lines of their respective projections make among themselves on the plane of projection.

Setting out from these principles, methods have been found for tracing maps of the world according to either of these projections.

Three sorts of stereographic projections are in common use: 1st, That on the plane of the equator, called polar, because the eye is supposed to be at one of the poles. 2d, That on the plane of a meridian, commonly that of the Isle of Ferro, which cuts the globe into two hemispheres, one containing America and the other Europe, Asia, and Africa. 3d, That on the plane of the horizon of any place whatever.

Let us first explain the method of tracing the polar projection. Supposing the eye at one of the poles, the picture will be itself the plane of the equator; the meridians will be projected by the straight lines, and parallel to the equator by concentric circles.

The meridians are traced as follows: Let AP. fig. 19. be the radius representing that of the terrestrial sphere, and ABCD one of the great circles of that sphere. The centre P being taken for the projection of the optical axis, or of the point of view placed at the pole, the circumference ABCD will be the projection of the equator. But as the planes of the meridians all cut each other according to the axis of the earth, which is perpendicular to ABCD, the projection of the first meridian may be represented by any diameter whatever; for example, by AB. Now, if we divide the semi-circumference ACB into 20 equal parts and if, through all the points of division, we carry diameters such as (1) (30), (2) (40), and so on, they will be the projections of the meridians corresponding with the longitudes A (1), A (2); the difference of longitude of the two meridians, traced in this way, will be 10 degrees, new French measure, or 9, ancient, since the arc AC, which is the quadrant, and equal to 100 new degrees, or 90 ancient, is divided into 10 equal parts.

* D'Alambert, loc. cit. † Puissant, Topographie, 117, 279.
To obtain the projection of the parallels to the equator, spaced from 10 to 10 degrees, we must raise the diameter CD perpendicular to AB, and draw the straight lines D (1), D (2), D (3), and the following, which will cut the diameter AB at the points d' d" d"", and so on. Then, by making the radii Pd' Pd", turn round the point P, as the common centre, the circles will be described which are the required projections. In this method D is taken for a point of view, and the points d' d" d"", are the stereographic projections of the corresponding points (1) (2) (3), belonging to the parallels of the 10th, 20th, 30th degrees; for if we conceive that the circle ABCD, turns round the diameter AB, till it makes a right angle with the plane of the figure, the radius PD will be perpendicular to this plane, the point C will be the pole opposed to the point of view D, and the circles A (1), A (2), &c. will be the respective latitudes of the parallels to the equator; consequently, the traces A, d' d", &c. of the visual rays DA, D (1), D (2), will represent on the perspective plane, the points A (1) and (2).

Equatorial projection or on a meridian. Let us pass to the stereographic projection on a meridian. In this method, the point of view, always placed in the centre of the hemisphere, opposed to that which is to be represented, is on the circumference of the equator, and the projection of this great circle is a straight line perpendicular to the axis of the poles of the earth.

The meridians are projected in the manner we shall now indicate, by making use of Fig. 20. Let AB be the projection of the equator, PP', the axis of the earth, and C the centre of the mass, or the projection of the point of view on the picture, on the plane of the meridian APBP', the meridian we shall consider here as the first. All the meridians having PP' for their common section, and their projections being circles, the circumferences of which necessarily pass through P and P', it follows that their centres are on the right line AB. Let us divide as before the arc AP into ten equal parts, let us draw the diameter (1) (21), and through its extremities let us bring the right lines P' (1), P' (21), which will cut respectively AB, which we shall prolong, if necessary, to the points m' and n'; these points will be the projections, or the perspectives of the extremities of the diameter of the meridian of the map, passing by the point, the longitude of which, with respect to the first meridian AP', is 10 degrees, new measure. If, therefore, from the middle of m', n', as a centre, with a radius \(\frac{m' n'}{2} \), we describe the arc Pm' P', we shall have the projection of the meridian required. By repeating the same construction for the points of division (2) (3), and the others, we shall obtain the projections of the other meridians; and by a natural consequence of the symmetry of the figure, what we have constructed in the semicircle PAP', will serve for the other semicircle PBP'. As to the meridian, the plane of which is perpendicular to the picture APB, it will be represented there by a right line which coincides with the axis PP'.

As the length of the radii, to describe the meridians, may become too great to trace these circles by means of a compass, a very simple instrument is used, composed of two movable rulers, AC and CB, Fig. 20, united at C by a hinge, which allows them to form any angle whatever. A pencil is placed in the centre of the motion of these two rulers, the point C is made to coincide with the point m', Fig. 21; at the points PP' are fixed two small metal points, against which the edges of the rulers are applied, the point C always resting on m'; then, without varying the angle ACB, the instrument is made to move, so that the rulers lean incessantly against the points PP'. The pencil C then describes the arc of the circle Pm' P', Fig. 21. The demonstration of this process is afforded by elementary geometry.

Let us now indicate the projection of the parallels. These circular curves ought to pass by the corresponding points of division, (1) (19), (2) (18), (3) (17), &c. and their centres are necessarily situated on the prolongation of the axis PP'. We may determine, for example, the centre of the projection of the parallel (9) (11), in the following manner. Draw the straight lines B (9), B (11); the first will cut PP' at the point r', the second at the point r, and the distance r' r will be the diameter of the parallel, which is moreover determined by the three points known (9) r, (11); we have only to describe an arc, the centre of which shall be in
the middle of rr', and the radius equal to the arc (9) P; it will be on the map the parallel of 90 degrees, new measure.

We shall next consider the horizontal stereographic projection, the most interesting application of this method. The rational horizon of any place whatever, will serve as a plane of projection; the point of view is the lowered pole of that horizon; the meridian that passes through that place is represented by a right line, and is commonly called the principal meridian. Now let $ABDE$, Fig. 22, be the horizon of a place: its centre C will be the projection of the point of view, or of the pole of the horizon. Again, let AB be the diameter which represents the principal meridian. If the angle PCA is equal to the height of the pole, and DE be perpendicular to AB, the right line PE will cut AB in a point p, which will be the projection of the raised pole of the globe. If, in like manner, the line EP' is prolonged till it cuts the prolongation of AB in p', this point will be the projection of the lowered pole of the globe. The projections of the meridians which will all pass through the points pp', will have, at the same time, their centre on the right line SS', perpendicular on F, or on the middle pp'. SS' is called the line of the centres of the meridians. It is remarkable that the line CF is equal to AT, which is the tangent of the height of the pole. To complete the determination of the projection of the meridians, it is sufficient to find a third point. Here is a method to find that element.*

The meridian whose plane is perpendicular to the principal meridian AB, cuts the horizon according to the right line DE, perpendicular to AB; therefore, if from the point I as centre, and with a radius IT, we describe the arc DPE, this arc will be the projection of the meridian passing through the longitude of 100 degrees, new measure, or 90 ancient degrees, counting from the principal meridian AB. The projection of the equator does not present more difficulties; for if we raise the diameter QQ', perpendicularly to PP', this diameter will be that of the equator, and its projection on the map will be qq'. Consequently, if from the middle of the line qq', as centre, and with a radius $= \frac{qq'}{2}$, or equal to the cosecant of the latitude of the centre of the map, we describe the arc DqE, it will be the projection of the half of the equator. We must now recollect the principle on which the stereographic projections of two great circles of the sphere, make between them the same angles as the real planes of those circles. Hence is derived this geometric construction: From the point p as a centre, and with an arbitrary radius,—with an equal radius, for example, to pF, let us describe a circumference, and divide it into 40 equal parts, setting off from AB, (if we wish to trace, as before, only 40 meridians,) and through all the points of division m must be brought, whose prolongations will meet the line SS', or the line of the centres in different points $x'x''$, &c.

These points will be the centres of the projections of the meridians. The practical employment of this process being often too embarrassing, on account of the increasing size of the radius R, we may determine, by the means we are going to indicate, the points where the meridians meet the planes of projection.

From any point whatever taken on the line AB, or its prolongation, from the point F, for example, is brought down perpendicularly Fk, on the line PP', making as we know already, an angle equal to the height of the pole; and the length Fk is carried from F to k': then from this last point as centre, and with a radius $= Fk''$, or with any other radius taken at pleasure, but rather large, a circumference is described, which is likewise divided into 40 equal parts. After this, secants $k' n', k' n'', k' n'''$, are brought through all those points of division; the extremities of n', n'', n''', of those secants, terminated in the right line SS', are on the very traces of the planes of the meridians; drawing therefore right lines, which pass through the centre of the map, such as $n' C'n'$, $n'' C'n''$, $n''' C'n'''$, the diameters $x' x'', x'' x'''$, &c. will be the required traces of the meridians; and as, moreover, they must all pass through the pole p, we shall have three points of each meridian, for example, x'', p, x''''; the meridians therefore will be easily described according to one of the processes previously indicated.

* Puissant, Topogr. p. 1237
In practice, as there commonly is not space enough round the map to perform this construction, founded on the principles of descriptive geometry, Fk may be carried from F to k''; this point will then be what is called the *centre divisor*; in other respects, the processes are the same.

Let us now examine how parallels to the equator are described. Their planes being perpendicular to the principal meridian AB, we shall obtain the diameters of their projections, as we obtained those of the equator, that is to say, after having divided the circumference $ABDE$ into 40 equal parts, setting out from the point P, we draw, two and two, the right lines $(1) \overline{EE}$; $(1') \overline{EE}$; and the interval \overline{ee} intercepted between these right lines, and taken on the meridian AB, will be the diameter of a parallel. In the present, the parallel \overline{ee} belongs evidently to the 80th degree of latitude, since the arc AP measures the height of the pole. But for the parallels which are very distant from the superior pole p, the construction we have just indicated can no longer be put in practice, because the point v would then be too far from the centre of the map. To obviate this inconvenience, we may trace the intersections of the planes of the parallels, with the plane of projection ΔDBE, intersections which are necessarily parallel to the diameter DE, and distant from it by a sum equal to $\sin \text{ lat. of the parallel} \cdot \cos \text{ height of the pole}$. When the latitude is southern, the pole p being the northern pole, this value becomes negative; and instead of bringing it on the side of AC, it is brought on the side of CB. Thence it follows that if at any distance whatever from the right line DE, (fig. 28.) the parallel line $d \varepsilon$ is brought to it, the points d and ε common to that parallel and to the circumference ΔDBE, will belong to the required parallel: but this parallel passes at the same time through a point such as v determined by the preceding method; we have therefore the three points necessary for tracing a circumference.

There are other methods of explaining the three stereographic projections,* but we prefer indicating in a few words the advantages and defects of this sort of projection. It is sufficient to cast one’s eyes on a map of this kind, to perceive that the quadrilaterals comprehended between two meridians and two consecutive parallels, increases in extent in going from the centre to the circumference. This increase results from the obliquity which the visual rays take, on parting from an axis perpendicular to the picture, called the *optical axis*. It follows thence that the regions placed towards the borders of the hemisphere have a much more considerable extent than if they were at the centre, and that we are led into error whenever we compare them with those which occupy that part. For example, the point of austral Africa, appears much broader than on a globe, and in Nova Zembla the distances, south and north are rendered by spaces much larger than the same distances are in India. This inconvenience, of no consequence to learned geographers, may lead pupils to false ideas; but this risk would be diminished, if, in teaching, care were taken to explain the qualities of stereographic projections, and to place under the view of beginners the polar, equatorial, and horizontal planispheres, the defects of one always disappearing in the other.

The stereographic projection does not admit, in general, the employment of a rectilinear scale for comparing the respective distances of places, which are measured according to the arc of a great circle, joining those places: but we may always, by means of the gradation itself, measure the distance between the centre of the map, and any point whatever, and consequently we may know, on the horizontal projection relative to Paris, for example, the distance of that town from all the other points of the globe. This property results from this, that all the great circles which pass through the centre of the map, cutting each other according to the optical axis, have for perspective, right lines drawn through that centre, and admit of a gradation similar to that which is observed on the equator of maps of the world, constructed on the plane of the meridian.

If we wish to measure the distance from two points on a stereographic map, we may (Fig. 24.) make use of the following construction.† Let Z be the zenith of a.

* R. Vaugondy, Instit. Geogr. L c
† Puissant, Traité de Topogr. p. 127.
place, C the centre of the horizon, or the projection of \(Z \) and \(ZMB, XMB' \) the respective verticals of the two points \(MM' \) given on the globe by their longitudes and latitudes. These points will have evidently for perspectives or traces \(MM' \), \(MM'' \), they will meet in a point \(R \), and the right line \(COR \) will mark on the plane of projection \(CBB' \), the trace of the plane \(MCM' \) of the great circle to be projected. Therefore the four points \(m, m', o', o'' \) are on the projection of the great circle which passes through \(MM' \); thus this projection, which is itself a circle, will be entirely determined. This being laid down, we may trace the shortest distance on the map, in the following manner. Carry \(CM \) (Fig. 25.) from \(C \) to \(\mu \), and \(CM' \) from \(C \) to \(\mu' \); draw the right lines \(EM, EM' n' \); then on \(mm' \) construct the triangle \(m'E'm \), so that \(mE' \) be equal to \(\mu \) E, and \(m'E' \) to \(\mu' \) E; next, on the prolongations of \(E' \) \(m' \) and \(EM \), draw \(\mu m \) from \(m \) to \(n'' \), and \(\mu' \) \(n' \) from \(m' \) to \(n'' \); finally, let the common section \(R \) of the two right lines \(m'm \) and \(n'' n'' \) be determined, and draw the right line \(RO \), which will be the trace required.

We may now trace the arc of a circle \(O' \) \(m' \) \(mm \) \(O \), of which the portion \(m' \) \(m \) \(m \) is the shortest distance. The number of degrees contained in the shortest distance, will be ascertained by considering the right line \(n'' n'' \), which is equal to \(MM' \) (Fig. 24. and 25.) as the cord of the circumference \(ADB \).

The stereographic projection was not known to the ancients. The origin of the stereographic projection in the 16th century, by the same Werner of Nuremberg, who gave the first indication of the method of lunar distances.* He was indebted for the idea to his master, Stabius the astronomer.† The use of this projection appears to have been general 150 years later. Varensus marks its three modifications. Henius, a German geographer, who lived in the beginning of the 16th century, applied stereographic projections to special maps. This method, laborious, but favourable to the exactness of the details of position, is little followed in France, where the stereographic projection is reserved for maps of the world.

We shall now proceed to the explanation of orthographic projections, which might also be called planetary, since their principal object is to show the direct image of the half of the globe, the eye being supposed at an infinite distance, that is to say, great enough for all the visual rays to be reckoned parallel. As these rays are perpendicular to the plane projection, while the lateral parts of the sphere present themselves more and more obliquely to this same plane, it is easy to perceive, even without demonstration, that this projection, offering the contrary defect of the stereographic, makes the space diminish from the centre to the circumference. This diminution, which is infinitely greater than that remarked in the preceding projection, gives to the extremities of a planisphere orthographically projected, an aspect too much disfigured to fulfil, in general, any of the objects proposed by geography. This is a sufficient reason for indicating here only very briefly what regards orthographic constructions.

Figure 26, indicates the polar projection. The lines \(AB \) and \(CD \), are two meridians which cut each other at right angles in \(E \), which is the projection of the pole, and the centre of the map. The circumference \(ABCD \) is the equator, on the plane of which the map is projected. This circumference is divided into equal parts, from 10 degrees to 10, or from 5 to 5; the diameters which pass through the points \(a' \) \(a'' \), \(b' \) \(b'' \), &c. and by the centre \(E \) will be the meridians. Let fall from the points \(a' b' \), &c perpendiculars on the diameter \(CD \); they will determine the radii \(E_1 \), \(E_2 \), &c. with which you will describe the circles parallel to the equator.

In the projection on a meridian, the process is constructed in the following manner. Draw the lines \(AB \) and \(CD \) (Fig. 27.) cutting each other at right angles; one will be the meridian of the middle, the other the equator. Their intersection \(E \) is the centre of the plane of projection, circumscribed by the meridian \(ABCD \). This circumference must be divided into equal parts, then unite the points of division, the diameters \(a' a'' \), \(b' b'' \), &c. will be the common sections of the meri-

* J. Werner, de quatuor orbis terrarum figurationibus, ad calcem. Ptolomaei geograph. lib. i. vers. ad codem.
† Comp. Wöidler, Hist. Astron. cap. xiv. nos. 3 and 4.
dians, with the plane of the equator. The angles $a' \text{ED}$, &c. will mark the inclination of these meridians on the plane of projection. Now let down from the points $a' b'$, &c. on the radius ED, the perpendiculars $a' 1$, $b' 2$, &c. which will be the sines of the angles of inclination of those meridians measured on the equator; the parts $E 1, E 2, &c.$ will be the versed sines of those inclinations, and consequently the lesser axes of the ellipses, which are to represent the meridians. The line AB, the projection of the axis of the globe, is the greater axis of those ellipses. The parallels to the equator are very simply traced; it is only necessary to join by a right line the points of division of the circle $ABCD$, equidistant from the diameter CD, and which are on the same side. This diameter being the projection of the equator, the cords $a' (1), b' (2)$, and others parallel to it, will be the projections of the parallel circles.

The inspection of the figure shows the inconveniences of this projection; namely, the extreme narrowing of the lateral parts, and the obliquity, always increasing, of the angle under which the parallels cut the meridians. Nevertheless it is at the same time evident, that such a planisphere presents a more striking image of a spherical body than a stereographic planisphere does; thus beginners, who cannot always study on a globe, by using from time to time a map projected orthographically, might perhaps imbibe more profoundly the idea of the sphericity of the earth. This advantage is still more sensible in the horizontal orthographic projection of which we are going to treat.

The meridians, in this projection, are ellipses, the greater axes of which coincide with the traces themselves of the planes of these meridians. These traces are determined by the same methods as those we have indicated for the stereographic horizontal projection. It only remains therefore to show how the smaller axes are obtained. Let (Fig. 28.) the angle DCP be equal to the height of the pole; let moreover $m'' \nu''$ be the trace of a meridian, and DE the projection of the principal meridian. To have the orthographic projection of the raised pole P, let fall on CD the perpendicular Pp, and you will have the point P. Now, to have the angle which the plane of the meridian $\nu'' \nu'''$ makes with that of the picture, or with the horizontal plane, we let down from the point p the right line R perpendicular on $\nu'' \nu'''$; pR' is made equal to pR, and the right line $R'P$ is drawn, which forms with DE the angle required. The trigonometric relations of this angle, and of its cosine, then give this geometric construction: Draw Cn parallel to $R'P$, and from the point n the right line nR parallel to PP; describe from the point C with a radius equal to Ct, an arc b', terminated at the meeting of Cn', drawn perpendicularly to the trace or to the greater axis $\nu'' \nu'''$; then the line Cn will be the orthographic projection of the radius Cn, or the smaller axis required. We have then only to describe the ellipse, the two axes of which are given.

The projection of the parallels, abstracting from the calculations which serve as its foundation, may be effected in the following manner. Supposing it is wished to project the parallel, the distance of which from the raised pole is measured by the arc Pb or Pa. From the points a and b are let fall on the principal meridian DE, the perpendiculars $aa' bb'$, and the line $a' b'$ will be the smaller axes of projection of the parallel to be described. To find the greater axis, the cord ab is divided into an even number of equal parts; on DE are sought the projections of all the points of division, as has been done for the points a and b; then, after having drawn through those same points ordinates* into the semicircle axb, they will carry the lengths of the first, on the correspondent ordinates of the ellipse to be traced; by this means the principal points of this ellipse are obtained, and the ordinate of the middle yz will be the semi-great axis $y' x'$ required.

Besides the orthographic and stereographic projection, there is a third projection in perspective called central. It is obtained by placing the point of view at the centre of the sphere, and taking for picture a plane tangent to its surface. It would be useless to demonstrate how, in this case, the processes must be modified which we have given above to construct the equatorial, polar, and horizontal projections; from the point C of the figures 19—21, previously cited, we

* An ordinate is a right line drawn from a point of the curve to another fixed line, which takes with the latter a determined angle.
must draw the visual rays which determine the section made by the plane of the picture in the cones perpendicularly to the circles to be represented; we must take the picture parallel to that which passes through the centre and tangent to the circle ADBE. We then see that, in the projection on the plane of the first meridian, the meridians will be right lines perpendicular to the equator, which itself will be a right line; the parallels to the equator will be hyperbolas. In the polar projection the meridians will be right lines drawn from the centre of the map; the parallels to the equator, circles having their centre at that point; and in the horizontal projections, the meridians will be right lines drawn through the projection of the superior pole. The parallel of the place to which the projection relates will be represented by a parabola; those that are nearer the pole by ellipses; and the others on each side of the equator, by hyperbolas. It is plain that this projection alters still more than the stereographic, the extent of regions, in proportion as they are removed from the centre of the map.

It can never represent an entire hemisphere, because the visual rays, brought by the circumference which terminates this hemisphere, are indefinite, being parallel to the plane of the picture; it may however be employed with advantage to retrace parts of the globe, the extent of which may not be very considerable; for, in this projection, all the places situated on the same great circle, are placed on the map on a right line;* it is susceptible of a sort of scale, the construction of which is not difficult to find. It was undoubtedly for this reason that M. Prony thought of using it in the maps of the survey of France. This projection, almost unknown in geography, is employed for sun-dials.

Such are the three principal projections of the globe which the rules of perspective admit. We see that none of the planispheres traced after these projections unites all the qualities of a perfect representation of the globe; they necessarily alter the figure of countries, either in the middle or towards the borders of each hemisphere; they do not represent spaces really equal under equal dimensions; and the same takes place for most of the distances. It is not possible neither, to obtain, either in the stereographic or orthographic projection, that places situated in a right line on the globe, that is to say, on a same great circle, should be equally represented in the map of the world on a right line. Finally, the inequality necessary in the projection of spaces does not allow us to find with ease the exact longitude and latitude of a place. Different means for modifying the stereographic projection have in vain been proposed, with a view to remedy these inconveniences.

The learned astronomer De Lahure‡ proposed that the eye of the spectator should be supposed out of the globe, and distant from its convex surface by the amount of the sine of 45 degrees; that is to say, that the meridian BD, Fig. 29, being of 200 parts, it must be prolonged out of the circle ABCD by 70 parts, and then from the point F, should be drawn the right lines Fa, Fb, &c. whose intersection with the diameter AE would determine the small axis Cx, Cy, &c. of the ellipses which represent the meridians. The geometer Parent observed that, in this projection, the radius of the meridian, distant by 45 degrees from the principal meridian, cuts in reality the semi-diameter into two equal portions, but that it may still be asked at what distance the eye must be placed that all the inequalities between the divisions of the semi-diameter should be the least possible; he found that if BD is equal to 200 parts, the point of view must be taken at a distance of 594; but it must be placed at 1104 if we wish the zones of the hemisphere to occupy respectively a space proportioned to that which they occupy on the globe.

Thus, these sorts of modified stereographic projections, besides losing the advantage of presenting the meridians and parallels cutting each other at right angles, cannot preserve at the same time the equality of spaces and of configurations.

It is a truth generally admitted, that all the conditions of a perfect representation of the terrestrial surface can only be united in the case of the earth's being a cone or cylinder, or in short, any body whatever of simple curvature.‡ If therefore we can

‡ Hist. de les Acad. des Sciences, 1701, p. 97.

Voy. I.—G
BOOK FIFTH.

And a body of this nature, which approaches nearly to the spheroid, we may substitute its surface for that of the latter, and obtain representations which will answer one or other condition of a faithful picture.—This we shall explain in the following Book.

BOOK V.

Continuation of the Theory of Geography. Of Geographic and Hydrographic Maps by Conic and Cylindric development. Of Projections by Proportional Parts.

Among all bodies which can be exactly retraced on a plane, the cone and cylinder have the most affinity with the sphere; the cone especially offers the advantage, that a small conic zone hardly differs at all from a spheric zone. Hence it is conic developments that afford the best projections of special geographical maps, and even by the help of some modifications for considerable parts of the globe. We shall therefore begin by the explanation of this sort of maps.

In the purely conic projection, a spherical zone is considered as confounding itself with the surface of a truncated cone which is tangent to it. If this surface be developed, the parallels become right circles of the summit of the cone, taken for centre; the meridians are right lines which all pass through this same point, and direct themselves towards the base of the cone. In order to fix our ideas better in this respect, let us have recourse to Fig. 30. Let PC be the radius of the sphere, M a place situated at the latitude EM, and OM the co-tangent of that latitude. The development of the mean parallel has for radius the co-tangent of its latitude, and for amplitude the arc equal to the circumference of which MR is the radius.

From the point O, taken for centre, and with the radius OM, we describe an in- definite arc NN', and taking OG for the meridian of the middle of the map, we make the angle NOM equal to the half of the number of grades contained in the mean parallel. Let us suppose, for example, that this parallel comprehends 25 degrees on the globe, and that the difference in latitude of the extreme parallels is 30 degrees, the mean parallel will have on the map a number of degrees expressed by \(\frac{25}{2} \) degrees. Such is the amplitude of this arc, since the numbers of degrees contained in two arcs of the same length are to each other as their radii. Thus the angle MON equal to \(\frac{25}{2} \)°, it is evident that the projections of the meridians will make between them angles less than on the globe, since MO is always greater than MR. Consequently, the parallels of the map, both the superior and inferior to the mean parallel, will exceed those of the globe of which they are the projections; and the more the map is extended in the direction of the latitudes, the more the two extremities will present an inexact proportion. To mark in the projection these extreme parallels, two parts Ma and Mb, equal to the half of the difference of latitude of the extreme parallels, are taken on the axis of the map OG; for example, at 15 degrees in the proposed case. These parallels are then represented by the arcs DD' and EE'; and to conclude, the meridian of the middle and the mean parallel are divided into equal parts, which give the graduation of the map.

The faults of this projection are the not preserving equality between the spaces, and only giving true distances in the direction of the meridians. To remedy this, two means have been tried; one consists in taking, instead of the cone tangent, a cone inscribed in totality or in part; the other is to alter the rectilinear projection of the meridians.

If, in place of the arc \(ab \), Fig. 31., we take the cord which subtends it for the side of the cone to be developed, the radii of the projections of the extreme parallels

Modifications of the conic projection.
would be AO and BO, and the respective position of the points placed on the map would be in reality on these parallels; but those which would be between the parallels would by no means preserve their true positions. This method is good therefore only for a zone of little breadth.

The astronomer De l’isle de la Croyere, who was employed to construct a general map of the empire of Russia, which, traced stereographically, would present shocking deformities, made choice of the conical projection; but, to improve it, he made the cone enter into the sphere, so that it cut it according to two parallels placed each at an equal distance from the mean parallel, and from one of the two extreme parallels. The map, by this means, had, on the two parallels just mentioned, the same dimension as the corresponding part of the globe; and its total extent differed but little from that of the country it was to represent, because the excess, which was at the two extremities of the map, was at least compensated in part by the deficiency which the inscribed portion of the cone had with respect to the spherical zone. The map comprising from the 40th degree of latitude to the 70th, the mean parallel answered to 55°, the parallels common with the sphere were those of 47° 30', and 62° 30'. This projection presents many advantages for general maps of considerable extent, and the principal object of which is to show the totality of a vast empire.*

The celebrated Euler made profound researches on this method of projection; he substituted for the determination of the parallels which should be common with the sphere, that of the point of concourse of the right lines which represent the meridians, and of the angle which they make between them when they comprehend a degree of longitude. His calculations rest on the following conditions: 1st. That the errors should be equal at the south and north extremities of the map. 2d. That they should also be equal to the greatest of those that take place towards the mean parallel of the map. He hence concludes that the point of concourse of the meridians should be placed beyond the pole by a quantity equal to 5° of latitude, and that the angle of two consecutive meridians should be 49° 44' 53". He then investigates by how much the arcs of the great circles which measure the distances on the globe, differ from the right lines substituted for them in maps; and he finds that an arc of 90° would have on the map a length of 90° 79', exact by less than near a hundredth.†

Murchad, an English geomter, proposed three different methods for rendering the conical projection more conformable to the conditions of a good map.‡ This philosopher having explained himself in a laconic manner, his projections have been less appreciated by their real merit than they have been extolled or blamed without proof. We are indebted for a critical explanation of them to the researches of two German geomters.§ We should deviate from our general method of not entering into abstract mathematical discussion, if we gave a complete idea of all the rules of these projections. The first presents two parallels perfectly similar to those of the sphere, and a conical surface equal in its totality to the spherical surface, but it narrows the distances towards the middle, and enlarges them at the extremities; the spaces even are not equal in dividing the map by two or several zones.║ This projection offers, nevertheless, a repre

* Mayer, Introd. à la Construction des Cartes, § 31, 32.
║ "In Fig. 3.2, let C be the centre of the earth, Q a point of the equator, F one of the poles, QMP a meridian, A and B the points of intersection of two parallels. Let us suppose that QA = a = 70° of lat. (ancient measure) and QB = Θ 10°. QM = μ = 0, = (a + Θ) will be = 40°.
Now the zone of the sphere, limited by A and B, must be represented on a conical surface equal in extent to the spherical zone, and so that the breadth of the spherical zone be equal to the arc BA. In other terms, the quadrilateral NO, on is required, which, turning round the axis a, will describe a conical surface equal to the spherical surface described by the revolution of the segment BA, a, so that NO in the cone remains equal to the arc BA."

We see that the line NO cuts the arc AB in the two points a, a, which are determined by the angles 2CM, and μCM, the sum of which is equal each to a. If we take the radius of the sphere = 57,29577 degrees = g, we shall find cos Θ = (a — a) / (a — a).
sensation sensibly faithful, when the application is made only to zones of 8 or 10 degrees of latitude. The object of the second projection of Murdoch is to obtain the exactness of the perspective, by placing the eye in the centre of the globe as in the central projection; but, for this condition to be fulfilled, it is necessary that the map be should be folded in a conical form, like the celestial conic gobla, published in Germany by Funk. This latter projection is susceptible of an increasing scale, like the hydrographic maps of Mercator, of which we shall speak hereafter. The third projection of Murdoch seems to offer nothing advantageous.

However ingenious the modifications may be by which it has been attempted to perfect the conical projection, it is evident that they all tend to make it lose its primitive simplicity and facility without obtaining completely the advantages proposed. In the projections after Murdoch and Euler, there is always some part of the map where the spaces are a little too large or a little too small; the errors on the distances, in Murdoch's first projection, may go to $\frac{1}{11}$. It is true that this projection, corrected by Albers, offers such proportions, that in the smallest square, circumscribed by two parallels and two meridians, the defects of more or less destroy each other, so that the spaces are every where in the just proportion; nevertheless the distances taken in the direct sense of the four cardinal points, are not found exactly, and the configuration of the countries is altered in those same directions.

Geographers have therefore sought, for their special maps, more commodious projections, and which only refer very indirectly to the development of any regular figure whatever.

"We thence conclude $K\rho = R$, the semi-diameter of the projection in degrees of latitude $\cos \theta = \zeta \cos \phi = \mu \cos \phi = \mu$, or, if we suppose $\gamma = \mu$, in geographical miles $R = r$, in cot. μ, cos. θ.”

"In the example given, we shall have $\theta = 17^\circ 16''$, consequently $\zeta = \mu - \phi = 40^\circ + 17^\circ 16'' = 57^\circ 16''$, and $\zeta = \mu - \phi = 40^\circ - 17^\circ 16'' = 22^\circ 44''$, finally $R = 978,1$, geographical miles.

"As besides $KO = MA = 30^\circ = 30.15 = 450$ geographical miles, and $KN = MA = 30^\circ = 30.15 = 450$ g. m. we know the two extreme circles of the conical zone by their semi-diameters, namely: $\rho O = R - KO = 978,1 - 450 = 528,1$ geogr. miles, and $\rho N = R + KA = 978,1 + 450 = 1428,1$, geogr. miles."

"Fig. 33 represents a projection conformable to these data, and comprehending 110 degrees of latitude; but as yet we only know the semi-diameters for the latitudes of $10^\circ = \rho N$, of $40^\circ = R$, and of $70^\circ = \rho O$. It is evident that the two triangles PKF and CMF are alike; since, the angles k and F are both 90°, and the angle $\phi = MCF = 90^\circ - MCF$. From this is easily drawn the proportion $CM : MF = PK : FK$, and as $CM = \sin \theta$, and $MF = \sin \phi$, we shall substitute for PK any geometrical longitude whatever, for which we choose to calculate the angle $\rho SW = \lambda$, and to ρF, the angle required SPW, we shall have the proportion $1. \sin \mu = \lambda : SPW$, that is to say: $SPW = \sin \mu$.

In our map, which should comprehend 110 degrees of longitude, the angle SPW will be $\pm 110. \sin \mu$. Therefore.

\[\log \lambda = \log 110 = 2.04139 \]
\[+ \log \sin \mu = \log \sin 40^\circ = 9.8080675 - 10 \]
\[\log S \rho W = 1.8494602 = \log 70,7066 \]
and, consequently, the angle $S \rho W = 70^\circ 42'$, since there is no inconvenience in regrouping the 0.0066 which make 24'.

"Now, the angle $S \rho W$ on the arch SW is divided into 11 equal parts, and by that are determined the meridians of the map from 10° to 10° (Albers, loc. cit.)

This author afterwards shows how, taking a principal meridian ζ, one may calculate the points of intersection of all the meridians with the extreme parallels.

He afterwards gives, for the determination of the remaining parallels, the following method, conformable to the conditions which Murdoch imposed on himself. "If $\zeta = K\zeta$, in the triangle $K\zeta$, which is rectangular in K, the side $K = r \sin \zeta$, the side $K = r \sin \zeta$, and in like manner in the triangle K ζ, the side $K = r \sin \zeta$. For our map we shall have

\[\log r = \log (57,29 \times 15) = \log 859,4366 = 2.934219 \]
\[+ \log \sin \zeta = \log \sin 17^\circ 16'' = 9.4724929 - 10 \]
\[\log K = \log (2,407061 = \log 255,1 \]
Therefore $K = K\zeta = 255,1$ geogr. miles, whence we easily conclude $\zeta = r \rho K - K\zeta + \rho \zeta = r \rho K + K\zeta$.

But Murdoch is satisfied with tracing the parallels by dividing TS or VW, Fig. 33, into equal parts by an irregular process, contrary to the conditions of the problem, and which nevertheless diminishes the faults of the map. M. Albers discovered a geometrical law for tracing parallels so as to render the spaces more conformable to those of the sphere. See the complete memoir of Albers in vol. xii. of the Annals of Voyages and of Geography.
"It is sufficient," says an illustrious geometer, "for the mathematical exactness of a map that the parallels and meridians be traced after any constant geometrical law whatever." One may imagine therefore a great number of projections, among which it will suffice to notice a few.

The first method proposed by Ptolemy for drawing the world, as known in his time, is an alteration of the conical projection, nearly the same as the method of Dehille.† He places the eye in the plane of any meridian whatever of the hemisphere containing the known world, and on the prolongation of the radius of the sphere which cuts that meridian at 45° lat. N. He afterwards makes "the globe turn so that the meridians present themselves successively to the eye as right lines uniting at the pole, and the parallels show themselves as arcs of a circle having their convex part towards the south." These words prove that there is no question whatever of a stereographic perspective; the position of the eye is only indicated to demonstrate the possibility of seeing the meridians projected by a right line. The relations of the arcs of the parallels in this projection (Fig. 34.) are determined after an arbitrary scale, the result of which is to render the arc of the meridian PF = 40,000 stadia, exactly proportioned to the arc of parallel of lat. of Rhodes HKL = 72,000 stadia. The parallel of lat. of Thule OPQ and the equator RST, have also between them the same proportion as on the globe; but they are too great compared to HKL. As Ptolemy extended the known world to 16½ degrees south of the equator, he traces at this latitude the antiparallel of Meroe, a place situated at 16½ to the north of the equator; he divides this arc like that which passes through Meroe, and marks the meridians by drawing right lines between these points of division and those of the equator. This projection is, as we see, only a rude alteration of the conical projection; and even Ptolemy prefers another method, of which we shall give a rapid sketch.¶

The eye is placed in the plane of the meridian which divides the known world through the middle, and on the prolongation of the radius of the sphere; drawn by the common intersection of this meridian with the parallel of Syene, considered to be the mean parallel of the known world. Consequently, let ABCD, Fig. 35, be the great circle which circumscribes the hemisphere, containing the world known by Ptolemy; let A and C be the poles, BFD the equator, AFC the mean meridian of the known world, and E its point of intersection with the parallel of Syene; then a line drawn from the centre T, through the point E to S, will be the line in which the eye is. If now a great circle, of which BED is the half, is drawn through the point E, the eye will also be in its plane, because it is in its common intersection with the plane of the meridian AEC. Hence, Ptolemy concludes, that the semicircles BED, and AFC, will present themselves as right lines, which cut each other at right angles; that on the contrary, the equator and all its parallels, seeing that their planes have the same inclination to the plane of the great circle BDE, in which is the eye, will appear as arcs of parallel circles, having their convex part to the south; finally, that the meridians situated on both sides of the mean meridian AEC, will be seen as arcs of a circle, the concavity of which is turned towards the mean meridian, and which become more and more concave as they remove from it." But instead of developing these principles conformably with perspective, Ptolemy determines the lines of his projection according to arbitrary proportions, combined so as to preserve as much as possible the configuration of the countries.

"Trace," says he, "the rectangular parallelogram ABCD, Fig. 36, so that the side AB be double the side BD. Cut it in two equally by the perpendicular EF, which you will divide into 90 parts. Prolong this line by 91 parts, to have the centre L. Take FG of 16 parts, to trace from the opening LF the parallel of Meroe SX. Make GH of 23½ to have with the radius LH, the tropic of Cancer TY. Take GK of 63 parts, and from KL, describe the parallel of Thule QR. Bring on these three parts of circumferences TY, QR, SX, the degrees suitable to its parallels which answer to them, and in the relations which they have with those

* Lagrange, Mem. sur la Construction des Cartes, sect. 2.
† Ptol. Geogr. i. cap. 21.
‡ Ptol. Geogr. i. cap. 34.
of the equator; and through the corresponding points QTS, RXV, &c. make portions of circumferences pass; they will be the meridians required."

Modification of Ptolemy's projection.

This projection is also employed, though with essential modifications, to depict considerable parts of the globe. The best of the methods, which are derived in some sort from that of Ptolemy, is that employed by Flamstead in his celestial atlas, the improvement of which, if I am not mistaken, is owing to Bonne, one of the best French geographers. The principles of this development are to describe all the parallels from the same centre, taken in the axis of the map, and to take afterwards on each parallel the degrees of longitude as they are given by the law of their decrease, that is to say, proportional to the cosine of their latitude, and last of all, to make a curve line, which represents the meridian pass through the same series of corresponding points of division. Whatever be the position of the centre on the axis of the map, this projection enjoys the property of representing by equal quadrilaterals, each corresponding quadrilateral formed on the surface of the globe by any two meridians and parallels whatever. The quadrilaterals, moreover, have two of their opposed sides equal in length to the corresponding sides on the sphere, though different by their curvature. The first meridian is rectilinear, and cuts all the parallels at right angles; the rest are curves which cut them more or less obliquely as they remove from the principal meridian; from which the quadrilaterals they comprehend lengthen in the direction of one of their diagonals, and contract in the direction of the other. This is the principal defect of this development; but it only becomes sensible at a considerable distance from the centre of the map.

Flamstead's projection.

This defect was very sensible in Flamstead's atlas, because that astronomer, having prolonged indefinitely the axis of his map, traced the parallels by infinite radii, that is to say, that they are in the map, right lines cutting the meridians of the exterior of the map, under very oblique angles; whence results a great alteration in the configuration of the countries remote from the centre, as may be judged from Fig. 37.

Correction of this projection.

This inconvenience is obviated by drawing the mean parallel of the map so that it may be cut perpendicularly by all the meridians. For this, it is sufficient to take a right line, equal to the cotangent of the latitude of the parallel which divides nearly equally in the direction of the meridians, the region we propose to represent, and with this right line as a radius, to describe the mean parallel of the map; the other parallels will describe themselves from the same centre with the same radius, augmented or diminished by a quantity equal to the part of the meridian comprised between the mean parallel and that to be traced. It is unnecessary to say that we should also make the principal meridian of the map agree with that which, in the direction of the parallels, divides the map into two equal portions. It is a principle which must be observed in all the developments of the globe.

The corrected projection of Flamstead being now the most generally adopted, we think it right to make known the process thereof, according to the method adopted in the Dépôt de la Guerre.†

Tracing of Flamstead's projection corrected.

Let us propose to apply these principles to the development of a spherical semi-spindle, the angle of which is 100 degrees, new measure. The development will be the projection of a triangle with three right angles, or of the eighth part of the surface of the sphere. In Fig. 38, let Ca be the representative radius of the proposed sphere, and a O a line perpendicular and equal to Ca. If from the point a we let down on Co the perpendicular aε, it will be the radius of the parallel at the lat. of 50 deg. (new measure), taking P for the pole, and Q for a point of the equator. This being done, we may consider aO as the side of a con- tangent to the sphere; and then the surface near the circle of contact will coincide sensibly with the spherical surface. But since, on one hand, we have to develop only the quarter of the circumference of which aε is the radius, or which comes to the same, the quarter of the curve surface of the right cone which has O aε for side, and that, on the other hand, aε is the sine of 50 degrees, when the radius aε is taken

† Puissant, Traité de Topog. p. 138.
for the total sine, we shall have the logarithm of the sine of $50^\circ = 9,8494850$, and the sine of $50^\circ = 0,70,711$. Then $\frac{1}{r}$ of the circumference which has for radius ac, is $1,1101627$; finally, since the arc ab, (Fig. 39,) described with a radius $ao = 1$, should have for length $1,1101627$, we shall find the number of degrees of this arc by the following proportion:

$$3,14 : 360^\circ :: 1,1101627 : x = 70^\circ, 71^\circ.$$

Such is the value of the angle $ao b$, or the amplitude of the arc ab, Fig. 39. Now, if we wish to have the degrees of longitude from 5 to 5, we must divide the arc ab into 20 equal parts, and the middle M of that arc will be on the axis OM of the map. But as it is not possible to determine the position of the other parallels, as well as the length of their respective degrees, without having a scale of equal parts, constructed according to the number of metres contained in the mean radius ac of the earth; a radius which, as we know, is $6,366198$ metres, we shall proceed previously to the construction of this scale. For this purpose, we must bring on an indefinite line mc', Fig. 40, 636 parts, and $\frac{1}{r}$ from c' to m, and must take $d'c'$ equal to the radius ac, Fig. 38; then through all the points of division of the line mc, are brought parallel to $d' m$, the right lines xx', yy', &c. The scale of the map.

Having thus constructed the scale of the map, we take in it a length of 50 parts, or myriametres, for the value of the degrees of the meridian, taken from 5 to 5, and we carry that length on the axis of the map, ten times above and ten times below the mean parallel ab, Fig. 39. We then describe from the point O, as centre, indefinite arcs, passing through all the points of division of the axis OM; we as then have the parallels from 5 to 5 degrees. Finally, on each parallel, we take distances equal each to five times the value of the degree of longitude, known by the geographical tables. Thus, on the parallel of 55 degrees, the length of the degree of longitude is 6 myriametres 49; consequently, we must, setting out from the axis of the map, and on both sides of that axis, carry ten times the interval $6,49 \times 5 = 32$ myriametres 45, taken on the scale. When all the points through which the meridians must pass have been determined in this manner, it is easy to trace those curves.

It must be confessed, that the amplitude of the arc of any parallel whatever, determined by this method, will be a little greater than it ought to be, since we give to the cord of an arc of 5 degrees, the length itself of that arc; but the error which results from it is the less, according as the curvature of the parallel is smaller. Moreover, to obtain a rigorous exactness, we may determine the amplitude of all the parallels like that of the mean parallel, by the angle of which the two radii brought to the extremities of that parallel form.

Instead of taking arbitrarily, as in the above example, the radius of the sphere, the length is most commonly fixed by means of a scale constructed beforehand, the parts of which also are in a determined relation with the metre. For example, in the *Depot de la Guerre*, the scale for the drawing and engraving of the map of each of the four parts of the world is $\frac{1}{2000000}$, that is to say, that 2,000,000 metres taken on the ground, will be represented on the map by the real length of a metre. According to this, the radius of the earth, which is 6,366198 metres, will beply on the map $6 \times \frac{1}{2000000} = 3^\prime, 18$. Hence, that the scale of this map may be divided from 2.10 to 10 myriametres, or from 100000 to 1000000 metres, it is necessary that 10 myriametres have 5 centimeters of length. The *Depot de la Guerre* observes, in like manner, in its special maps, a decimal progression of the scale, so that the degree of latitude of a general map being taken for unity, that of the chorographic map should be represented by one of the numbers 2, 5, or 10, which are exact divisors in the decimal system. By this means, the particular maps are perfectly connected with the general maps, seeing that the proportions of details increase from one to the other map, in relations of easy calculation. But the execution of those maps, by requiring the largest size paper, increase their price too much.

The various modifications of the conical projection having been sufficiently ex-
plained, we shall now consider the cylindrical developments of the surface of the globe, and the marine charts deduced from them.*

The points of the compass which navigators follow, having the property of cutting under the same angle all the meridians which they traverse, and which, for that reason, form on the globe the spiral named loxodromic, are necessarily projected by curve lines, of the same kind in all maps where the meridians are not parallel. This is demonstrated by Fig. 41, in which we see a half of a hemisphere projected on the plane of the equator. Let P be the north pole, AMB the equator; the right lines drawn from the centre to the circumference are meridians, and the concentric circles represent the parallels. Supposing the navigator wishes to go from C, a point of the equator right north-west, the course of his vessel must constantly make with the meridian of the place, or with the line north and south, an angle of 45 deg. (an. meas.) Supposing him to be arrived at G, the meridian line GNP, preserves no longer its parallelism with the meridian CG; if he continues his route north-west, keeping always the angle of 45°, he will reach the point H, to the point from J, and will thus describe the loxodromic curve CG HI, which constantly approaches the pole, without, however, ever reaching it. The greater the constant angle under which the route cuts the meridians, the longer the loxodromic curve becomes, as is seen in Fig. 41, by the line CRS. It is plain that mariners, who must direct their courses on these lines, cannot conveniently trace on these maps, neither the road they have made, nor that they have still to run, on account of the difficulty of measuring with the compass the arc of a curve. To obviate this inconvenience, they have endeavoured to contrive a projection of maps, in which the meridians should be right parallel lines.

The development of a cylinder immediately presents itself to the mind, as the means of obtaining such a projection. When we merely wish to trace a zone of very little extent in latitude, it is evident that the spherical zone may, without any sensible error, be represented by the development of a cylinder, either inscribed, or circumscribed on that zone, and the axis of which coincides with that of the globe. The meridians which will result from the sections of the cylinder, by planes passing through its axis, are represented by right lines parallel to that axis; the planes of the parallels cut the cylinder according to circles parallel to its base, and which become right lines in the development. Such is the construction of flat maps, the invention of which is falsely attributed to Don Henry, Infanta of Portugal, since Marinus of Tyre, anterior to Ptolemy, condemns their use, and has attempted to modify them.† Their defects are analogous to those of the conic projection; they are even more considerable; for, in the latter, one may give two parallels their true length with respect to the degrees of latitude, while on the flat map this proportion can be observed with respect to one only; namely, for the inferior, in the development of the circumscribed cylinder, and for the superior in the development of that which is inscribed. It is true that one may avoid this inconvenience, by employing a cylinder constructed on one of the intermediate parallels, which would be partly inferior, and partly exterior to the sphere; in this manner, the extent in longitude would be exact towards the middle, but the error would be divided between the two extremities. Cylindrical projections have even been attempted, in which the basis of the cylinder would be any vertical circle whatever;‡ but we shall not mention them, and shall merely observe, that the parallel which serves as base to the cylinder, may be placed so as that the area of the development shall be equal to that of the spherical zone.

The tracing of flat maps is effected without difficulty, as soon as the position of the terrestrial parallel to be developed is fixed; it only remains to give to the degrees of longitude on this parallel, the size they ought to have with respect to that which is assigned to the degree of latitude.

‡ Textor, dans Zach, Corresp. xvii. 190.
The line HG, Fig. 42, being supposed parallel to the axis CP, and equal to the development of the arc BF, will be the meridian of the map destined to represent the zone comprehended between the parallels of the points B and F. The development of the mean parallel, the radius of which is E e, will give the degrees of longitude. This figure shows the defect of the map on the extreme parallels, since the radius G g is smaller than B b, and the radius H h larger than F f.

These maps can only serve for very small parts of the globe; the least defective are those which represent the regions near the equator, because at a little distance from this circle the cosines of the latitude do not vary much. D’Anville made use of them in such a case, but it was almost unique.

Nominus remarked, towards the middle of the 18th century; the defects of flat maps. Mercator, who had just introduced the stereographic projection for maps of the world, considered that mariners do not employ maps to know the figure of countries, but only to trace exactly, according to its length and direction, the course they have made, and to determine the distance they are from different points of the coasts, with the course they must hold to reach or avoid them; he invented, according to this principle, in 1569, the projection of reduced maps, which perfectly satisfies these conditions, and of which Wright, Gregory, Halley, and others, discovered the mathematical theory long after. The meridians are here parallel right lines, equidistant and cut at right angles by the parallels to the equator; but the intervals which separate the latter, increase as we advance towards the poles, in an inverse relation to that which the diminution of the degrees of longitude, (Fig. 43.) follows on the globe. Hence it results that the distances in longitude, measured on each parallel, have, with respect to the distances in corresponding latitudes, the same relation as on the globe.

The tracing of these maps has no difficulty but the construction of the scale of latitudes, for which tables have been long since calculated with much care, and even with an allowance for the flattening of the earth. They bear the name of tables of increasing latitudes, on account of the augmentation which the length of each degree of latitude has in these tables in proportion as it approaches the pole. As the principles according to which these tables are constructed cannot be rigorously explained without the aid of the integral calculus, we shall confine ourselves to an observation on the nature of reduced maps, and shall indicate hereafter a simple enough method to arrive at the construction of these tables by approximative means.† It is evident that we must not look in them either for the relative extent of countries, or for the exact image of their configuration; for this projection augments considerably the regions placed towards the poles, though in other respects it shares with the stereographic projection the property of preserving their similitude to infinitely small portions of the globe; but these defects have no inconveniences in maps, which should only be considered as instruments destined to resolve geographically the principal questions in navigation, which they do with the greatest exactness and facility, by means of geometrical formulas given in treatises of navigation.

It still remains for us to point out various methods of tracing maps, which have not the development of a figure for their basis, but only calculations of proportion.

The most remarkable projection of this kind is that invented by the celebrated geometer Lambert,§ and since examined by an Italian author.|| The principal condition of this projection is to represent, by equal spaces, regions of equal extent. To construct the map of a hemisphere it is conceived to be divided into semi-spindles, by planes brought through its axis; and on the centre of the great circle perpendicular to this axis, another is described; the area of which may be equivalent to that of the hemisphere. It is easy to see that each semi-spin-

† Mollweide, dans Zach, Corresp. xiv. 490.
‡ See Note, p. 65.
The operations of Cassini, to determine the figure of the earth by the measure of the degrees of the meridian, and the parallels, gave rise to a very important kind of projection, being that according to which the great map of France, the finest geographical work ever executed, is constructed. §

When it was attempted to measure a degree of longitude, the difficulty was experienced of tracing exactly on the earth a parallel to the equator. In fact, if, by a line directed by means of vertical pegs, and perpendicular to the meridian of a place, we determine a series of points, it is evident that, supposing the earth spherical, they

‡ Fournier, Hydrogr. I. xiv. ch. 30.
§ Cassini, Acad. des Sciences, 1745.
will belong to the great circle determined by the vertical plane, drawn perpendicularly to the meridian in question, and which, on the earth, answers to the celestial circle, named first vertical. The parallel soon separates from this circle, which it only touches at the point where it cuts the meridian. In a spheroid, the curve perpendicular to the meridian has a double curvature, and an inquiry into its properties has occupied several geometers.\footnote{Mém. de l'Acad. des Sciences, 1733.}

The meridian and its perpendiculars being the lines most easily traced by astronomical and geodesial operations, it is to the meridian of the observatory at Paris and to its perpendiculars that the points of the map of France are immediately referred; their latitudes and longitudes were only concluded \textit{a posteriori}, and by calculation.\footnote{Du Sejour, Traité Analytique des Mouvements apparents des Corps célestes, t. ii., and the Description Géométrique de la France, by Cassini.}

\textbf{To form an idea of the manner in which this projection represents the terrestrial spaces, we must observe, that the great circles perpendicular to the meridian, (supposing the earth spherical,) all cut each other at the poles of this meridian, and consequently converge towards each other, while, on the map, where the same meridian is a right line, they become parallel among themselves. It thence results that the portions determined by two circles perpendicular to the meridian are represented by rectangles of the same length, but broader towards the extremities. Thus their distances and their areas can be measured immediately on the map of France only by approximation; and though the extent in longitude is not considerable enough for the convergence of the perpendiculars to the meridian to induce an important error,\footnote{They extend in the extremities of Cassini's France to 150 toises in 40,000. Barbié du Bocage. Topogr. Mem. du Depot de la Guerre, 1, 23.} we must be cautious in the employment of this projection, which is only excellent for the immediate assemblage of trigonometrical surveys. Several German geometers have calculated formulas and tables to render its use more sure, and correct its errors.\footnote{Zach, Correspond.}}

It is to arbitrary developments of the globe that we must refer the construction of the \textit{spindles}, which are traced on paper, to cover globes that are not very large. The surface of the globe is divided into 18 or 18 parts, according to the size of its diameter, by drawing meridians, of 30 to 30°, or of 20 to 20°. The space comprehended between two of those meridians, having very little curve in the direction of its breadth, may be considered as forming part of a cylindrical surface circumscribed to the sphere, according to the meridian which divides it into two equal parts. This meridian is developed, and by carrying perpendicularly (like ordinates) on each side the semi-breath of the portions of parallels comprehended between the meridians which terminate the spindle, we obtain the form of the latter: Sometimes it is truncated at the two extremities at 15 or 20 degrees from the poles, and these two zones or spherical domes are traced apart, considering them as if they were flat. This process is only an approximative mechanism, which facilitates the fabrication of globes, and deserves no farther notice. Let us only express our wish that some able mechanic would invent the means of giving more exactness to the engraving of globes, at the same time that the advantage of the multiplication of copies is preserved.
BOOK VI.

Continuation of the Theory of Geography. Continuation and end of the Theory of Geographical Maps. Of the choice and assemblage of Details.

In vain would geometry have taught us so many and such ingenious methods of tracing maps in a manner conformable to the wants of geography, if we could only insert in these pictures of the globe incomplete images of the different countries. All our projections would then be only what the rules of perspective are to a sign-painter. It is the novelty, the exactness, the richness of details, which distinguishes a learned map from those unformed sketches, the contrivance of which is confided to ignorance. To compose a good map, we must know how to choose, and to assemble the details which will form its merit.

Choice of projections of the scale.

The first object of consideration for the designing geographer is to determine the kind and the object of his map. Is it general? does it embrace a vast portion of the world? He chooses a large paper, and employs a projection such as the different modified conical projections, which hardly alter the configurations. Does he wish to construct a map of the world, destined for the studies of astronomical geography? He uses the horizontal stereographic projection. Is it to be applied to physical geography? He prefers the development of it on a single meridian, placing the new continent to the right, not to interrupt the connexion of the continents. In special maps, where an empire or province is traced, the choice of the projection seems more indifferent, because the defects of all the methods diminish when the map embraces only a small portion of the surface of the globe. Nevertheless there are advantages and inconveniences which flow from the nature of projections, and which we have indicated in the preceding book; there may be also one projection which, with respect to the paper, will oblige the geographer to admit into his map more countries foreign to his principal object than another; but it is essential to avoid such projections, because they diminish the scale of the map; that is to say, the proportion between the image and the object represented. Mariners who point their route on maps, say, instead of great and small scale, great and small point, an expression properly applied only to reduced maps.

The impossibility of admitting into a map, even of very great dimensions, all the details relative to topography, necessitates a choice among those details, which, however, it is impossible to subject to general rules. One map is destined to show the political limits of states, and the boundaries of provinces, with their chief towns; another is destined to show the chains of mountains and the branches of rivers; and these two classes still admit of sub-divisions. A military map is, in reality, only a perfect and detailed topography; the warrior should find in it every road in which he can advance, either with artillery, or only with his musket; every ford in a river, every defile by which he can turn the position of an enemy; in a word, these maps should exhibit all the localities which can influence his operations; the number of good military maps is therefore very limited. It is in great part to the excellence of those supplied by the Depot de la Guerre, that the French armies owe their successes. A learned geometer, deeply skilled in the art of war,* had made a list of the French generals, in which he estimated their talents; opposite an illustrious name was often this note, He is well acquainted with the map. The importance of geographical studies for the leaders of armies was felt by the ancients, and the Romans knew well, “that localities frequently influence victory more than courage and numbers.”†

Other branches of government equally require maps, especially consecrated to a particular object. Those of the waters and forests, for example, should always be consulted as a beacon in cultivation; and in this respect the states of Germany have

* M. Carnot. Comp. Zach. Corresp. Astron. i, 520,
† Vigit. De Guerra Milit. ii, 189.
hitherto had advantages over France. What a military map is for the ground, nautical maps are for the seas; they even interest the physical geographer, as they represent, though very imperfectly, the irregularities of the bottom of those basins covered with water which occupy so vast a portion of the globe. The rocks, reefs, sand-banks, scattered through the seas, are sub-marine mountains and hills; and a complete knowledge of them would throw great light on the geography of the terrestrial mountains. Unfortunately nature seems to forbid the hope of our ever completing that part of geography. "Navigators," says a celebrated mariner, can only answer for the routes they have made, or the soundings they have taken; and it is possible, that, on the finest seas they may have past over banks or shoals where there were no breakers (that is to say, whose existence was not betrayed by the foam of broken waves). The maps of rivers present in detail all the branches of a stream, and all the circumstances of its course. They are composed with nautical maps, under the general appellation of hydrographic.

There are also maps of botany, mineralogy, geology, and even of zoology, the object of which is to show the geographical distribution of the productions of nature; there are some which their authors decorate with the name of historical, and which are intended to show the migrations of nations, and the changes of sovereignty; finally, there are few objects, the reduction of whose relations of locality has not been attempted in the form of maps. But the composition of these sorts of tables is subject to rules derived from sciences foreign to geography.

All maps are not intended to advance our knowledge by the publication of new details, or by greater exactness. Public instruction requires elementary maps, the merit of which consists in rendering, in a faithful and complete manner, truths already known, and in which it were to be wished a system of engraving might be adopted, more elegant and less costly than what the refined taste of the public requires. The essential point in an elementary atlas, is not to display on a great scale maps full of details, and of minute exactness, but rather to exhibit, in a series of small but numerous maps, the complete assemblage of the principles of the science.

After having duly reflected on his object, the designer has to collect and combine the details necessary to fill his plan.

Good astronomical observations here hold, without dispute, the first rank; but how difficult is it to judge whether an observation be good! How many inconsiderate changes have been introduced into geography by the employment of longitude badly observed or ill calculated! Above all, how many errors are owing to the careless use of the chronometer! We have indicated the different methods by which the astronomer ascertains the geographical positions of terrestrial places; but the value of an observation does not depend solely on the goodness of the method; to appreciate it we must know all the processes, and all the circumstances, and submit these details to a minute criticism, and to careful calculations. In a word, we must imitate the example of Oltmanns, in his Researches on the Observations of Humboldt. It is in studying the work of this geometer, that geographers may learn all the rules of sound criticism with respect to astronomical data. The true geographer ought to be almost an astronomer. Thus we every where recognise that fraternal tie which unites all the sciences by rendering them necessary to each other!

The second and the richest source from which geographers draw the details of their maps, is triangulation; we have given an idea of it in speaking of the measurement of the earth by Picard.

When the position of a certain number of points has been fixed, either by astronomical observations, or trigonometrical measures, it is easy to connect with these points the particular plans taken on the ground, and which exhibit the localities in detail. But, as the contours of the ground depend in great part on principles...
indicating merely some practical means employed by geographers for constructing a topographical map from partial surveys. The reader who wishes for detailed instructions or trigonometrical subjects, cannot do better than to have recourse to the excellent Treatise on Geodesy by the learned and ingenious Puissant.

When we wish to construct a map by connecting together plans taken separately, it is necessary that each of these plans should have at least two points in common with that to which it is to be joined; or, which comes to the same, there must be a line determined both in size and position in one which can be applied to a similar line in the other. Then, by drawing on the paper destined to form the general plan that directing line, so that there may be on each side a space proper for comprising each of the plans, it will be easy to refer to this general plan all the points that have been determined on the partial plans, by attaching them, by triangles, to any two points taken on the directing line, or combining them with any point, the position of which has been fixed. If there is to be a reduction, as almost always happens, the triangles of the topographical plan must be made similar to those formed on the basis of the surveys; but so that the sides of the former may be to those of the latter in the relation which the reduction is to be made between.

When the sheets of the surveys are orientées, that is to say, when on each sheet the direction of the meridians, either the true or the declivitous, has been marked, the points of each plan are referred to the meridian, and to a perpendicular brought on that line by a point common to two contiguous plans. The distances are measured from all the points to each of these right lines parallel with the other; and, either preserving these distances as they were found, or reducing them in the relation required, they are brought on the meridian, and the perpendicular drawn in the topographical plan to represent those which are common to the collected plans. This method of constructing geographically the general map after the plans of the surveys, has given rise to a mechanism of reduction known by the name of trellis; it is very convenient for bringing together the details of the map, but should not be used for fixing the position of the principal points. This operation consists in dividing the plans that are to be united in squares, by lines parallel and perpendicular to that which is common to those plans; the more these squares are multiplied, the better we perceive the place occupied by each square by the points and turns contained in it, the more easy also it is to refer them to the corresponding squares traced on the plan of reduction or of assemblage. Fig. 46 represents this operation. The leaves ABCD, EFGH, having for common lines the right lines CD and EF, are divided into squares, the sides of which are parallel and perpendicular to those right lines; the plan of assemblage a b f a, b divided in the same manner, with respect to the line c d, which represents the common right line, but the sides of each square are the halves of those of the plans ABCD, EFGH, so that the objects marked on these leaves are reduced on the plan of assemblage to a half of their former dimensions, and to a space which is only the quarter of that they first filled. To reproduce the design traced on each of the primitive plans, either it may be imitated at sight, in the corresponding squares of the leaves ABCD, EFGH, or else, for more exactness, marks are made on each of the sides of the latter, and transferred to the others. If we wish to preserve exactly the designs that are to be copied, we may place upon them a very smooth piece of glass, and of equal transparency, on which squares are traced with a diamond, and afterwards two perpendicular lines are made to coincide together on those which are to serve for the assemblage of the collected plans, or on the points which determine them.

Chorographic maps. After having thus formed the topographical plans by the assemblage of the various plans of the surveys, chorographic maps are formed from them, not only by assembling the plans, but by submitting them likewise to the laws of the projection that has been adopted. For this purpose, the meridians and the parallels are traced on those plans in right lines, as those circles are when only a portion infinitely small is considered. The corresponding quadrilaterals are also described on the frame of the map to be constructed, but conformably to the laws of the adopted projection; there is then nothing farther but to design in these quadrilaterals what is contained in the squares comprised between the meridians and the pa-
parallels of the topographical plans. If we wish for extreme precision, we take, with respect to the sides of the squares, the distances of the principal points enclosed in them; these distances are converted into subdivisions of the degrees of longitude, and similar ones are taken afterwards, setting out from the parallel and the meridian contiguous to the corresponding quadrilaterals on the map.

Two circumstances may stop the geographer in this operation. It may happen that the topographical plan may not be orienté, or having been so by the direction of the magnetic needle, only we do not know what was the declination of the compass at the time when the plan was taken and reduced. This element may be supplied when the plan contains two points, of which the respective position is known, or, by joining these two points by a right line, we have the angle which this right line makes with the meridian, and consequently, we may fix its place with respect to the meridian, or construct, by means of the given angle, the meridian of the plan. We may recover also, by similar means, the scale of a topographical map which is wanting; for, knowing the distance of two points of this map, we have only to divide the line which joins these points into parts proportional to the itinerary measures contained in this distance; then it becomes the scale of the map, and shows the respective distances of all the other points.

Chorographic maps are reduced into general maps by a process analogous to that we have just explained: we bring on the quadrilaterals formed by the meridians and the parallels of the general map, what is contained in the corresponding quadrilaterals of the chorographic maps we wish to assemble. But here the necessity of geographical optics appears; here it is that the designer, quitting the humble part of a copyist, shows, by his knowledge and researches, and especially by his intelligence, the judicious distribution of topographical data. Sometimes it is errors which are to be corrected, sometimes deficiencies to fill up, most commonly these two inconveniences are combined together.

It may happen that, in the topographic plans employed in the construction of chorographic maps, there may be errors common to all the points, as distances too small or too great in the same direction, and these errors may have been accumulated on the chorographic maps, and afterwards on the general map; the great spaces which it represents are then either considerably narrowed, or considerably lengthened, without the geographer himself being able to perceive it. In this case, the geographer will connect the details of the general map with the different points, the latitudes and longitudes of which are known by astronomical observations; these points determine on the map spaces into which the intermediary details will necessarily fit, sometimes the excess or defect that is found may be attributed to the imperfection of the mechanical processes employed for the assembling of the maps; but then there is no other way but to divide the differences among all the points of each partial plan, which will render the errors less sensible.

The geographer unfortunately is but too often deprived of observational and trigonometrical surveys; these are only a few countries, as France, England, Denmark, Holland, and Hungary, which have been surveyed trigonometrically in their whole extent; there are still some European provinces where no astronomers have been. Geography is obliged, therefore, to have recourse to itinerary distances, always very difficult to estimate in a rigorous way, even when we know exactly the value of the measures in which they have been calculated. This science is as yet very little advanced, either on account of the immense number of measures to be compared, or on account of the variations to which they are subject, or, finally, with respect to many ancient measures, because the authentic modules are wanting.*

We have already seen that there are various opinions on the manner of estimating the studies of the ancients, and that it is still doubtful if they should be considered as astronomical modules or local measures. We find in the

ancients one passage in three which does not allow us to admit the first supposition, unless by adopting the most violent and innumerable corrections,⁴ or by the admission of an improbable mixture of different stadia; in the second hypothesis, which to us appears preferable, we do not yet perceive the basis from which to set out; we are on the right road, but surrounded with profound darkness. However, this obscurity is better than the false glimmer of an hypothesis void of proof; and, besides, why should we be surprised at the doubts in which ancient metrology is enveloped, when we know that even modern measures present cases in which it is difficult to reduce them? Undoubtedly we know exactly the relations of the measures most commonly used in capital towns, and cited in the works of the learned: we know, for example, the value of the English mile, and of the nautical mile, the degree of the meridian containing 69 of the former and 60 of the latter; we know also that the English foot, being equal to 0.3384 of the French foot, is 11 inches 3 lines, 1, and that the yard used in England for measuring short distances is three feet English; we consequently conclude that the yard represents 33 inches, 7 lines, 3 of France. Similar reductions give the means of converting into each other the measures generally in use in great states; but there are besides, in the provinces, local measures little known, and with respect to which multiplied researches must be made to obtain their relation with the others, either by comparing their components with the best fixed unities, or by setting out from some distance valued in local measure, and known in geographical measures. In France, for example, nothing formerly varied more than the length of a league between one province and another. The perch even, which serves for surveying, was sometimes 22 feet, sometimes only 20. The new metrical system will prevent any such confusion in future.†

† Since this was written, M. Ucker, a professor at Gotha, has attempted to prove, in a learned discourse, that the ancients only used one kind of stadium, that of Olympia, and that all the differences and contradictions in point of measures proceeded from the imperfect means they were obliged to employ. Etc.

⁴ See the Notes of the French Translation of Strabo.
of the route is not known; the latitude of the point of arrival is then a substitute for it. The construction on the flat map consists, in this case, in drawing through its latitude the parallel of the point of arrival; in taking on the scale of the map the number of measures assigned to the distance gone over, and to describe with this distance as radius, and from the point of departure as centre, a circle which will cut in the point of arrival the parallel previously drawn. If we wish to resolve this question by calculation, we must convert into itinerary measures the difference of latitude between the point of arrival and the point of departure; we have then in the rectangle triangle formed by the meridian of the point of departure, the perpendicular let down from the point of arrival and the route, two known sides, namely, the length of the route, or the hypothenuse, and the part of the meridian comprised between the point of departure and the perpendicular of the point of arrival; by calculating the length of this perpendicular, we find the distance of the points of departure and of arrival, taken on the line east and west, whence we conclude, as above, the difference of longitude.

When the route gone over is of a considerable length, it becomes necessary to take the curvature of the earth into account. The construction of the two preceding problems requires, with respect to the reduction of the routes gone over in the direction east and west, in degrees of longitude, the employment for the tables for measuring latitudes, which contain the results of the trigonometrical calculation, by which the case may be resolved. For the first question in which we have seen above, (p. 57.) that it is only by the help of the integral calculus that we can arrive at the exact construction of the tables of increasing latitudes; but geographers commonly make use of a very simple approximative means to reduce the curve to a right line, by considering the route gone over as divided into parts small enough to be regarded as right lines. In fact, since the points of the compass set all the meridians under the same angle, we may conceive that, through the extremities of all these subdivisions, may be brought meridians and parallels; thus will be formed, on each of these parts, a rectangle triangle, in which the sides of the right angle will be the differences of latitude and longitude, and the part of the route gone over will form the hypothenuse. But rectilinear trigonometry supplies the means of calculating this triangle, since we know the hypothenuse and an angle. Let ABC, Fig. 47. be one of these triangles; we shall have by the principles of rectilinear trigonometry, AB : AC : : 1 : cos. BAC; whence we shall conclude AC = AB cos. BAC. Now, as the angle BAC is the same with respect to all the meridians which traverse its route, each difference of latitude, from one small triangle to the other, will offer the same factor, and the sum of all these differences, which is evidently the total difference in latitude, between the point of departure and the point of arrival, must be equal to the sum of the portions of the route, that is to say, to the total length of this route, multiplied by the cosine of the angle which its direction forms with the meridian. We shall be in the same case as when we neglect the curvature of the earth, and the same means must be employed to reduce the route to degrees.

If we now wish to know the difference in longitude corresponding to BC, it is by means of the latitude AC that we can calculate it. We shall have the proportion AC : BC : : 1 : tang. BAC, from which we shall conclude, BC = AB tan. BAC. To know how much this difference makes in aliquot parts of the equator, we shall design by L the latitude of the parallel under which is situated the point A, and we shall have this proportion, BC : x (or to the corresponding part of the equator) : : cos. L : 1, which we can transform into this; x = --

changing for each portion of route.

Let us now conceive all these portions so small that the difference AC is equivalent to 1' of a great circle of a globe, and let us observe that 1' = sec. L; we may substitute to that expression this: the difference in longitude = 1' x sect. L tan. BAC; then we shall find the sum of the factors 1' x sect. L. By adding all the secants from minute to minute, from the latitude of the point of departure to that of the point where the route terminates.

As the arc of 1' is not rigorously a right line, the process is only approximative; if we wish to render it more exact, by taking the secants from second to second, we should fall into extremely long and fastidious operations. It is to the integral calculation therefore we must have recourse. See the excellent Traité de Navig. of M. Dubuguet, b. I. chap. 3 and 4, &c.

Vol. I. — I
the direction of the route is known, after having obtained, as above, the latitude of the point of arrival, we must take, in the table of increasing latitudes, the difference of the numbers which answer to this latitude, and to that of the point of departure; it must be multiplied by the tangent of the angle corresponding to the point of the compass, and the result will be the difference of longitude expressed in minutes of a degree. In the second question, the angle of the point of the compass is not given; but it may be calculated by the difference of latitude reduced into leagues, and by the course, which are then the data; the difference of longitude is afterwards concluded by the rule first indicated. Supposing, for example, that a vessel set out from a point situated at 42° 3' of north latitude, has gone 252 marine leagues to the north-east 1/4 east: we remark in the first place, that this point of the compass forms with the meridian, on the east side, an angle of 56° 15', and we thence conclude that the route answers, on the line north and south, to 140 leagues; which gives 7° of difference towards the north. As this difference is of the same denomination as the latitude of the point of departure, it must be added to the latter, to obtain that of the point of arrival, which, consequently, must be 49° 3'. We then look, in a table of increasing latitudes, for the number which answers to 49° 3', namely, 9386.7; then for that which answers to 42° 3', and which is 2785.8, and we take the difference = 600.9; to the logarithm of this difference is added that of the tangent of 56° 15', the angle of the point of the compass, and the result which answers: to 899', or to 14° 59', is the difference of longitude towards the east.

Errors of itinerary distances. — These rules can only lead to exact results, in so far as they are applied to data exempt from error. But this is not always the case, especially in ancient geography, and even in modern travels down to the 16th century. In the first place, the direction of the route, often ill observed by land, is still more so at sea. If it has been marked according to the rising of the sun, the diversity of the seasons often renders it uncertain; if it be indicated according to the compass, it may be affected by the variation of the needle, which has not been always observed. Navigators were exposed to another cause of error. They did not allow for the angle, which the real route of the vessel forms, with the direction of its keel, wherever the vessel receives the impulsion of the wind sideways; for, in this case, a part of this force tends to push it out of this route, while it is kept in it only by the action of the rudder, and by the great resistance which the surrounding fluid opposes against its sides. This angle, rather difficult to determine, was generally neglected by the navigators of preceding ages. There are also great uncertainties in the measure of the distance gone over. The ancients were in the habit of reckoning it by the number of days of a march, or of a voyage, and we have seen, in the history of geographical discoveries, how difficult it was to fix the value of those days, which, expressed in different or vague terms, must always vary according to times, seasons, regions, the mode of travelling, and the size and form of vessels. Even the most learned combination of all these circumstances, only precludes us mean values the more probable, as a greater number of sure and authentic facts have been combined.

Geographers have thought that by studying and estimating the simouosities of roads, in countries intersected by mountains or by considerable streams of water, and also in plains, we might arrive at general principles on the augmentation of length which these windings occasion, and which of course must be subtracted, if we wish to reckon the distances on the same line. The Arabian geographer, Al-Biruni, concluded that, in the East, itinerary distances should in general be reduced a fifth. * D'Anville finds, on the contrary, that in Italy and Egypt, and, in general, in the world known to the Romans, we need only deduct an eighth. † The very nature of the question evidently renders a general solution impossible.

We may say the same of the discussions which have attempted to fix the value of days of marching and sailing. When Herodotus † fixes a day's sailing, during the day, at 700 stadia, while Scylax§ only admits 500, it may be right to consider this difference as merely the result of the employment of stadia

† D'Anville, Consider. sur la Geog. 44—47.
‡ Herod. iv. 46.
of a different value; that of Scylax being probably very near the stadion of 883 to a
degree, and that of Herodotus, being the Egyptian stadium of 1111 to a degree,
an ancient measure. But the Greek geographers themselves have expressly informed
us, that their days of navigation varied according to the places, times, and means
employed.

The combinations that have been made of such maritime distances,† should there-
fore be considered only as approximative, and in no respect superior to the data which
result from the physical and historical descriptions of countries that have been visited.

How, indeed, could we expect to fix the value of the ancient days of
navigation, when it is notorious that we hardly know that of the naviga-
tors nearest our own times! The ordinary means for estimating distances at sea, are
still subject to much uncertainty. To estimate the distance gone over by a vessel,
requires a knowledge of the effect of currents, which act at once on the vessel and
on the log, which sailors throw into the sea, and which serves as a fixed point for
them, from which they count how much they advance in a given time, commonly
half a minute. This motion is measured by means of a cord divided by knots, the
interval between which answers to the 120th part of the hour. But when the vessel
and the log are subjected to the action of the same current, the distance by which
the vessel exceeds the log, only indicates the relative quickness of the ship with re-
spect to the current; and we have still to determine the velocity which this current
impresses at the same time on the log and on the vessel. Such is the principal ori-
gin of the differences, often very considerable, between the place where pilots think
they are, according to the estimate of their routes, and that where the vessel really
is. In consequence of these errors, the islands discovered by the Magellans, the Men-
danas, the Quiros, have been so ill placed in longitude, that geographers have had
great difficulty to ascertain them. We have seen, if we may say so, So-
| Example
| drawn from
| Solomon's
| Islands.
| through near a quarter of the circumference of the globe. None of the navigators
| who went over these parts after him, beginning with Quiros, his companion, and who
| followed him immediately, could break the charm which seemed to forbid to man-
| kind the access to a land which the imagination, stimulated by obstacles, clothed in
| the most brilliant colours. More sober minds began to doubt their existence; when
| Dalrymple and Fleuriou showed, that they must be identical either with the New-
| Britain of Dampier, or with the land of the Arsacides, and the adjacent isles visited
| by Bougainville and Surville. In the latter hypothesis, the latitudes first assigned
to them were not very exact; but the currents which go from east to west, in the
great ocean, had accelerated very much, without his being able to perceive it, the
vessel of Mendana, who reckoned himself to be only 1500 Spanish leagues, or
about 1700 marine leagues of France, from the coasts of Peru, when he was really
near 2,400.

Since the frequent observation of longitudes has permitted a comparison, in many
points, of the distance estimated with that really gone over, navigators who have
sailed round the world, have collected and multiplied very important data on the ve-
locity of currents in the various seas of the globe.†

Astronomical observations, trigonometrical surveys, and itinerary dis-
tances, are the three elements of every map entirely original. But, com-
| Employment
| of ancient
| maps.
| monly, we do not find these three elements completely united, especially for coun-
| tries remote from Europe; we are therefore reduced to repeat what other geogra-
| phers have published with respect to the parts on which we have no new informa-

When he has established the agreement of the measures, or scales employed in
the various maps which he wishes to analyse and discuss, he is enabled to construct
a scale for those that have none, provided the latitude and longitude of
every point whatever of those maps be known to him, either immedi-

* Ptolemaée, Geog. i. c. g. Marcian Hersccl. p. 67, (tom. i. Geog. Minor.)
† See the authors cited in the tables of this volume.
‡ Voyage of Captain Marchand, drawn up by Fleuriou.
ately, or by their distances from given points. He can, consequently, compare, by the positions which they assign to those same places, the maps which represent the same regions; and this manner of proceeding, is at the same time the surest and most commodious, as it facilitates the observation of the differences resulting from projections. If the geographer finds the same point placed under different longitudes and latitudes in several maps, to appreciate these different data, he must examine how these maps present other essential circumstances; it is then that he should compare the respective situations of places with respect to determined astronomical points, and that he ought to scrutinize minutely the configuration of shores, the trace of rivers, of chains of mountains, and of high roads, and the indication of the limits of territory. A similar examination teaches him in what his maps differ, and in what they agree; he is left to choose between them. The latitudes less difficult to observe than the longitudes, are generally better fixed on maps, drawn according to the relations of travellers of rather ancient date. The common defect of maps, anterior to D'Anville, is to augment much the distances of places in the direction east and west. The farther the points in question are from the principal meridian, according to which the longitudes of the others have been determined, the more considerable these errors become. This strikes the least skilful eye in the maps of Ptolemy, with respect to the differences of longitudes which they give between Alexandria and the other towns situated on the borders of the Mediterranean. The absurd opinion which places Sessa in China, and other similar errors, are only due to the false extension of Ptolemy's maps in the direction of longitude. But we are indebted to this same fault, repeated in the maps of the middle ages, for the fortunate error on the extension of the islands of Japan to the east, which gave Christopher Columbus courage to cross the Atlantic.

The maps of Sanson, Jaillot, and others, formed at the end of the 17th century, and admired by some bibliomaniacs, likewise dilate all the countries in the direction of the longitudes. Such maps, however, afford useful materials, when the positions are corrected in the direction east and west, by showing proportionally to the distance from the principal meridian, the differences between the longitudes which these maps give, and those which result from the new determinations.

Too often the geographer has no decisive reason for choosing between the different positions assigned to the same place by several maps. Surrounded by uncertainties, he has only then to take the middle, according to the rules of arithmetic, between the latitudes on one side, and the longitudes on the other, as they are given by the maps. He then places, on that which he wishes to construct, the principal points, according to a reduction, the process of which it would be superfluous to indicate. Sometimes the geographer is obliged to compare maps of detail by the distances they give between the same places, distances which have been most frequently the elements of the construction of those maps, and which, for this reason, it is often essential to ascertain. He may then choose, on each of those which he wishes to compare, two corresponding points, determined with exactness, and from which he can measure the distances to all the others. All these distances being brought to one single scale, he traces on the paper a line, which represents the distance from the two principal points, according to the scale he employs. On this line, serving for base, he describes, with the distances drawn from each map in particular, triangles, the summit of which answers to the place assigned by each of these maps to the points he examines. Two different determinations of the same point being joined by a line, the mean position will be found on the middle of this line. Three determinations give a triangle, and a greater number constitute a polygon. In these cases, the mean position is found by seeking the centre of gravity of the area of this polygon, its angles being considered as measures equal to unity. This is not the place to give the demonstration of this rule, founded on the principles of statics, and on the theory of mean values; we may, however, be allowed to remind the reader that, in the case of a triangle, the centre of gravity is at the intersection of the right lines, from the summits of two angles, to the middle.

* D'Anville, Considerations, p. 11, sqq.
points of the opposite sides. This easy construction only is wanted in the most ordinary case, when there are only three determinations. The mean distances from one point to two others, the position of which is given, being once fixed, it is easy to determine the latitude and longitude of this point, and to place it afterwards, by their means, on the map to be constructed, whatever be its projection. When the combined points embrace a space so little extended that the projection is not sensible, the labour is abridged by transporting to the map, by means of the trellis, the results of these comparisons.

The mathematical elements of a map being determined, it still remains to introduce into it the historical, political, and physical details, of which its extent and object render it capable.

The objects of common geography require the employment of only a small number of signs, easily understood, and the sense of which was explained by ancient geographers, in a legend placed on one of the sides of the map; a custom which ought to be resumed in elementary atlases. These signs indicate the position of places, and are modified according to the importance of these places, and the rank which they occupy in civil, military, or ecclesiastical government. When we wish to measure distances on a map, we must remark the very small circle or cipher, which is either adjacent to, or inscribed in each of those signs, because it is the central point of this circle which fixes the geographical position of the place. When the map descends into a great detail, the principal features of the plan of large towns are expressed, and then care should be taken to mark on this plan, that point to which the geographical position is referred. A simple line shows the course of small streams, and the two banks are indicated separately, only when the dimensions of the bed of the river can be appreciated by the scale of the map; which is most frequently at the mouth, or at places where the stream is dotted with islands. The sea-shores are indicated by a very clean line, bordered with hatchings. In geographical maps, these hatchings, exterior with respect to the land, may be conceived to represent the undulations of the sea on the coasts; while, in marine maps, the hatchings done on the land, paint to the eye the activity of the coast. Navigable canals are represented by straight lines joined angularly, which distinguishes them sufficiently from natural streams of water, indicated by undulating lines. Roads are often marked by two fine parallel strokes, sometimes by simple lines, continuous, or punctuated; the latter, however, are most commonly reserved for marking the limits of states and their provinces, and for this purpose the size and form of the points are varied.

To render more striking those political divisions which so often form an absurd contrast with natural limits, the monotony of the engraving is relieved by varied colours. Some German geographers have preserved the ancient French method of spreading the same tint over a whole region, which they wish to distinguish from others. This mode of illuminating, has perhaps less elegance than that used now in France; but it has the advantage of showing better the extent of regions, and the form of their limits: it should be adopted in every elementary atlas.

Some teachers think also, with reason, that the old manner of indicating the towns by little towers, multiplied and modified according to the rank of the place, was preferable in general maps, to the mode prescribed in the Dépot de la Guerre, which consists in representing every object on a geometrical plan; a system, the rigorous application of which, in our opinion, should be reserved for topographical and chorographical maps.

We cannot pass over in silence a point of which, among the French, D'Anville alone felt the importance; this is the orthographical exactness of the names in maps. Good sense dictates the rule of writing each geographical name, as near as possible to what is used in the country it belongs to, and to what is pointed out by sound etymology. A corrupted orthography should only be admitted when the right one would not be understood by the generality of readers. Thus, it is certainly wrong to write Natalea, instead of Anatolia, which is required

† D'Anville, Consid. sur la Geogr. p. 55, sqq.
by the Greek etymology, or Dannemarck, with the German consonant ck, in place of Danemark, which is conformed at once both to the genius of the French tongue and to that of the Danish. It is thus that a certain number of geographical denominations might be brought back to the true orthography. However, a much more considerable number would not admit of this reform. It would be easy, for example, to introduce Ireland instead of Irlande; but, in France, Scotland could never be substituted for Ecosse, as the first name would be unintelligible to most French readers. It is true, that it is rather difficult to practise this rule, with respect to names drawn from languages in which a different alphabet is employed from that adopted in Western Europe. Such is the case with the Russian, Persian, Arabian, Indian names, and others; also with the Polish, in which several letters of the alphabet have a different value from what we give them. This is not the place to examine all the expedients that might be tried to establish, once for all, a geographical orthography, not absolutely fixed, (which would perhaps be useless,) but at least easy to follow and comprehend.*

Signs of phys. cal geography other circumstances. It is desirable to know if a country is covered with plains, or is rough with mountains, naked or wooded, dry or marshy. Designers have introduced signs, either conventional, or of the nature of pictured representations, to express, on trigonometric surveys, and topographical plans, these different circumstances, which, joined with the climate and the laws of meteorological phenomena, determine the physical geography of each country. It is sufficient to cast one's eyes on plans of this kind, to discover the signs employed in them; they are all conformable to the rules of bird's-eye perspective; thus the parts more or less strongly shaded, represent slopes more or less steep, on which the light is lost the more they approach the vertical position. Geographical maps are less calculated to admit of this improvement, especially with regard to mountains; for the scale of those maps is necessarily too small to admit of expressing on them, in just proportions, the innumerable inequalities of ground, from the highest chains of mountains, to hills of the lowest order. Formerly, mountains used to be represented by slight elevations in profile, which supposed the eye of the spectator to be in the plane of the map. At present, they attempt to represent in a bird's-eye view the chains and groupes of mountains, and even the peaks or insulated points which repose in general on elevations more or less considerable, but the whole extent of which presents contours that determine the form of valleys.† The new method would undoubtedly be preferable, if one could preserve a just proportion between the different elevations, and if we possessed all the necessary information for determining, point by point, the level of the ground. But, as long as these elements are wanting, the new method will be as arbitrary and illusory as the old one appears unnatural and unsatisfactory.

The partisans of the plan of representing mountains by a bird's-eye-view, show us the maps of D'Anville, and exclaim, "How vague and insignificant are these mountains, marked with insulated points! All that we see is, that the country they occupy is mountainous; one might as well write down: there are mountains here; nothing indicates the course of chains, their various sinkings, and their connexions, either with each other, or with the islands which form the summits of the chains of submarine mountains, or which traverse the basin of the sea." But, in the first place, there are many other maps besides those of D'Anville, in which the mountains, though expressed in profile, please the eye and satisfy the mind. And we ask, in our turn, if geography has really gained by the admission of all these pretended chains, either terrestrial or submarine, which M. Busche, sen. has created, by supposing arbitrarily that all the basins of rivers are separated by considerable heights. The pretensions of topography have been pushed still farther. A geographical engineer, M. Dupain-Trial, has published a method, by which a geographical map may be made to indicate the elevation of each point of the ground.

* Comp. Langlès, Préface du Voyage de Norden; Volney, sur l’Alphabet Russe, &c.
† Memorial Topographique et Militaire, cab. v.
PHYSICAL GEOGRAPHY.

He observes, that if we join by a line drawn on a marine map, all the points at which equal soundings are marked, this line would give the contour of a section made at the bottom of the sea by an horizontal plane at such a depth below the surface of the fluid, as is expressed by the number of measures contained in the sounding. From this observation, just in itself, he thinks he may deduce a principle for representing geometrically the configuration of the surface of a country. This consists in tracing on the map to be constructed, lines which pass through points placed at the same level, or at the same height, above the surface of the sea; lines which would become successively the boundaries of its waters, if it rose, by any cause whatever, to the level they occupy; as the lines which join equal soundings would become in their turn the shores of the sea, if it sunk by the number of measures marked on those soundings. The heights of these lines or horizontal sections of the ground could be graduated, according to the scale of the map and the steepness of the slopes. On a specimen of maps of France executed according to this plan, M. Dupain-Triél traced in parts almost flat, and near the sea, a line passing through the points elevated 10 toises; then another passing through those elevated 20, and so on from 10 to 10 toises. We see these lines, at first pretty distant from each other, become closer in proportion as the country rises more rapidly. Round the insulated mountains, the line of level, which is marked only for differences of 50 toises, and even 100, come closer the more the slopes are steep. Table-lands are indicated by lines of level, which turn round them. Finally, if we conceive lines which cut the lines of level at right angles, we shall have the lines of the greatest declivity, or those which follow in their descent the waters spread on the sides of mountains.

Though this method of M. Dupain-Triél is not new, having been already proposed by Ph. Buache and others,† it undoubtedly merits some attention. It is evident that it furnishes descriptive geometry with means for resolving problems on the succession of table-lands, the intersection of slopes, and the intervention of basins; problems interesting in the construction of roads and canals. It might offer the means of collecting and putting within the reach of every body a multitude of levellings and observations, made by military and civil engineers, on the heights of mountains, the results of which are confined to the portfolios of government: finally, the advantage to be derived from it would excite travellers, and philosophers residing in great towns, to multiply barometrical observations in order to determine the respective heights of the places where they are made. But, till the elements of such a map are more numerous and more authentic than those which we possess, its execution would only serve to give an air of reality to systematic ideas that are very uncertain. At all events, the confusion which would result from this multiplicity of lines, would prevent any object of political or historical geography from being clearly designed on these maps. We must therefore consign all inventions of this kind to maps, specially consecrated to physical geography, in the same way as the details of hydrography are reserved for nautical charts.

BOOK VII.

Having considered the earth in regard to its dimensions, we must now study its physical characters. This part of our work, which is perhaps the most interesting

* Dupain-Triél, Carte intitulée, Méthode nouvelle pour exprimer sur les cartes les hauteurs, etc. avec un mémoire de M. Du Caila. Paris, 1784. Id. Carte de la France, où l'on a essayé, etc. An. vii.
† Mem. de l'Acad. des Scien. 1752, p. 399; 1753, p. 586; et 1756, p. 109.
of all, will necessarily be the most imperfect; because a good system of physical geography, can only be the gradual work of many successive ages.

General views of physical geography. This science, before it can make advances to maturity, requires a continual series of observations, both repeated and varied, made in every part of the world, and so combined, as to leave no interval unoccupied.

On the other hand, it is not with natural geography as with mineralogy, with chemistry, or with botany. Ingenious arrangement, and exact and methodical classification, are not very applicable to it, and for some time would only retard its progress, by loading it with a display of illusory notions. Mountains, valleys, waters, climates, and tracts of country, present themselves to the eye under very complicated and irregular appearances, which it is much easier to describe than to bring within exact definitions. The grandeur and majesty of nature, defy the subtility of our combinations, and the littleness of our rules.

The spirit of physical geography, unquestionably rejects vague and incorrect language; but at the same time it cannot obviously be susceptible of the precision of terms, which belongs to mathematics or chemistry. What a striking difference is there between the winding, or the abrupt outlines of our mountains, and the regularity of geometrical figures? What an abuse has been made of the appellations pyramidal, conical, and others of a similar kind? How often has the term crystallization been employed to conceal the insignificance of a shallow remark. This famous word, like the sword of Alexander, has enabled many to cut knots which they knew not how to untie. In the cabinets, almost every thing is crystallized; in nature, almost every thing is irregular in its figure.

Even those objects which strike the eye most, are very difficult to be reduced under general terms. We commonly designate all elevations of land, that are the least prolonged, by the general name of chains. But it is certain that mountains more frequently form groups than chains; and even the most conspicuous chains are often composed only of a series of groups. Again, the same mass of mountains, which when seen on one side, appears to form a chain, is merely the declivity of a plain, more or less elevated. Travellers often give the name of mountains to the steep and lofty banks of rivers. It were endless to enumerate all the errors introduced by the mania of systematizing. There was a time when every black stone was considered as a volcanic production, and every circular pit as the mouth of a volcano.

Imperfect state of observation. The other departments of natural geography are equally enveloped in darkness. What shall we say of that system of hydrology which is almost destitute of any information as to either the levels or the depths of seas? The direct observations upon climates, are somewhat more numerous, at the same time we must acknowledge, that our thermometers do not indicate the latent heat, the influence of which is so great and so universal; and, besides this, even the best observations upon climate often lose half their value from want of an exact description of the surface of the country. The common systems of Botanical geography, by simply copying the "Flora" of each country, are as incomplete as they are useless. It is necessary to distinguish the elevation of the land, the quality of the soil, and many other local circumstances. If it appears more easy to determine the geographical relations subsisting between the different races of animals, now actually inhabiting the earth, what an abyss do we discover, when we attempt to examine the fossil remains of those genera which are now extinct, but which must once have peopled our planet! What revolutions have taken place! what mountains have been dissipated, what rocks decomposed! how many valleys have been filled up, how many lakes emptied of their contents, what inroads have the seas made upon the continent; what volcanic irritations, what contests among the elements, slow or rapid, destructive or creative, must have preceded the actual state of our globe, a state which every where presents only the ancient ruins of an edifice, of the primitive proportions of which we are completely ignorant. Physical geography makes us feel the limits of our powers. We have ascertained the dimensions of the sun. We know the laws of gravity upon the surface of Jupiter. We have measured the elevation of the mountains of the moon: even the erratic comets seem to submit to the
calculations of our astronomers. But the interior of that very earth upon which we walk, baffles our researches. We have never penetrated one two-thousandth part of the diameter of the globe. Nay, even the surface of the earth is not known to us throughout its whole extent. We shall perhaps for ever remain ignorant of the secrets which the two polar regions contain. Let us then endeavour to resist the seduction of systems, and detail with clearness, and above all with fidelity, the limited number of facts, which observation has collected, and which have passed the ordeal of sound investigation.*

When we cast our eyes over a map of the world, we perceive, that the surface of the globe is divided into large masses of land, which we call continents, and great cavities, filled with water, which we term seas. As, in the parts covered with water, we observe small masses of land whose surfaces rise above it, which we name islands, so are there upon the continents small detached spots covered with water, which we call lakes. An island differs from a continent only in its dimensions; and in fact, we give the name of continent to certain portions of land, only because we have for a long time remained ignorant, whether a ship could sail round them, and because some physical circumstances have hitherto prevented such a voyage.*

Many portions of the land and of the sea extend reciprocally the one into the other. If the sea penetrate into the interior of any continent, it forms there a mediterranean or inland sea, surrounded almost on all sides by land, and having only a narrow opening into the ocean. If the extent of such seas be less, and the openings larger, they are called gulfs or bays, two terms which geographical writers have wished to distinguish,† but which customary language more frequently confounds. The still smaller portions of sea, surrounded as it were by land, and which afford a shelter for ships, are called ports, creeks, or roads. The first term means a secure asylum; the second is applied to places or ports of much smaller size, and which, when improved or completed by artificial aid, are styled harbours, and the roads afford only a temporary anchorage and security from certain winds. If, on the other hand, parts of the continents shoot into the seas, and are connected with the main land by only a small portion of their circumference, they are named peninsulas, whose figures often correspond with those of gulfs and inland seas. When such masses of land are attached to the continent by a greater extent of line than one-fourth of their circumference, they are not considered as peninsulas. Arabia, for example, seems to deserve this name, but the custom of applying it equally to the advanced part of India, west of the Ganges, offends against exact description. It is thus, that nature sports with our classifications. If the projections of land reach but a little way into the sea, they are called capes, promontories, or simply points. A natural canal communicating with the sea at both ends, and confined by two opposite shores, is called a strait: the reverse is an isthmus, that is, a tongue of land running between two seas, and by which two greater masses of land are united. Many other terms of a similar kind, being used only locally, will be defined as we employ them in the course of our work.

Let us now consider the surface of the globe under one general point of view. We perceive, that it consists of one vast ocean, in which a great number of islands are placed, whose size varies from that of the most colossal to the most minute. Two of these islands are termed continents; that which is inhabited by the oldest civilized nations is called the old continent, and contains three divisions of the world, namely, Asia, Europe, and Africa, while the whole of the new continent is comprised under the name of America, though nature has divided it into two distinct peninsulas, one of which ought in strict historical justice to be called Columbia. In the midst of the most extensive mass of waters is placed New Holland, which many geographers call a third continent; although it is perhaps more correct to consider it as by far the largest island in existence. When we find a considerable number of islands grouped together, we give the name

* Kant, Géographie Physique, ii. part 1, p. 67. Edit. de Vollmer.
† Fleureau, Introduction au Voyage de Marchant.
of archipelago to the whole. The vast archipelago which extends to the east of the ancient continent, and in the centre of which New Holland rises majestically, seems worthy of being considered as a new division of the world, which we shall distinguish by the name of Oceanic.

The ocean. There is upon our globe, properly speaking, only one sea, one continuous fluid spread round the land, and which probably extends from one pole to the other, covering nearly three-fourths of the surface of the earth. All the gulfs, all the inland seas form only portions detached, but not entirely separated from that universal sea, which we call the ocean. It is only for the sake of greater convenience that we distinguish different parts of that ocean under the name of seas. But this arbitrary and incomplete division is at the same time the occasion of ambiguity, and varies among different nations. We adopt the following classification, the simplicity and justness of which, can be easily verified by means of an artificial globe.

A. Great Austro-Oriental basin or sea, occupying the greatest part of the aquatic hemisphere of the globe.

1. Austral Ocean, or icy sea of the South.

2. Oriental or Pacific Ocean.

3. Indian Ocean.

B. The Western basin, forming a sort of channel between the two great continents.

4. Western Ocean.

The frontier may be fixed by a line, drawn from Cape Horn to the Cape of Good Hope, from thence to Van Diemen's Land, and returning by the south of New Zealand to Cape Horn.

a. The Great Archipelago, or the part comprised between New Zealand on the south, the islands of Marquesas on the east, the island of Formosa on the north, and the straits of Malacca on the west.
c. Southern Oriental Ocean, from the islands of the Great Archipelago to South America.

With its different gulfs. The limits above mentioned mark out what remains for this section. The gulfs of Arabia, Paria, and Bengal form a part of it.

da. Northern Ocean. Its southern limit is formed by the department of France, called the Pas de Calais, by Great Britain, the isles of Faroe and Iceland. The northern inland seas of Europe, and the northern icy sea, are branches of it.
b. The Atlantic Ocean; from the preceding frontier to the two points where the coasts of Brazil and Guinea approach nearest to each other.

1. The Mediterranean and its gulfs.
2. The Gulf of Mexico, &c.
Branches.
3. Baffin's Bay and Hudson's Bay, or the seas of the Eskimos.
c. The Ethiope Ocean, between Brazil and Africa, as far as the line from Cape Horn to the Cape of Good Hope.

In following this division upon the globe, many general results will evidently strike us.

Is it not, in the first place, very remarkable, that one-half of the globe should be covered with water, while the other half contains less water than land? In order to have under our view the whole of the aquatic hemisphere, we must turn the globe so that New Zealand may form the highest point; or we must examine a map of the world, projected upon a horizon little distant from that of Paris: the hemisphere, circumscribed by the horizon of our antipodes, presents to the view only some islands, some promontories, and some narrow lines of coasts in the midst of an immense sea; while the hemisphere, bounded by our horizon, comprises almost the whole of the land. If the masses of polar ice of the

* See Le planisphère du Fère Chrysologue de Gy, or the Atlas of this work.
SOUTH do not contain some considerable islands, we can, by following the meridian of the Cape of Good Hope through the pole, till we reach the neighbourhood of Behring’s strait, trace a line of two hundred degrees, or of four thousand marine leagues; a line exceeding by more than four hundred leagues half the circumference of the globe, and which passes over a surface entirely covered with water. A line drawn under the equator from Africa, through Sumatra and Borneo to America, passes over a surface of water, with only two or three interruptions, of four thousand two hundred leagues. Lastly, the forty-sixth parallel of south latitude affords an aquatic zone, interrupted only for fifteen degrees, and consequently forming a circumference of nearly five thousand three hundred marine leagues, a space little less than two-thirds of the periphery of the globe. Such is the vast extent of the Austro-oriental basin of the ocean upon our earth.

The form of the western basin is not less striking. It resembles a channel, narrowing towards the pole, and communicating with the Austro-oriental basin, on one side by the straits of Behring, and on the other by the large opening of the Ethiopian ocean. The Mediterranean Sea corresponds to the gulf of Mexico; the Baltic and Northern seas, are opposed to Baffin’s and Hudson’s Bays.

The distribution of water and land is also very unequal, if, without considering the forms of the two grand basins of the ocean, we compare the hemispheres, separated by the equator, on the northern and southern halves of the globe. We have found, by a pretty exact computation, that the land in each hemisphere and the zone bears to the whole surface the following proportions.

<table>
<thead>
<tr>
<th>In the icy zone of the north</th>
<th>In the temperate zone of the north</th>
<th>In the northern part of the torrid zone</th>
<th>In the northern hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,400</td>
<td>0,589</td>
<td>0,297</td>
<td>0,419</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In the icy zone of the south</th>
<th>In the temperate zone of the south</th>
<th>In the southern part of the torrid zone</th>
<th>In the southern hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000</td>
<td>0,075</td>
<td>0,312</td>
<td>0,129</td>
</tr>
</tbody>
</table>

Geographers and naturalists, about the middle of the eighteenth century, endeavoured by various arguments to account for this unequal distribution of land and water. They asserted the existence of a great southern continent, which was necessary to counterbalance the mass of land situated in the northern hemisphere.* But the voyages of Cook have put an end to all these conjectures. That navigator found, up to the 70th degree of south latitude, only one vast sea, containing many floating masses of ice, together with a few islands which had been mistaken for the promontories of the southern continent. There remains therefore towards the pole only about five or six hundred thousand square marine leagues, in which there can be any land, inaccessible to navigators on account of the ice;† but the whole of this mass would very little alter the proportion between the two hemispheres.

According to the opinion now generally admitted, that part of the land which is elevated above the surface of the sea, is so little in proportion to the immensity of the globe, that the effect of its unequal distribution upon the equilibrium of the globe is in fact nothing, or so small as to produce no sensible effect. Besides, it is possi-

† In February, 1819, land was discovered by Mr. William Smith, Captain of an English brig, when his ship was in Lat. 60° 60' South, and Long. 60° West: he traced the coast for 250 miles, but it is yet to be ascertained whether this is an island of considerable size, or a part of a continent. It is by no means improbable that it may be connected with southern Thule, the most southerly part of Sandwich land seen by Captain Cook, in 1775, and situated in 59° 30' S. lat. and 27° 30' W. long.
ble, that the sea towards the south pole may be less deep than in the north hemisphere, and thus the tracts of land under the sea towards the south, may counterbalance the continental masses of the north, which are more elevated indeed, surrounded by much deeper seas. This hypothesis would be more plausible, if the greater flattening of the globe towards the south pole, indicated by the measurements of M. La Caille, in Africa, should ever be confirmed by corresponding measurements in America, and in New Holland; for then that hemisphere being in general more depressed than ours, the ocean by its own tendency to establish a level, would spread itself over the surface of the southern land, which would be thus covered by the sea.

The two continents present a similarity of appearance in the direction of their peninsulas; they are almost all turned towards the south. This is the case with South America, California, Alascgla, Greenland, Arcadia, Florida, Scandinavia, Italy, Greece, Arabia, India, Corea, Pamctchatka, and Africa. Two remarkable peninsulas indeed, Iucatan and Jutland stretch towards the north, but they consist only of plains and alluvial land.

But the general direction of the land is entirely different in the two continents. In the new continent it extends from pole to pole, while in the old the direction is more parallel to the equator; and if we examine only Europe and Asia, it is perfectly so. The longest straight line which we can trace upon the ancient continent, running it as much as possible over land, commences, according to Bergmann, under the 61st degree of north latitude, near the mouth of the river Ponaschka in the sea of Anadyr, and crossing over the town of Nargum, the lake of Aral, and the southern part of the Caspian Sea, passes near the Persian Gulf, and to the north of the straits of Bab-el-Mandeb; it then traverses, Africa, following the course of the mountains of Lupata, or the spine of the globe, and terminates at the Cape of Good Hope. It is 148 degrees, or 2960 marine leagues in length. It forms with the equator an angle of 95 degrees, and the parts of the continent, situate to the east and west of this line, are nearly equal. It is difficult to trace a similar line over the new continent. Bergmann makes it begin at the 60° north latitude, and at 265° longitude east of the island of Ferro. It continues, according to Buffon, to pass over Florida and the islands, to the mouth of the river La Plata. According to him it is one hundred and five degrees, or two thousand one hundred marine leagues in length, and makes an angle of sixty-eight degrees with the equator. According to the latest discoveries, this line ought to be prolonged ten degrees farther north; its length will then be 2300 leagues. But we cannot accurately represent the length of the new continent, except by a line containing many curves, in passing from the "icy cape" of Cape, through Mexico and Quito to Cape Horn. We shall then have a line of more than 3000 leagues in extent. This line will divide the continent into two very unequal parts.

If we were to suppose that the country round Baffin's Bay, and that discovered to the north of Siberia, form an uninterrupted continuation of the continent of America, the new world must approach much nearer to the Arctic pole than the ancient world. The frozen parts would thus be much more extensive, and the torrid regions much less than those of the old continent. The solution of the difference in the climate of the two great continents seems to depend upon this fact.

The peculiarities of the isthmuses that divide each continent into two very unequal parts, (Suez being composed entirely of sand, while that of Panama is formed by rocks of granite and porphyry,) lead us to remark a very singular difference in those two great islands of the globe. The ancient world is in almost every part open to the advances of the ocean, and from the straits of Behring to those of Bab-el-Mandeb on the one side, and to those of Gibraltar on the other, the bays, gulfs, inland seas, &c. are, as it were, in a sort of equilibrium,

† See Book ii. p. 26.
east with respect to numbers; while the mass of Africa is not penetrated by one
gle arm of the sea. The new continent, on the contrary, having only one consi-
terable gulf, that of California, or the sea of Vermeille, on its western shore, pre-
sents on the opposite coast a chain of gulfs and inland seas; and when these are
wandering, some immense river is found to supply the link. It is time, then, for geolo-
gists to cease from copying Buffon, when he would represent the two continents as
exhibiting more breaks and inlets on the east side than on the west.

Let us now pass from this view of the inequalities which the horizon-
tal profile of our globe exhibits, to an examination of those which result
from a perpendicular section.

Mountains form the most considerable eminences on the surface of the earth, and
have their descent more or less rapid. We must distinguish them from "plateaus,"
or upland plains, which consist of great masses of elevated land, commonly forming
the centre of continents or of islands, but the sides of which are long and extended,
and with but little apparent declivity: A plateau may have upon its elevated surface
mountains, plains, and valleys. Some of them are sufficiently inclined to allow the
waters which accumulate upon them to flow down; there are others which preserve
the same level throughout a great extent, and where the rivers do not find any outlet.
We meet with some plateaus of the latter sort in Europe, principally in Croatia
and in Carmania, but they are of small dimensions. In order to see them in perfec-
tion, we must visit Tartary, Persia, and the centre of Africa. These plateaus have
their general level more elevated than the rest of the continent; they seem to be the
most ancient masses of land, and, as it were, the nuclei, or kernels, round which the
additional masses accumulated.

Mountains, in their exterior forms, present some varieties which strike
even the most attentive observer, and which, at first sight, may lead us
to presume that there is some difference in their internal composition. The highest
mountains most frequently present a surface of naked rock, but the nature of the
rocks produces varieties in their sections and outlines: here, they shoot up into the
form of enormous crystals, with sharp angles, heaped up and supported by each other;
in another part, vast and elevated masses are crowned with circular summits, which
rise into the air with less boldness. Sometimes there appears an immense steep and
abrupt surface, which lays open to view, as it were, the entrails of the mountain it-
self. We describe these appearances under the names of needles, peaks,
teeth, horns, domes, breaches.† Next in order to these broken, arid, and
steep summits, we see mountains, the forms of which bear a character of tranquillity,
an indication of their slow and successive formation; these mountains, which are still
considerable, forborne by strata or layers variously inclined, generally exhibit an infi-
nite variety of forms, in consequence of the changes to which, from numberless causes,
they have been subjected. In one place, a vast amphitheatre is open rising in maj-
estic and regular gradation, like the Kinneargus in West Gothland.‡ In another
there is a large mass cut perpendicularly, and presenting the form of an altar like the
table mountain at the Cape of Good Hope. There are mountains in China, which
have the appearance of the head of a dragon, a tiger, or a bear.§ In other places,
you see a labyrinth of rocks rising like pillars, as at Adersbach in Bohemia, or in one
single mass in the form of a large nine-pin, as Mont Aiguille in the province of Dauph-
ine.|| We see some also near Envionne in the Valais which recall the figure of the
old French frizzled wigs, (perruques moutonnes.) But the most common appearances
are those formed by layers of stones, in an undulated or furrowed shape.

After these mountains of the second rank, we find hills more or less lofty, which,
on all sides, present to the eye but little elevation, and a gentle declivity. These

§ See the articles Tartary, Persia, &c.
† Humboldt, Saussure, Pallis, etc. See the articles Alpes, Apennines, Pyrenees, Jura, &c.
‡ Mem. de l'Acad. de Stockholm, 1747, pl. iii.
§ Osbeck's Voyage to China, 266, in Swedish.
Saussure, Voyage dans les Alpes, sec. 1081.
hills, furrowed by streams of running water, often gradually slope away, and at last lose themselves in the plains. Sometimes their sides are so rugged and precipitous as to produce on the mind almost all the picturesque effect of high mountains.

The peaks, or higher parts of mountains, formed by volcanic agency, differ very much from the usual forms. Their conical or pyramidal masses are distinguished by their regularity even when they have been broken off, or truncated, by some accidental cause. Their towering summits seem to menace the neighbouring country. The basaltic mountains also present an appearance not less striking, when they are not covered and concealed by other soil. Their sides display to the view close ranges of immense pillars or cause-ways, which seem to be the production of giants. The description, however, of all the forms which these rocks exhibit, would lead us away from the subject of this book.

There is, however, one eccentricity of nature, if it may be so called, which deserves to be noticed here, namely mountains bored through.

Some have supposed that such perforations have been accomplished, in part at least, by the persevering industry of man. The Pierre-Pertuis in Mount Jura, and Pausilippo near Naples, are instances of this kind. But nature has left unequivocal marks of her power in other phenomena of this kind. The Torghat in Norway is pierced by an opening one hundred and fifty feet high, and three thousand long. At certain seasons of the year the sun can be seen darting its rays from one extremity to the other of this vault. Near New Zealand there is a rocky arch through which the waves of the sea pass at high water. These phenomena differ from caverns, only from the circumstance of having a passage entirely through.

Another general point of view, in which mountains may be considered, is their position relatively to each other. Some are completely insulated, more particularly those of a volcanic origin; it is the same also with those of a calcareous nature and some others. Both Chasia and Iceland furnish many examples.† The rock of Gibraltar and the fortress of Gwalior in Hindostan are of this description. We may also mention Mount Aconcage, where a whole people supported a siege against Alexander.‡ Mountains are seen most frequently in groups. Sometimes chains branch out from a common centre in angular directions. Sometimes the central mass itself is a lofty chain, straight or curved, whence, at different periods, secondary chains have apparently been formed;—the Alps may be placed in this class. Sometimes we see irregular groups of several chains, among which no one in particular can be ranked as the principal. Such are the collections of mountains in Asia Minor and in Persia. But the most remarkable sort is that of long connected chains, which, like the Cordilleras des Andes in South America, continue for hundreds and even thousands of leagues, nearly in one constant direction, having on both sides regular layers or ranges of inferior mountains, but sending off very few secondary chains. These great chains evidently bear the stamp of the highest antiquity, and seem to have been the silent witnesses of the creation; it is upon their summits and their sides that we can read the history of the globe in characters more distinctly defined, than even those which the Alps and the Pyrenees afford.

In general all the chains of mountains in the same continent, seem to have a mutual connection more or less apparent: they form a sort of frame work to the land, and appear, in the origin of things, to have determined the shape which it was to assume; but this analogy, were we to generalise too much, would lead us into error. There are many chains, which have very little, or rather no affinity to each other. Such are the mountains of Scandinavia and of Scotland; mountains as independent as the character of the nations who inhabit them.

In making use even of the word "chain," great caution is required. A chain may be defined to be a series of mountains, whose bases are continuous; but then we must not push the meaning of the word "base" too far. It would perhaps be of advantage to understand by this term only the visible foot of the mountain, or at most

* Pontoppidan's Natural History of Norway, i. 75—79, (in Danish.)
† Bergmann, Geog. Physique, i. 171.
‡ Quint. Curt.
the interior strata, which can be easily traced near the surface. At any rate, we must beware of considering collections of hills, or banks of sand, as continuations of chains.

We must, however, acknowledge, that the name of chains is not sufficiently general, and that it would be better to reserve this word for the subdivisions, and to employ the "term system of mountains," or "mass of mountains," to denote a collection or combination of many chains.

Mountains, whether insolated or in groups, exhibit on both sides declivities which are either gentle and long, or rapid and broken. We ought particularly to remark this general fact, that the greater number of the principal mountains have one of their sides very steep, and the other of a very gradual slope.* The Alps, for example, are much more rapid in their descent on the Italian side than on that of Switzerland. On the contrary, the Dorphines, or Scandinavian Alps, have a much steeper declivity to the west, and north-west, than towards the south and east. The Pyrenees are steeper towards the south than the north; the mountains of the Asturias are the reverse; but those of the Sierra-Morena, and particularly the Alpujarras in Grenada, seem to be steepest and most abrupt towards the south. Mount Atlas and Mount Libanus border the Mediterranean with bold and craggy declivities. But, with regard to the latter at least, it is certain that towards the Euphrates it is far from steep. Mount Taurus (supposing it to terminate at the source of the Euphrates) exhibits two very different declivities; for in Carmania and Natolia, the descent is very abrupt towards the south, while there are some very extended upland plains, or plateaus, towards the north: in Armenia, on the contrary, the declivity on the north side is very rapid. The Ghaouts, in the peninsula on this side the Ganges, have precipitous hills directly towards the west, and long and rather gentle slopes towards the east. Thus there is no constant rule; every thing depends upon local circumstances. In general this inequality in the declivities takes place only because the chains of mountains, when most distinct, are in a great measure nothing but the abrupt borders of long upland plains, or plateaus obliquely inclined, of which the surface of the globe seems to be composed. We ought also to distinguish the mountains, which descend by degrees, or successive banks, a circumstance attributed sometimes to the sinking of parts of the soil, which had been of a different nature from the rest, and sometimes to the action of the water which formerly may have flowed at the base of these mountains.

Valleys are formed by the separation of chains of mountains or of hills. Those which are formed between high mountains are commonly narrow and long, as if they had originally been only fissures dividing their respective chains, or for the passage of extensive torrents. The angles of their direction sometimes exhibit a singular symmetry. "We see in the Pyrenees," says M. Raymond, "some valleys, whose salient and re-entrant angles so perfectly correspond, that if the force which separated them were to act in a contrary direction, and bring their sides together again, they would unite so exactly, that even the fissure would not be perceived." This fact has been observed in the Alps for the first time by Bourguet, who has generalised it too much;† for there are some valleys, situated on a high level, totally different. We see some which have a great extent in length without being cut into any angles whatever, forming a sort of elevated plains; such are generally those which lie on the side of the principal chains, the Valais, for example. There are others which are large or swelling; Bohemia or Cachemire are instances of this sort. It is asserted, that they have been the basins of some ancient lake, which had become dry from the breaking down of the bank or dam formed by the surrounding mountains. This hypothesis, developed by Lamanon and Sulzer,§ appears to be one of the best founded of any which geologists have proposed. There are also some highly situated valleys, containing rivers and lakes which have not outlets or streams. There is a remarkable example of this in Peru, in the large

* Delamétherie, Théorie de la Terre, etc.
† Observations sur les Pyrénées.
valley which contains the lake of Titicaca. Central Asia abounds in such valleys. Several nearly of the same sort are to be met with in other countries; and many more will one day be discovered in the interior of Africa.

Inclination and level of valleys.

High valleys present also some remarkable circumstances as to their form. Some have declivities equal on all sides; others slope only on one side, and to a great extent, while the opposite side is steep and abrupt. Most of these high valleys have their surface upon a level with the summits of the secondary mountains in the neighbourhood. The level of the lake of Joux, in a valley of Mount Jura, is considerably higher than that of the lake of Geneva.* In a few instances these high valleys have been observed to enlarge themselves at different and successive periods, and gradually to become identified with the plains. They have been for ages almost completely barred and confined by some projecting angle of the chain of mountains, which girds them in. The sort of narrow passage, by which we enter into these valleys, is called a pass or defile, and as formerly each valley contained a small independent nation or tribe, these passes are called by the French, "les portes des nations." Such were the passes of Causcasus, the Caspian passes, the pass of Issus, rendered celebrated by the victory of Alexander; that of Thermopyles, immortalized by the devoted patriotism of Leonidas and his band of Spartans. The Caudinae Furculae, where Rome saw the glory of her unjut arms deservedly tarnished. There is between Norway and Sweden one of these passes, formed by several masses of rock, cut by nature into the shape of long parallelograms, and which have between them a passage, shut in by perpendicular walls. This pass is near Skierdal. Another of the same kind is at "Fortfield," or the mountain of the gate.† These openings exactly resemble those by which the Hudson River in North America passes through successive chains of mountains, which seem desirous of checking its course.‡ The Cordilleras of the Andes present the most stupendous passes of this kind, that are known; they are low valleys; from four to five thousand feet deep.§ The lower valleys appear to us under a very different aspect; they widen as they recede from the secondary mountains from which they originate, and gradually lose themselves in the plains. Their opposite angles generally correspond very regularly, but these angles are very obtuse.

Plains., like valleys, are of two classes: the high plains, which are found between two chains of mountains, are frequently of great extent, and are placed as it were upon the shoulder of the secondary mountains: such are the elevated plains of Tartary, of Persia, and probably of the interior of Africa. The plains of Quito are 12,000 feet above the level of the sea: those of Karakorum, in Chinese Mongolia, are probably as elevated. The low plains, whose soil is composed of sand, gravel, and shelly, seem formerly to have been the basins of interior seas. Such are the plains on the north side of the Caspian; the large plain to the south of the Baltic, and that through which the river of the Amazon flows; the Tehama of Arabia, the Delta of Egypt and others of a similar nature; which seem to have been once covered by the waters of the ocean and its gulf.

The coasts or shores of the sea, and of lakes, deserve also great attention. These are the extreme limits of our system of mountains. Some shores are broken and steep; this happens when a mass of rock extends, either beneath or above the surface of the soil quite to the water; as in Gallicia, in Bretagne, in Norway, and in Scotland. This description of coasts admits of two subdivisions. 1st, We have those which are abrupt and broken, and as it were notched, formed by various masses of rocks united at their bases, either above or beneath the surface of the water; these rocks often form clusters of islands, which surround the coasts; such as the "garden of the king," and of the "queen," at Cuba, the archipelago of Mergui in India, the coasts of New South Wales, the Skerfjord of Norway and Sweden. This class may again be subdivided according as the steep-

* Saussure, Voyages, p. 376, aqq.
† Bergmann, Geog. Physique, i. 185. Cronstedt. Description de la Iemupte, dans les Mem. de l'Acad. de Stockholm, 1763, p. 275.
‡ Kalm's Travels in America, iii. 161. (in Swedish.)
§ Humboldt, Vues des Cordilleras, p. 9.
ness of the shore, arises from true granitic and other rocks; or from those masses of coral formed by the polypi which fill the seas between the two tropics. 2dly, We have coasts where the shore or boundary is equally steep above and below the surface of the water, leaving the sea itself quite free; these are, strictly speaking, the "steep coasts." Such, in general, are those of the Mediterranean and of the Black Sea: those of Dalmatia and some parts of the Archipelago more properly belong to the first division. America possesses scarcely any other variety of coasts on the side of the Pacific Ocean, beginning at Cape Horn and proceeding to Behring’s Straits. This is the largest continuation of steep shores known upon the globe. Mariners call a coast bold bluff, when it meets the ocean with a rapid declivity, and clear, when it is not bristled with rocks.

Low coasts are formed by land of a softer quality, approaching the water by a gentle and gradual slope. These may be thus classified:

1. Coasts formed by hills. Such are those of all the Danish islands, of Scania and Pomerania, consisting chiefly of calcareous matter. Shores of this kind seem more particularly to belong to lakes and small inland seas, although indeed the basins containing these are often surrounded by steep shores, as grand and bold as those which border the ocean. 2. Flat coasts, formed by sands and substances which the sea has deposited. These appear under the form of sandy or marshy plains, and extend a long way into the sea, leaving the water more or less shallow. They are, however, of various kinds. They are sometimes like those in Gascogne and Jutland, the ancient sides of low hills, round which the sea has collected masses of sand, which are either fixed or shifting: sometimes they are a sort of downs*, formed by the sea, together with soil deposited by large rivers, as in Holland, in Egypt, and at the mouth of the Mississippi. A collection of slimy matter is also sometimes formed by the ocean, as in the flat and flooded lands on the shores of French Guiana. The low coasts are sometimes exposed without any natural rampart, to all the fury of the waves, and then we may, with Tacitus, be uncertain whether to regard them as constituting a part of the land or a part of the sea; others are secured by a chain of downs that are fixed and mingled with rocks like North Jutland. It was only by a skilful and persevering imitation of these natural barriers, that the Dutch recovered the soil of their country from the empire of the ocean.

Islands of great extent exhibit on a small scale the same appearances as the continents do on a large scale. The smaller islands, however, deserve a distinct consideration. These may be classified in various ways. They are single, or in groups or chains. Among the low or flat islands, there are some which are only banks of sand, scarcely raised above the surface of the water; sometimes they consist of masses of shells or petrifications, as the isles of Lachfó of the north of Siberia, which are nothing but masses of ice, sand, and the bones of the mammoth. The greater number of the islands of the South Sea, formed, or at least enlarged by polyvi, are composed solely of coral or madreporose. Among the more elevated islands, we find very many, which owe their foundation, in a great measure at least, to the action of volcanoes, which, after bursting forth from the original summit of the island, have continued to discharge lava from their crater in all directions, until by slow and gradual accumulation they have formed those vast and lofty peaks, which serve as land marks to the distant mariner. When groups of islands are placed near each other, we may fairly conjecture that they are only the different summits of one extensive submarine mass. So also, when they appear to follow one constant direction, they probably form only the mininences of a chain of submarine mountains. Such, when situated in the same line with the promontory of a continent, or with mountains on shore, may be considered as a continuation of the chain. Thus, it is evident, the Kurile islands connect Yesso or Jesse with Kamchatka, in the same way as the great and small Antilles connect the two continents of America. But to make the observation hold, the intervals which separate the islands must either be very small, or be filled up with rocks and shoals be-

* The low and flat ground at Yarmouth, in Norfolk, between the sea and the river, is called the Dunes or Daines, evidently from the French word “Dunes.”
neath the surface, so as to preserve unbroken the continuity of the bases of these maritime mountains. Thus, the supposed connection between the Canary Islands, the Azores, and mount Atlas in Africa, though possible, requires to be verified by repeated soundings, so as to discover the nature of the bottom of the intervening sea.

Mountains, in general, have no precise and regular direction. The chains, sooner or later, bend and deviate into a curve, and frequently lose themselves in plateaus, or upland plains.

We must not therefore give the reins to our imagination, and pretend to trace entire series of terrestrial and submarine chains, and thus form a frame-work for the globe, which has no existence in nature. It is not sufficient to see upon a map, that there is in a particular place a division in the seas. There are many such divisions in the world, which afford no traces whatever of mountains, but only of extended plateaus, or upland plains, which rise with a gentle inclination on both sides, often for the space of a hundred leagues. We meet with no lofty mountains, but a collection of hills, in the centre of European Russia, although this is the centre whence some of the largest rivers of Europe diverge. Nay, there is actually in Russian Poland, between the Niemen and the Duina on one side, and the Dnieper and Dniester on the other, a point of division, which affords no sensible elevation whatever, and where, instead of the mountains laid down by Buache, travellers have discovered only a marshy plain. Even about the middle of the course of the Dnieper, there is a mountainous elevation, consisting of pebbles and shells, which that river passes through, following a deep fissure or glen, in which it runs. On the other hand, the Niemen passes round some hills of Eastern Prussia, much more elevated than the point of division of the waters, as is shown in Fig. 48, which is the profile of Europe, between the Baltic and the Black Sea. A total difference may be observed between this profile, and that which the same quarter of the world presents, bisected in the direction of the gulfs of Genoa and Hambourg, (Fig. 49.) and both these again form a contrast with that of the plateau of Mexico, (Fig. 50.) and of South America, (Fig. 51.) one of which is copied from the original, in the possession of M. Humboldt, and the other from a scale of heights, published in his travels. We may easily judge into what absurdities we may be led, should we have recourse to any general system whatever, for the purpose of discovering facts, of which observation alone can point out to us the astonishing variety.

The system of Buache has given rise to those chains of submarine mountains, which do not in fact exist, but which, nevertheless, make a figure in some theories of the earth. A detached island, a sand-bank, a reef of rocks at the surface of the water, are sufficient, in this author's opinion, to indicate a submarine chain, between two points of the world, however distant from each other. Nay, sometimes he has not deigned to assign any reasons whatever for his conjectures. For example, he would represent Iceland, the Faroe Isles, and those of Shetland, as forming one submarine mountain between Greenland and Norway, notwithstanding that there is a deep sea between Norway and Shetland; and that from the direction of the mountains being parallel, and not converging, these chains could in fact never coincide. Besides, the basaltic nature of Scotland, of Ireland, of Faroe, and of Iceland, seem to point out an ancient union of the British Islands with Greenland, rather than with Norway. In the same way, the submarine chains of the South Sea, have in general a direction quite different from that which Buache ascribes to them, according to the uncertain discoveries of his time. They have not the least connection either with Mexico or South America, any more than with the imaginary Austral continent. Many of these chains of islands, and particularly those which are the most insulated, have a very remarkable direction, but entirely opposed to the system of Buache; they extend from north-west to south-east, in the direction of the magnetic axis of the earth.

† Hydrographical chart of Poland, by Roustan and Komarzewski. Map of Rizzi-Zannoni. * by MM. Stibiełowitcz and Niemcewski of Wilna.
Let us however examine, notwithstanding the erroneous hypotheses of our predecessors, whether we cannot introduce general views more conformable to the truth, in our attempts to trace some sort of constant analogy, in the direction of the mountains of the two continents.

If we draw a line from the centre of Thibet, across Chinese Mongolia, towards Okotesk, and thence towards Cape Tchutchi, or the eastern promontory of Asia, this line will in general coincide with an immense chain of mountains, which run from the south-west to the north-east, and every where descend very rapidly towards the Indian and Pacific Oceans; while on the other hand, they extend themselves towards the Icy Sea, in plains and secondary hills. It is probable that we may one day be able to reduce to the same rule, the chain of Lupata, called the "Spine of the world," which is situated in Africa; at least, the short chain from the Cape of Good Hope to that of Guardafui, in a direction of south-south-west, and of north-north-east, which is nearly the same direction as the great chain of Asia; but we are still ignorant of the declivities of these mountains. We may consider the lofty and steep mountains of Arabia Felix* as the link which connects the mountains of Lupata with the plateaus and mountains of Persia, on the side of Thibet.

From Behring's Straits to Cape Horn, if we follow the western coasts of America, we shall find one unbroken chain of the highest mountains of our globe. This chain occasionally bends a little into the interior, but it more frequently closely borders the ocean, with a range of steep and bold shores, and sometimes with the most tremendous precipices. On the other side, the outlets of lakes, and the direction of the great rivers, evidently show that nearly the whole surface of America inclines towards the Atlantic Ocean.

It follows from these combined observations, that the greatest chains of mountains upon the face of our globe are ranged in a circle round the Great Ocean, and the Indian Sea; that they more frequently exhibit steep and rapid descents to that immense basin, which they surround, and long and comparatively gentle declivities on the opposite coasts; that in short, from the Cape of Good Hope to Behring's Straits, and from thence to Cape Horn, the eye even of the most severe and scrupulous observer, cannot fail to discover some links of an arrangement, as astonishing from its uniformity as from the immense extent of country which it embraces.

Let us stop here for a moment, and consider this great fact of physical geography. If we suppose ourselves placed in New South Wales, with our face turned towards the north, we shall see America on our right, Africa and Asia on our left. These continents, which, not long since, we could not even in imagination, consider as at all approaching each other, being examined from this point of view, form, as it were, one whole, the structure of which, as far as it is known, exhibits in its grand features a most amazing symmetry. A chain of enormous mountains surrounds a vast basin; this basin, divided into two by a large mass of islands, frequently washes with its waves the base of this great primitive chain of the earth. But when did this immense chain of granite and porphyry shoot up from the bosom of the waters? Or when did those lofty secondary mountains sink into the depths of the ocean, and by their simultaneous submerison, form that steep and abrupt range of coast, which predominates over this globe? Shall we suppose that the earth was formerly, like the planet Saturn, surrounded by a ring, and that this celestial vault, losing its equilibrium,† was precipitated upon the surface of the earth? But to what length will imagination wandat, emboldened by seductive, but vague and inconclusive analogies? Let us then return to the old continent, and recollect, that the vast regions of India and China, contrary to such analogies, are placed to the south of this great girdle of mountains; that the peninsula beyond the Ganges even joins that astonishing group of broken and intersected countries, which fill the centre of the great basin; and that this is as it were the link which connects with the present continent, those grand remains of a former continent, of a hemisphere, which seems to have disappeared.

† Comp. Laplace, Syst. du Monde, i. iv. ch. 9. p. 255, 5d edit.
If again we consider under the same point of view the whole extent of the two continents, which, in regard to the great ocean, is placed beyond this principal chain of the globe, we shall perceive that the greater part of the plateaus, or upland levels, and of the chains of mountains, incline very generally towards the Atlantic and Northern Oceans. That extent of waters, vast as it is, appears then only like a canal, if we compare it with the great Pacific Ocean. The steep coasts which border the Atlantic, are nothing in comparison with those of the Cape of Good Hope and of Cape Gardafui, with the precipices which surround the seas of Kamtchatka, of Peru, and of Chili.

Elevation of mountains. We may expect, perhaps, to find likewise a certain general analogy among mountains, in regard to their height; but we must at once confess, that we are still less acquainted with the real height than with the direction of the principal chains of mountains. Our measurements, whether taken trigonometrically, or from the comparative height of the barometer, have been made to no great extent, except in Europe and America. But in such general observations upon the whole of the globe, Europe cannot be regarded as a very important part, or as a standard of comparison much to be depended upon; because the summits of our Alps, such as Mount Blanc, Mount Rosa, the Ortelos, are elevated only about 14 or 15,000 feet, while those of the Cordilleras, Chimborazzo, Antisana, and Pichincha, tower to the height of 19 or 20,000, is that a reason to conclude, that the new world has in general loftier mountains than the old, or that the mountains increase in elevation as they approach the equator? One of these conclusions is, and will continue to be hazarded, until the intrepid Humboldt has measured the Alps of Thibet, more elevated still, perhaps, than Chimborazzo; the other is decidedly false, since the Andes of Chili are reckoned to be as high as those of Peru; the volcanos of Mexico are but very little inferior to those of Quito; and the enormous peaks of Spitzbergen and Greenland, appear to equal the Alps, and very much to surpass the mountains of Norway and Russia, to which, according to the hypothesis, they ought to be inferior. It is proper, therefore, to reserve, until we enter upon the description of the several parts of the world, the few general comparative observations suggested by those mountains whose heights have been already determined.

BOOK VIII.

Continuation of the Theory of Geography. Of the Interior Structure of the Solid Parts of the Earth. Of Banks or Shelves, Strata, Canvens, and Veins.

Leaving the surface of the earth, which itself is so imperfectly known to us, and descending into its interior, our knowledge of which is still more confined, we are now about to consider the solid crust of the globe, in so far as it has been examined in reference to its interior structure, and the substances of which it is composed.

Strata, beds, str. To whatever depth excavations have been made in different countries, they have uniformly shown that the greater portion of the earth consists of strata of materials of different natures, irregularly disposed. When these strata are of a similar nature, and of great thickness, they are called beds or banks (banca). If they preserve a horizontal position, we call their subdivisions layers (assises). But, although we find, even upon the highest mountains, banks, if not layers, the almost vertical position of the principal masses of most of the higher mountains, obliges us to give them the name of blocks (blocs), although this name by no means points out the nature of these masses, which some regard, with much probability, as enormous crystals; while others affect to consider them only strata changed in their posi-

† Delamétherie, Théorie de la Terre, sec. 1339, et seq. Patrin, Hist. Nat. des Mineraux, i.
tion.* Sometimes the blocks, or beds, are divided by vertical fissures, and then their portions may be called leaves, or laminae, (feuilles ou lames). We regret that these terms convey no precise and fixed meaning; but we also acknowledge, that, in contemplating the objects of nature, it is impossible to submit them to a more rigorous classification.†

The different masses which we are about to describe, are thrown one upon the other in every possible manner, both horizontally and at every angle. Frequently in moderate elevations, and more particularly in low lands, the different strata preserve, for hundreds of leagues, a parallel position; thus the limestone or calcareous strata containing numerous shells, upon which the city of Paris is built, extend across what was formerly called the Isle of France, as far as Belgium.‡ The gypseous strata of Montmartre, and of the heights of Belleville, have the same degree of elevation, though separated by a valley. In Champagne, a large bed of chalk runs nearly upon the same level from Rheval to Sens.§ Even the most perfectly crystallized rocks appear sometimes to follow a horizontal direction. A ridge of granite seems to extend straight from the Limosin, by Poitou, to Cherbourg in Normandy.|| Another girdle or band of granite follows the valley of the Upper Loire from Creuzot and Mount Cenis to Saint Etienne through a space of seventy leagues.¶ Rocks of trapp similar to those in Westrogothia are found again upon the same level in some mountains separated by extensive plains. In the island of Rugen in Pomerania, in the Danish island of Mose, and at Stevens in Zealand, the strata of chalk and flint correspond with each other, though an open sea flows between their bases. What confusion, nevertheless, do we find by the side of this tranquil regularity of formation! What traces of destruction at once alarm and delight the observer of nature!

In the plains, and on moderately high mountains, we meet with strata that have been entirely inverted, or partly shifted from their first position, bent in every shape, crooked and curved, and returning upon themselves; the mountain of Saint Gilles near Liège exhibits all these anomalous appearances.**

We find considerable strata in Mount Jura, which, having been overturned or pushed forward upon others, have stopped in a position so precarious, that the application of the least force would put them again in motion.†† The Alps exhibit a striking spectacle of disorder and confusion. We discover pyramidal mountains, like the needle of the south, the layers of which are ranged round the axis of the pyramid like the leaves of an artichoke, if we may be permitted to compare those enormous rocks to a small vegetable.‡‡ Nant d’Arpenas presents to our view a sort of hemisphere, composed of regularly curved strata. §§ At every step, the rules which appear most generally followed, are broken and set at defiance by the greatest possible diversity. If Mount Blanc be composed of enormous vertical blocks, Mount Rosa, equally gigantic, presents only horizontal strata, a little inclined.

These strata are almost all intersected by fissures and cavities more or less considerable. Some consist of interspaces left between two ancient rocks at the moment of their crystallization; the great majority appear to owe their origin either to the retreating or sinking of the earth. The first of these causes has considerably increased them in the calcareous mountains of secondary formation; they are less frequent in gypsum. Some of these fissures have been filled with metallic substances, some by the filtering of water impregnated with stony matter, others by incrustations, by alluvial minerals, by vegetable and animal earths; lastly, some

We have adopted the terms of our author, though they by no means coincide with those used by our own writers upon geology and mineralogy; but, in order to prevent mistake, we have, in general, given the French term also.—Translator.

† Bergmann, Géog. Phys. i. 197. ‡ Cuvier et Brogniart, Annales du Museum, vi.

¶ Delamétherie, Théorie de la Terre, iv. sec. 954, sec. 1154.

‖ Bruslé, Statist. de l’Aube, p. 6. §§ Delamétherie, i. c. sec. 1382, 1383, pl. vi. &c.

§§ Ibid. sec. 473.
have remained open, and form ravines, precipices, abysses, when they are open to the sky; or caverns and grottos, when they have walls and a natural roof.

In another part of this work, we shall point out and occasionally describe at length the most remarkable caverns and grottos of our globe; but we must here confine ourselves to general views. There are some very considerable caverns; frequently the first excavation is only the vestibule to another much deeper and larger, but the dimensions of caverns have generally been much exaggerated. The depth of that of Eldon Hole, near Castleton in Derbyshire, has not been discovered, though sounded with a line of more than 9600 feet. Near Frederickshald, in Norway, there is a hole, into which, if stones be thrown, two minutes appear to elapse before they reach the bottom, from which it has been concluded that the depth was upwards of 11,000 feet. Among the numerous caverns of Carniola, that of Adeleburg is said to afford a subterranean walk of two leagues; but this computation of rather too enthusiastic a writer requires to be confirmed. Many caverns are remarkable for various natural curiosities. There are some from which, in summer-time, an ice-cold wind issues with astonishing force. Mount Eoto, near Turin, in Italy, is an example of this. There are others, the walls of which are in autumn covered with ice, which melts in December. There are two or three in France that have attracted notice; among others the grotto of Notre Dame de Balme, near Grenoble. The little communication which these caverns have with the external air, causes them to change their temperature long after it becomes changed upon the surface of the earth. The most interesting caverns, and the most curious for their natural productions, are certainly those from whose roofs water, impregnated with calcareous matter, has dropped, and which, either becoming hardened by degrees, remains suspended from the vaults of stalactites. They are caverns, in the shape of long crystals, or falling to the ground, assume a thousand fantastic forms, often representing various vegetables and animals. It is to this circumstance that the grotto of Andes, in Sicily, owes its celebrity. The naturalist prefers these caverns which contain petrified bones. These are the visible remains of some very ancient palaces, where the revolutions of the globe have deposited whole generations of living beings. We are also acquainted with some caverns, whether certain species of marine animals have retired, when they felt themselves about to expire.

Wells in caverns. There are caverns which contain deep pits of water, or wells, sometimes so extensive as to acquire the name of subterraneous lakes. There are others from which rivers derive their source; while some are known to receive very considerable streams, which lose themselves in the interior. Such are the innumerable cavities of the Julian Alps, in Carniola and Croatia. It is to similar reservoirs that we must attribute the periodical disappearance of the lake of Cirknitz. There are some caverns in Norway, where, as you walk upon an arched calcareous floor, you hear the roar of invisible torrents under your feet. Many caverns in Russia and in Siberia, have been evidently formed by means of water, and even masses of ice.

Volcanic caverns. Volcanic caverns form a distinct class. That of Surtur in Iceland, which is 5034 feet long, has three of its sides, or walls, covered with a greenish black varnish, formed by a volcanic vitrification. Long pieces of lava are suspended from the roof, which is so chinked in many places, as to admit the rays of the sun. The most magnificent of all the known caverns, is doubtless that called "Fingal's Cave," in the isle of Staffa, on the western coast of Scotland. Thousands of majestic columns of basalt support a lofty roof, under which the sea rolls its waves, while the vastness of the entrance allows the light of day to penetrate the

† Pontoppidian's Natural History of Norway. i. 101.
‡ Valvasor, Gliere de la Carniole, 1699.
§ Kircher, Mund. Subterr. Lib. iv. 239. (Compare the Grotto of Motiers in Bernoulli's Description of Neuchâtel, p. 32.)
¶ Mem. de l'Acad. des Sciences, 1755, p. 149, &c.
‖ Lacquet, Voyages dans les Alpes Juliennes.
** Pallas, Voyages, i. 41, 56, 166. (en All.) Lepechin, Gmelin, &c.
†† Olausen, Voyage to Iceland, i. 137. in German.
various recesses of the cave.* The origin of these caverns with basaltic columns, is as uncertain as that of basalt itself, which has occasioned so many discussions among geologists.

The causes which have produced those cavities have unquestionably had a sphere of activity to which our observations are far from being commensurate. Many phenomena, particularly earthquakes, seem to indicate the existence of much more considerable cavities than those which are known to us. But the wisest course we can pursue, is to acknowledge our perfect unacquaintance with their nature. We no longer live in an age when Athanasius Kircher dared to describe the subterraneous world, as if he had travelled through it in every direction. The unknown is now basified from the land of science, and is become the exclusive patrimony of romance-makers.

The small fissures which pass through the masses of rocks, and which we call by the general name of veins, although they present to the imagination a less striking appearance than that of caverns, yet to the eye of reason and of science, exhibit a still more complicated enigma. The essential character of a vein, is that of cutting or passing through a mass of rock, in a direction more or less different from that of the strata or layers, of which the rock or mountain is formed, and being filled with a mineral substance different from that of which the rock itself is composed.† We sometimes find veins of twenty or thirty feet in thickness, while others are less than an inch. Some continue for the space of several leagues, others divide and disperse themselves in smaller veins. There are cases in which the veins, after having passed through many strata, suddenly break off at the commencement of a stratum of a particular sort, and re-appear on the opposite side, exactly in the same direction, and of the same thickness that they had at first.‡ The general line of veins is rectilinear, but without any preference as to direction. In the middle class of mountains, they follow the direction of the valleys. The matter with which the vein is filled, frequently contains metallic ores, and is then called Gangue, or that part to which the metal adheres. There is scarcely any mineral that is not found in some vein or other, more or less abundantly. Some also contain petrifactions, which seems to prove, that these fissures were originally empty, and § Formation. had been filled from above, by means of a fluid loaded with various substances, which it deposited in them. This is the opinion of the celebrated Werner, and what is most generally admitted; it is however disputed by those, who consider minerals as produced by means of subterranean exhalations,§ or from some fermentation in the masses of rock, capable of transmuting the nature of its substance,|| or lastly, from the general crystallization of the globe.¶ Some philosophers have regarded metallic veins as branches of a grand metallic trunk, concealed in the interior of the globe, and to which they have attributed a sort of vegetation, or organic motion.** The theory of veins, however, according to every supposition, is very difficult to comprehend. We will now return to the consideration of mountains in general.

The thickness of the various strata, differs as much as their inclination or position, and as their fissures. The bank or bed of trapp in Westphalia, is in many places a hundred feet thick, and in the Alps there are some masses still thicker: but it is not agreed whether these masses are to be considered as regular strata. Many of the middle class of mountains contain beds of mineral or rock salt, of alum, and of coal, thirty or forty feet thick. But there are also some strata of coal near Liege, which are not more than an inch in thickness. White and black marbles are found in thicker strata than those which are variegated; and in general those substances which are least mixed or compound, are found in the

* Enjuses de Saint Foul, Essai de Géologie. ii. planche.
† Werner's Theory of Veins, in German, translated into French by Daubisson, § 2. Oppel, Géométrie Souterraine. Ibid. § 15. § 19.
‡ Ferber, Orthography of Derbyshire, 19, 20. Werner, § 73.
§ Henckel, Pyritology, ch. 13.
¶ Trebra, Observations sur l'Interieur des Montagnes, (en All.)
|| Delamétherie, Théorie de la Terre, § 1333.
** Lehmann, Traité des Matrices des Métaux, Berlin, 1733.
greatest masses. * In Europe, continued strata or beds, of the thickness of three thousand feet, are extremely rare, but in Mexico or Peru, there are masses of porphyry, which are from 9000 to 12000 feet thick. † This massive structure seems to be the peculiar character of regions, which form what we call the great chain of the globe. ‡

It remains for us only to consider the various strata of the earth, in regard to the order of their supra-position, but although this is intimately connected with the subject at present before us, the structure of mountains, it is very difficult, if not impossible, to treat the matter so as to be distinctly understood, without anticipating the observations to be made, when we come to examine the origin and nature of the substances, of which the strata are composed.

We call those beds or strata primary, which are found at the greatest depths to which man has been able to penetrate. These masses do not in general contain any traces of animals or vegetables; and in this point of view they may be called primitive, or primordial. The next order, or that of secondary strata, comprehends all those masses which form mountains, and which are placed in regular strata or layers, containing the remains of animals and vegetables, and lying or resting upon the primary strata. The third order consists of such beds as contain fragments of secondary strata, mixed more or less frequently with the materials of the primitive class. They lie above the secondary strata, § and are heaped together in a more confused manner.

We will now consider more particularly the composition of the primitive strata.

The roughest, the most elevated, and most extensive mountains of our globe, contain masses of granite which cannot correctly be called strata, and which very frequently terminate in vast cupolas. Next to these enormous crystals, we see very large and almost vertical banks or ridges of granite, as it were in layers or leaves, and of pure schist, that is, without any mixture of vegetable or animal remains. It is the extremities of those broken masses of laminated granite, which form the most acute and angular peaks. The schist is frequently intersected by numerous metallic veins. Large beds of pure calcareous matter are found in general to run more horizontally, and they give rise to those long ridges of mountains, which are quite free from metals. Masses of porphyry, syenite, and other homogeneous rocks, are generally placed upon one or other of the preceding strata. In America, enormous beds of porphyry reposed upon granite, and form the summits of the Cordilleras.

The order which all the primitive rocks observe among themselves, is not yet terminated by observation. Granite is almost universally considered as forming a sort of vault surrounding the globe, and supporting all those masses, which seem to have been heaped upon it by the double action of a general crystallization, and a violent jumbling. We have never yet found granite lying upon porphyry, upon schist, or upon any other rock whatever; but the relative order of all the other rocks seems to vary much. The only principle that appears to be determined is, that the primitive or primordial rocks are never placed in great masses upon the others, while the others are constantly found accumulated upon them.

At the base of these mountains of the first order, and sometimes also at a considerable elevation on their sides, we commonly find calcareous rocks of transition, that is, rocks, which in part seem purely calcareous and partly mixed with animal remains. These rocks mark the transition of masses which do not exhibit any regular continued strata, into those rocks which geologists call stratified, the structure of which consists of a series of strata or layers. There are also some other rocks which indicate this transition; those are the recompounded fragments of the pure or primitive rocks, united anew by a species of cement, several varieties of which have been facetiously called pudding-stone, and amygdaloïdal or almond rocks, from the appearances which they present.

* Bergmann, Géog. Phys. § 45.
† Humboldt, Tableaux des Régions Equatoriales, 128.
‡ See Book vii.
§ Werner, Classification des Roches, Dresden, 1797. (en All.) Voight, Minéralogie Pratique 1792, (en All.) See also the works of Saussure, Dolomieu, Humboldt, Deluc, &c. &c.
The secondary rocks, formed commonly in regular strata, give a peculiar and characteristic appearance to the mountains which are composed of them. Their outlines are less broken than those of the primary mountains, their summits less lofty; but vegetation displays its richness upon their gently inclined sides of chalk and clay, covered very frequently with a layer of marl, and filled with the remains of animals and vegetables, different from those now existing in a living state. The argillaceous schist bears the marks of an entire vegetation anterior to the present constitution of the globe. In the marly-bituminous schist, we meet with petrified fish and many impressions of aquatic animals; and the calcareous rocks contain the bones of quadrupeds. These three strata, and others which are analogous to them, frequently succeed each other in such a manner, that the remains of the vegetables are placed below, and those of the quadrupeds nearer the surface.

There are some rocks which follow no regular succession, such as the siliceous sand-stone, (les grès,*;) which contains few organic remains, but which, from the diversified arrangement of its strata, seem sometimes to approximate to the primitive rocks, and sometimes to those of the most recent formation. Gypsum, (sulphate of lime,) or plaster of Paris, is also a substance, which is met with sometimes in one order of succession, and sometimes in another. Vast masses of it are found among the primitive rocks.† What chiefly characterizes stratified mountains, is rock or mineral salt, saline springs, the mineral waters, layers of coppery schist, alumine, calamine, bituminous earths, with petroleum, or rock oil, and naphtha; and lastly, also coal and tar; all these substances are accumulated in layers or beds, the succession of which constantly varies, but which all belong exclusively to stratified mountains. On the other hand, these mountains contain no metallic veins.

In the same manner as the regularly stratified masses are supported by crystallized primitive rocks, and are placed upon them, we also see at the bases of those which are composed of strata, mountains covered with earth of a third order, which in fact is also arranged in layers, but without that uniform composition, or that regular cohesion, which make each layer of the stratified rocks a whole of itself. These strata, or beds, which we call tertiary, are also found in the midst of a confused mass of small portions of substances, which seem to have been accumulated by some fluids that has transported, or at least rolled and mixed them together. These form the bottoms of valleys, and are almost always placed upon the stratified rocks. Tufa, which is formed by the recomposition of the particles of a primitive rock, conglomerates, or basins, of the third order, which are heterogeneous compounds of the fragments of rocks united by a cement of tufa, clay, sand, or gravel, are all the principal strata of this kind.

The remains of large quadrupeds and other analogous animals now unknown in a living state, are found in these beds; there also are seen those vast quantities of peat or turf, (tourbe,) which are the remains of a recent vegetation mixed with bituminous earth. But neither minerals nor metals, either in strata or veins, are met with, except in small detached and separate particles.

In these alluvial or transported soils, as they are vaguely called, it is natural that the layers of lighter matter should occupy the surface, while the heavier substances should accumulate in the interior. But the former are often seen at very considerable depths, so that there are in alluvions, as in stratifications, many orders of succession. Thus, from the summits of Mount Blanc to the marshes of Holland, and the heaths of Lunebourg, the interior structure of the earth constantly preserves this complicated and enigmatical character, which not only perplexes our reason, but seems to baffle our imagination.

Besides these distinct beds, or strata, the earth presents to us a great number of confused masses.

All the banks of rivers and lakes, and the shores of the sea, are covered with pebbles, rounded by the waves which have rolled them against each

* "Grès" is translated silice or flint, and also free-stone or sand-stone; the latter is the most correct.—T.
† Dolomieu, Journal de Physique, 1794, p. 183.
other, and which frequently seem to have brought them from a distance. There are also similar masses of pebbles found at very great elevations, to which the present sea appears never to have been able to reach. We find them in the Alps at Valorsina, more than six thousand feet above the level of the sea; and on the mountain of "Bon-Homme," which is more than a thousand feet higher.† There are some places little elevated above the level of the sea, which, like the famous plain of Crau in Provence, are entirely paved with pebbles; while in Norway, near Quedlia, some mountains of a considerable magnitude seem to be completely formed of them, and in such a manner, that the largest pebbles occupy the summit, and their thickness and size diminish as you approach the base.† We may include in the number of these confused and irregular heaps, most of the depositions of matter brought by the rivers or sea, and left on the banks, and perhaps even those immense beds of sand which cover the centre of Asia and Africa: And, in general, it may be said, that the third order of beds or layers, very nearly approximate to these confused accumulations. It is this circumstance which renders so uncertain the distinction which it is nevertheless necessary to establish, between alluvial masses created before the commencement of history, and those which we still see forming under our own eyes.

There are, notwithstanding, some substances, the distinct character of which leaves much less room for hypothesis. Such are lavas, the well known productions of volcanos, which are found spread above all other strata around the craters, which have ejected them, like so many streams around one common source. The black-looking, torrential substances, which have been liquefied by the volcanos now existing, exhibit sometimes shapeless masses, either compact or porous, sometimes they assume the appearance of crystallization, or a separation into laminae, or into roundish blocks; they are often only one mass of scoria, or ashes, united by a sort of cement, and form what may be called volcanic tuffs.† The strata or layers, which we observe in lava, and which are commonly separated by thin intervening layers of vegetable mould, indicate the number of volcanic eruptions which have successively produced these different strata. None of these appearances are common to those celebrated substances known under the Basalt. name of basalt, and which many naturalists call primitive lava. This substance, always formed or divided into prisms, is seen in the form of columns, sometimes elevated perpendicularly, as in the cave of Fingal and the Giant's Causeway; sometimes inclined towards the horizon at different angles, as in the Vivarais; sometimes lying horizontally, ranged like logs of wood, and enclosed in fissures, as in the Feroe islands,§ or free and unconnected like the basaltic circle in the island of Mull.|| But basalt is never placed in large masses upon strata of the third order.

The fragments of granite and other pure rocks, thrown here and there upon stratified rocks, and even upon alluvial lands, exhibit a phenomenon so indisputable as it is astonishing. All the chains of Mount Jura, all the mountains which skirt the Alps, the hills, and even the plains of Germany and Italy, have blocks of granite scattered over them, frequently of large dimensions, and always of as pure a composition, and as beautifully crystallized as the granite of the highest Alps.|| The same phenomenon is also repeated in the plains of Russia, Poland, Prussia, Denmark and Sweden. From Holstein to eastern Prussia, upon the alluvial lands, of sand and clay, an immense number of blocks of granite are found. Near the island of Usedom, many detached masses of granite rise up from the bottom of the Baltic.** We see the same thing in Scania and in Jutland, which are so full of these fragments, that they use them for inclosures, for houses and churches. These blocks are rounded by the action of the heavy rains. In Lymford, a gulf of Jutland, and at some points on the western coast of that peninsula, sharp peaks of

† Faujas Saint-Fond, Essais de Géo. ii. 413, et seq. ❧ Memoirs of the Society of Natural History of Copenhagen. See the description of the Feroe Islands.
‡ Bergmann, Geog. Phys. à 207. ❧ Faujas, Géol. ii.
granite shoot up from the bottom of the sea. But what is most remarkable, is to see enormous masses of granite placed upon the summits of the calcareous mountains of Retswick, of Roedaberg and of Osmund, which are near six thousand feet above the level of the sea, and which consequently are among the highest mountains in the north of Europe.*

If this phenomenon has not been noticed in all the regions of the globe, we must perhaps attribute it to the few observations which travellers have made upon this subject.

The structure of the globe, of which we have been endeavouring to trace the grand features, presents in all its parts the appearance of a vast ruin; the confusion and overthrow of most of its strata, the irregular succession of those which seem to remain in their original situations, the wonderful variety which the direction of the veins and the forms of the caverns display, the immense heaps of confused and broken substances, the transportation of enormous blocks to a great distance from the mountains of which they appear to have formed a part, every thing, in short, makes us feel, that the history of our globe reaches back to periods far anterior to the existence of the human race, and, that the researches which are necessary to bring us acquainted even with the present state of its surface, (and scarcely beyond the surface can we penetrate,) would require a length of time, and an amount of expense hardly to be calculated, before our observations could be so matured and verified as to form the foundations of a complete scientific whole.

BOOK IX.

Combination of the Theory of Geography. Of simple Substances which compose the solid parts of the Globe. First Section: Saline, earthy, and inflammable substances.

It belongs to chemistry to examine in what manner the gases, the acids, and the elementary earths, have acted in the formation of the non-organic substances which form the solid crust or surface of our globe, and of which we are now going to consider the external and internal forms. Mineralogy describes, defines, and classifies these substances; geology treats of their origin; but physical geography, the object of which is to investigate the structure, composition, and physical relations of the globe, cannot be accused of going beyond its limits, in tracing out a general view of the various substances of which the solid parts of the earth are formed.

These substances are either simple, that is, formed of the same chemical elements, and having for their nucleus the same integrant molecule; or aggregate, that is, composed of two or more simple substances. The first of these substances are minerals, the objects of the sciences of mineralogy and crystallography; the second are the rocks and earths, which belong to the province of geognosy.

We distinguish four classes in the mineral kingdom: the first comprehends saline or acidiferous substances, which are composed of an acid united to an earth or an alkali, and sometimes to both. The second contains the earthy substance, into the composition of which earths alone enter, or sometimes an earth united to an alkali; in the third class are placed all inflammable substances which are not metallic; substances hitherto imperfectly analyzed, but which may be distinguished by the property which they possess, of burning, or of evaporating, when decomposed. The fourth class embraces the metallic substances known by their brilliancy, by their great specific gravity, and, in part, by their ductility and malleability.†

* Bergmann, Geog. Phy. i. 265.
† Hailly, Traité de Minéralogie. Brongniart, Traité Elem. de Minéralogie. Delamétherie, &c.
We shall now consider the mineral kingdom, in so far as it regards physical geography, that is, by examining the genera most abundant in nature, and the species most remarkable for their physical qualities. While we take the Terminology of M. Hairy for the basis, we shall compare it with that of other mineralogists.

Carbonate of lime. The carbonate of lime, that is, lime combined with carbonic acid, is also called aerated lime, or calcareous spar. It is the most abundant of any known mineral substance on the earth. It belongs to every geological epoch, and to every soil. Among the ancient and primordial masses, it not only forms one of the constituent principles of rocks, but it also is seen in its pure state in immense beds or banks, the peculiar character of which is a laminated or scaly texture, which indicates a confused crystallization. It abounds still more in the secondary or stratified mountains and masses of earth, of which it forms more than the half. It is found also in the third order, combined with clay, and thus constitutes the various Tae. It forms also vast beds in the state of chalk, frequently accompanied by large masses of calcareous shells—compressed together, and broken, and which had once been inhabited by marine animals. We are therefore led to consider chalk as a very ancient chemical decomposition of the altered and obliterated remains of shell-fish.* It is well known that the madreporas and other polypi of the equatorial seas, form chalk continually in great quantities. The port of Bantam was shut up in less than a century by rocks of coral formed by polypi.† Limestone is discovered mixed with flints and coloured marbles (brèche) in alluvial soils, and also in volcanic soils, where it has been detected by the explosions that have taken place. There are, however, countries where chalk is not found; where, at least, it has hitherto been but very rarely seen; as, for instance, in the neighbourhood of the Cape of Good Hope,‡ and in the granite and volcanic peninsula of Kamtschatka.§

The carbonate of lime in confined crystallized, forms the building materials in Marble. France. When it possesses a firmer grain, it forms a sort of marble of no great value. According as it becomes harder, and, if we may so express it, more refined, it takes a much finer polish, and is better fitted for the chisel of the sculptor. It is then properly called marble. White statuary marble from Carrara, Italy, is esteemed the purest of any. The coloured marbles are formed of calcareous matter, mixed more or less with extraneous substances. Pliny is right when he says, "Every country possesses its peculiar species of marble." Marbles, however, more regularly crystallized, of a larger grain, and more mixed with particles of pyrites, become more rare as you leave the middle of the temperate zone, and approach the pole.

Calcareous spar. Crystals of carbonated lime, under the name of calcareous spar, are found in almost every subterraneous cavity, and in all veins. They serve to ornament every cabinet of mineralogy. Filtering through the vaulted roofs of subterranean grottos, this substance forms those concretions known by the name of Stalactites. The calcareous stalactites; the various positions and forms of which present all kinds of agreeable and fantastic appearances to the imagination of the spectator. The eagle-stone, (gêole) is a concretion, the interior of which is hollow, sometimes filled up with crystals, sometimes bisected with multitudes of needles. The more abundant and uniform calcareous concretion produces those masses known under the name of calcareous alabaster, which differs from marble in being less pure, more variegated in its colours, and somewhat more transparent.

Incrustations. The incrustations which are formed by water, loaded with carbonate of lime, have led to the supposition that there are some petrifying springs. These incrustations preserve exactly the figure of the vegetables that have been covered with them, the substance of which has been destroyed. It is in the same manner that the tufas are formed, or calcareous sediments in canals, and the beds of rivers and lakes, the waters of which are charged with this substance.

† Blumenbach, Histoire Naturelle, p. 450. Comp. Forster, Péron, &c.
‡ Thunberg's Travels, i. 216. (In German.) Sparman's Travel's, 142—618. (In German.)
§ Georgi, Description Physique de la Russie, 1.
Other species of lime are of less importance. Some varieties of phosphated and of fluted lime exhibit coloured crystals, which very much resemble the more precious stones, such as chrysolites, emeralds, rubies, and others. Fluted lime is often found in the matter of metallic veins, mixed with the ore.

Phosphated and fluted lime. Sulphated lime, or lime combined with sulphuric acid, is commonly called gypsum, or plaster-stone, when mixed with carbonated lime. When crystallized, it is called selinite. This stone is divisible into brilliant and transparent lamines, and was used by the ancients instead of glass for windows. It very much resembles the foliated mica, or talc of Muscovy, yet is totally different in regard to the nature of its component parts. The compact sulphated lime, fine and close-grained, and of a beautiful white colour, is the substance which, under the name of gypsum alabaster, or alabastrite, (pseudo alabaster,) has so often afforded the poets a term of comparison to express the whiteness of the neck or arms: “A skin as alabaster pure.” Sulphated lime is often found under the form of hills or little mountains, and sometimes in beds or strata, in countries of the second and third formation. It is doubted whether there be any of the first formation, or whether the heaps which are known to be among the primitive mountains, have not been produced by cause of a later origin.* The school of Werner supports the first opinion. The north of Europe and of Asia furnishes very little sulphate of lime.†

Barytes and strontites are but of little importance in a physico-geographical point of view, although the sulphated variety of the latter affords those magnificent crystals which are found in the cavities of the mines of sulphur in the valleys of Noto and of Mazara in Sicily. To what extent magnesia is concerned in the formation of certain rocks, do not yet sufficiently determined.‡ The sulphate of magnesia, known under the names of sal amfer and Epsom salt, is found in many mineral waters, particularly those in the neighbourhood of Montpelier. It is also found in a state of efflorescence upon the surface of schist, from which it can be easily collected.

Nitrate of potash is composed of vegetable alkali or potash, nitric acid, and the water necessary for its crystallization. It is generally known under the name of salitre, or nitre. It is constantly formed in those places which, like our stable and salt-ponds, contain animal and vegetable matters in a state of putrefaction, or which receive the effluvia of those substances. It is deposited upon the surface of old walls. As this article is much used in the manufacture of gunpowder and aquafortis, or nitric acid, they make artificial nitre beds by means of a mixture of vegetable and animal substances.

Muriate of soda, or common salt, is composed of soda, muriatic acid, and water. It is spread throughout nature in an abundance corresponding to its extensive utility. When found in a crystallized state, it is called fossil, or rock-salt. There are immense masses of it in Poland, in Hungary,‡ in Austria, in Bavaria, in Hanover, in England, in Spain, and generally in all secondary countries. Great quantities of this salt are held in solution by the water of the ocean, from which it is procured by various processes. ‘Sea water’ is sometimes evaporated in shallow ditches or pits by the action of the sun; sometimes in large vessels, by the aid of fire, and the salt procured from it has different degrees of sharpness and strength. Some lakes, rivers, and springs, contain salt, particularly in the neighbourhood of the Caspian sea, where even the soil is impregnated with it. Salt lakes are generally found near hills of marl, clay, limestone, and gypsum.¶

The borate, or rather sub-borate of soda, or borax, is of great utility, | Borax.

especially in the melting and soldering of metals. This substance, the origin of which is disputed, found as a native production in some lakes and caverns in Thi-

* Saussure, Voyage dans les Alpes, § 1208, 1226, 1239, 1931.
† Georgi, Description Physique de la Russie, v. 126.
§ Chaptal, cité par Hally, Minéralogie, ii. 336.
¶ Pichet, History of Rock-Salt. (In German.)

bet, Nepal, Persia, Tartary, and in Saxony, but we also obtain it by a method similar to that employed for procuring nitre.* Carbonate of soda, commonly called natron, is found in certain lakes in Egypt; in that of Kis-Maria in Hungary, and in those situated in the plains north of the Caspian. It sometimes covers the plains with a slight efflorescence.† The marlure of ammonia, commonly called sal ammoniac, comes from Egypt and Persia. It is also found in small quantities round the volcanos of Sicily and Italy. It is also made in several countries in Europe. Mixed with pounded ice, it produces an artificial cold, which, according to Macquer, reaches to 18 degrees below zero in Beaunor's thermometer.‡ All these salts seem more particularly to abound in plains, which are surrounded by mountains; and which must have been the basins of lakes that are now become dry, or partly run out. The great desert of Sahara appears to be a similar basin, covered with saline efflorescence, while the country watered by the Niger is totally free from it. Brazil, in America, is destitute of salt, while Paraguay abounds with it. This salt is rare in Scandinavia, and in the north of Russia.

Alum. § Alum, in recent chemical works, is called alkaline-sulphurated alumina. This substance is found by itself only in very small quantities; but it can be procured from certain earths and stones, which are impregnated with it, or from schists and pyrites, which contain only its principles.

Pure alumina,§ or earth of alum, which is procured from alum, is distinguished among the elementary earths by its tendency to mix and unite itself with water. It is found blended with the most dissimilar substances. It enters into the composition of common clay, and into that of oriental gems. We know that these stones are very difficult to melt.

Cryolite. ¶ A Danish missionary has brought from Greenland a substance, which has been called cryolite, and which melts like ice in the flame of a candle; it is the fluated alkaline alumina of Haüy.¶ The very opposite results from combinations, in which the same substance is predominant, ought to teach us, that in forming a true theory of the earth, we should employ with the utmost circumspection the principles and analysis which chemistry affords.

Quartz. ¶ Let us now proceed to earthy substances. The first species which offers itself to our attention is that of hyaline quartz, or quartz properly so called. This has crystallized silex for its base, and comprehends some varieties very different in their aspect to the eye of the ignorant; but the severe method of modern mineralogy, established upon chemical analysis, rejects all false classifications founded upon external appearances.

Sand and gravel. ¶ When hyaline quartz is found in round or angular grains, without cohesion, having a vitreous surface, it is esteemed of no value, being nothing but sand or gravel, and fit to be used only in the formation of roads: if these small grains are united by a natural cement, they form silicious quartz, \textit{(gres quartzieux.)}¶ When the same substance has by natural friction been fashioned into small round masses, it is raised into the rank of crystalline silex, \textit{(cailloux cristallins.)}¶ Lastly, when hyaline quartz, in consequence of a more regular crystallization, is of uniform density, and perfectly transparent, it occupies a distinguished place in the collections of amateurs under the name of rock crystal; it ornaments our lustres; is used even in some kinds of jewellery. In Madagascar, these crystals are found in the greatest purity, and in large tables or flat layers,¶ and this seems to confirm the truth of the reports mentioned by Herodotus and Pliny, of the abundance of crystal rock crystals; in Upper Ethiopia. When of a violet or purple colour, the rock crystal becomes amethyst, and is in this state highly valued and classed among the gems.

* Pourcroy, \textit{Elémens d'Histoire naturelle et de Chimie}, tome ii. p. 68. Busching, \textit{Introduction à la Géographie}, p. 120.
† Voyages de Townsend, de Pallas, etc.
‡ That is—85° or 40° below the freezing point, in the common or Fahrenheit's thermometer.
§ It is called Alumina, from its being the base of the salt called alum, and sometimes argil, because it is also the base of the clays.—T.
¶ Haüy, ii. 407, \textit{sq}.
¶ Rocchon, \textit{Recueil de Mém. sur la Physique}, 155.
When blue, it is the sapphire, (*saphir *D'Orl.) which is not so precious: When it assumes the colour of rose, it is the ruby of Bohemia, the most valuable of all: when yellow it is the occidental topaz; in short the crystals of this substance take the names of the different gems which they resemble in colour.

This species of quartz agate, of which concreted silex constitutes the base, and of which many mineralogists still continue to form a distinct genus under the name of *silex. *contains the following among other varieties; the chalcedony, | *Siles. |
which is of a bluish or grey colour, and of an imperfect and cloudy transparency; the cornaline, which is red, and of a cherty-like semi-transparency, and sometimes of a beautiful carnation hue; and lastly, the chrysoprase, a stone of a delicate and clear green. They give the name of onyx to agates formed of two translucent stripes of different colours. Oriental agate is distinguished by the fineness of its | *Oriental agate. |
composition, and by the peculiar appearance given to its interior by its various undulated laminae.

When the quartz agate is less fine in its composition, it is used for gun-flints and for mill-stones, and even for common flints. The enhydros, celebrated by Pliny, is only an eagle stone, of quartz-agate, containing a small quantity of water, which is perceptible through the semi-transparency of the stone. There is a variety of quartz, which floats upon the water until it has imbibed a certain quantity.

The noble or perfect opal, as it is termed, is a milky resinous quartz, | *Opal. |
exhibiting a beautiful play of colours, like those in the rainbow, and varying their shades according to the position. It is highly prized on account of this brilliant appearance, which, however, arises solely from imperfections, that is, very minute cracks or fissures with which it is filled. When divided, it no longer displays this pleasing and changeable effulgence. | *The hydrophane, or semi-opal, becomes of a beautiful transparency, when plunged in water. |

Jasper is a quartz agate, blended with argil or clay, and a little iron. | *Jasper. |
which gives it a variety of colours. It was formerly confounded with porphyry; but, it is now ascertained that jasper is of a secondary formation, and has nothing in common with the primitive rocks of porphyry. In general all quartz agates belong to the secondary earths. The beds of silex, properly so called, namely, gun-flints, | *Common silex. |
millstones, and common flint-stones, though inconceivable in regard to the whole globe, present, in respect of their situation, some remarkable peculiarities. Strata of silex very often alternate with those of chalk. Hence some naturalists have thought that they were the petrified remains of certain marine animals. | *In several vast regions of the globe, as, for example, Siberia, and in the plains in the neighbourhood of the Caspian Sea, gun-flints or "silex pyromaque"§ is very seldom found. |

Hyaline quartz, without ever forming the entire substance of any mountain, abounds in every soil. It is one of the integral parts of most varieties of the granite rocks. It also enters, in the composition of many rocks of porphyry. It forms the base of a great number of fossil micaceous rocks. Its crystals occupy the fortuitous cavities which are found in almost all the large masses of rocks. They ornament the walls or sides of such cavities, sometimes in transparent prisms of nearly a foot in diameter. Hyaline quartz forms veins, frequently of a great extent, which pass through the primitive mountains; and these veins, becoming exposed, and projecting by the wearing away of the rocks in which they were imbedded, have given rise to the opinion, that there existed mountains entirely composed of quartz. There is scarcely any secondary rock, in which we do not find common or unshapen quartz, in masses, in veins, or in crystals.||

Arenaceous quartz, (quartz aréscac.) or quartz in the form of sand, covers almost entirely the bottom of the sea. It is spread over the banks of rivers, and forms vast plains, even at a very considerable elevation above the

* Comp Haly, ii. 439. Bergmann, Scisographia, i. 325. Delamathé, Théorie de la Terre, ii. 136.
† See Newton, Optics Locke, i. ii. p. 2. and the Minéralogie of Haly, ii. p. 456.
‡ Delamathé, Théorie de la Terre, v. 33.
§ Georgi, Description de la Russie, iii. 169. | Brongiart, ii. 271—279.
level of the sea, as the desert of Sahara in Africa, of Kobi in Asia, and many others. This quartz is produced, at least in part, from the disintegration of the primitive granite rocks. The currents of water carry it along, and when it is in very small, light, and rounded grains, even the wind transports it from one place to another. The hills thus are made to move like waves, and a deluge of sand frequently inundates the neighbouring country. *

Arenaceous quartz furnishes, by fusion, one of the most useful substances we have, namely, glass, which, being less hard than the crystals of quartz, can be made equally transparent, and is equally serviceable to our wants and to our pleasures. There it shines in walls of crystal in the palaces of the great, reflecting the charms of a hundred assembled beauties; here, in the hand of the philosopher, it discovers to us the worlds that revolve above us in the immensity of space, and the no less astonishing wonders that we tread beneath our feet.

Precious stones.

We shall now shortly notice the different species of precious stones, which are almost all composed of alumine, or pure argil, as the analysis of Bergmann and Klaproth have proved. According to the method of Haiyi, the name of Corundum now comprehends a species, the red variety of which is the true oriental ruby; the blue, the oriental sapphire; and, the yellow, the oriental topaz. These three varieties are comprehended by the French amateurs under the general name of "oriental gems." These valuable and brilliant substances consist of ninety-eight parts of alumina, and two of iron. To the species called by the French Spinel, the colouring matter of which is the metal called chrome, belong the scarlet or light red ruby, the pale rose or pink ruby, the variety, called rubacalle, of a yellowish red colour: all these are less hard, and have less play or brilliancy than the corundums. The limpid and transparent topazes of Siberia, the pale yellow ones of Saxony, those of Brazil, the colour of which is a reddish yellow, are all included by Haiyi in the same class. The ruby of Brazil is only a red topaz, (sometimes reddened by means of fire,) the beryl or oriental aqua marina, called the sapphire of Brazil, is a greenish blue topaz. Many chrysolites belong to the same species. The beautiful emerald of Peru, the pure green of which is more pleasant to the eye than the dazzling brilliancy of many other more perfect gems; and the occidental or common beryl, a stone of but little value, have both the same bases, namely, silex, alumina, glucose, and lime; but the colouring principle in the emerald is chrome, and, in the beryl, a very small quantity of iron. Garnet. The garnets of Bohemia, of a deep bright red, and those of Syria, of a purple violet colour, contain a large proportion of iron, sometimes one-third, or even two-fifths: the oriental garnet is very magnetic. It is a singular circumstance, that this quantity of iron does not injure its transparency. The cymophane, known also by the name of chrysoberyl, and oriental chrysolite, is of a yellowish green colour, and is nearly as hard and heavy as the corundum.

Diamond. We have not yet spoken of the diamond, that king of gems. The reason is, that this king is dethroned. Modern chemistry has proved, by multiplied and decisive experiments, that the diamond, far from resisting the fire, like all true gems, is entirely dissipated, without leaving any residuum whatsoever. Consequently, the diamond is now classed among the combustible substances, along with sulphur, amber, and coal. It appears that the diamond consists of pure carbon. Like all the other fine gems, the diamond seems to abound most in the East Indies, and in South America. The precious metals also more peculiarly belong to the equatorial regions.

Feldspar. Passing over some less interesting species, we come to feldspar, a substance composed principally of silex and alumina, with small proportions of lime and potash. If it be coloured, it is by the presence of oxide of iron. It cuts glass, is phosporic, and emits sparks when struck with steel. The feldspar forms the base of a multitude of rocks, and predominates in those of primitive formation, con-

* So where o'er wide Numidian wastes extend,
 Sudden the impetuous hurricanes descend, &c.—See Addison's Cate.
† Lapidaries call all perfect gems oriental, and those which are less so occidental.
‡ Haly, ii. 551.
Physical Geography.

Stating at least two thirds of the substance of granite.* Extensive mountains are sometimes solely composed of it. Guldenstedt tells us, that feldspar, either pure, or mixed with granulated quartz, forms that vast plain of rocks, which extends from both sides of the cataracts of the Dnieper. The fosses of the fort of Sacharowa, are cut out of natural feldspar.† It is also to this substance that porphyry rocks owe the distinct spots which arise out of their general colour; but these rocks rarely present themselves under regular forms. The fine crystals of feldspar, whether opaque and coloured, or limpid and transparent, occupy veins or cavities, contained in the primitive mountains; and it is the Lombard Alps which have furnished what the cabinets of France consider the most perfect specimens of this kind. But the most beautiful crystals of feldspar, which join to a fine green colour a great degree of transparency, are found in detached blocks or masses in the steppes of the Kirguis, whence the Bucharians carry them to Semipalatoin.‡ It is the mountains of Siberia, towards the lake Baikal, which have supplied these large plates of azure feldspar, with which the palace of Czarskoeelo is adorned. It appears then that this substance abounds still more in the Alps of Asia than in those of Europe. On the contrary, America does not appear to afford it in large quantities.

Feldspar, even when decomposed, still maintains a character of importance. It is found in extensive beds, from the Uralian mountains to Kamatchaka. Of the two substances which the Chinese use in the making of porcelain, the one named petunse, is a whitish laminated feldspar; the other called kaolin, is an argilform feldspar, that is to say, feldspar which has passed by decomposition, from the state of a stone, to that of a very brittle clay, without cohesion; combining with water, of a fine white colour, and insusceptible by itself—the petunse acting as a flux. The same substances are employed in Europe in the manufacture of porcelain ware.

The name of petroislex‡‡ has been given to several substances, very widely distributed in nature; but there appears to exist great confusion in this subdivision of the mineral kingdom. The hornstone of Werner or keratolithe of Delamethérie, and the secondary petroislex, or réceptre of Saussure, appear to be one and the same substance, belonging to the larger quartz agates, and to the secondary rocks; but the true petroislex, compact and semi-transparent, which is found in Sweden, in Norway, in Switzerland, and in general in all the primitive rocks, appears to resemble feldspar.** This stone forms of itself very considerable mountains, as well in the Alps as in the Uralian chain. In the latter, it is found sparingly in detached blocks and rolled pebbles. Amphibole, though less common than feldspar, holds a no less distinguished rank among the substances which compose the primitive rocks. It predominates in greenstein; it forms with feldspar the primitive traps, which differ from basalt; and enters into the composition of syenite, a stone often nearly allied to granite. It also forms of itself very considerable masses. The crystals of European amphibole are most frequently met with incased in substances ejected by volcanos. In Siberia, the traveller Laxman, found, near the lake of Baikal, amphibole crystalized in small prismatic columns, with four large faces, and three small ones. It was hence called baikalite.††

Mica, a substance remarkable for its metallic brilliancy, is distinguish from talc by its pure, smooth surface, and by not being, like talc, unctuous to the touch. The variety of mica, which consists of large thin transparent laminae, is misternamed talc of Muscovy. It is also known under the Latin name of Glacies Maria. The Russians, especially in Siberia, use it in their glass of Muscovy.

* Dolomien, quoted Halévy, ii. 608.
† Georgi, Russie, iii. 179.
§ Petroislex, a Latin word, which corresponds to the words, fek-kiesel in German; berg-stein in Danish; kelle-finna in Swedish: all these words mean rock flint.
†† Voyages, § 1194.
¶ Wallerius, Système Minéral, vol. i. p. 283. (Petroislex eauabilius, Spec. 122.)
** Halévy, iv. 385. Delamétherie, ii. 203.

Vol. I.—N
windows instead of glass;* but it soon becomes soiled, and, in some measure, loses its transparency by exposure to the air. Another variety of mica in spangles of a yellowish gold, or whitish silver colour, is known all over the world, by the ridiculous names of cat's gold, or cat's silver. The girt sand and gold powder, which the paper-makers use for purposes of ornament, are only mica in small fragments.

Mica, says Dolomieu,† belongs essentially to the primordial rocks, where it has originated in the midst of the confused crystallization by which these rocks have been formed. That which is imbedded in certain stony substances, of secondary formation, has been conveyed thither after the destruction of the rocks which inclosed it; and so much the more easily, as its particles, thin and light, were susceptible of being carried along by the waters, which deposited them with other sediments of an analogous nature. The remains of mica, are also found (having been carried thither) in the beds of hard grey-stone, (grysz) and schist, which generally alternate with strata of coal. Its fragments are still often disseminated in the sands of the most recent epoch; thus it exists in different states in substances of every formation. It appears that, in the south of Europe, as has been well observed by Dolomieu, mica is rarely found crystallized by itself; that in rocks it does not form lamines of any sensible extent, and that, even in the state of veins, its plates are only some inches in dimensions; but all accounts agree in asserting that it is found in Russia, Siberia, and Songoria, in lamine, and in masses, sometimes more than two ells square. It is in the granite mountains near the rivers of Mama and Aldon that the mica is worked. It is found in detached masses, and it sometimes appears on the surface of the earth, but is often covered with a bed of talc.† Near the lake Baïkal, and in the Uralian mountains, we meet with masses composed of rhomboidal and hexagonal lamine of transparent mica in the midst of granite. It is an undoubted phenomenon in physical geography, that the most abundant crystallization of mica is in the northern regions.

Talc,§ which differs from mica by the greasiness of its surface, is also less hard; it does not even mark the carbonate of lime; it is easily scraped with a knife. On the other hand, it differs from soapy clay, because it forms no paste with water, and does not adhere to the tongue. *The tale of Venice, which abounds in the Tyrol and Valteline, is of a greenish white, silvery, and divisible into thin, transparent, and flexible plates; it furnishes a powder which renders the skin smooth, and is employed as a cosmetic.* The scaly tale is known under the name of chalk of Briançon. *Slesite,* or Rock Soap, is the graphic tale of Haury. It is the substance of which these little figures that are brought from China are formed, and whose grotesque appearance has caused them to be called *Magota,* in allusion to a species of monkey which bears that name. The "talc ullaire," which is easily turned on the wheel, is made into pots.

**This substance belongs equally to the primitive and secondary rocks, but it is less common in the latter. According to Dolomieu, it sometimes arises from the decomposition of serpentine rocks, and it then occupies cavities where the products of the decomposition are collected. Dolomieu, however, considers the tale as formed a long time after the granite rocks. It, indeed, is disposed in very extensive banks, but then it is neither pure nor homogeneous. The purest tale is found in detached nodules imbedded in micaceous rocks. The open chlorite tale, seems sometimes to have penetrated by filtration into the veins of the primitive rocks; it is coloured by iron. In Corsica, and near the White Sea,|| we find a foliated sort, which is penetrated throughout with little sparkling crystals of iron. The green earth of Verona, which is used in painting, is a variety of chlorite tale; it is contained in beds of compact lava, into the cavities of which it has been introduced by filtration.

We shall be obliged to pass rapidly over many interesting species, such as the

Tourmaline, or the electric schorl, which is remarkable for its very strong

† Haury, Minéralogie, iii. 214.
‡ Gmelin, dans Georgi, iii. 238.
§ Tale, a stone greasy to the touch and sight; from talg, fat, in Danish, Swedish, German.
|| Laxman, in Georgi, iii. 214.
electricity in its two opposite points; when heated, it attracts or repels light bodies, such as ashes;—the lazulite, or sapphire of the ancients,† which furnishes the superb paint called Ultramarine, the permanency of which, by the side of the other colours, which are more or less affected and altered by the action of the air, somewhat impairs that harmony of tints which is so pleasing in pictures—a number of stones, to which the names have successfully been given, of zoölite, jade, or nephrite, which resembles talc; idocrase, otherwise vesuvian; &c. &c.

the amphiboles of Haiti, otherwise the leucite or white garnet; the emerouadine, (diopside of Haiti,) which, by its beautiful green colour, derived from copper, indicates the emerald species; and a number of others, which it were tedious to enumerate. We will terminate this hasty survey of earthy substances by a brief description of the celebrated asbestos.

This substance, called also amianthus, appears to be produced from the decomposition of primitive rocks, amongst which it is oftentimes found. It chiefly occupies fissures and cavities of steatitic rocks, serpentine, and others abounding in magnesia. The asbestos which is found in the mountains of Tarentaise, in Savoy, forms silky filaments of more than three decimetres, or about a foot in length. People, when they see, for the first time, a detached tuft of asbestos, can scarcely be convinced that it is actually a stone, and not a species of fine white silk. Asbestos abounds in Corsica; Dolomieu made use of it, instead of hay and tow, to pack up other minerals. Ciampini says, that the longest asbestos he ever saw came from the Pyrenees.† It abounds in the Uralian mountains, and in Greenland. In Corsica, they mix asbestos with the clay used in the potteries, which is thus rendered less brittle, and more capable of resisting the sudden alternations of heat and cold. The ancients spun the asbestos, and made towels, napkins, and head dresses of it. When these became soiled by use, they were thrown into the fire, which did not destroy the substance of the asbestos, and upon being taken out, were found to be whiter than if they had been washed. In the funeral obsequies of kings and emperors, the dead body was enveloped with cloths of asbestos, before it was placed on the funeral pile; and thus the ashes were obtained quite unmixcd.§ In modern times, the Russians alone have attempted, but without success, to spin the asbestos. The inhabitants of the Uralian mountains have still preserved some remains of this frivolous industry.‖ The indestructible paper, made from this substance, appears more useful. Wicks for lamps are also formed of the asbestos, which easily imbibe oil, and burn with a brilliant flame.‖ Father Kircher made use of such a wick for more than two years, without any perceptible decay, but, having wet it by accident, was prevented from continuing his experiment. Perhaps the fabulous accounts of unextinguishable sepulchral lamps derive their origin from this circumstance.

Of the inflammable substances, sulphur naturally presents itself first. Sulphur.

† Minéralogie de Haiti, iii, pages 44—58.
† Bayer, Dissert. de Sapphiro. Beckmann, Histoire des Inventions, iii. 182, sqq.
‡ De Lino Incombustibile; Rome, in 4to. 1691, p. 5. 6.
§ Pliny, Nat. Hist. b. 19, ch. 1.
‖ Bruckmann, Magnalia Dei in locis subterr. ii. 955. Georgii, iii. 244.
‖ Egele, Account of Greenland, (in Danish.)
We have already spoken of the diamond, to which the rigid justice of modern chemists assigns a place amongst combustible substances. The anthracite, a substance similar to the bit-coal, combined with stony matter, of difficult combustion, appears to have the same principle for its basis as the diamond, namely, pure carbon, accidentally mixed with flint and iron. The anthracite occurs chiefly, but not exclusively,* in primitive rocks, where it forms considerable masses. Thus, as Carbon. Dolomieu observes,† "carbon, or the carbonaceous principle, exists in nature, independently of animals and vegetables, of which there are no traces found in the primitive soils." Let us also add, that sulphur must have existed before organized bodies, since, as Delamétherie observes, it is found in granite.‡ Deluc has lately expressed the same opinion in relation to primitive calcareous earth.§ We seem every day becoming more disposed to admit the formal pre-existence of all the elements which enter into the composition of the globe, whilst false logic would represent them as being wholly the remains of animals or vegetables. Let us rather say, that the organic energy of nature exerted in two different directions, has given rise on one side to calcareous rocks, alkaline-earthy substances, and animals—on the other, to quartzeous and bituminous substances and vegetables; constantly putting in action the same elements, or their products, but always proceeding from a general and imperfect organization, to another more individual and more perfect, ascending from the stone to the diamond, from molybdena to gold, from the medusa to the shell, and from the polypus to man.

The elementary oils existed also without doubt before vegetable substances. The place they hold in nature is worthy of our attention.

Bitumen, in a liquid state, when it is of a brownish colour, commonly bears the name of petroleum, or mineral tar, and when it is white and transparent, that of naphtha. It filters through the earth and rocks, which remain impregnated with it. There are springs of it; those of Baku in Persia are well known. It floats sometimes, like oil, upon the surface of the waters. It is said that there is a lake of this description in Mesopotamia. In the district of Parma, it is drawn up in buckets from wells sunk in the earth for the purpose. The same substance, in drying, passes to a state of glutinous bitumen, named also malta, mineral pitch, or passasphaltum, and from that to solid pitch—in this last state it is called asphaltum, and gives its name to lake Asphaltus in Palestine. It appears that a subterraneous fermentation detaches from a bed of solid bitumen, situated under the lake, those crusts of asphaltum that we see swarming on its surface. The glutinous bitumen is found in France, in Auvergne, at a place called the Puy de la Pèze,|| where it covers the earth, and sticks to the feet, so as to incommodate and retard the traveller. In Persia, Japan, and other countries, they use liquid bitumen as oil for their lamps. The Persians and Turks mix it with their varnish to give it lustre. The walls of Babylon were built with a cement in which bitumen formed an ingredient. Rouille has concluded, from his experiments upon mummies, that the Egyptians employed bitumen in their embalming.

Whence. Pit-coal appears to be bitumen united to an earthy base. Most naturalists consider pit-coal, (and the same may be said of other bituminous substances,) as being, in a great measure, a product of the vegetable and animal kingdoms. Such an origin appears at first marked out by the numerous remains of organic bodies, particularly of well known sea animals, which are found in coal mines; by the impression of different plants, particularly of the fern tribe, in the schistous clays, which form the roof of these mines; and, finally, by wood, still partly in a ligneous state and partly bituminated, so that we can, from such appearances, trace, as it were, the process followed in the formation of coal, from one point in the scale to another.

Chemical analysis proves that pit-coal gives the same products as organized bodies, namely, hydrogen, oxygen, carbon, azote, and an earthy residue.

* Hericart de Thury; quoted by Brogniart, Tr. de Minéral, ii. 58.
‡ Théorie de la Terre, ii. p. 250. § Journal de Phys. 1803.
|| Lémery, Dictionn. p. 602. The name of La Pèze comes without doubt from the Latin pis, la poix, pitch.
Coal is most commonly found in France and in England, where the primeval and secondary rocks join; whence it has been concluded, that beds of coal were collections of substances deposited by the ancient sea along the shores of the ancient earth—it is supposed that the rivers would bear along trees, plants, and bodies of animals towards the sea, which would throw them back upon its primitive shores, where they would accumulate in beds and masses, and in that condition enter into a state of decomposition and combustion. The mines of coal ought then to be found disposed around the most elevated nuclei of the new, or actually existing earth, and which have been the islands of the primeval ocean. Such is, amongst others, the disposition of the mines of coal around the mountains of Hartz, as described by Lehman.*

But the simplicity of this theory does not account for the complicated circumstances connected with the position of coal. The numerous beds of sandstone, (grès,) of schist, and chalk, which generally separate those of coal,† show us that this last substance has been formed at different intervals in a fluid, and perhaps in part, at a period when the present vegetables and animals did not exist. In some places, according to Delamétherie, the intermediate beds which separate the strata of coal, preserve, as well as these strata, a constant parallelism between them. This parallelism is so much the more remarkable, that there are beds of coal, which are scarcely an inch in thickness, although often several leagues in extent. It has been concluded, and with sufficient probability, that these beds were formed in interior lakes, and crystallized in calm waters.‡ It must at the same time be stated, that we observe other beds of coal which indicate circumstances of great confusion. Near Villenciennes, some beds, which are vertical, or almost vertical, are covered over by an alternate superposition with beds parallel to the horizon.§

The great extent of beds of coal presents another subject worthy of consideration; they appear to pass under the very bottom of the sea.

In the Danish island of Bornholm, which is composed of calcareous and schistous earths, of a secondary formation, we find a considerable bed of coal, which comes from the Baltic sea, passes under the island, and extends itself again under the sea, towards the opposite coasts of Scania, a province of Sweden. The bed, the thickness of which is not known, may be from five to seven leagues in length, and more than one league in breadth.|| We may conclude, according to the apparent direction of the bed, that it ought equally to be extended under the secondary schistous rocks in Scania. Scania runs from south-east to north-west, in the same direction as the bed of submarmine coal. In fact, aluminous (aluminous) is found first at Andrarum, and a bed of coal has been recently discovered at Hoganess, upon the borders of the Sound, or entrance of the Baltic.

In short, it is a very remarkable thing, that coal, a substance so easily inflammable, is found covered over with substances, which, if they are not the products of volcanoes, seem at least to owe their origin to fusion, occasioned by the powerful action of calorific. The most striking example of this collocation of the seams of coal has not yet been examined with due care. The islands of Ferro, which appear to be nothing but masses of basalt, and which rise perpendicularly from the bosom of the sea to the height of 1800 feet, contain an extensive mine of coal, inclining to the variety named “dry coal.”†† It is found in the island of Sudoree, and, according to the descriptions given of it, it seems to have at once, for its roof, its wall, and its support, basalt, trapp, or rocks which are closely connected with these two kinds.**

All bituminous substances exercise in a singular manner the ingenuity of the natu-

§ Baillef, inspecteur de minés, quoted by Haiy, Minéral. iii. 320.
‖ Memoirs of the Society of Rural Economy at Copenhagen, (in Danish) i. p. 455—496.
¶ See Charbon.
** Mémoires de la Société d’Histoire Naturelle de Copenhague, Voyez, article Ferroc, ci-

**
ralist, who, though he can discover the elements of which they are composed, cannot explain the origin.

Jet is found so differently described, that we cannot say whether it is fossil wood, or hardened asphaltum. The elastic bitumen, which occurs in England, near Caletstone in Derbyshire, appears, according to the researches of two distinguished naturalists, to be a substance identified with the cahoutchue, or elastic gum, which certain trees in Peru furnish. This fossil cahoutchue transported to so great a distance from the warm climate in which it must have been produced, seems then to furnish a new proof of the astonishing revolutions which our globe has undergone. The state of hardnesse, however, in which certain portions of this bitumen are found, renders the nature of it very uncertain.

Succinum, or yellow amber. — Succinum, or yellow amber. We have seen what a prominent part the Succine islands, or the Electrides, formed in the history of the ancient geographical traditions, and that we may with equal probability, seek for this country of yellow amber in the Asturias, where that substance abounds in the beds of coal; and in Eastern Prussia, where the Baltic Sea throws pieces of it upon the coasts, and where formerly the fishermen collected lumps of it in their nets, whilst now it is the regular working of the hills of sand in the neighbourhood of the sea, which furnishes the greatest quantity. There was lately found at Schleppacketz, at the distance of twelve German miles from the sea, the largest piece of amber that was ever known; it weighs 13½ pounds, and is preserved in the royal museum of Berlin. Next to Prussia, Eastern Pomerania furnishes the greatest quantity of amber: where it is also worked in quarries. In general, the whole of the plain which borders the Baltic Sea on the south, produces amber commonly within the beds of sand, and of clay, sometimes in the midst of imperfect coal. These depôts of amber extend from Livonia, and particularly from Courland, to the western coasts of Sleswick, where perhaps the Phoenicians purchased this substance formerly so much sought after.

Origin of yellow amber. — The situations in which yellow amber occurs; the physical and chemical qualities of this substance, which appears to approach the resinous gums; the insects which are found enclosed within it, as in a crystal prison; every thing, in short, connected with its history, would induce us to regard this fossil as a juice which once flowed from a tree, and which, buried in the earth by some natural convulsion, would be impregnated with mineral vapours, and acquire a certain degree of consistency. But as the copal, the only kind of known gum which resembles amber, is brought to us from Africa and the East Indies, it would appear, that the forests in which amber is produced, could not exist in the environs of the Baltic, unless a very elevated temperature prevailed. Thus, these small fragile crystals, which at first seem to be only an object of idle curiosity, become so many monuments of the revolutions which our planet has experienced.

† D. Casal, Histoire Médicale des Asturies, dans les Annales des Voyages, viii. 80.
‡ Boet. De Lapid. et Gemmis, 1. ii. p. 159. Hartmann, Succini Prussici Historia Physica, etc.; Francfort, 1677, etc.
§ Hassé, la Prusse, le pays d'ambre jaune et le paradis; Königsberg, 1799.
¶ Kant, Géographie Physique, vii. 154, (supplement.)
** Seetzen, Magasin minéralog. de M. Hoff, 1. vol. 4e cahier, p. 406.
†† Heinzé, Nouveau Magasin de Kiel, ii. 337, sqq. (d'après les Mémoires de l'Académie des Sciences de Copenhague.)
‡‡ Fourcroy, Eléments d'Histoire Naturelle et de Chimie (édit. de 1789), iii. 443.
BOOK X.

Continuation of the Theory of Geography. Of the simple substances which compose the solid part of the globe. Section Second: of Metals.

The only minerals which remain for us to consider, are metals; substances whose brightness, weight, density, ductility, and fusibility, engage the attention of mineralogists and crystallographers; substances which, forming sometimes the representative signs of the products of industry, and sometimes the useful or the formidable instruments of our arts, and our passions, ought to be carefully noticed in the description of political states; but they peculiarly deserve attention in the details of physical geography, from the intimate relation which they bear to the two great agents of nature, electricity and magnetism. Our knowledge of facts is too limited for enabling us to discuss with advantage the bold hypothesis of some Danish and German naturalists, who pretend to form from analogical conjectures a theory of the electrical and magnetic phenomena observed in metals, and who have even ventured to draw from it the conclusion, that the solid centre of the globe was a metallic mass, all the mineral substances in which were only oxides.* This theory, unsatisfactory and defective, notwithstanding all the attempts to support it by vague analogies, acquires, indeed, some interest, from its approximating to the results of Sir H. Davy's new experiments, which seem to indicate the metallic nature of a number of substances in appearance earthy and alkaline. We must wait the ulterior progress of these interesting researches, before we can apply them to explain the theory of the earth. But all philosophers should agree in considering the bearings and position of metals, as a subject worthy our most careful and persevering researches. Physical geography indispensably requires that a subject of this nature should constitute one of its departments; and if we devote to it a certain portion of our pages, our readers will perceive, in the progress of our work, the advantages which are thus afforded us, even in the study of political geography. We shall class metals according to their specific gravity.

Platina remained unknown, or neglected, until 1735. Don Ulloa, a Spanish geometrician, who accompanied Condamine and Bouguer, in their voyage, to measure a degree at Peru, having found this metal there, announced the discovery of it in the relation of his voyage. Platina as yet has been found only in the gold mines of America,† particularly in those of Santa Fé, near Carthagena, in Castille d'Or, and in the mines of Choco, in Peru. It is brought to us in little grains, mixed with gold dust, ferruginous sand, and some particles of mercury. That which has been brought into Europe, contains three or four extraneous minerals.‡ It is the least fusible of all the metals.

To melt it into ingots, it is mixed with arsenic, a substance which renders the platina very fusible, and from which it is afterwards easily separated by roasting. But this process exposes the workmen to vapours, the danger of which is unfortunately too well known. It is of platina that those rods are made, that have been employed in measuring the base of the chain of triangles, whence has been deduced the length of the arc of the meridian which traverses France, and by consequence, the distance from the equator to the northern pole.

This metal has been chosen for such purposes, because it is little susceptible of diluting, or contracting from the variations of temperature. Its dilatation, according to Borda, is only \(\frac{1}{10000} \) for one degree of the centigrade.

* Steffen, Histoire Intérieure de la Nature. Schelling, Théorie de l'Univers. Id. Journal de Physique Spéculative, 1. cah. 2. Ritter, le Sidiérisme, etc.
† It is also found in Estremadura in Spain.—T.
‡ Fourcroy et Vacquelin, Annales du Muséum, tome iii. p. 149; tome iv. p. 77. sqq.
thermometer, or \(\frac{1}{4} 1\frac{1}{2}\) for a degree of Reaumur. Whilst a rod of iron dilates \(\frac{1}{4} 1\frac{1}{2}\) for a centesimal degree, and \(\frac{1}{4} 1\frac{1}{2}\) for a degree of Reaumur.\(^*\)

Gold, its position.

Gold is only found in its native state, that is to say, almost pure. It exists in all kinds of earth. It is found in little beds in the primitive mountains of gneiss, and of micaceous schist, in the country of Salzburg, and in Carniola; it occupies veins in the mountains of sienite and porphyry near Kremnitz in Hungary, in the secondary rocks of argillaceous-quartzous schist, or even of sandstone, (grès,) at Zalatna in Transylvania, and in an argillaceous free stone, (grès argileux)\(^\dagger\) not far from Ekaterinburg in Siberia; thus, says Werner,\(^\ddagger\) this metal has been formed in very different periods. It is also proved by the experiments of Sage, Berthollet, Rouelle, Darcet, and Deyeux,\(^\S\) that there are particles of gold existing in vegetables. Berthollet has extracted about 2 grammes,\(^\S\S\) or 40 grains \(\frac{1}{2}\) of gold, from 489 hectograms, or a quintal of ashes. Werner assures us, that at Zalatna, native gold has been found in half petrified wood, or rather, says he, in bituminous wood.\(^\|\)

Geographical situation of gold.

The mine of gold which is in Norway is poorer than that in Sweden; those of the north produce altogether scarcely the twentieth part of the quantity furnished by that of Nagyag in Transylvania, or that of Kremnitz in Hungary. But what indeed are all the gold mines of Europe, taken together, in comparison of one single mine in Peru or Brazil? In going from La Paz, towards Potosi and Tucuman, all the beds of clayey schist are found penetrated with veins of auriferous quartz; and the fall of a shelf of rock discovers masses of gold from 2 to 300 pounds in weight.\(\Pi\) The islands of Borneo, of Celebes, or Macassar, and of Sumatra, situated under the equator, contain very rich mines of gold, though badly worked.\(\text{**}\)

Sound production of gold.

Europe has also rivers, which carry along with them some grains of gold; but in Africa, in searching along the rivers, we find almost every where auriferous sand. In Nigritia, the natives are regularly employed every year in this golden harvest, after having finished that of the corn. Near Akim, upon the coast of Guinea, one person may pick up several ounces a day. This increasing abundance of one of the most weighty and dense metals, as we approach the equator, presents to us a question, as interesting as it is difficult to solve.

Quality of gold.

The valuable qualities of gold render it worthy of the rank which opinion has assigned to it amongst metals. Less brilliant than platina, it has a colour more agreeable to the eye. Thus, the poets have not failed to give golden locks to Apollo; to Jupiter a throne of gold; Vulcan employs gold to forge a buckler for Achilles; in short, in the form of an adjective, the words gold and beauty are synonymous amongst the Greeks. Tractable in the hands of art, from its great ductility, gold assumes every form which we wish it to acquire. The goldsmith, the jeweller, the embroiderer, and the gilder, employ it with equal facility. It is capable of the most astonishing superficial extension, thus making up, in some measure, for its scarcelessness, by its ductility. A quantity of gold, of the weight of one grain (53 milligrammes) can be beaten out into a sheet, the surface of which will cover 50 square inches, or 3.16 square decimetres; and when used in the gilding of silver wire, its extension is nearly sixteen times greater. The tenacity of gold is such, says Haiuy, that one thread of this metal, of 3.7 millimetres, or 1.7 of an inch in diameter, can support a weight of 244.5 kilogrammes, or 500 pounds, without breaking. As gold is very soft, it must be mixed with copper, when coined into money. This alloy gives it a reddish tinge. Gold acquires a resinous electricity.\(\|\)

\(^*\) Or about \(\frac{1}{4} 1\frac{1}{2}\) according to the scale of Fahrenheit. One degree of Reaumur being supposed equal to \(\frac{1}{2}\) of Fahrenheit.—T.

\(^\dagger\) Grès sometimes means flint or silicious substances, and sometimes is translated free-stone.

\(^\|\) The context must determine which it designates.—T.

\(^\ddagger\) Werner, Nouvelle Théorie des Filons, § 77.

\(^\S\) Chaptal, Eléments de Chimie, tome iii. p. 401. \(^\|$ Théorie des Filons, loc. cit.

\(^\Pi\) Helm. Journal d’un Voyage de Buenos-Ayres à Lima, (en All.)

\(^\text{**}\) Mem. de la Société de Bataria, ii. 166, iv. 589, etc.

\(^\|$\) Haiuy, Annales du Muséum. iii. 309. sqq.
Native silver is rarely found pure in the bosom of the earth; it is sometimes mixed with copper and iron, and sometimes with gold, but more frequently with arsenic. The same province of South America which possesses the richest gold mines, namely, Peru, contains also great treasures of silver.

The mines of Potosí produced, from the year 1545 to 1648, about 395,618,900 piastres, but they are exhausted. In North America, Mexico abounds in silver, about 22 millions of piastres being derived from it every year.* Silver is apparently diffused throughout the whole extent of the old continent; but the mines which are now best known, are almost all found in the temperate zone of the North. Those of Siberia, of Saxony, and of Hartz, are at the 50th degree of latitude—those of Königsberg in Norway, at the 60th degree. The produce of these mines, however, is trifling, compared to the mineral riches of America, which are contained within the two parallels, distant thirty degrees from the equator. We are ignorant whether Africa possesses mines of silver equal to those of the New World.

Silver is found in quartz, limestone, sulphated zinc, and sometimes in petosilox;† it is rarely met with in granite rocks. At Franklinberg, in Hesse, leaves of native silver are found adhering to petrifications.‡ This metal exists in grains (though rarely) in a thread-like form, in thin laminae, in ramifications, in octahedral crystals, and sometimes in very considerable masses. We are assured, that one was found at Schneeberg, in Saxony, in 1748, which weighed 400 quintals, or 196 kilogrammes.§ Another mass was found at Königsberg, of the weight of 560 marks, (about 270 kilogrammes,) and is preserved in the Royal Museum at Copenhagen. Bergmann says, that there has been found in the sands, upon the coasts of Peru, masses of 150 marks of silver entirely pure.

Silver is, next to gold and platine, the most unalterable of the metals—its surface only blackens in those places where there are sulphureous and inflammable vapours. It is remarkable that silver, alloyed with a considerable portion of gold or copper, preserves its white colour; whilst a small quantity of silver or copper, mixed with gold, changes very sensibly the colour of this latter metal. This phenomenon, common to all white metals, made Newton imagine, that the particles of white metals have much more surface than those of yellow metals, and that they are even opaque; so that they cover the gold and copper, without permitting the colour of these metals to pierce through theirs. They ought, on the other hand, to be more thin, because the white light which they reflect, answers to a greater degree of tenacity, than the yellow of gold or copper.|| According to the experiments of Brisson, and the calculations of Hauy,§ the specific gravity of a mixture of gold and copper, exceeds the sum of the specific gravities of the two metals when separate about 14. On the contrary, the specific gravity of a mixture of silver and copper, is less than the total of the specific gravities of the two metals, by about 14. Another physical quality of silver is still more worthy of our attention, the property which it has, when dissolved in nitric acid, of crystallizing under a kind of vegetable or arborescent form, producing what is called the tree of Diana. It would seem, that the crystals of which this kind of mineral vegetable is composed, may be considered as small magnetic rods, whose poles, by attracting and repelling each other, determine their respective positions.** Silver, though less rare than gold, has been preferred to that metal, as a representative of value; the resistances which it opposes to the action of the air and humidity; its brilliant whiteness, and its malleability, render it applicable to a multiplicity of purposes both useful and ornamental, which are too well known to require enumeration.

Sulphate of silver, that is, silver combined with about 4 of sulphur, commonly bears the absurd name of (mine d'argent vitreuse) vitreous silver.

* Humboldt, Essai Politique sur la Nouvelle Espagne.
† Bergmann, Géographie Physique, i. 256.
‡ Werner, Nouvelle Théorie des Filons, § 78 et 79.
¶ Newton, Optice Lucis. lib. ii. part 3. propost. 7.
|| Hauy, Minéralogie, tom. iii. p. 380 et 390.
** Ritter, Mémoires sur le Galvanisme, i. cah. 2. p. 280.
silver, though it has not even the exterior appearance of glass. Antimonial sulphurated silver is commonly called red silver, and the fine lively red, which is the essential colour of it, justifies the name. The transparent crystals of this metal form not a bad imitation of the ruby; the more beautiful they are the less silver they contain.

Mercury. | Native mercury is generally found in brilliant and moveable globules, disseminated in the clayey schist, as at Idria in Friuli, or rather in Carniolia; in marl, in quartz, as in the district of Deux Ponts, and in primitive lime-stone, as at Almaden in Spain. This metal requires so little heat for its fusion, that the atmosphere always contains enough to preserve it in the fluid state. The cold of Siberia, however, and of Northern Russia, sometimes converts it into the solid form, which has been erroneously considered as congelation, it is then almost as malleable as tin, and admits of being extended into very thin sheets: besides, its oxide repasses to a metallic state, without the intervention of any foreign substance. It possesses, then, the essential qualities of metals, and approaches the nature of those that are the most perfect. Mercury amalgamates with almost all metallic substances, but chiefly with gold, silver, tin, and bismuth; it is this property, joined to the facility with which it evaporates, that causes it to be employed in gilding, and in working mines of gold and silver. The silverying of glass is effected by amalgam of mercury and tin. Philosophers make use of the same amalgam to spread upon the rubbers of electric machines. The efficacy of medicines formed of oxides of mercury, is entirely owing to the facility with which these oxides are decomposed by parting with their oxygen. All these physical and chemical qualities show what an important part mercury would act in the formation of our earth, if it there existed in great quantities. At present, this metal is found only in very small portions, and at great distances—it seems to fail in countries in the vicinity of the arctic pole. The whole of Siberia presents to us only two or three ambiguous specimens. The New Continent is not more abundantly provided with it. The natural amalgam of mercury and silver, is called silvery mercury. It remains for us only to notice the sulphuret of mercury, well known under the name of cinnabar, or vermilion cinnabar, and which is sometimes found in regular veins.

Lead. | An ignoble metal claims the rank next to mercury, that is, lead, a substance of very dense structure, but extremely deficient in point of hardness, elasticity, and even ductility. It is, however, of great utility in its metallic state; conduct pipes, balls for guns, and other plain and coarse implements are made of it; and the oxides of lead are employed in many of the arts. It is lead which gives to glass an unctuousity which renders it susceptible of being easily cut and polished. It is to lead, or to its red oxide, that glass, called flint glass, owes the quality which renders it so valuable for the construction of the object glasses of achromatic telescopes,—the quality of disteving the images of those colours, with which they appear to be edged when we view them through a common telescope. The oxides of lead furnish a variety of colours both to the pallet of the painter, and the toilet of the modern Lais.

Potos of lead. | This metal is generally found mineralized by sulphur, forming an ore commonly called galena, which is almost always mixed with iron, with antimony, and especially with silver. This ore is generally worked only for the purpose of extracting from it the silver it contains. Werner specifies seventeen formations of galena of different periods, in all sorts of rocks, from the quartz to pit-coal. There are no kind of mines more common in Europe. The kind of galena which contains silver, is met with in Danish Laponia. But lead is not found in abundance, any where in the North of Europe, or Asia. It begins to

§ Georgi. Description de la Russie, iii. 406.
| Werner, Théorie des Filons, p. 156-161 (en All.)
discover itself in great quantities, only in Germany, France and England. We are assured that in the interior of Louisiana, it forms vast beds upon the surface. Carbonate of lead, or mineral white lead, often accompanies galena; it is an oxide mineralized by carbonic acid. Molybdate of lead, or the oxide mineralized by molybdcic acid, is found at Bleyberg in Carinthia; it generally bears the name of yellow lead. The red lead of Beresof in Siberia is mineralized by the chromic acid. It is still doubtful whether there exists any lead in the native state.

Nickel is not a very ductile metal; it is of no use in the arts, but it possess some magnetic properties. It generally accompanies cobalt, an equally magnetic substance; these two metals, of a nature nearly allied to that of iron, and often containing particles of it, seem to occur most plentifully in the north.

Copper, one of the metals of which nature is most lavish, appears to occupy two great regions of the globe which admit of being distinctly defined. We know that it abounds in Norway, in Sweden, in Hungary, in England, in the Uralsian mountains, throughout all Siberia, in Chinese Tartary, and Japan. We must also add, that several islands between Kamtschatka and America produce masses of native copper; that immense beds of it are found upon the banks of the Ohio; and lastly, that there have been signs of its existence in Greenland, and in Iceland. This metal then seems to be common to all the countries situated in a zone of about 45 degrees of latitude around the northern pole. But it is found on the other side, over all the south of Africa, from Congo, to the Cape of Good Hope, and according to Benoiscki in Madagascar. The southern extremity of America appears also to contain considerable mines of it; and Brazil presents to our notice, an immense block of it in the native state. It appears then, that this mineral is accumulated at the two extremities of the two great continents. We must at the same time admit, that this interesting sketch may meet with objections, drawn from the existence of extensive mines of copper in the country of Morocco; in the island of Cyprus, and Turkish Armenia, mines which by connecting together the two regions that have just been pointed out, compel us to regard copper as a substance common to all the zones of our planet.

With respect to native copper, naturalists agree in distinguishing two different formations; copper of the first formation is in crystals, in thin plates, in threads, in clusters, which are commonly found attached to quartz, or chert, and sometimes primitive limestone, as is the case near Ekaterinbourg in Siberia, and at Tunaberg in Sweden.

The copper of cementation is of more recent formation; it is obtained from sulphate of copper, (commonly called vitriol,) held in solution in water, and decomposed by the application of heat. It forms concretions upon different stony substances, and even upon organic bodies. Waters impregnated with particles of copper are called cementatory waters. Amongst the ores of copper, the most common is the pyrites of copper. In the mines of Kopparberg in Sweden, of Røeras in Norway, in those of Siberia, and in general in all the great copper works, this metal is principally obtained from pyrites of a yellow or iris colour, in which it is found mineralized by iron and sulphur. The grey-coloured copper contains silver, antimony, lead, sulphur, &c. The sulphuret of copper, or copper combined principally with sulphur, has a vitreous appearance. In the state of oxide, copper assumes various tints, red, blue, or green. The silky or pearly carbonate of copper, (the satin-like ore of Bergmann,) presents a green colour like an emerald,

* See Description de la Louisiane.
‡ Georgi, Russie, 424. Sauer, etc.
§ Micheaux, Voyages aux états de l'Ouest.
‖ In almost all his descriptions of mines either of metals or coals, M. Malte-Brun seems to forget there is such a country as England, remarkable for its mines of tin, lead, iron, copper, and coals. At the time when he wrote, it was the fashion, if possible, to forget it.—T.
** Sparman, Voyage, 396. (en All.) Patterson, Barrow. etc. etc.
†† Vidaure, Istoria Geografica di Chili.
‡‡ Host, Notices de Maroc. (trad. du Dan. en All.) p. 310. Chenier. etc.
softened by a sort of satin lustre, which has the effect of giving it a more beautiful appearance. This same copper, in a state of concretion, forms the substance named Malachite, which is susceptible of a fine polish, and of which the cheeks of chimneys, snuff boxes, and various trinkets are made. It is, to use the happy expression of M. Haiy, the alabaster of metallic substances.10

Qualities of copper.

As it is the province of political geography to treat of manufactures which have the working of metals for their object, we shall be pardoned, we trust, if we mention in a few words the eminently useful qualities of copper. This mineral, while it is much more ductile than iron, is also more durable than tin and lead. Its tenacity is such, that one wire of copper of 3.7 millimetres, or 1/16 of an inch diameter, can sustain without breaking, a weight of 146 kilogrammes, or about 320 pounds English. The useful qualities of copper are partly balanced by its very changeable nature. Exposed to the air, or to damp, it is very soon covered with that rust known under the name of verdigris, which is one of the most active poisons: When melted and refined, it is called purified or rose copper, which is less dense than native copper. What we call yellow copper, or brass, is a compound of copper and zinc, which is obtained by the cementation of copper with calamine, and which, from being less subject to rust, furnishes the watchmaker, the mechanical philosopher, and the geometrical, with so many instruments of general use, exquisitely delicate in their workmanship, and at the same time of great durability. But if the two metals are directly united by fusion, the mixture takes the name of pinchbeck, tombac, and gold of Manheim. The brass dilates \(1.5\%\) for every degree of Reaumur, and \(1.8\%\), for every degree of the centigrade thermometer.† The specific gravity of brass is about 1/16th more than the sum of the two specific gravities of copper and zinc. Bronze is made by uniting a certain quantity of tin with copper; it is more elastic and sonorous than pure copper. It is this compound, that is to say, the perverted use of it, which, following the steps of the conqueror, hurls forth the thunderbolts of war against peaceful nations. It was of bronze that the genius of the Greeks fashioned the august image of their gods, and the cherished features of the benefactors of the earth. Without the aid of copper and iron, man could neither have attained his present height of civilization, nor have learnt to cringe the destroying energy of the infernal powers. But let us return to the subject immediately before us.

Cobalt.

Cobalt, which partakes with oxidized iron a magnetic property in an eminent degree, seems to be of two formations of different ages. The white cobalt of Werner, (or grey cobalt of Haiy,) is frequently found in veins in the secondary mountains of Hesse and Thuringia. The arsenical cobalt of Haiy, which Werner calls shining cobalt, exists only in the primitive rocks, and is accompanied by quartz and primitive lime-stone. This mineral is employed to make a fine blue glass, named smalt, which, in a pulverized state, is known under the name of Saxon blue.§

Tin.

Tin is of a formation, which, according to a celebrated mineralogist, carries us back to one of the remotest periods in the history of the globe; it has never been found in secondary mountains; it exists, however, he says, in all porphyries. The singular manner in which tin mines are distributed upon the surface of the globe, appears to us to be extremely remarkable. This metal is found in Cornwall in England, in Saxony, in Bohemia; it is scarcely ever met with in other parts of Europe; it entirely disappears when we penetrate into the interior of the ancient continent, and does not again discover itself till we reach the peninsula of India, on this side of the Ganges, when its mines extend to the peninsula of Malacca, and to the islands of Sumatra, Banca, and Japan. Africa and South America produce but little of it. The tin which is used in the arts for coating glass, for solder, for farming utensils, and for the composition of scarlet, possesses the singular property of rendering more hard, and more sonorous the metals with which it is mixed, although by itself it is deficient in these two qualities. At the same time, it takes away

\footnotesize{* Haiy, Minéralogie, iii. 575. \\
† Calamine is the ore which furnishes zinc in greatest abundance.—T. \\
§ Werner, Théorie des Filons, ch. vii. § 76. || Wahl, Ostindien, ii. 746. (en All.)}
ductility from metals possessing that quality in a high degree, while it | Qualities.
does not diminish the ductility of the less ductile metals.*

Iron is profusely distributed throughout nature. It enters either as a |Iron.
colouring or a combining principle into a great number of mineral substances; it is a
stranger neither to vegetables, whose tints it enlivens; nor to animals, upon whom it
exerts a salutary influence. As an insulated substance, it is found in almost every
part of the ancient continent; it is however, more common, or, at least, accessible to
our researches in the north temperate zone, particularly towards the northern part
of it.

What an immense quantity of iron is contained in the mountains of
Scandinavia alone! The mount of Taberg, to the south of Sweden,
presents only one entire mass of this mineral. The north of Asia equally abounds
in iron; the imperfect accounts which we have received of Canada, and the northern
parts of the United States, inform us that these regions are provided with excellent
iron, though copper appears to predominate there. Southern Africa, it would seem,
abounds still more in iron, than the places just mentioned do in copper.†

No kind of rock or earth is a stranger to it. It is found in granite in detached masses, in
schist, in a thread-like form, in the free-stone in beds; it exists in mud, and turf.

The great masses of native iron, found in Siberia by Pallas,‡ and in | Native iron.
America by Rubin de Glis,§ have been for a long time considered by some naturalists
as productions of art, or of volcanic agents. Walmerius, in stating that native
iron is found upon the borders of Senegal, has merely copied from ancient travellers,
whose narrations want precision. But, it is an undoubted fact, that the substances
found at Kamsdorf in Saxony,∥ and at Oulfe in Dauphiny,¶ are actually natural
productions; and why cannot nature present to us iron in its pure state, since it offers
it to us under the form of very hard and compact steel?** The most ancient iron
ore, according to Werner, is that of magnetic iron, which Haüy calls oxidated iron;
it is to a variety of this ore that the name of loadstone has been given.

We shall speak elsewhere of the phenomena which this substance presents. The
grey or peculiar ore of iron, (the elgitore iron of Haüy,) abounds in Sweden, in Norw-
way, in the island of Elba, at Frumont in Les Vosges; it is the most easy to work
of all the ores of iron. Sparry iron ore is only a carbonate of lime, more or less
mixed with iron; the lime with which the ore is combined facilitates the fusion.
The iron which is drawn from it is of an excellent quality, and it has a very
tendency to pass into steel, even in the first fusion; this is what is called steel ore.††

A kind very generally distributed, and commonly worked, is that of oxidated iron,
which comprehends, amongst others, the hematites, the ochres, the marial gêodes,
and particularly the iron in globules, similar to peas or eggs. The metal obtained
from oxide of iron in globular masses, sometimes contains a certain quantity of phos-
oric acid, which renders it brittle and inductible; this is what the French call fer
cassant à froid, and we, cold short iron.

Sulphuret of iron, which is commonly named martial or ferruginous | Sulphuret of
pyrites, is one of the most remarkable substances which enter into the
composition of the globe. It is very extensively distributed, being found in quartz,
in marl, in the argillaceous schist which lies upon coal, and it is even mixed with
coal itself. In the greatest depths to which man has ever been able to penetrate in
the most considerable mines, we continue to observe the ferruginous pyrites, until
our progress is arrested by the subterraneous waters.†† There is auriferous pyrites,
which although chiefly consisting of decomposed sulphuret of iron, is worked like
ore of gold, and with the view of extracting from it this last metal: Such is the
method employed in the gold mines of Berezof in Siberia, of Adelsfor in Sweden, and

† Cavazzi, l. 83. Thomann, 113.
¶ Schreiber, Journal de Physique, xii. p. 3 sqq.

**
BOOK TENTH.

others. The origin of haematites, and ferruginous ochres, is owing, according to the opinion of the majority of naturalists, to the decomposition of sulphureted iron, the remains of which the running waters have carried along with them; hence they are called transported minerals, in order to distinguish them from other minerals which seem to have been formed in the spot where they are found. These transported ores then are of recent formation, compared with the others, and one can easily suppose that they are formed every day.

Vitriol of Iron. | Vitriol of iron is nothing else than the sulphate of iron, which is generally procured from the decomposition of sulphureted iron. Sulphate of iron, or vitriol, is of great service in dyeing, it is used as the principal of black colour, from the property which gall nuts and other astringent vegetables possess, of precipitating iron contained in the vitriol under the form of black particles of extreme fineness.

Emery. | Emery is an oxide of iron, intimately united with the basis of alum, and with silex. This substance is valuable in the arts, on account of its great hardness. By bruising it in steel mills, it is reduced to a powder, whose sharp and hard particles can, by the application of friction, give a polish to all existing substances, except the diamond. "Iron," says M. Haüy, * "such as nature produces it, is very different from that whose appearance and use are so familiar to us. It is nothing but an earthy mass, a dirty and impure rust; and even when iron presents itself to us in the mine with metallic brightness, it is still very far from possessing the qualities required for the multiplicity of uses to which it can be applied. While man need only purify gold, he must, if the expression be allowed, create iron." This metal is generally susceptible of three different states. What is called cast or pig iron, is the metal after its first fusion, deprived of a more or less considerable portion of its oxygen, and combined with a part of the carbon with which it came in contact in the casting furnace. Cast iron is not yet rendered malleable; for it is peculiar to iron, that of the two properties of fusibility, and ductility under the hammer, it can possess the one only at the expense of the other. To render iron ductile, it is again submitted to the action of a furnace, the elevated temperature of which determines, by a new exertion of affinities, the oxygen remaining in the cast iron to combine with the carbon, which has been incorporated with the iron, and thus to form carbonic acid, which constantly disengages itself from the mass. Iron, after this process, is found in the greatest state of purity to which art can bring it: It is then exposed to the action of a large hammer, whose redoubled strokes, by bringing the metallic particles into closer contact, unite them more perfectly together, and render the iron ductile. It is then called forged iron. In this new state it is no longer fusible; and the most violent heat of our furnaces can at most only soften it, and convert it into a kind of paste. Forged iron placed in contact with carboneous substances, and again softened by the action of the fire, the moment it enters into combination with these substances, or rather with the carbon which they contain, is converted into steel.

Steel. | The operation of tempering which steel undergoes does not change its nature, it only varies the arrangement and aggregation of its particles: it augments at once its hardness, its brittleness, and its volume, and gives it a coarser grain than that of steel not tempered.† Thus the difference between cast iron, forged iron, and steel, depends on two principles, namely, oxygen and carbon: their union constitutes cast iron; the absence of both, at least in a perceptible quantity, characterizes forged iron; and, in steel, carbon exists alone without oxygen.

Qualities of Iron. | We shall say nothing of the use of iron in its three states; it is universally known. We shall only observe, that the tenacity of iron is such, that this metal reduced into a wire, of about 2.7 millimetres, or \(\frac{1}{2} \) of an inch thickness, can support, without breaking, a weight of 210.3 kilogrammes, or 450 French pounds. Iron is very oxidizable, and it exerts a very strong elective affinity to sulphur. United with silex and alumina, it imparts an extreme hardness to the rocks which contain it. Thus, there is no metal which allows itself to be so easily decomposed, and no metal forms a more unalterable cement. Its magnetic virtue res-

* Haüy, Mineral. iv. 2.
† Vandermonde, Monge et Berthollet, Memoirs de l'Académie des Sciences, 1781.
PhysiCAl G EOG raphy.

Zinc, which forms the connecting link between the ductile metals, and which are not so, is found oxidized, and then it is commonly called calamine, or lapis calaminaria. There are mines of it in Alsace, in Normandy, near Aix la Chapelle, in Brigew, in Carinthia, in the county of Somerset in England, and many other places. Calamine, according to Werner, is not found in the primitive rocks. It often occurs sulphured, and then the vulgar name of it is Pseudo-galena, or blende. This mineral is scattered over Sweden, Norway, Saxony, and Bohemia, and we may say almost everywhere. It generally accompanies galena, or sulphuret of lead. It is often mixed with iron, gold, and silver. The sulphate of zinc, which is rarely a product of nature, is called white vitriol, or white copperas. The metal that is brought from Badia, under the name of tutanag, is, according to Bergmann,† zinc in a state of purity. If the air be admitted to zinc when brought almost to a white, the metal burns with a splendid whor which nothing can equal, and which is too dazzling for the eye to support.‡ This property serves to characterize zinc not only amongst the metals, but even amongst all combustible minerals.

Bismuth, from its great fusibility, is used for various metals; it is found, according to Werner, only in the primitive mountains; it occurs, however, attached to jasper. Of all the minerals easily oxidizable, it is the only one which is found more frequently in a metallic form, than in that of an ore properly so called.§

Manganese very often accompanies mines of iron, particularly in the secondary mountains; it is a colouring principle very extensively distributed in nature; and it is that which gives a violet hue to the crystals of flint of lime, and to a number of the spherites. Mixed in a small quantity with the substance of white glass, it has the property of clarifying it, and of freezing it from false colours.

Antimony, once celebrated in the laboratories of the alchemists, who hoped to discover in it the philosopher's stone, is now employed with success in the composition of various medicines, in the casting of types for printing, and as an alloy with tin, to form what is named plate's metal. It is found native in quartz and primitive lime-stone; sulphured or grey in the secondary mountains, and often also united with galena. Capillary antimony often contains silver, and has been called phusos silvery antimonial ore. The crystallization of fused antimony, presents a stellar and foliated appearance.¶

Schoelin was, until very lately, called by the Swedish name Tungsten. It is a very weighty mineral, obtained from a ferruginous striated substance, known under the German name of Wolfram. It is principally found in the primitive mountains, and often accompanies tin.

Uranium is a metal lately discovered, and comprehends the varieties once called horned copper (cuivre corné) and peck-blende. It is, according to Werner, of ancient formation.

Tellurium, another metal recently observed, is found chiefly in the tellurium, auriferous mine of Nagyag in Transylvania, which gives from 45 to 170 ounces of silver to the quintal, and from 200 to 210 deniers of gold to the marc. Tellurium is attached to quartz and manganese; it is still very rare.

Molybdenum appears to be of ancient formation—small masses of it are found in granite, in several places of Sweden, Norway, Saxony, and Bohemia.¶

Arsenic, the name of which alone excites an emotion of terror, is not often found by itself; but it serves to mineralize a great number of metals: rubbed or warmed, it discovers itself by the smell of garlic, which it emits. In its native metallic state, it is of a steel-grey colour. It is the oxide of arsenic, under the form of a white powder, which constitutes one of the most violent poisons. That which is met with around volcanoes, is mineralized by the sulphur.

* Elsiemann, Histoire du Fer, i. p. 146, (en All.)
† Bergmann, Géog. Phys. i. 233.
‡ Macquer, Dictionnaire de Chimie.
§ Brogniart, ii. 131.
¶ Héuy, iv. 259.
¶ Steffens, l. c. 158.
Titanium. | Titanium, another metal of modern discovery, is found in a state of red oxide, under the form of a ferruginous stone, and united with silex and lime. Of all the new minerals, it is the one which is most interesting to physical geography: it seems to occupy the same place in relation to iron in the primordial mountains, that manganese holds in those of secondary formation. All the iron which is found in the primitive trapp of Norway, particularly near Arendal, is more or less combined with titanium.*

Chrome, Tungsten, Cerium. | Chrome, which colours the emerald; tantalium, which is insoluble in acids; cerium, discovered like the preceding, by Swedish philosophers; columbium, procured from the United States, &c.; and three or four metals which are found combined with platinum, have not yet acquired importance enough to claim our attention. The multiplicity, however, of the substances which chemistry has discovered, should inspire us with a salutary distrust of systems which tend to establish general analogies between bodies, of the very number, not to say the properties, of which, our knowledge is as yet so vague and imperfect.

BOOK XI.

We have already considered the simple substances which enter into the composition of our globe; and in surveying them, we have been constantly on our guard against the influence of systems, which pretend to determine the period and manner of the formation of these substances. This was not an arduous task: we had only to follow, though with very different views, the track already marked out by the fathers of modern mineralogy. A more intricate path now lies before us: We come now to the consideration of the masses formed by the aggregation of several simple substances, which constitute either rocks or earths, according as they are found in a state of hardness or softness. There the most enlightened guides differ; and instead of showing us the way, they have to seek for it themselves; amidst the confusion and obscurity arising from the introduction of general terms, before general ideas had been accurately fixed.

Classification of rocks. | The classification of rocks, founded solely upon the chemical and geometrical characters of the simple substances of which they are composed, overlooks the intermixture and relative position of these masses, that is to say, the two characters under which physical geography ought chiefly to consider them. On the other hand, geological classification, though formed more in reference to these two points of view, are infected by one capital error, since their characteristic distinctions are derived from the origin of rocks. This is unquestionably taking for granted the very point to be proved. To facilitate such a method of systematizing, facts are assumed, the demonstration of which ought to form the boundary of the science. Accordingly, the different aspects under which these facts have been viewed, have given rise to as many different forms of phraseology, as there have been celebrated geologists. Basalt, for example, ranged by some among the tropps, a species resembling the primitive rocks, is placed by others at the head of lavas, or substances ejected by volcanos. In the present day especially, when the observations of Werner and Cuvier, compared with the discoveries of Davy and the experiments of Hall, have given us a glimpse of a theory of the earth, much more scientific and more comprehensive than the unwieldy systems of the Neptunists and Vul-

* Steffens, L. c. 158.
PHYSICAL GEOGRAPHY.

canists, it is an indispensable prerequisite to a methodical description of aggregate substances, to discover some principle independent of any system that has been founded on opinions entertained as to the origin of these substances. This principle appears to be found in considering these substances as to the mode of their aggregation, provided that we confine ourselves to the formation of extensive classes, and do not require more narrow limits than those which actually exist in nature. It would seem that nature has placed at wide distances land-marks, which serve to direct our course; but that in the intervals between these land-marks, she has left to our choice a variety of paths, all of them equally good. According to this principle, we think that physical geography should classify aggregate substances in the following manner:

A. Aggregate Substances, properly so called, (united according to general laws, chemical or physical.)
1. Crystallized Rocks, or such as indicate a crystallized texture. (Granite, primitive schist, primitive calcareous porphyry.)
2. Conglomerated Rocks, or such as present an union of fragments of crystallized rocks, conglutinated by a crystallized cement. (Primitive pudding stones, amygdaloids.)
3. Stratified Rocks, or such as exhibit a contexture similar to that of a sediment, which had deposited itself in layers. (Limestone composed of shells, free-stone, (grés), jasper, &c.)
N.B. Stratified substances in their state of softness, are called stratified earths. (Clay, marl, &c.)
4. Conglomerated Rocks, or such as present a mixture of fragments of crystallized and stratified rocks, united by a stratified cement. (Variegated marbles and secondary pudding-stones.)
5. Conglomerated Rocks, or those presenting the appearance of melted matter, which had been conglomerated or congealed. (Basalts of Werner, compact lavae, lithoides lavae of Dolomieu,哈利, Fanjus, &c.)

B. Associated Substances, (united according to mechanical laws, or according to chemical or physical laws; special and accidental.)
6. Earthy Accumulations, or rocks and earths which exhibit only an association purely mechanical, of parts accumulated one upon another. (Calcareous tufs, &c. coloured marbles, united by a cement of tufs, clay deposited by water, and otherwise, (argile d'ollivettes et de transport,) peat, &c.)
7. Oceanic Productions, or substances thrown out by volcanic fires, through the openings and crevices of the solid surface of the globe. (Vitreous lavas, volcanic cinders, scoria, pumice stones.)
8. Botides, or masses precipitated from the atmosphere.

C. Substances Intermediary or Adventitious, (those which are foreign to the aggregations and associations of mineral substances.)
9. Remains of Organic Bodies, vegetables and animals; (a) petrifactions; (b) impressions; (c) remains in a natural state.

Let us rapidly survey the vast laboratory where nature works these wonderful combinations, of which we have been pointing out the most striking and accessible.

Crystallized rocks appear to have been formed by the simultaneous crystallization of several simple substances in a state of chemical condition, and united, according to their affinities, so as to form an homogeneous whole. They have a granulated texture, which loses itself in the dull clammy or compact texture, on the one side, and in the lamellated, on the other.

The rocks which occupy the summit of the scale of crystallization, are uncontroversially those which have for their base, quartz, mica, and feldspar, and are distinguished by the name of granite. Sometimes a fourth substance, amphibole, called also primitive trap, or greenstone, is mixed with it, or replaces the mica, or the quartz. Granite has even been found mixed with a little lime; but it is always siliceous substances, especially feldspar, which predominate in its composition. The agreeable variety of colours which the feldspar reflects, the lustre of the mica, the whiteness of the quartz, the sombre green of the amphibole, often impart to granite the most magnificent appearance, especially when polishing has developed their natural shades; thus the eye contemplates with delight the rose-granite of Egypt, composed of feldspar and mica;* the antique basalt, or black granite, in which the sn-

* Dolomieu, Journal de Physique, Veneta, an ii. tome i. p. 196.

Vor. I.—p
Varieties of granite. Phibole conceals the transparent laminae of the feldspar;* the orbicular granite of Corn, formed by a singular species of crystallization, which has united in one mass of white feldspar, and of amphibole of a blackish green, distinct balls of the same substance;† lastly, the graphic granite of Siberia and Scotland, the elements of which, disposed in broken lines, suggest the idea of Hebrew or Runic characters.† Granite appears to be the most ancient of the rocks, and to constitute the base of the primitive earth. It is not improbable, that it forms an immense vault around the globe; we know, at least, that granite is every where found beneath all the other rocks, and that of the highest mountains in the principal chains of the world, it is granite which constitutes the foundations and the mass. The crystallization, which has united the substances of granite, must have occasionally met with one or other of them in excess; it has accordingly formed feldspar, micaceous, and quartzous rocks. These are rarely found pure. There appears, however, to have been a very peculiar formation of pure quartz; strong veins of it are seen traversing even the granite mountains, and the vast vault of quartz upon the mountain of Felsberg, near Mainz, excites the wonder of the naturalist.§ But to the admiration of these phenomena succeeds the spirit of disputes, classifications, and nomenclatures. It is often impossible to discover the facts in the midst of the geological discussion to which they have given rise. The rock which most nearly resembles the granite, unites to the granulated structure of the latter an arrangement of parts, which gives it a foliated appearance; the quartz and feldspar are found there in grains, but the mica forms bands, or very thin layers, in which the two other substances are contained. This is the micaceous rock of Haüy, the gneiss of Werner, and the foliated rock of Saussure;|| but frequently, so much to the appearance of the place mica in these foliated rocks, a circumstance occasioning continual mistakes. There are some mineralogists who give to the name of gneiss, an extension which renders all definition impossible.

Micaceous schists. The micaceous schists are rocks which occur in great lamina, composed of quartz and mica. It appears that they recede by imperceptible gradations from the granulated texture of granites, and that they become more and more mixed with alumina or argillaceous earth, an earth, the presence of which seems to prevent crystallization from taking place.

Argillaceous schists. The argillaceous schists, in which alumina or argillaceous earth preponderates over the silex, occurs in the form of large unbroken lamina; an imperceptible transitions from one kind of aggregation to another, render all classifications uncertain. No one has yet been able precisely to determine the four or five kinds of rocks, to which the names of horny schists and of wacke‡ are given; they are merely combinations of silex and alumina, with a little lime and iron. The horny texture is found in part in certain rocks, composed as it were of a paste, in which Porphyry, masses of a more perfect crystallization are imbedded. These are the porphyries, rocks which baffle more than any other kind the zeal of classifiers.**

Sometimes it is the paste which is not homogeneous, and sometimes the imbedded crystals which constitute the species or the variety. The porphyries, properly so called, are masses of imbedded felspar, coloured by a metallic oxide, and containing crystals of the same kind. Such is the superb red antique porphyry, originally from Egypt, and of which only imperfect varieties are to be found in Europe. Such is still the ophiolites, or serpentine antique porphyry, although chequered with plates of amphibole; a substance which abounds more and more in black porphyries. All the real porphyries commonly found in the vicinity of granite, are distinguished from it only by that pasty substance which serves as their base; but they differ also from

* Id. ibid. Septembre 1792, p. 3.
† Faujas Saint-Fond, Essais de Géologie, ii. 182.
§ Faujas, i. c. p. 94.
|| Saussure, Voyages, § 1359, 1679, &c.
‖ Haüy Minéralogie, iv. 432.
** Comp. Haüy, iv. 435. Faujas St.-Fond, Essais, ii. 405, &c.
pudding stones, or conglomerated rocks, by the perfect crystallization of this paste or cement.* One may easily conceive how difficult it is to fix the innumerable shades which occur in the crystallization of these rocks; it is this which has led geologists to create a class of porphyroidal rocks. The disorder, or rather the capricious order, according to which the particles of these rocks have crystallized, sometimes occasions the most brilliant and fanciful appearances. Who would not admire the orbicular porphyry of Corsica,† which, on being polished, displays circles composed of little yellowish red leaves, arranged in rays around a reddish brown kernel, and which presents to the eye a transverse section of some unknown and delicious fruit?

Trapp‡ is composed nearly of the same substances as porphyry. They are united in the same proportions, only the iron abounds more in trapp; but this arrangement in small grains, united sometimes by a cement, does not present the shining crystallization of granite and porphyry.§ Trapp rocks have a tendency to separate and subdivide into rhomboidal fragments, resembling the steps of a staircase, which often gives them the appearance of rocks called basal, by the moderns. The celebrated Werner, indeed, considers these two kinds of rocks as the same, and comprehends them under the name of primitive trapp; an opinion which, at present, seems to be received only in the school of that mineralogist.

The rocks of petroisite and of jade, as well as that composed of amphibole and mica, which Werner names grunstein, that is, greenstone, forms small varieties, resembling trapps and porphyries in their relative positions, although the amphibole rock, amongst others, often has the crystallized texture of granite. Of all the elementary earths, the calcareous, and, next to it the magnesian, have the least contributed to form crystallized rocks.

The primitive limestone, or that in which there is not a vestige of animal remains, is not very extensively distributed; it is rarely found amongst the foliated granites, and the micaceous schists; the calcareous banks, in the argillaceous schists, have a texture less perfectly granulated, and present a compact or lamellated fracture.|| It is amongst the stratified rocks that chalk shows itself in abundance, it is at the head of these aggregations, as granite is at the head of rocks purely crystallized.

Magnesian earth appears to predominate in the talc rocks, whether compact or schistous, in the serpentine, the olill or potstone, steatites, or soap rocks, and some other aggregations, which, in truth, often occur in the primordial mountains; but which form in general only small subordinate masses. There are rocks of serpentine, however, which rise to a very great height.¶ May we not imagine that the alkaline particles, existing in feldspar, one of the elements of granite, may be separated from it to form a series of insulated rocks? It is at least very remarkable, that magnesian earth seems in a manner to arrest the progress of pure crystallization, and to disappear with the primordial rocks, not to show itself again either in stratified mountains, or in accumulations, but only in the waters of the ocean. We ought to pause a little to consider these crystallized aggregations, which seem to have preceded the birth of our mountains, of which they form the most solid part. We leave, however, to the naturalists by profession, the task of classifying the innumerable modifications of aggregate substances, which we have named conglomerated rocks. We may conceive, that the circuit of the globe, scarcely consolidated in the bosom of primitive chaos, must soon after its formation have begun to waste away. The action of different elements, probably the rapid alternations from excessive heat to intense cold, and even the very weight of the masses themselves, but recently crystallized, could not fail to produce explosions and downfalls, and consequently fragments, which, in reuniting by means of the

* Saussure, Voyages, § 149, sqq.
† Paujas St.-Fond, Essais de Géologie, ii. 245, and planche xx. bis.
‡ A name derived from the Swedish trapp, a stair or ladder. Sittum trappesium, Waller, sp. 220.
§ Saussure, Voyages, § 145.
¶ Werner, cité par Steffens, l. c. 21.
crystallization of the fluid substances which surrounded them, have given birth to some of the rocks termed variegated marbles and pudding stones. These rocks differ from porphyries, in this, that they are composed of fragments of other masses already crystallized, while porphyry consists of crystals which have been formed in the midst of the cement which unites them; hence the cement of porphyry should be designated only under the name of basis. The conglobated rocks differ from the flint, (grès) in as much as they contain larger grains, or do not present regular homogeneous beds, or a foliated structure.

Břéche, or variegated marbles. Pudding stone.

Custom appears to have appropriated the word Břéche, borrowed from the Italian, to aggregations of fragments of calcareous rock, while the term pudding stone, for which the more classical appellation allatoïdes, may be substituted,† appears to be reserved for rocks formed by the reunion of a great number of small flints.‡ It would be better to call "Břeches" the aggregations of angular fragments, and "pudding stone," those of rounded fragments, which probably have been rolled along by the waters.§ The etymology even of the term in Italian, Breccia, borrowed from the Goths or Lombards,|| indicates a violent bursting.

We may easily imagine, that these assemblages would vary in a thousand ways, either with respect to the nature of the reunited fragments, or of the cement which unites them. Of all the substances, however, which serve to conglutinate the fragments of primitive rocks, it is quartz, or siliceous earth, which is most abundant, and of most frequent occurrence. This element, which appears coexistent with our globe, may be considered as the source of all crystallized formation. Sometimes the brèches, in their turn, have been reduced to fragments, which, agglutinated by a new cement, have produced brèches composed anew, which have been called double brèches. We place next to these brèches, and among the conglobated rocks, those which the naturalists have called Amygdaloides, from their similarity to almonds imbedded in paste. The amygdaloides are composed of any paste whatever, in which are found knots or glands of the same substance, or of another. The whole is united by a confused crystallization; sometimes the spaces occupied by the knots, are found empty, the substance which once filled them having been destroyed by an unknown cause; this makes the amygdaloides resemble porous lava. It is extremely difficult to distinguish the amygdaloides from certain varieties of porphyry. Without involving ourselves in discussions to which the formation of conglobated beds has given rise, let us proceed to the examination of stratified rocks. In order to show how vague are the limits between the productions of pure crystallization and those of stratification, let us be permitted to have recourse for a moment to an hypothesis borrowed from chemistry.

The elements of which the rocks are formed, were undoubtedly once in a fluid state; this condition is necessary to render the aggregation of so many different substances possible. But the state of solution in which these substances existed, presented two modifications.

Stratified rocks.

Chemical and mechanical solution.

Chemical solution differs essentially from mechanical solution; the latter exists when the integral particles of a body are separated one from the other, and suspended in a fluid; on being deposited according to their specific gravity, they form a sediment; on the contrary, by chemical solution, the integral particles are not only separated from one another, but are combined with the solvents; and in uniting, according to a new development of affinities, independently of their specific gravity, they afford a precipitate. Every crystallized substance is formed by chemical solution, and by precipitation; this character belongs, in the whole force of the term, to primordial rocks; but we have seen how crystallization lost by degrees its simplicity, and, if we may use the expression, its primitive energy. We have also seen how the crystallized texture has been succeeded by the foliated and the compact structure, which, in becoming larger and larger, seems

* Sausure, Voyages, § 149.
† Du mot Grec σάλς, genitif σάλιον. The genitive of σάλς is σάλιον, T.) poulingue.
‡ Sausure, § 197. Romé de l’Isle, Cristallographie, ii. 573.
|| Du verbe Brechen, Allem. Breche, Dan. briser, rempre, French.
to indicate a regular scale of chemical precipitations, gradually approaching to the nature of mechanical sediments. There can be no doubt, that the most immense of all fluids, the ocean, suffered a gradual decrease of its waters; the primordial mountains first reared their summits, then the earth began to swell up out of its chaotic state. Organic beings were then in existence; these were marine animals. The chemical precipitation continued, but at the same time, the first mechanical sediments began to be deposited; the two precipitates were mixed, sometimes in great confusion together.

Thus arose the rocks of transition, which are found on the sides of the primordial mountains, and sometimes at their base, in which we observe the first animal remains. The waters having gradually subsided, the globe from a shapeless chaos, takes the appearance of one vast sea, from which there arose on all sides, the primordial mountains, flanked by rocks of transition.

This is the Neptunian age, the second geological era. The sediments of the mechanical solutions alternated with the chemical precipitations; the solvent having gradually lost its original power, chemical action insensibly gave way to that which was purely mechanical. This Neptunian age gave birth to stratified mountains and rocks, understanding by the word structure a bed of homogeneous substances. This term, borrowed from the Latin, is not then precisely synonymous with bed or layer; a stratum differs still more from a lamina or plate, terms made use of in speaking of the texture, that the substance of certain rocks present, even in their minutest fragments.

The hypothesis we have just now traced, exhibits the difficulties which geologists have met with in their attempts to classify stratiform rocks. In the calcareous rocks especially, the compact structure and the stratified are blended together by innumerable shades. Even in the same rocks, and notwithstanding its being completely homogeneous, we find the upper part containing petrifications belonging to marine animals, while the lower beds are entirely free from them; but amongst the decidedly stratified rocks, we should place nearly all the aggregates of sulphate and carbonate of lime, known under the name of lime-stone; then the secondary marbles, which owe their earthy fracture to large quantities of argil, and their colours so agreeably varied to the presence of oxide of iron; rainiform marble, which according to Dolomieu, was a calcareous argillaceous stone, uniformly coloured, but while drying cracked into fissures; and these, filled by the transuding of the calcareous matter, have formed the appearances of ruins and landscapes, which are so much admired;* lastly, the shelly marble, composed of an infinity of small shells united by a calcareous cement. The feldspar stone, or swine stone, which in Norway forms of itself a little island, is only carbonate of lime, penetrated by bitumen. Calcareous substances predominate in the stratified rocks; the capital of France, with its palaces and temples, is built of calcareous stone, almost entirely composed of two kinds of shells: the cerites, (cystarium,) which forms the upper masses, and the miliolites, (miliola,) which abounds in the deepest beds;† These rocks readily indicate the rank which belongs to them; but what rank can be assigned to the calcareous stone which presents itself under the form of chalk, and which occupies such vast belts throughout the globe? From its purity, it is almost a simple substance, containing only lime, carbonic acid, and phosphoric acid. From the small number of marine animals which it immediately contains, it resembles the primitive rocks from which its earthy consistence, destitute of the least appearance of crystallization, seems to keep it perfectly distinct; finally, the layers of large mint so frequently met with amongst beds of chalk, clearly indicate that they have been formed by deposit, and these beds enclose a great many marine animals of species which no longer exist.‡ It appears that the chalky state of the calcareous matter is owing to some particular causes, to investigate which is the province of chemistry.

‡ Comp. Brongniart, Traité de Minéralogie, i. 308—210.
Argile or clay. — Aluminous earth enters into a great number of stratified substances; clay, which occupies great spaces on our globe, is properly a mixture of silex and alumina, modified by the accidental presence of magnesia, iron, and other substances. Clay is found in wounds and in rocks; it seems natural to us to suppose in general, that these last may be formed by the hardening, or rather by the confused crystallization of argillaceous earths, mixed sometimes with grains of quartz. But argillaceous earths may be formed also by the decomposition of rocks; such would be, according to Werner, the origin of potter’s earth, which he places among the tertiary earths or those of alluvion. All argillaceous soils have without doubt, often changed their situation, their layers gliding easily one over another; their principal situation, however, is in the secondary rocks; they are found alternately with the free-stone, sand, and shell limestone.

Lithomarge, distinguished by its feeling greasy, and adhering to the tongue, by the fineness of its grain, and by its fusibility into a spungy mass, is the only clay which is found in the clefts of rocks in primitive formations. This is the substance to which several nations of America, Africa, and Siberia, have recourse to appease their hunger, or rather to beguile for a moment the cravings of their digestive organs.* Amongst the other kinds of clay, we distinguish for their utility those employed in the operations of the potter and the fuller, the different boles and ocheres; Slate, the slate, which is of such service in roofing houses, and which is only indurated clay, in the form of schist or in lamina. Slate, which is discovered in great blocks, has so foliated a texture, that the workman needs not exert any attention to catch the joints of its lamina; wherever he places his chisel, he is sure of hitting a division. A quality common to all clay, is that of furnishing subterraneous reservoirs to fountains and springs; the best water is always found in argillaceous soils.

Fermenting clay forms an exception: as it is mixed with quartz sand reduced to fine powder, it imbibes water, swells up, and raises with great force houses, masses of rock, and whole fields; when the clay is dried, they sink down to their first level. The consequences of these unlooked-for throbs and heavings of the soil are very formidable in Sweden, and in Russia, especially when the clay in swelling happens to freeze at the same time.† Such devastations, arising from a cause apparently so weak, will assist us in conceiving of the revolutions which similar fermentations probably accomplished at the epoch when mountains were formed.

Marl. — Marl is a clay united to a greater or less quantity of calcareous earth, often with quartzy sand, and sometimes so impregnated with bitumen, as to take fire of itself.‡

Siliceous substances are also deposited in beds. Sandstone§ is composed of small grains of quartz agglutinated by a clayey, calcareous, or siliceous cement. It is the most common of all the stratified rocks. It forms the ordinary transition between the primitive and secondary mountains; in this situation it is found in parallel strata, and is but little mixed with heterogeneous substances. But it is met with also at a distance from the primitive mountains, and seems to have been formed at all the geological periods.

There is, as appears to us, a very sensible gradation in the different formations of “grès” or sandstone, from the glossy kind, which nearly approaches the primitive quartz, to the pustular species, in which the granulated structure becomes perceptible only by exposure to heat.

The recomposed granite, or the sandstone (grès) of the coal mines, is an aggregate of minute fragments of the ancient granite rock, united by cement of any kind, and sometimes so exactly resembling the texture of ancient granite, as to deceive naturalists themselves. But as the beds of these secondary granites

† Waller, Minéralogie, i. p. 54. Georgi, Russie, iii. 201.
‡ Guldenstedt, Voyage dans le Caucase.
§ Wherever the word “grès” is met with, it is best translated by the word “sandstone.”—T.
alternate with those of coal, it is evident that they have a much more recent origin than the rocks of whose wrecks they are composed.

We are tempted to notice at this epoch, the enormous blocks of friable granite with which the marshes of Finland are covered, and from among which they have chosen the rock that serves as the base to the statue of Peter the Great. This granite, named rapskivi, in the language of the Fins, forms no contiguous mountains nor earth; it is decomposed very slowly. The formation of porphyries is continued through the period of stratification; it has principally produced jaspers and quartz-agates.

The decomposition of stratified rocks, and the reunion of their fragments, or of those even of the most ancient rocks, by a stratified gluten or cement, forms what we call the conglomerated rocks. This formation appears to extend through a variety of periods, and to present a long series of shades which is almost impossible to define. The brèches, or variegated marbles, and pudding-stone, composed of flint, jasper, shell marble, and others which belong to this class, are often confounded with the variegated marbles and pudding-stones composed of parts of crystallized rocks. The countries which have been most carefully examined with this view, namely, Thuringia and Silesia, present no other constant rule than the identity of the conglomerated fragments with rocks, either crystallized or stratified, which border upon them. The pale-red of Thuringia is a variegated marble of sandy quartz, in which are found granite, porphyry and schists, according as the neighbouring mountains contain them. In Silesia conglomerated rocks accompanying the primordial mountains, vanish when they disappear, and contain only fragments analogous to the stones which compose them. At the foot of Mount Altai, in Siberia, we find whole mountains of quartz and jasper in small fragments conglomerated with a cement sometimes quartzeous, and sometimes argillaceous. In Chili, enormous masses of pebbles reunited by a black clay, rest upon the most elevated of the Cordilleras. How are we to trace the innumerable formations which have successively produced these beds of broken remains spread over the whole surface of the globe?

We have not been able to comprehend in any of the preceding classes, a species of rock which is evidently formed by an operation different at the same time both from crystallization and stratification. We allude to the celebrated basalt, which has been the subject of so many discussions among geologists, and which has made them split, as it were, into two churches, each attached to its particular opinions with all the keenness of theological zeal.

These rocks, compact or porous, assuming prismatic or globular forms, or without any definite form, black, brown, greyish, and bluish, resemble in texture congeous or horny rocks, and those which Werner designates primitive trapps. Silex and iron appear to be the principal chemical elements of basalt. So are they equally of trapp, but exposed to strong heat, the trapp affords a glass of a greenish transparency, whilst that of basalt is black and opaque. Besides, the basalt encloses crystals of "peridot," which are not found in the trapps. The most striking characteristic of basaltic rocks is their configuration. Nothing of this kind is more celebrated than those prismatic columns, of an immense height and thickness, of which the cave of Fingal in the island of Staffa is composed.

On the coast of Ireland, is another admirable collection of basaltic rocks, placed horizontally, and forming together what is called the Giants' Causeway. Masses of a similar description, though less considerable in size, are to be seen in Iceland, and we are called in that country the Walls of the Devil. It has been remarked, particularly

* Bergmann, Géograph. Physique, i. 214. Comp. Patrin. Dictionnaire d'Histoire Naturelle, de Déterville, x. 81, au mot Grani d'Ingrrie.
† Heim. Correspondance de Zach, vi. 535.
‡ Léopold Buch, Description Géognostique de Landecq, p. 19. Id. Observations Géognosiques, vol. i. passim.
|| Molina, Histoire Naturelle du Chili, p. 83. (trad. All.)
¶ Faujas Saint-Fond, Géologie, ii. 269.
in the cave of Fingal, that though the prisms themselves are unequal, the faces of each are equal to the corresponding faces of the adjacent prisms, are adapted to the depressions or little concavities, on the top or end of the next opposite prism, as if the one was moulded into the other; lastly, it is worthy of notice, that in the island of Staffa, where the prisms are raised one upon another, like a series of columns, the convex base of the one is inserted into the concave summit of the other; so that the columns appear to be articulated. Even when the basaltic rocks present themselves under a less regular structure, their position alone is sufficient to attract the particular attention of the naturalist. Those masses which, in a confused manner, lie over granite, gneiss, the primitive and secondary schists; those summits, which, sometimes conical, sometimes pyramidal, shoot up, in an insulated form, above rocks of a totally different nature; those cements which unite the basaltas to various crystallized rocks; the successive transition of argillaceous siliceous schist to basalt, and from basalt to a kind of schorly rock, named grunstein; lastly, the numerous instances of the disintegration and decomposition of basalt itself, imparting fertility to the soil of the earth;—these are facts, the explanation of which, has for many years exercised and baffled the ingenuity of geologists.

Of the volcanists, with Desmarests, Faujas Saint-Fond, and Dolomieu at
their head, regard basalt as lava melted by the heat of a volcano, and which, while slowly cooling, has acquired by contracting those prismatic forms by which it is distinguished. But this explanation labours under great difficulties. We ask the volcanist, Why these supposed lavas have an appearance similar to rocks, the aquatic formation of which is generally admitted? Why do they present no trace, either of vitrification, or of tumefaction? Why do they envelop untouched crystals, and other substances which must have originated from a state of fusion? Dolomieu answers, that the heat which melted these basaltic lavas, had very little intensity; that the fusion of these substances was only a simple dilatation, which, in separating the particles, allowed them merely to glide one over another, without, in any degree, changing their nature. He supports this opinion by his own observations; according to which, the ordinary lava, even while it is flowing, is sufficiently firm and cool on its surface to admit of being walked upon without much inconvenience.

A multitude of other facts, however, seem to leave no subterfuge to the volcanists. In the first place, the basaltic cones, placed above all kinds of ancient and secondary rocks, and often forming the most elevated summits of chains of mountains, present, from their situation, from their entire structure, and from the absence of craters, characters very contrary to those of lavas and volcanic accumulations. Basalt is decomposed daily, which happens to no species of lava. In Ringuerie, in Norway, the soil appears almost throughout entirely to consist of decomposed basalt. Near Christiania, small fragments of this rock are spread over the fields, under the conviction, that it will form an earth proper for cultivation. If we examine the texture of these rocks, we find it very sensibly approach that of the schistous porphyries and grunstein. Upon the Meinner in Hesse, we have observed, with a great deal of attention, the transition of basalt into grunstein. The third fact, which is inconsistent with the volcanic origin of basalt, is its relative position in regard to coals. Not only in Hesse does basalt cover an immense bed of coals, but in Sudore, one of the Feroe Islands, a mine of coal is seen in the midst of the basalt. It is evident that these masses of coals would have changed their nature considerably, if the lava in melting had flowed around them. The Neptunian origin of basalt appears to be attended with much probability. Bergmann, who was the first to prove by analysis the iden-

‡ Strom. Description du Canton d'Eger, p. 47, sqq. (in Dan.)
§ Daubuisson, Traduction de la Théorie des Filons, p. 94, note 2.
|| Mem. de la société d'Histoire Naturelle de Copenhagen. See in the course of this work the description of the Feroë Islands.
ity of trap with basalt, is content with supposing, "that the substance of basalt, penetrated and softened by humid vapours, was converted into a clammy and liquid mass; that this mass having, in the progress of drying, suffered contraction, but not equally throughout the whole, had formed ruptures, and that it was thus subdivided, with a kind of regularity, into prisms of different kinds."**

A celebrated mineralogist, Werner, from considering the singular nature of basaltic rocks, and particularly the position of those of Saxony and Bohemia, thought that he had discovered, that the formation of these substances constitutes a distinct epoch, and requires causes quite different from those which have produced the ordinary kinds of earths and rocks. This philosopher imagined that a mechanico-chemical solution of a particular nature had once covered the globe. This solution produced precipitates analogous to its own nature; at first, gravel, clay, and sediment, purely mechanical; very soon after these, came the argilo-siliceous schists, named teakes, which already indicate the commencement of confused crystallization; then appeared the basalts. The mass of these being deposited upon almost the whole of the surface of the globe, the solution arrived at a state purely chemical, and afforded nothing but crystallized precipitates, such as the schistous porphyries, and the rocks called greenstein.†

According to this hypothesis of Werner, there is a possibility of explaining why isolated basaltic columns are found projecting from the midst of a soil of a different nature, for we may conceive that the parts the least crystallized of the basaltic solution, that is to say, the parts mixed with clay and gravel, after having been deposited and dried, were again decomposed and carried along, with other earths, by currents of water, far from the sides of the mountains which once were covered with them. In some places, this mass of decomposed basalt is extended more equally over considerable tracts of ground. The masses of basalt, which are not decomposed, have at the same time preserved the rocks which they covered from this slow disintegration, to the action of which almost all the ancient mountains are subjected. Thus it is by the continued removal and disappearance of the lower basaltic strata, that the detached cones have acquired their particular form, and that singular position and appearance which astonish the eye of the beholder.

This hypothesis of Werner, which more multiplied observations will either confirm or overthrow, fully explains only the position of basalt, and not its origin; we can, even while we admit the hypothesis of Werner, ascribe the origin of the solution of the constituent parts of basalt to whatever cause we choose; it is even very likely that carolic has been the principal agent in bringing to a state of fermentation and fusion those substances, probably crystallized, which furnished the materials of that solution; but the fermentation and the fusion, which have been followed up by a new coagulation of particles, and by their contraction into prismatized forms, have no connection whatever with the system of phenomena arising from the agency of volcanos actually burning, or of other similar ancient volcanoes, however powerful they may be supposed. The polar magnetism, which Haüy has observed in basalts,† seems to indicate, that they were originally traps, in which a slow and uniform dilatation of particles has developed the magnetic fluid. It is desirable that we should observe the direction of the basaltic colonnades, and the position of each prism in relation to the equator and the magnetic poles.

Circumscribed as we are by the limits of our work, we must relinquish this interesting discussion concerning coagulated rocks; and proceed to the consideration of masses formed by accumulation. This is a portion of the globe which we may be said to have under our own eyes.

Sand, gravel, some transported clays, that is to say, those which, by gliding and rolling, have changed their situation, and amongst which Werner places potter's earth; lava, or stony substances formed by incrustation, such as the stalactites of caverns; the "sinter," or stony déposits of running waters;

* Bergmann, De Productis Vulcanicis.
† Traité de Minéralogie, iv. 485.
breccias, or variegated marbles of ternary formation, that is to say, older fragments of rocks united by a cement of tufa; marshy-ochre, although formed by chemical precipitation; some bituminous and aluminoous earths, vegetable earth, and the mud of marshes; turf, composed of vegetable remains recently buried, less decomposed, and less impregnated with bitumen than coal; bituminous fossil wood, a substance which appears to be incipient coal, and which even in some places nearly resembles true coal; these are the materials which generally constitute earths of accumulation. We shall develop the origin of each of these substances, in tracing hereafter the history of the changes which have taken place on the surface of the globe. Substances projected by volcanos form the seventh class of solid masses which we have to consider.

Amongst the volcanic productions, there are some which have undergone an igneous fluidity; these are called Laves, in the proper sense of the word. We have just seen that it is among these substances that several French mineralogists place the basalt, which other naturalists consider as having been formed by the agency of water. We have considered these rocks as the produce of a formation anterior even to the seas, and before the existence of volcanos; and we should consider it a most arbitrary arrangement to rank amongst the substances thrown out by volcanos, one which forms no part of any stream of lava that has ever been observed. It is certain, however, that many true lavas have for their base petrosilex, feldspar, granite, or rather amphibole, and other stony substances, which have preserved their appearance of stone, and which even enclose pure crystals; but these lavas never assume the regular form of basalt. Other lavas have been vitrified, as the obsidian, or agate of Iceland, which has completely the appearance of glass. The volcanic glass has often an enamelled or pearly appearance, and is found in a capillary form.

Stony and vitrified lavas.

Pumice stone. The pumice stone, or pumiced lava, is the best known of volcanic productions. Dolomieu considers it as the produce of fused granite and micaceous rocks, or even of granites, properly so called: "The component parts of these rocks have the property of mutually serving as fluxes, and have been able to undergo, by the action of fire, a demi-vitrification, which may be compared to calcined matter, or frit, a little swelled."† This opinion appears to be true as to certain kinds of pumice stone, but there are others which are produced from magmatic rocks, and especially from asbestos, or decomposed amianthus.§

Scoria or cinder. The different Scoria are substances strongly vitrified, which swim sometimes upon the torrents of lava, and sometimes are thrown out like hail around the volcano.

The volcanic sands appear to consist of lava scorified to the last degree, or of scoriae decomposed after being ejected.

Pouzzolane. The pouzzolanes have not, like lava, experienced an igneous fluidity; they are substances of a more argillaceous nature than those which have formed the lava: having less sulphur in their composition, they have been able to resist the action of fire, which, instead of scorifying them, has only served to calcine and burn them. Heavier than the scoria, they fall near the centre of the volcanic mountain. United to lime, they form a cement of the greatest hardness and durability, which the Romans used in preference to every other in the construction of their aqueducts.

Volcanic ashes are discharged from the craters, in the midst of a column of smoke, and are then driven by the winds to great distances. Those of Etna are carried to Malta, and some say even to Africa. When these ashes are still suspended in the atmosphere, and when the vapours, which, at the same time are dissolved in it, happen to condense, the mixture which thus takes place occasions those earthy showers which fall sometimes at a great distance from the volcanos themselves. These ashes, from the extreme minuteness of their par-
ticles, introduce themselves every where, enter into the closets for keeping provisions, where they vitiate every article of food; but this inconvenience is compensated by the advantage which accrues from their fertilizing the grounds, ravaged by burning torrents of lava.* The heat of the volcanos produces by sublimation, different substances, such as sulphur, muriate of ammonia, sulphuret of arsenic, and of iron.

Volcanic tufa is a substance produced by the agglutination of volcanic ashes, or fragments of scoriae. Muddy eruptions which take place in certain volcanos may be regarded as the principal cause of the formation of volcanic tufa; masses of clay or of liquid mud, in rolling over the cinders thrown out by the volcanos, incorporate with them.† At other times, the volcanic substances, in flowing into the sea, may be agglutinated there by a stony cement, held in solution by the salt water.‡

We shall not enter into a detailed explanation of the substances contained in lava, the origin of which still perplexes the naturalist; but we ought to notice, in a few words, altered, or decomposed lava.

It is an important, but obscure and difficult question, whether lava, by the action of air and water, is reduced into earth, or becomes, at least, partially softened. Italy furnishes examples favourable to this opinion; Iceland offers proofs to the contrary. The probability is, that no vitrified lava is decomposed, but that which has been calcined or changed by the action of the sulphurous acid vapours. The mine of alum of Le Tolfa, in the ancient Roman State, supplies us with an example of this; it is a lava, which, being decomposed by the sulphuric acid, is become white and friable. Bergmann exposed some calcareous blackish and compact lavas, which came from Vesuvius, to the vapour of sulphuric acid; they acquired in a few hours the appearance and texture of chalk, similar to that in the neighbouring rocks of Solfatara. There are naturalists who consider all lavas, even those most strongly vitrified, as penetrable by the acid gases; the sulphuric acid dissolves at first the iron, afterwards the bituminous earth and the lime; so that quartzous earth, unchanged by acids, but attenuated and laid open, is at length carried away by the waters; but these are possibilities, rather than ascertained facts. We conceive, at least in general, that the oxygen of the air has very little influence upon the lavas, and that the action of sulphuric, carbonic, and other gases, must be circumscribed to a small number of places.

It is proper, after volcanic substances, to mention those which owe to the action of subterraneous fires their deposits of coal. The best known is that which is commonly called porcelane jasper.**

The atmosphere has at all times contributed to augment the number of the solid substances of the globe. The showers of stones described as prodigies by many Greek and Roman historians, have been finally placed beyond the reach of doubt by the enlightened observations of Biot, Chaldini, and other philosophers. All these substances thrown down upon the earth from the clouds, contain the same elements of silex, iron, and nickel. They seem to be only the nuclei, or kernels of those balls of fire which we often see traversing the atmosphere with a dazzling brightness, and disappearing in the twinkling of an eye. Thus the bolides, or atmospheric stones, should be concretions formed by the elementary gases, and perhaps by an effect of electricity; but they may also be regarded as so many satellites, or diminutive moons, which, revolving round our planet, terminate their course by uniting themselves to it, when causes that are unknown, but easy to be conceived, have deprived them of a part of their centrifugal force. Has Dr. Franklin been wrong in thinking, "that there may have been a time when it rained stones as it now does water?"

* Dolomieu, Mémoire sur les îles Ficeuses, p. 356, sqq.
† Dolomieu, Voyage aux îles Lipari, 56.
‡ Delamétherie, Théorie de la Terre, ii. 482, deuxième édition.
§ Dolomieu, cité par Haüy, Minéralogie, iv. 500.
I Bergmann, Géog.-Physique, ii. 197, en Suédois.
† Faujas Saint-Fond, Minéralogie des Volcans, chap. xix. p. 374.
** Thermantide porcellanaite de Haüy, iv. 510.
It now remains for us only to take a rapid survey of the substances which are foreign to the mineral kingdom, and which are found inserted amongst those that form the solid crust of the globe. These substances deserve a particular section to be appropriated to them.

BOOK XII.

Continuation of the Theory of Geography. Of the Fossil remains of Organic Bodies, Vegetable and Animal.

The remains of organic beings buried in the earth may be viewed as so many geological medals, but medals without a date. The difference of age and of origin between the secondary and the ternary rocks would be easily ascertained, if we could precisely and completely class the remains of organic bodies, each according to the earth or rock in which it is found; but this arduous undertaking, scarcely ever conceived by systematic geologists, has only of late become the object of researches that deserve to be called scientific.∗

General view. Organic fossil bodies may be distributed into three classes; remains which have preserved their natural state, at least in part; petrified substances; and impressions. ♦

Fossil remains. The first class consists principally of bones, and even whole skeletons, which, after having been deprived of the skin and flesh that covered them, remain buried in the earth, or concealed in deep caverns. Sometimes they are calcined totally or in part, without having lost their configuration; sometimes they retain not only their texture, but even a certain portion of skin and flesh; we occasionally find them incrusted with a calcareous covering.

Petrifications. Petrifications, taking this term in the ordinary sense, comprehend all the stony substances which have the figure of an organic body. There have been instances where a liquid impregnated with stony particles has flowed into a cavity formed by an organic body which had disappeared. In that case, the stony mass has flowed into the empty cavity, and assumed the exterior-form of the organic body which was there before. If this body was, for example, a branch or trunk of a tree, the stone will have knots and wrinkles on its exterior; but, in the interior it will exhibit all the characters of real stone. It will only be, according to Haly, "the statue of the substance which it has replaced."" ♦

While the process of decomposition is going on gradually and obviously in a vegetable or animal substance, it is sometimes likewise surrounded and pressed on by a stony juice. As each organic particle dissolves and disappears, a stony particle replaces it. Thus, particle after particle, the stony substance gradually occupies the spaces left vacant by the progressive decay of the vegetable or animal parts; and, by being moulded in these cavities, it copies, feature for feature, the contexture of the organic body. This is the way in which it is usual to explain the formation of petrified wood, an imitation of the real wood so complete, that upon cutting it transversely, we distinguish the appearance of concentric rings, which in the living tree arise from its annual growth. Sometimes it is even in a state from which we can ascertain by the lineaments of the texture the species to which the tree belonged.†

† Monges le Jeune, Journal de Physique, 1731, p. 255, et suiv. (Comp. Daubenton, dans Les Leçons de l’Ecole Normale, tome iii. p. 393, et suiv.)
Mineralized bodies, and those which have been changed into bitumen or coal, may be referred to the same system of formation. Thus, the turquoise, for example, are the jaw teeth of some large sea animal; a metallic substance which has penetrated them, has been gradually substituted for the softer parts of the bone.

Delaithéorie justly observes, that the siliceous matter so abundant in many organic bodies, lies crystallized in the bosom of the earth, and produced a great part of the stony substance which constitutes petrifications—for these being often a siliceous nature, although found in the midst of clay, whence then could have come this siliceous liquid, if not from the petrified body of itself?

Impressions are found between the laminæ of certain argillaceous schists; they are the relics or moulds representing skeletons of animals, particularly fishes, leaves, reeds, entire plants, principally of the fern kind. These last impressions have this peculiarity, that if one of the leaves presents a concave print of the face of the leaf opposite to that which bears the fructifications, (as generally happens,) the other lamina will present, not the hollow impression of the face of fructification, but the relievo of the same face, which is concave upon the other leaf. To all appearance, as Brugueires explains it, the fern placed upon soft clay has been covered over again with a new deposit. Afterwards, this plant reduced into a carbonateous substance, or penetrated by the minute particles of the schistous deposit, becomes incorporated and identified with it; and, as the surface of the fructifications is unequal, that opposite being more smooth, it is natural to imagine that there has been less cohesion between the clay and this smoother face. Hence the reason why this latter face generally presents itself when the leaves of the clayey schists are separated.

We shall now consider successively the different classes of fossil remains. The petrifications of vegetable seem to belong to the quartzose, aluminous, and magmatic schists, rather than to the calcareous rocks.

The petrifying substance is most frequently of quartz-agate, onyx, or jasper; it is not uncommon to meet with petrifications which have been formed by pyrites. We have seen a piece petrified by pyrites on the one side, and by agates on the other. Petrified vegetables in lime, in gypsum, and even in clay, appear to be less frequent. Fossil ears of corn, impregnated with silver, with copper, and with other metallic substances, have been found in Switzerland, and near Frankenberg in Hesse. Sometimes only the exterior forms of the vegetables are perceptible; at other times, the different rings of the wood and tissue of the bark are to be distinguished. The osteocoles, or calcareous tubes, appear to be incrustations formed around a vegetable root, which, deprived of its nourishing juices, has at last completely disappeared. Petrified fruits are sometimes spoken of, but they are very rare. They have been found on heights, where now they do not grow. A trunk of a petrified tree has been met with upon Mount Stella, in the country of the Grisons, at 4000 feet above the level where the last shrubs grow.** Entire beds of petrified wood exist at the elevation of 1500 feet above the sea, near the town of Munda, in Spain.††

The impressions of vegetables are almost exclusively found in the marly and argillaceous schists. Those of leaves and branches are common. Some have been met with, which present to us the most delicate traces of the structure of flowers, amongst others, the aster alpinus, near Illefeld, in the county of Hohenstein.** Like petrifications they sometimes represent indigenous plants, or

* Théorie de la Terre, tome ii. p. 543.
† Journal d'Histoire Naturelle, No. 4, p. 125. et suiv.
§ Henckel, Pyritol. 224, 227, (en Lat.) Denso, Biblioth. Physique, i. 158.
‖ Bergmann, Géographie Physique, i. 307.
¶ Scheuchzer, Oryctograph. Helvet. 309. Lehmann, Mémoires Physico-chimiques, (en All.)
** Mémoires de l'Académie des Sciences de Paris, en 1710.
†† Hollmann, Philosoph. Transect. 1760, p. 506, sqq.
‡‡ Bergmann, Géog. Phys. i. 303.
such as are natives of neighbouring countries; but those that are found in Europe
often belong to the tropical climates of India and America.

These vegetables are exotics. Bernard de Jussieu had remarked, about a century ago, that the greater
part of the fossil plants which are found in the bituminous schists of Saint
Chaumont, near Lyons, were foreign to our climates. There was recognized there,
in particular, the fruit of a *myrtantes*, the *polypodium*, and the *adamantium.* In a marly
fossil schist, covered over by the lava, Fanjas Saint-Fond met with the impressions of
gossypium, in the state of a tree, the liquidambar-styrax, the cassia-fistula, and
other vegetables of tropical climates. This same observer discovered the fruits of
the palmier-arroca in a deposit of decomposed fossil wood, named "terre d'ombre,"
near Cologne.†

The German, Scheuchzer, who has given an astedakwen herbarium. Woodward
and Lloyd, and many other philosophers, have proved the same circumstances as to
the fossil plants of their country. Delamétherie has shown, that the elastic fossil
gum of Derbyshire was the cahoutchouc, which grows only in Peru. And the amber
of Prussia is supposed to have been produced from the gum trees in the forests.

Bituminated wood. Bituminated wood, although buried at great depths, may the produc-
duction of some less ancient and less violent revolutions. Pieces of
wood have been found, of which one end was in a natural state, and the other bitumi-
nated.† And it is remarkable that this wood is often of an indigenous kind. At
Upsal is preserved a large piece of an alder tree, which was discovered in Scania
converted into jet, having still the bark and buds very discernible.§ Thus bitumi-
nated woods approach by degrees to the nature of subterraneous forests, or heaps of
wood, which have been simply buried by some modern convulsion.

Shells. Amongst the remains of the animal kingdom, shells and zoophytes are
the most abundant; they occupy immense species, but are principally found in the
calcareous rocks. France furnishes us with the best known examples. The envi-
rons of Paris alone have supplied M. Lamarck with more than 60 species, and this
philosophical classification has not nearly reached its limits.|| We know that a vast
bed of chalk, accompanied by banks of calcareous shell, extends from Rothel, through
the departments of the Marne and the Aube, towards Sens.¶ The quantity of ex-
traneous bodies which have been found in this bed of chalk, or in its vicinity, is very
considerable. "In the environs of the town of Rheims, are found quarries filled
with transparent belemnites, with sea urchins, echini, and with pyrites of different
forms. There likewise are to be seen in mingled confusion, cornus ammonis, fossil
tale, petrified wood, and pieces of potter's earth full of impressions of leaves." From
Chalons to Rheims, the soil is mixed with chalk, and contains belemnites, pectines,
echini, the teeth of fishes, and the broken points of echini. * The canton of Courtag-
non presents a bank of shells of several myriametres in length, and nearly two in
breadth. It contains a quantity of fossils preserved in situ, and some have even re-
tained their colour and their polish. "More than sixty kinds are to be seen, such as
purple oysters, pectinites, chamas, tellines, mytilus, cardium, cypræa, cornus ammon-
is nerites, sabotes, lepas, patella, archæ, squillus maximus, and other animals, and
also fossil corals.**

Below the town of Montmirail, between the farm of Tigecourt, and a hamlet called
Le Fauasset, at the confluence of the rivulet of Saint-Martin with the river called
the Petit Morn, there is a very extensive bank of sand filled with fossil shells of every
kind. This bank is five metres in height, and is covered with sixty-five centimetres
of vegetable earth; below the bank of shells is another of yellow and grey sand,
which is almost horizontal and parallel to the declivity of the soil. The quarries of
Epernay, and of Dizy, along the Marne, furnish nearly the same fossils, as well as

Mémoires de l'Académie des Sciences, 1718.
† Delamétherie, Théorie de la Terre, § 1452.
‡ Lehmann, cité par Bergmann, Géog. Phys. t. 306. § Bergmann, ibid.
¶ Brüse, Statistique du Département de l'Aube, p. 6.
¶ Description du Département de la Marne, par la Société d'Agriculture et des Sciences du
Département, p. 46, et suiv.
petrified wood, which resembles the true chestnut tree. In the cabinet of natural history at Chalons, a shark's tooth is preserved incrusted in chalk, and a petrified oechinus, found at the depth of twenty-seven metres. All the plains of what was formerly called the Isle of France, present vast banks of calcareous and sandy stones, filled with, or rather composed of shells, some belonging to the kinds which inhabit our seas, others similar to those which exist in fresh waters, a circumstance which proves a difference both in their age and their origin.

France still farther supplies an example of one enormous bed covered with no other substance than shells. I allude to the neighbourhood of Touraine, which is one continuous bed of broken shells, of about nine ancient square leagues in superficial extent, and at least 20 feet in thickness. The whole mass of shells is estimated at 170 millions of cubic toises.

The other countries of Europe are not less abundant in fossil shells. Twenty pages would be insufficient to enumerate the places of Germany where they are found; but there is one general remark of the German philosophers which is highly deserving of attention. The calcareous rocks of transition, and the schists of the same formation, in the chain of Hartz, contain only zoophytes, such as the madrepores, millepores, and treerattitudes; the stratified rocks, considered as the most ancient, contain also zoophytes, belemnites, ammonites, encrimites, pentacrinites, in a word, shells the most remote from the actually existing kinds. On the contrary, the most modern calcareous rocks, those of Mount Bolca, near Verona, and the hills of chalk in England, and Zealand, enclose kinds approaching to those which now exist, such as the ostracites, pectinates, buccinates, nautilites, charnites, and others.

The north and south of Europe do not yield to the central parts in this respect. The calcareous rocks of Rosenvik, in Sweden, at 3000 feet above the sea; the vegetable earth of Finland, and the argillaceous beds of the islands of Norway, abound in shells, some whole, others almost changed into earth.

In Italy, we see the Polessa, a bed of sand formed of cornua animonis, which are not one line in thickness. In Greece and in Spain we seldom travel over nothing but shells. Lamond has found them in the Pyrenees, upon the summit of mount Perdu, at the height of 10,638 feet; Lamarron, in the Dauphines Alps, at 7,446 feet; Guerin, upon Mount Mentieux, at 6,182 feet; and Sassure, in the Alps of Savoy, at 6,104 feet; it may be affirmed, almost with certainty, that throughout Europe, wherever there is chalk, there are also shells. Every thing concurs in leading us to consider the other parts of the world as perfectly similar to Europe with respect to the abundance of shells. The vast heaps of echini which exist in Lybia, and in Barbary, have been described by Shaw; and we know from Magonet, that they are found in the gold mines of Akim in Guinea. Mount Libanus is in a manner sown with echini. Mount Carmel with petrified oysters. In the chains which border the Caspian Sea, shells are found even at a height above the region of the clouds. We see beds of them interposed amongst the rocks of Mount Taurus in Carmania. The mountains of China, according to the Jesuits, are covered with them; and Siberia has offered to the Russian travellers not only calcined, but pyritized shells, and also madrepores.

† Reamur, Mémoires de l'Acad. des Sciences, en 1730, p. 404.
‡ Freiöbel, Observations sur le Hartz, ii. 81.
§ Steffen, Beyträge zur Innern, etc. p. 87.
¶ Bergmann, Géographie Physique, i. 287. Linné. Pontopp. Dan. &c.
¶ Comment. Bononienses, p. 66. Paujas Saint-Vend, Essai de Géologie, ii. 61, 66.
† Remer, Voyage, &c. p. 20 (in German.) Paul Lucas, Voyage, ii. 390.
¶¶ Figuero, Ambassadeur Espagnol, cité par Leibnitz, Protoega, § 23.
†† D'Incarville, Philosoph. Transact. vol. xliii.
†*† George, Description de la Russie, iii. 599, &c. &c.
The philosophical traveller Peron has seen the coasts of Timor, New Holland, and a great many other oceanic lands, composed in a great measure of accumulations of marine testaceous animals. With regard to America, we learn from Kalm, that the United States and Canada contain enormous beds of calcareous matter. We see Admiral Narborough seeking in vain, in the Bay of St. Julian, for oysters analogous to the shells of which he found the neighbouring mountains composed; and, lastly, in the centre of that hemisphere, M. de Humboldt points out to us the high chain of the Andes covered over with ostracites (petrified oyster shells) at an elevation of 13,200 feet.

Fossil fish. The remains of other sea animals are less abundant; next to the testaceous kinds, fishes are the most frequent. They are found in Switzerland, near Glarus, in the slaty schists; in Germany, in marly schist, and in the bituminous schist of Pappenheim; in the coppery schist of Eiseleben; in the stinking schist of Ochningen; in Egypt and in Syria; in the calcareous rocks upon the coast of Coromandel, and in several mountains of China.† The place which has furnished the greatest number, is Mount Bolca, near Verona in Italy.

France has furnished some very curious specimens; there has been discovered at Grandmont, at four leagues from Beaume, in Burgundy, a fish in a mass of grey calcareous hard stone. Another, which was 10 inches 10 lines long, has also been found in a solid bed of stone, at 17 feet depth, at Nanterre, near Paris.

Fossil fish of Nanterre. These are the only two examples of this kind; the other fossil fish hitherto discovered, not being incrusted in the mass of the stone, but in the more recent layers. The fish of Nanterre appears to belong to the tribe of coryphenes, kinds similar to which live in the equatorial seas.‡ Other fossil fish have been found at Montmartre, and at the village of Devey-Lourane, in the department of the Ardeche.

Glossoptera. The glossopter are sharks' teeth, (squalus maxima), and are found almost everywhere, even adhering to the maxillary bone.§ The calcareous rocks which border all the coasts of the Mediterranean, afford them in great quantities; they are frequent in Livonia, in the hills of Mount Uidal, and in the steep shores which form the margin of the rivers of Siberia.

General remark. The fish, though there are some also found in calcareous rock and in freestone, seem to have been enveloped chiefly by the formation of the marly schists; but is it to the oil contained by the fish, that some of these schists owe their bitumen; and others their urineous odour? This opinion of Werner merits examination.

Amphibious fossils. It appears that amphibious animals did not exist in a great number till after the age in which the fishes were produced. Cray fish, however, occur at Pappenheim, Glarus, Verona, and in other places by the side of the fishes. An entire tortoise was found in the soft stones near Berlingen.¶ In the environs of Brussels, of Aix, in Provence, and in the quarries of the great Champagne, near Paris, different kinds of fossil tortoises have been met with;¶ but the most remarkable amphibious remains are the different kinds of lizards, that are commonly called fossil crocodiles, though it has been demonstrated that they are of a nature very different from that of the crocodiles, and partly of a species as yet unknown.** The crocodyl schists of Thurange, furnish specimens in considerable numbers;†† and they are found at Elston, in England, imbedded in the clay; but the most celebrated are those which have been been discovered in the vast quarries of Maastricht, beneath a great calcareous mass. The marine fossil animals are in a
great measure foreign to the coast of those countries where they have been found buried.

The Abbé Fortis has discovered that the petrified fishes of Mount Bolca, in the Veronese, had their corresponding living species in the seas of Otheisa.* According to Limnaeus, the porpites of Gothland appear to be petrifications from the meduses of India.† The madreporites, so abundant in the frozen solitudes of Siberia, exist only in the equatorial and tropical seas. The greater part of the petrified shells that are found in England, are now to be met with, occupied by living tenants, only in the Atlantic Ocean, towards the coasts of Florida.‡ Dicquemare found near Havre, a shell, which is now seen, in a living state, only at Amboyna.§ Scheuchzer has given the description of many of the fossil shells of Germany, which do not exist in a living state in our seas, or perhaps in any quarter of the globe. It appears, beyond doubt, that the animals of several fossil shells, such as the ortho-ceratites, the ammonites, the gryphites, the judaic stones, several echinides, and others, do no longer exist, or exist only in the unfathomable depths of the sea.

The banks of these kinds of fossil shells, are called pelagian; whilst, under the name of littoral banks, are designated those containing indigenous shells deposited by the present sea.

We cannot, however, with confidence assert, that there are any of them to which the living species bear a perfect resemblance.

But can this observation, which holds so generally true in Europe, and the north of Asia, be extended to Africa, South America, and New Holland? Do we find there the shells and fishes of our northern seas? To this question no satisfactory answer can yet be given. The testaceous fossils that occur in Lybia, resemble the marine animals of the gulf of Arabia; but we are assured that at Fez, in Morocco, both European and American shells are frequently found mingled together.||

Many singular circumstances are connected with these monuments of the history of our globe. The petrified and perfectly preserved shell is often found close by the side of several others, calcined, worm-eaten, and destroyed. Here the beds of the shells lie horizontally, with the concave part upmost, and without any foreign mixture;‖ there, as is the case near Uddevalla, in Sweden, these remains are found in the midst of fragments of granite, of sand, and of clay, jumbled together in the greatest confusion.** Some fishes have been forcibly and suddenly enveloped in the substance which contained their impression, or their cast in petrification.†† We can still perceive the violent and convulsive contortions into which these animals had thrown themselves to escape the terrible catastrophe of which they are the monuments. In some places, the proximity of these remains to a variety of minerals, present singular appearances; at Jarlsberg, in Norway, muscles have been found in a mine of lodestone,‡‡ and petrified shells, with adhering threads of gold and silver, have been met with in England and in Siberia. The most uncommon objects of this kind appear to be the muscles that occur in cinnabar, completely filled with that metal.§§

Thus, before our stratified mountains, and the metals which they contain, were formed, before the fragments of these mountains, uniting together, produced rocks and earths of accumulation, the globe must have been covered in a great measure, and at different periods, sometimes with the waters of the ocean, sometimes with a body of fresh water, and, lastly, with several fluids of an unknown nature, impregnated with substances which have enveloped the madrepores, the shells of marine, and of fresh water animals, and the fishes, whose petrifications or impressions we find heaped up one above another. In the immense succession of ages which these transient formations required, interrupted from time to time by violent revolutions, it ap-

* Journal de Physique, 1786. Mars, page 162.
† Limnaeus, Ammonites Academic, i. p. 91.; iv. tab. 3.
¶ Bourguet, Traité des Pétifications. ¶ Kalm, Travels, &c. i. 392, (en Suède.)
** Wallerius, Dissertat. de Colibus Uddevallensisibus.
†† Voyez Pisciun Quercelx et Vindiciae, par Scheuchzer, &c.
‡‡ Cronstedt, Mineralogie, p. 294, (en Sué.) §§ Bergmann, Géog. Phys. i. 301.
pears either that the mammiferous animals, the birds, and the great cetaceous tribes did not yet exist, or that they existed in a situation which secured them against the effects of those catastrophes which buried the countless generations of the lesser sea animals in the bowels of the earth.

Remains of cetaceous animals. There have not, at least, been found any remains of the mammiferous, nor of the cetaceous race, decidedly covered over with a regular stony bed. The instance of the bones of an elephant, found under a calcareous bank in England, requires to be more completely verified. The fossil teeth of the thricohex virescens, found in Eastern Siberia, and the skeletons of whales discovered at Quebec,† and at Tistedal in Norway,‡ were lying in beds of moveable earth. Petrifications and impressions of insects and birds, are less common, and seldom very distinctly marked. The accounts of honey-combs, petrified with bees, lava, and sand, found in a cavern of Upper Egypt, requires additional confirmation.§ The oldest remains of birds are met with in the marly schists of Pappenheim and Ehningen.|| The others are, in general, only incrustations of calcareous tufa, and consequently of the last age of geological revolutions.¶

Remains of quadrupeds. We proceed next to examine the remains of quadrupeds; these are found accumulated in regions where similar animals do not now exist. Some are buried deep in beds of gypsum, as the kinds now unknown, and which Cuvier may be said to have resuscitated, namely, the palaeotherium and the amnoleptherium, in gypsum, with their different varieties, found in beds of gypsum in the environs of Paris;*** others are met with in beds of sand or marlly ground, as the greater part of the bones of elephants; the megatheryx, an animal unknown, but of the tribe of sloths, having the shape of an ox, and found in Virginia;ţ the megatherium, discovered near Buenos Ayres, and which joins to a character approaching that of the sloth, the bulk of a rhinoceros.†† There are some, indeed, which present themselves to view, accumulated in vast caverns, and destitute of any envelope; it is thus that the fossil seccora has been found in the caverns of Harzdorf and of Baumann, in the mountain of Haste, and the fossil bect in those of Gailenreuth and of Maggendorf, in the country of Beretsh.‡‡ The fossil remains of this genus are not less generally extended over the globe than those marine animals. The fossil elephant, which is of a kind as different from that of India and Africa, as the horse is from the ass,|| has left proofs of its ancient existence in all Europe, in Northern Asia, and in the New World. We know that Siberia annually exports a considerable quantity of fossil ivory;††† a substance which abounds very much in that country. It is almost always seen where the waters of the rivers undermine the light sands which form their borders. The islands of Lachof, situated to the north of Siberia, are, according to a modern traveller, only heaps of sand, ice, and bones of elephants and rhinoceros, mixed with those of great cetaceous animals, and even, agreeably to the latest accounts, with the remains of gigantic birds.

There have even been found in Siberia, whole carcases of the elephant, which is named momot or mammot, covered with their flesh and skin, preserved by the frost which prevails in these regions.*** In Europe, it is Germany which

† Kaln, Voyage d'Amérique, &c. iii. 247. (en Suèd.)
‡ Pontoppidan, Hist. Nat. de la Norwæge, i. 65. (en Dan.)
§ Lippi, Mém. de l'Académie de Paris, 1705.
¶ Schuchzer, Vindic. Piæcum, tab. 2.
|| Bergmann, Géograph. Physiq. l. 375.
†† Id. Ibid. v. 358.
‡‡ Id. ibid. v. 376. Description des os de Megatherium, par Bru, ibid. 388.
 §§ Blumenbach, Specimen Archæologiæ Telluris, l. c. id. Manuel d'Histoire Naturelle, 695, (en All.)
†† Cuvier, Sur les Eléphants Vivans et Fossiles, Annal. du Muséum, viii. 265.
* Adams, Voyage à la Mer Glaciale, Annal. du Muséum.
has furnished the greatest number, “because,” says M. Cuvier, “it is capable of making researches, and publishing whatever is interesting in his discoveries.” The skeleton of the elephant found at Teuna, in Thuringia, was imbedded in a sandy marl, covered over with layers of calcareous tufa, which in that country fills the cavities of calcareous stratified earth.* In France, a great many bones of the elephant have been met with since the discovery of those in Dauphiny, which were taken at first for the remains of a giant, or of Tentobochoa, king of the Terrors,† until the appearance of those bones which were lately discovered in the forest of Bondy, and which are buried deep in a black earth, covered over by sand mixed with clay and marl.‡ Italy has furnished a harvest almost as abundant as Germany.

The other countries of Europe are not without them, England contains several. Ostrobothnia supplies us with one specimen. If we pass the Atlantic Ocean, the New World presents three tracts of land in which they are found. In Iceland, one tooth of an elephant has been discovered.§ North America contains some scattered bones, and several have been brought from the upland plain of Quito by Humboldt.||

Next to the mammoth, or fossil elephant, we should mention the mastodonte, an animal nearly similar to the elephant, and like him gymnivorous, although its teeth are furnished with many elevations. This animal, which the Anglo-Americans confound with the true mammoth, of which there are five distinct kinds, all unknown in a living state,|| has left its imposing remains upon both continents, for it is to a species of mastodonte that we must refer, amongst others, the grinders, which are changed into turquoise, found near Simorre, in the department of Gers, and which had been at first attributed to an elephant.*** It is upon the banks of the Ohio and of Hudson’s River, in the United States, that the largest remains of the mastodonte are found; they have also been met with in Lower Louisiana.†† Humboldt has discovered the bones of another species in the high plains of Quito, at the foot of the volcano Inabiru, and in the place called the Field of the Giants, from 700 to 600 feet above the level of the sea.

The fossil bones of the rhinoceros and hippopotamus, belong to species different from those which exist in the present day. They are often found in the immediate vicinity of the remains of the elephants. The most remarkable remains of the rhinoceros is the head, which has been taken out almost untouched from the tufa pits, on the Wissa, a river of Siberia.

Amongst the fossil animals called stovis, there has been found a variety, whose dimensions are gigantic. Some kinds of animals now very small, and whose weakness leaves them an easy prey to the more powerful, appear from their fossil remains to have once rivalled the strongest animals. Of this number we have already mentioned two kinds, approaching to that of the auroch, one of which has been found in Virginia, the other in the environs of Buenos Ayres; the first is the megaleon, of the shape of an ox, the other the megatherium, which has the dimensions of an elephant.‡‡

We cannot enumerate, kind by kind, the various animals of which fossil fragments are to be found, and we shall abstain from inquiring whether the carnivorous animals, of which the caverns of Germany contain so many remains, are different from the bears, the lions, and the hyenas of the present age, and from any attempt to resolve the doubts which still remain re-

† Faujas, Annal. du Muséum, ii. 24.
‡ Cuvier, Annal. du Muséum, vii. 21.
§ Bertholin, Acta Medic. Rahn. i. 83.
‖ Humboldt, cité par Cuvier, Annal. du Mus. viii. 57.
¶ Cuvier, Annal. du Muséum, viii. 412.
‡‡ See above, p. 130.
specting the fossil fragments of ruminating animals, among which the elk of Iceland, and the great buffalo of Siberia, hold the first rank.* The variegated marbles of Gibraltar, Cetce, and other places, exhibit also, under circumstances that are quite inexplicable, innumerable bones of ruminating animals, analogous to the living kinds in Europe. At the same time we must not omit to mention the curious discovery of Opossum.† the skeleton of an animal of the opessum kind, found in the plaster stones of the environs of Paris. This very particular species is now no where to be found but in South America.‡

These discoveries, though as yet scarcely commenced, have thrown already a new light upon the revolutions which our globe must have undergone, and upon the states which must have preceded the present course and constitution of nature.

How many species of animals are there extinct, and by what various revolutions! The animals, the remains of which are now found in caverns, evidently appear to have retired thither of themselves to seek shelter from some sudden revolution, the irresistible violence of which, notwithstanding, involved them in general destruction.† Were they flying from a sudden inundation? Did they implore of these caverns protection from some beneficent alteration of climate? Or did they use them as spacious cemeteries for the regular interment of their dead, according to the reported habits of the elephants of Africa? In every instance, the almost entire state in which many of their bones are found, and the nature of the calcareous tufa with which the others are surrounded, evidently show the recent date of this last revolution of the globe.

The animals whose remains are found in such great quantities in gypsum, are generally of one single kind, or at least of one tribe. This circumstance occurs only in the islands or insulated continents; it would hence appear, that these animals inhabited small portions of land which at one period were engulfed in the sea.§

The soft loins which fill the bottoms of the valleys, and which cover the surface of great plains, have furnished us with the single orders of placidermes and elephants, bones of eleven species, namely, a rhinoceros, two hippopotami, two tapirs, an elephant, and five mastodontes.|| All these eleven species are now absolutely strangers to the climates where their bones are found. The five mastodontes alone can be considered as forming a genus separate and unknown, but very nearly allied to that of the elephant. All the others belong to kinds now existing in the torrid zone; and three of these living kinds are found on the ancient continent, namely, the rhinoceros, the hippopotamus, and the elephants. The fourth, that of tapir, exists only in the new. The same distribution does not hold as to the fossil animals. It is in the ancient continent that the bones of the tapir have been dug up; and there have been some bones of elephants found in the new. These species, belonging to known genera, differ, notwithstanding, essentially from the known species; they must therefore be considered as particular species, and not merely as particular varieties. The subject cannot admit of any dispute as to the small hippopotamus, and the gigantic tapir; it is also very clear with respect to the fossil rhinoceros, and extremely probable as to the elephant and fossil tapir. The great hippopotamus is the only one of the eleven quadrupeds concerning which there remain any doubts.

These different bones are buried almost every where in beds nearly alike. They are often mixed in confusion with some other animals as nearly resembling those of the present time. These beds are generally light, either sandy or marly, and always more or less near to the surface. It is probable, therefore, that these bones have been enveloped by the last revolution of the globe. In many places they are accompanied by the accumulated exuviae of marine animals. But there are some places which do not afford any of these exuviae. Sometimes even the sand or the marl which covers them over, contains only fresh water shells. Although a small

* Cuvier, sur les Os Fossiles des Huminans, dans les Annal. du Musem, xii. 339, sqq.
† Id. ibid. v. 277—292.
‡ Blumenbach, Specimen Archeologis, etc. etc. l. c.
§ Cuvier, Annal. du Musem, iii. 386.
|| Id. Annales du Museum, viii. 421, sqq.
number of shells attached to these fossil bones indicate that they have remained some time under water, no very authentic account attests that they are found beneath regular stony banks, filled with marine shells, nor consequently that the sea had covered them for a great length of time. *

The catastrophe which has covered them over, would appear then to have been a great but transient inundation of the sea, if these bones had not been found upon the top of high mountains, where the present sea at least could not have reached in its most violent agitations. On the other hand, these bones presenting no trace of having been rolled up and down, occurring only fractured as we find those of our domestic animals, and sometimes joined together in the form of skeletons, often even as it were heaped up in common cemeteries, clearly demonstrate that the catastrophe which has destroyed the living beings to which they belonged, must have overtaken them in the same climates where we meet with these records of their former existence. These two conclusions, drawn from evident facts, destroy the hypothesis according to which the extinction of these animals would be the immediate effect of a great revolution of the temperature of the globe; for such a revolution would have still permitted these animals to seek another habitation. Nothing besides in the structure of these animals positively announces that they could not have lived in a cold climate; only the quantity of nourishment which such huge animated masses required, and their numbers, proved by the existence of the carnivorous kinds, render it probable that the countries where we find their remains, once enjoyed a temperature, if not warmer, at least more favourable to vegetation.

The total absence of human bones in these different collections of remains, proves that man did not exist anterior to the last revolution of the globe.

Thus have we hastily surveyed—the immense series of the solid substances which form the crust of our globe, from the granite summit of the Alps to the bottom of the deepest mines; and every thing we have met with has suggested the existence of a fluid substance, without which the solid masses would not have experienced either those decompositions, nor those reunions of which we have perceived the most evident traces. Here then we shall close our geological observations, and proceed to hydrology, or the theory of the waters spread over the surface of the globe.

BOOK XIII.

Water, in its pure state, is a transparent fluid, without colour or smell, and possessing great mobility. It presents itself under three forms of aggregation, as a solid when it is ice; as a liquid, when it is called water; and, lastly, as a vapour or atmospheric gas. Water was long regarded as an element, but modern chemistry reckons among its triumphs the discovery of the elementary substances, of which even water is composed.

Water, in its state of purity, contains 85 hundredth parts of oxygen gas, or pure air, combined with 15 hundredth parts of hydrogen gas or inflammable air; but we very seldom find water perfectly pure, as it generally holds in solution siliceous, calcareous, and metallic particles, acids, and sulphur. The air is dissolved by water, which it dissolves in its turn, and in a still greater proportion. It is even probable that the whole earth, or at least the exterior crust of our globe, was once in a state of mechanical or chemical solution by the agency of an aqueous fluid. We wish to pur-

* Cuvier, viii. 266, 422.
sue a course independent of all system, beginning with those circumstances which are most easily observed, and advancing from the smaller to the greater objects.

Springs. | Springs are so many little reservoirs, which receive their waters from the neighbouring ground, through small lateral canals, and which discharge their excess either by overflowing or in some other manner.

The origin of springs cannot be referred to one exclusive cause: nature, simple in her general laws, avails herself of a great variety of means; thus the precipitation of atmospheric vapours, the dissolving of ice, the filtering of sea waters, and the explosion of subterraneous vapours, all concur in the formation of springs.①

Vapours arrested by high lands. | Mountains, as is obvious to the most superficial observer, attract the fogs and clouds which float around them. As the cold is increased in proportion to the increase of elevation, it necessarily follows that more snow must fall, and more will be formed on the mountains than on the plains. These are the two principal apparent causes which contribute to saturate mountains with the water which flows from them in all directions. But are these the only causes? Are we to believe that those extensive lakes which are met with at considerable elevations, and the glaciers which cover the Alps, have been gradually formed by the rain and snow, or must we admit that, at the origin of things, at the period when extensive crystalizations took place, the water united itself by a kind of elective attraction to certain substances, in preference to the rest of the earth?②

Filtration of sea water. | The opinion of the ancients and of Descartes, who attributed the origin of springs to the filtration of the waters of the sea, is not entirely groundless. It is true, that all running waters have their sources far above the level of the sea. The direct filtration of sea water, can take place no where except in pools, which are separated from the ocean only by flat and sandy ground. But the phenomena of capillary tubes may obtain in the interior of the earth. The sea waters, deprived of their salt and bitter elements, may ascend through the imperceptible pores of several rocks, from which, being disengaged by the heat, they will form those subterraneous vapours to which many springs owe their origin. We may here quote the example of the Chartreuse, where, seeing their springs dried up, and learning that thick vapours were observed to ascend from a neighbouring quarry newly opened, they bought the quarry, closed it up, and behold their springs reappear.③ A similar occurrence happened in Sicavon.④ The change of the saline matter in sea water is satisfactorily proved from the diminution of the saltiness in the springs, which evidently originate from such filtrations.⑤ The fresh, as well as the salt springs in Bermuda, rise and fall with the ebb and flow of the tide.⑥

Filtration of rain water. | It was formerly thought that rain water did not penetrate to any great depth in the earth, but was entirely absorbed by the first strata of the soil, and that it fell in too small a quantity to afford supplies, either to torrents or to rivers. But, if we observe the disposition of those strata which compose the surface of the globe, we shall find them all more or less inclined, overturned and cracked, from the numerous convulsions which they have undergone, or from the manner in which they have been formed. The rain water flows rapidly through the interstices and cracks of the upper strata, and does not stop until it arrives at the clayey part of the soils, which is the general termination of its filtering, and forms its natural reservoirs. Observation has also proved, that rain water filters down to very great depths. In the coal mines of Auvergne,⑦ it has been seen to penetrate as far as 250 feet. In Misnia, a town and district of Saxony, called also Meissen, rain water has been observed to distill in drops from the roof of a mine 1600 feet deep.⑧

The snow and ice, it must be admitted, in some countries, produce a greater quantity of running water than the rain, the dews, and the aqueous vapours. But, in order to conceive how much the slow and gentle, but uninterrupted influence of these latter agents contribute to the formation of springs, we have only to consider Apulia

PHYSICAL GEOGRAPHY.

135

and other peninsulas, almost destitute of running water, because their mountains do not constitute a mass sufficient, either from its elevation or its bulk, to attract and retain the aqueous vapours of the atmosphere. On the same principle, that it is from the sea the atmosphere exhales its water in the gaseous form, it is easy to explain why the interior of many great continents, such as Africa and Asia, contain such barren deserts. If the two Americas are more abundantly watered, they owe it to the extent and elevation of their mountains, as well as to the continuity of their declivities.

The water which circulates on the surface of the globe has generally no other principle of motion than its own specific gravity, and the declivity of the earth. It is this declivity which carries it from mountain to mountain, from valley to valley, until it falls into the basin of the ocean.

The spouting springs, which sometimes form natural jets of water, follow the same rules of equilibrium as the others, except that the canals which furnish them with water come from great elevations, and with a rapid descent. Waters thus carried into a subterraneous reservoir, finding themselves closely confined, burst forth in consequence of the pressure, just like those water spouting fountains and works with which art embellishes our gardens. Springs of boiling water, which appear to accompany the volcanos, probably obey the same laws. A French naturalist, however, is of opinion, that the majestic phenomena of the spring called the Geyser, in Iceland, were produced by subterranean vapours, which, suddenly bursting forth, raise an immense body of water resembling the ancient crater of a volcano.* But it is more probable that this spring receives its waters from the neighbouring heights.

The intermitting fountains, particularly such as rise and fall at regular periods, so excited the wonder of the people, that they gave them the name of mirabilous fountains. The peridical fountain of Como in Italy, has been described by Pliny; it rises and falls every hour.† There is another in the town of Colmar, in Provence, which rises eight times in an hour. There is one at Fromanches, in Languedoc, the period of whose rising is each day fifty minutes later than the preceding day.‡ The round fountain, on the road from Pontarlier to Thuillion, in Franche-Comté, rises with a boiling appearance. The Bullerborn, in the bishopric of Paderborn, in Westphalia, rises with great noise. Near Brest, there is a well 75 feet from the sea, which sinks with the flow and rises with the ebbing of the sea.§ England furnishes many examples of these springs, one particularly near Torbay in Devonshire, and one at Buxton, in Derbyshire. According to Gruner, there is one at Engstler, in the canton of Bern, which has a double interminion daily and annual.|| But of all these kinds of springs, of which many more examples might be added, none exhibits a perfectly regular course. These springs are accounted for by supposing, that in the lands where they are situated, there are reservoirs and conducting pipes in the form of syphons. It is perhaps unnecessary to explain, that the liquid begins to flow through the syphon as soon as the surface of the liquid in which one end of the tube is placed on a level with the curvature of the two branches; and the flowing continues as long as the fluid keeps above the orifice of the branch or end inserted in it. The moment the orifice ceases to be immersed in the liquid, the flowing ceases, and it recommences as soon as the reservoir is filled to the level of the bending. With respect to the reservoirs which supply these fountains, drought, rain, and the melting of the snow, may so affect them, as to render their periodic return more or less regular. The connection subsisting between the greater or less humidity of the atmosphere, and the reservoirs of intermitting fountains, justifies to a certain degree the conjectures which are sometimes formed from the movements of these springs as to the nature of the approaching seasons, conjectures which have given to some of them the names of fountain of death and plenty.*

* Delamétherie, Théorie de la Terre, iv. 309, (3d edit.)
† Pliny, i. ii. c. 103. Schedlitzer, Hydrograph. Helvetica, p. 126.
‡ Astruc, Histoire Naturelle de Languedoc et de la Provence.
§ Journal de Trévoux, 1729, Octobre.
¶ Schuchers, Iter Alpina, ii. 404.
|| Kany, Géographie Physique, ii. part 2. p. 224.
It is natural to imagine, that many channels of water not finding any other suitable outlet, flow into subterraneous cavities, are absorbed by the earth, or discharge themselves below ground into the sea. We may thus explain the origin of those springs of fresh water that are to be seen spouting up even in the midst of the waves of the ocean. The water thrown up by volcanos, the sudden and terrible inundations of mines, the number of rivers which disappear, the mountains suddenly engulfed in the bosom of new lakes, all these facts combine in proving, that there are considerable subterraneous cavities, often filled with water. The necessity of supplying the scarcity of springs by digging wells, has procured us the knowledge of a fact still more interesting to physical geography. It appears, that there are lakes, or rather sheets of water, which extend under ground to considerable distances. Delamethiere relates,* that in the province of Artois, near Aire, in digging wells, they always come to a clayey bed, which, being pierced, the water gushes out in large bubbles, and, rising up, forms springs which continually flow. In the country of Modena, we find every where, at the depth of 63 feet, a bed of clay five feet thick, and beneath it water which spouts out with much force.† In the interior of the country of Algiers, in the province of Wad-Reag, the inhabitants, after digging 200 fathoms deep, invariably meet with a stratum of slate, under which the water flows in such abundance, that they name it the subterraneous sea.‡ We may easily conceive that one bed of clay may have sunk down horizontally by drying, whilst another bed of clay may have been forced upwards. The fissure horizontally formed in this manner, may have served as a channel for the lakes or rivers which constitute these extensive subterraneous waters.

Glaciers. | The glaciers which crown the tops of the highest mountains, have a close connection and a common origin with springs. Snows accumulated for whole centuries, sink down and are compressed, and consolidated as much by evaporation, as by alternate thaws and frosts. Thus are formed immense caps which cover whole mountains or fields of frozen snow, which extend between the summits: The high valleys are filled at the same time with the snow which falls there, and with the icy waters which flow from the snowy summits. In fact, these flows alone, joined to the avalanches, occasion those masses of pure ice, the branches of which extend even to the lower valleys. The latter masses of ice seem in some places to have continued increasing for a long series of years. They have, in Switzerland, filled up even whole valleys, buried villages, and shut up the pass between Le Valais and the Canton of Berne—but the diminutions on one side generally compensate for the increase of the other. A few warm seasons are sufficient to re-establish the equilibriums.§

The scenes which these bodies of ice exhibit are as various as their extent. At one time a great mass of water, congealed at the period of a tempest, presents waves resembling those of a lake—at other times these inequalities disappear, and leave nothing to be beheld by the astonished traveller, but one immense mirror of polished ice. Here superb portals of crystal appear fallen into rivers, and brilliant spires broken to pieces—in other places, avalanches of snow glide over a field of ice and then stop, and, reflecting the rays of the sun, display the form of pyramids and obelisks unseen before. These glaciers are of essential service in furnishing to the continents slowly, and in an almost regular manner, waters which, without this congelation, would be precipitated with impetuosity from the height of the mountains, so as to overflow and devastate the countries which they ought to fertilize. For this beneficial effect, we are indebted to the intense cold which converts the waters into snow and ice, and holds them suspended on the sides of the mountains, to supply abundant and unfailing streams oozing from the bottom of these enormous masses, or from the bosom of their crystalized grottoes.

Streams, rivers, torrents, and rivulets. | The effusion of springs, and the flowings of melted ice, form little currents, more or less gentle, which are termed rivulets. The water of great rains falls with more rapidity, and furrows the sides of the mountains by imme-
tuous irregular torrents. The union of these currents forms streams, which, following the declivity of the ground, unite most frequently in a great canal, which takes the name of river, and which conveys to the ocean the collected tribute of the earth.

The declivities, (considered collectively, and as a whole,) from whence flow the streams and rivulets which discharge themselves into one particular river, are called the basin of that river, or its hydrographical region. It frequently happens, that the basins of two rivers almost touch. In America, the Casiquiare, and some other rivers, actually unite the basin of the Orinoco, with that of the Amazon.* In Europe, the sources of the Duina, of the Niemen, and of the Borysthenes, nearly meet together in a marshy plain. Geology has been much employed in investigating the subject of basins; in general, the mineral beds and petrifications of the same basin present a certain analogy; but, (according to the just observation of M. Desmarest,) it is also essential to distinguish with accuracy the hydrographical masses or groups of mountains which furnish water to rivers that receive no supply from any other quarter. The knowledge of these masses is indispensable to assist us in explaining the nature of rivers. Calcaceous soils produce waters of a very different nature from those which flow from glaciare over sand or clay. The elevation of the springs determines the amount of declivity, and this latter circumstance modifies the course of streams and rivers, rendering them rapid or gentle, regular or meandering.

The beds of rivers are the lowest parts of great chasms, formed by the same revolution which produced the mountains: The atmospheric waters have evidently brought down a portion of light soil which was adhering to the sides of the mountains; they may have formed by their sediments horizontal plains which occupy the bottom of certain valleys; but never could a river by its own force alone have opened for itself a passage through solid rocks, similar to those which border the Upper Rhine; it must at the first have found the outline of its course deeply marked out. Running waters unceasingly wear away their beds and banks in places where their declivity is very rapid, they hollow out and deepen their channels in mountains composed of rocks of a moderate hardness—they draw along stones, and form accumulations of them in the lower part of their course—and thus their beds are often gradually elevated in the plains, while they are deepened and depressed in the mountains; but these changes, though continually going on for thousands of years, could only give form to the banks of rivers; they in no wise created the banks themselves.

It is only the sloping of the land which can at first cause water to flow; but an impulse having been once communicated to the mass, the pressure alone of the water will keep it in motion, even if there be no declivity at all. Many great rivers in fact flow with an almost imperceptible declivity. The river of the Amazons has only ten feet and a half of declivity upon two hundred leagues of extent of water, which makes of an inch for every 1000 feet. The Seine, between Valvins and Servins, has only one foot declivity out of 6600. The Loire has, between Pouilly and Briare, one foot in 7600; but between Briare and Orleans, only one foot in 13,596. In East Friesland, in the United Provinces, two small neighbouring rivers have, the one of 3 of an inch, the other 7 of declivity for every 1000 feet. The Markede, between Herinxveld and Dort, falls an inch along 1125 feet; but between Dort and the sea, only one inch along 9000 feet. Even the most rapid rivers have less declivity than is commonly imagined. The Rhine between Schaffhausen and Strasburg, has a fall of 4 feet in a mile; and of two feet between Strasburg and Schenckenschantz. Hence we see the reason why one river may receive another

* Condamine, Voyage de la Riviere des Amazonas, p. 119. Hartsink, Humboldt, etc.
† Comp. Sarras, Voyages, §§ 648, 920. Delamétherie, § 1618. (For the action of rivers, see Bourguet, Lettres Philosophiques, 181. Voigt, Mémoires Minéralog. vol. iii. Memoire sur la Formation des Vallées.)
‡ Condamine, I. c. p. 134.
§ Picart, Traité du Nivellement, p. 152, etc. etc.
† Brahme. Princeps d'Hydraulique, § 208. (en All.)
¶ Velson, Rivierkundige Verhandeling, p. 126, (in Dutch.) Compare the l'Hydraulique Générale de Wiebeking, (in German.)
Vol. I.—§
almost as large as itself, without any considerable enlargement of its bed; the augmentation of its body only accelerates its course. Sometimes one river falling into another with great rapidity, and at a very acute angle, will force the former to retrace its course and return for a short space towards its source. This has happened more than once to the Rhone near Geneva; the impetuous Arva, which descends from the mountains of Savoy, being swollen beyond its usual size, has made the more gentle waters of the Rhone flow back into the lake of Geneva; causing the wheels of the mills to revolve backwards.*

Some rivers have no stream whatever, and the cause is easily discovered; the land having scarcely any declivity, does not impart a sufficiently strong impulse to their waters, which are constantly retarded, and finally absorbed by the sand. Sometimes these waters are evaporated by the heat of the sun, as is the case with the rivers of Arabia and Africa; but they more commonly flow into pools, marshes, or salt lakes.

Rivers which descend from primitive mountains into the secondary lands, often form cascades and cataracts. Such are the cataracts of the Nile, of the Ganges, and some other great rivers, which, according to Desmaures, evidently mark the limits of the ancient land. Cataracts are also formed by lakes: of this description are the celebrated falls of the Niagara; but the most picturesque falls are those of rapid rivers, bordered by trees and precipitous rocks. Sometimes we see a body of water, which, before it arrives at the, is broken and dissipated into showers, like the Staubbach; sometimes it forms a watery arch, projected from a rampart of rock, under which the traveller may pass dry shod, as the "falling spring" of Virginia; in one place, in a granite district, we see the Trolhatta, and the Rhine not far from its source, urge on their foaming billows amongst the pointed rocks; in another, amidst lands of calcareous formation, we see the Cetina and the Kerka, rolling down from terrace to terrace, and presenting sometimes a sheet, and sometimes a wall of water.† Some magnificent cascades have been formed, at least in part, by the hands of man: the cascades of Vellino, near Terrn, have been attributed to Pope Clement VIII.; ‡ other cataracts, like those of Tunguska in Siberia, have gradually lost their elevation by the wearing away of the rocks, and have now only a rapid descent.

The elevation of cataracts has generally been exaggerated: that of Tequendama, formed by the Rio de Bogota, in South America, estimated by Bouguer at 1500 feet, is, according to Hulmboldt, not quite 600,|| and the highest falls ever known, that of Staubbach, instead of being 1100, as stated by some travellers, is only 900 according to trigonometrical measurement.¶ When the ground does not form a steep, and almost perpendicular bank, but only a very rapid declivity; and when at the same time the bed of the river is confined by rocks, the waters acquire by compression an astonishing force. Winterbotham relates, that the river of Connecticut, in the United States, at 40 leagues from its source, is so compressed by rocks, that it carries along on its surface, pieces of lead, as if they were so many corks; and that, notwithstanding the utmost efforts, it is impossible to insert an iron point in its waters: but this appears to be greatly exaggerated.

The periodical rise of the Nile was considered as a singular phenomenon, and one of the greatest mysteries of nature, until modern Europeans, by penetrating into the torrid zone, which was almost unknown to the ancients, discovered that this wonderful property belonged to a great many other rivers besides the Nile. It is now well known that in all the countries situated between the two tropics, it rains incessantly during a certain season of the year. The period varies

* Sanssouire, Voyages, § 16.
† Herbinis, Dissertatio de Admirandia Mundi Cataractis, suprà et substrerraneis. Amsterdam, 1676, in 4to. Voyages de Fortis, Carver, &c. &c.
‡ Opere di Monsignor Claudio Todeschi, (Rome, 1779,) vol. II. p. 77.
§ Isbrand Ides, Voyages au Nord, viii. 54, sqq. Muller, Sketch of Russian History viii. 100—118, sqq. (in German.)
|| Bouguer, Voyages au Perou, p. 91. Humboldt, Vues des Cordilliers, p. 22.
¶ Wytenbach and Wolf, Storr, Travels in the Alps, i. 114—115, (in German.)
PHYSICAL GEOGRAPHY.

according to local circumstances, but it is sufficient to know, that the torrid zone, deprived in a great measure of the benefit of snow and glaciers, has this deficiency supplied by copious torrents of rain, pouring down incessantly upon the ground, which has been almost burnt with heat during the dry season: Then all the lakes and rivers swell and overflow their banks.

If a river, under the influence of these tropical rains, flows along a plain, in a direction parallel to the equator, its overflowing waters will spread with a certain degree of equality over the whole extent of its banks. Such, in a great measure, is the case with the Orinoco, in America, the Senegal, and probably the Niger in Africa.

If, on the contrary, such a river flows from a great elevation, from extensive mountains into deep plains and valleys; or, if its direction be perpendicular to the equator, that is, north and south, then, it is evident, that the action of the tropical rains will be extremely unequal in different parts of this river; for it is manifest that the surplus of water will be carried almost entirely towards the lower parts of the territory of the river. This is exactly what happens in the floods of the Nile. This river, as the ancients have said, and notwithstanding the assertions of Bruce, comes from the mountains of the Moon, which probably form a central and very elevated plateau, occupying the middle of Africa, and extending especially towards the east and south. In Asia, the rivers Siam and Cambodia, flow in almost the same latitudes as the Nile, but in a different direction: being from north to south. These two rivers have floods resembling those of the Nile; the Indus, the Ganges, and in general all the rivers which flow between the tropics, present this very phenomena, with variations arising from local circumstances.

No river beyond the torrid zone is subject to regular periodical swellings; the overflowings which occur in the temperate zones depend solely on the melting of the snow in the spring, and on the quantity of rain which has fallen upon the mountains.* The rivers which disappear under ground have excited the wonder both of ancients and moderns. The poets have sung of the Alpheus, which, according to them, passes from Peloponnesus into Sicily, beneath the Ionian-Sea, to mingle its amorous waves with those of Arethusa. The ancients have mentioned a great number of rivers which lose themselves under ground, to reappear in a lower level;† but this phenomenon, which most frequently is closely connected with that of subterraneous caverns, has been examined in a rational and sober manner only by the moderns.

When a river is obstructed in its course by a bank of solid rocks, and finds beneath them a stratum of softer materials, its waters wear away the softer substance, and thus open up for themselves a subterraneous passage, more or less long. Such are the causes which have formed the sinking of the Rhone, between Seyssel and l’Ecluse;‡ the bridge of Veja, near Verona, the arch of which has an elevation of more than 114 feet;§ and particularly the magnificent Rockbridge in Virginia, an astonishing vault uniting two mountains, separated by a ravine of 370 feet in depth, in which the Cedar Creek flows.¶ It is probable that the fall of a rock has formed these natural bridges, like those of Icononzo, in Mexico. In Louisiana, trees, or rather whole forests, have been observed to fall on a river, covering it nearly with vegetable earth; and thus giving rise to a natural bridge, which, for leagues, has hid the course of the river from view; finally, the Guadiana sees its waters scattered and filtered in the sandy and marshy grounds, from which they reissue in greater abundance. France affords very few examples of these disappearing rivers.¶

Rivers, in running into the sea, present a great variety of interesting phenomena; many form sand banks, as the Senegal and the Nile; others,
like the Danube, rush with such force into the sea, that one can for a certain space distinguish the waters of the river from those of the sea. The waters of the little river Syre in Norway, are discernible for a considerable distance, (some say for two leagues) in the sea. It is only by a very large mouth, like those of the Loire, the Elbe, or the Plata, that a river can peacefully mingle with the sea. Rivers even of this nature, however, sometimes experience the superior influence of the sea, which repels their waters into their bed. Thus the Seine forms at its mouth a bar of considerable extent; and the Garonne, unable to discharge, with sufficient rapidity, the waters which it accumulates, in a kind of gulf between Bordeaux and its mouth, exhibits this aquatic mountain, stopped by the flow of the tide rolling backwards, inundating the banks, and stopping vessels in their progress both up and down. This phenomenon, termed the "Mascaret," is only the collision of two bodies of water moving in opposite directions.

The most sublime phenomenon of this kind which presents itself, is that of the giant of rivers, the Orellana, called the river of the Amazons. Twice a day it pours out its imprisoned waves into the bosom of the ocean. A liquid mountain is thus raised of the height of 180 feet; it frequently meets the flowing tide of the sea, and the shock of these two bodies of water is so dreadful, that it makes all the neighbouring islands tremble; the fishermen and navigators fly from it in the utmost terror. The next day, or the second day after every new or full moon, the time when the tides are highest, the river also seems to redouble its power and energy; its waters and those of the ocean rush against each other like the onset of two armies. The banks are inundated with their foaming waves; the rocks, drawn along like light vessels, dash against each other, almost upon the surface of the water which bears them on. Loud roarings echo from island to island. It has been said that the Genius of the River, and the God of the Ocean, contended in battle for Poveroca. The researches which have been prosecuted as to the mass of water which roll along these rivers, as well as concerning the space over which they run in a given time, neither having terminated, nor being likely to terminate, in any general and positive result, we shall pass on to the theory of lakes.

Lakes. Extensive accumulations of water, surrounded on all sides by the land, and having no direct communication with the ocean, or with any sea, are called lakes. Lakes are of four distinct kinds.

Lakes absolutely isolated. The first class comprehends those which have no issue, and which do not receive any running water. These pools are generally very small, and do not merit much attention. Some of these, as the Arediti, in Vieille Marche, are formed by the sinking down of the circumjacent lands; others, like the lake Albano, near Rome, appear to be old craters of volcanoes filled with water.

Lakes which receive no flowing water. The second class consists of those lakes which have an outlet, but which do not receive any running water. Such a lake is formed by a spring or rather by a multitude of springs, which, placed on a lower level in a kind of reservoir, are obliged to fill that before they find an outlet for their own waters. These lakes are nevertheless fed by little streams of water, almost invisible, which descend from the surrounding lands, or from subterraneous canals. Some great rivers have lakes of this kind for their source. These lakes are naturally situated on great elevations; there is one of this kind on Mount Rotando, in Corsica, which is 9294 feet above the level of the sea.

Lakes which receive and discharge their waters. The third class of lakes is very numerous, consisting of all such as receive and discharge streams of water. Each of the lakes of this class may be looked upon as forming a basin for receiving the neighbouring waters; they have in general only one opening, which almost always takes its name from the principal river which flows into it. But it cannot, in strict propriety, be said

* Pontoppidan, Histoire Naturelle de la Norwege, i. 145.
‡ Les Mémoires cités dans Kant, Géographie Physique, iii. part i. p. 92.
that these rivers traverse the lakes, as their waters mingle with those of the basin of the river which they are diffused. These lakes have often sources of their own, either near the borders, or in their bottom. There are four or five lakes of this class in North America, which, in point of extent, resemble seas, and which, notwithstanding, by the flow of a continual stream of fresh river water, preserve their clearness and sweetness.

The fourth class of lakes present phenomena much more difficult to explain. We mean those lakes which receive streams of water, and often great rivers, without having any visible outlet. The most celebrated of these is the Caspian Sea; Asia contains a great many others besides. The Niger, if it does not touch the sea, most probably falls into a lake of this kind, and not into a marsh. South America contains the lake Titicaca, which has no efflux, although it receives another very considerable one into it. In short, these lakes appear to belong to the interior of great continents; they are placed on elevated plains, which have no sensible declivity towards the sea, and which do not permit these collections of water to open for themselves a passage through which they may flow out. But why do these lakes, which are always receiving supplies of water, but have no outlet, why do they not overflow their banks? We may answer, that with respect to those which are situated in a hot climate, evaporation, as Halley observes, is sufficient to carry off their excess of water. It remains to be determined, whether the reasonings of this philosopher can with justness be applied to a climate so cold for example as that of the Caspian Sea.

Let us, in the first place, observe, that the quantity of water which the rivers pour into this basin, has been exaggerated; there are no other great rivers except the Wolga, the Iaik, and the Kur, which flow into it; the remainder consists only of small rivulets. We must add, that the whole of the eastern coast scarcely furnishes one rivulet to this extraordinary sea. And let us also remark, (for in physical geography every fact is worthy of attention,) that the Wolga, by no means a deep river, seems to be in part absorbed by the ground which borders its course: and it is this humidity which renders these lands so distinguished for their fertility, when compared with the neighbouring soil. Finally, were we determined to suppose that there is a disproportion between the extent of the Caspian Sea and its evaporation, on the one side, and the volume of water that it receives on the other, (which we are far from allowing,) we have still to take into account the absorption of its waters by the calcareous mountains which border it towards the south and south west. We know how porous and spongy land of this kind is. All accounts agree in describing the mountains to the south of the Caspian as being still more penetrated with moisture, and more abounding in springs than those of Mingrelia, which proves either absorption, or (what is of more consequence,) a very strong evaporation. The insalubrity of the air near these lakes, is another circumstance which still farther confirms the opinion of Halley.† The physical phenomena, which certain lakes present, have always excited the astonishment of the multitude.

The periodical lakes are the most common. Those which are formed by excessive rains, and which are again dried up by the rays of the sun, by evaporation, or infiltration, appear to be scarcely worthy of our attention. In Europe these are nothing but pools, but between the tropics, these pools sometimes cover spaces of several hundred leagues in length and breadth. Such are the famous lakes of Xarayes and Paria, inscribed on maps of America, and expunged from them by turns; it is probable that Africa contains a great many of this description. If there exist now in the numerous cavities of the earth subterraneous lakes of this kind, and if these communicate with other lakes which are visible, it is easy to imagine that the waters of these last may sometimes entirely disappear, by sinking down into the basin of the subterraneous lakes in proportion as they dry up. This lower basin again filling itself anew, the watersissue from it to fill the superior basin. If, in a supposable series of subterraneous cavities, the last link of the chain happen to be a mass of subterraneous water, situated at an elevated level in the

* Saussure, Voyages, § 10.
† Bergmann, Geographie Physique, i. § 88, ii. § 106.
bosom of a mountain, the periodical return of the waters in the visible basin may be accompanied by a motion similar to that of the spouting fountains. It is by means of such hydraulic machinery that nature keeps up the wonders of the lake of Cirknitz in Illyria, and in many others of the same description.

The alleged regularity of these periodical returns, attributed amongst others to the lake of Kanten in Prussia, is not supported by authentic testimony. By comparing together the observations made since 1715, upon the Caspian sea, we are convinced that this great lake augments and diminishes from 30 to 35 feet, according to the abundance of snow and rain in the countries from which it receives its waters; but we see at the same time that these changes follow no fixed period.* The lakes which are supplied with water by the melting of the snow, may even change their level in the course of the same day, according as the action of the sun has more or less effect upon the neighbouring mountains. It is on this principle, we conceive, that the seiches, or periodical risings and fallings of the lake of Geneva, should be explained.†

The variations and motions of lakes, which do not depend upon an augmentation of quantity, present very complicated questions: That any lakes communicate under ground with the sea, and owe their regular tides to such communication, is much to be doubted. The equilibrium of the atmosphere, deranged by electricity, or by any other cause, may occasion water to rise up, by altering the pressure which retains it at its level. There is a bay in lake Huron where electric clouds continually remain, and no traveller has ever passed it without hearing thunder.‡ In Portugal there is a pool near Beja, in Alentejo, which, by its loud noise, indicates the approach of a storm.§ Other lakes appear agitated by the disengagement of subterraneous gases, or by winds which blow in some cavern with which the lake communicates. Near Boleslaw, in Bohemia, a lake of unfathomable depth, sometimes in winter emits blasts of winds sufficiently strong to raise up in the air pieces of ice several quintals in weight.|| Two considerable lakes, Loch Lomond in Scotland, and the Welter in Sweden, often experience during the serenest weather violent agitations. In the Marches of Brandenburg, the pool of Krestin often commences in fine weather to boil up in whirlpools, so as to engulf the little boats of the fishermen.¶ Perhaps the decomposition of calcareous stones has an influence upon some of these phenomena.

In the general history of lakes, floating islands occupy a great space in the writings of some geographers. But when, on the one hand, we consider how many inaccessible marshes there are always floating in the water, and notwithstanding, covered with brushwood, and even trees; and on the other hand, when we consider those beds of vegetables, those immense forests that are found buried, and very recently buried, in turf pits, we may then easily form an idea of these floating islands, which some geographers represent as wonders of nature. They are simply earth of the nature of a peat, but very light, sometimes only reeds and roots of trees interwoven together. After having been undermined by the waters, they detach themselves from the bank, and from their lightness and spongy consistancy, joined to their inconceivable thickness, they remain suspended and floating on the surface of the waters.**

The delightful Loch Lomond, in Scotland, contains some of these floating islands, which are not very uncommon in Scotland or Ireland. A small lake in Artois, near Saint Omer, is covered with similar islands. The marshy lakes of Comacchio present a great number.†† The most considerable that are mentioned, are those of the lake of Gerda, in Prussia, which furnish pasturage to 100 head of cattle; and

* Rytchikow. Topography of Oresbourg, (in German,) i. 166, 167. Pallas. Travels in the South of Russia, i. 434. (in German.)
‡ Carver, Voyage dans l'intérieur d'Amerique, etc.
¶ Girolamo Silvestri, Treatise on Floating Islands, ancient and modern, (in Italian.)
that of the lake of Kolk, in the country of Osnabruck, covered with beautiful elms.*

There are some floating islands which appear and disappear alternately. The lake Ralang, in Smaland, a province of Sweden, encloses a floating island, which, from 1696 to 1768 has shown itself ten times, generally in the months of September and October.† It is 380 feet long, and 280 broad. There is an island similar to it in Ostrogothia.

The floating islands may have an influence upon the formation of the globe. Those which Pliny and Seneca saw floating in the lakes of Bolema, Bressanello and others, have become fixed. West Friesland has a subterraneous lake, which appears to have been covered with floating islands, that gradually united together, and ended in the formation of a solid crust.‡

The shade of thick forests, or high mountains, may prevent certain lakes, like Loch Winnoch in Scotland, from getting rid of the perpetual ice which covers them in whole or in part. Other lakes, always ruffled by the winds, or stirred by the rivers which they receive, and the springs which feed them, brave all the rigours of a cold climate. The most extraordinary phenomenon would be to see lakes freeze during summer; and this has been related of some in China; the cause of which has been sought for in the saline nature of the neighbouring ground, but the fact appears to have been insufficiently observed, or incorrectly recorded.§

The depth of lakes varies infinitely, and cannot form a subject of general physical geography. We must be satisfied merely with contradicting the popular opinion, that there are lakes without a bottom. Those which have been considered as such owe this character solely to the existence of currents which carry along with them the lead attached to the sounding line. We must not reckon as fabulous the accounts of lakes with double bottoms, which are said to be found in Jempetia or Jempiland, in Sweden and elsewhere.|| It has been supposed, that a crust interwoven with roots, similar to the floating islands, may exist at the bottom of a lake and by either rising or sinking, may make the depth vary in appearance.

Such are the principal observations we have to make upon the origin and motion of springs, rivers, and lakes. We are now to consider them with relation to their chemical nature. We have already remarked the property which water possesses of absorbing atmospheric air. It is estimated, that fresh water generally holds in solution of its weight of air. A certain time is necessary before it becomes saturated with salt, and all the elements of atmospheric air are not absorbed by water with equal readiness. Pure oxygen unites most easily with it: The good quality of fresh water consists in being completely saturated with oxygen, which must be frequently renewed by the running and agitation of the water. Its bad quality arises either from the alteration, or the superabundance of the oxygen; and each of these states announces the presence of a heterogeneous substance in water, capable of absorbing more oxygen, or of altering it. These heterogeneous substances are earthy salts, sulphur, lime, gravel, and mud.

These principles, completely established by modern chemistry, would lead us to believe that the influence of local exposure upon the nature of waters is as powerful as Hippocrates has represented it.‖ Waters exposed to the rising sun, says he, are limpid, inodorous, soft, and agreeable to drink, because the sun at its rising corrects them by dissipating the fogs of the morning which may have mingled with them. Waters lying towards the setting sun are destitute of this advantage, and are not limpid. Those which flow towards the south, and are exposed to hot winds, should be brackish, not very deep, and consequently hot in summer and cold in winter, and likely to enervate man, and to render him liable to several maladies. Lastly, waters having a northern exposure, should in general be cold, hard and unpleasant, the use of them drains away the milk from women, and ren-

* Kant. Géographie Physique, ii. part i. p. 114.
† Bergmann, Géographie-Physique, ii. 238.
‡ Mémoire de l'Académie des Sciences, 1712. || Bergmann, § 93.
ders them barren. Such is the system of Hippocrates; but we ought not, with the blind admirers of that eminent physician, to extend its application too widely; for it is connected with his ideas upon the particular nature of winds, and these ideas contain only local truths, applicable to Greece and Asia Minor.

The waters of marshes. The waters of marshes, pools, and all those which stagnate under ground, are unwholesome; they dissolve azotic and hydrogen gases, arising from the decomposition of plants, insects, and fishes. The surrounding atmosphere is loaded with these noxious gases. They who live near marshes, and who drink the waters, lead a miserable life, never acquire strength, and prematurely feel all the infirmities of age.

In Salogne, (in France,) to go no farther in quest of an example, the stagnant humidity gives to the natives pale countenances, languishing eyes, and a weak voice.*

Stagnant waters almost always absorb a great quantity of fixed air, or carbonic acid gas; for this gas is carried by its gravity towards the surface of the waters, and does not disengage itself.

Waters of hills and mountains. The water of hills and mountains, differs in quality, according as it filters through banks of pure rock, of schist, of quartz, or of sand, from all which substances it can scarcely derive any property whatever;—or, as it flows over beds of potter's earth, which it neither draws along with it nor dissolves;—or, lastly, as it traverses ground which is calcareous, marly, gypsous, impregnated with magnesia, salt, or bitumen. Waters of the kind last mentioned are always very much mixed with heterogeneous substances, and for the greatest part of the year are hard, turbid, and unwholesome, at least if daily used. Hippocrates, Homer, and Plutarch, have long ago condemned the use of them.† Those waters which have clayey bottoms are the most common; they unite those qualities which are essential to salubrity. Those which flow from the hard rock are still more pure and limpid, as they must undergo a process of filtration in wearing their way over a stony bed.

Waters of lakes. The waters of lakes being derived from springs and rivers, partake of their different qualities. There are some lakes whose waters are extremely limpid, such as the lake of Geneva, and that of Wetter, in Sweden; in the latter, a farthing may be perceived at the bottom of the lake at 120 feet depth; but the lakes whose waters are motionless, or saline, or bituminous, may be looked upon as equally unwholesome with those of marshes.

River water. The waters of rivers contain some very heterogeneous elements, which seem necessarily to counteract each other; and it is, perhaps, as much owing to this reciprocal destruction of pernicious principles, as to continual motion, that river water is so generally serviceable to the wants of man, and supports the freshness and purity of the atmosphere wherever they flow. It often, however, forms a sediment of gravel and mud; and Hippocrates imagined, that, when used as a constant beverage, it produced, amongst other maladies, that of the stone.‡

Well water. Well water, by remaining too long motionless, frequently acquires the bad qualities of stagnant waters.

Sea water. Sea water acts as an emetic with us, but the inhabitants of the Island of Paques, in the Pacific Ocean, make it their common beverage. Amongst the atmospheric waters, those composed of rain are the most wholesome on account of their softness, variety, and lightness. Hippocrates has justly observed the admirable process which nature employs to distilling the vapoors raised from the earth by the action of the sun. These vapoors are agitated and rolled about in all directions; their more earthy and turbid parts separate, and, sinking by their own weight, form fogs; the remainder, more subtle and more light, is still more completely dissolved by the solar heat. It is of this reminder that the drops of rain are formed. But the first rain that falls after a long drought, in passing through the air, becomes charged with a great number of heterogeneous substances, and consequently gets very impure before it reaches the earth. The drops which follow are not subject to this inconvenience, but all rain water is liable to be soon corrupted.

* Mémoire de la Société Royale de Medicine, 1776, p. 61—72.
† Hippocrates, l. c. § 35. et le Commentaire de Coray, p. 107.
‡ Hippocrates, l. c. § 51, and et le Commentaire de Coray, 134.
Snow and iced water have an origin very different from that of rain water. For snow and ice being formed by the absence of caloric, are consequently destitute of the more subtle parts of water. Water, therefore, in which these substances are dissolved, ought to be harder and heavier than that of rain. According to the most authentic accounts, the use of such water occasions swellings in the throat and other tumours.*

The more water is mixed, the heavier it is. The following comparative statements are taken from Bergmann.

<table>
<thead>
<tr>
<th>Weight of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water weights, 1,000</td>
</tr>
<tr>
<td>Spring water of the purest kind, 1,001 to 1,005</td>
</tr>
<tr>
<td>River water, 1,010</td>
</tr>
<tr>
<td>Sea water, 1,012</td>
</tr>
<tr>
<td>Stagnant water, 1,102</td>
</tr>
</tbody>
</table>

After having considered the qualities of common waters, we shall now make some observations upon mineral waters, that is to say, those waters which are combined with certain substances of the mineral kingdom, in a quantity sufficiently considerable to give them both taste and colour, properties, the absence of which, constitutes the essential and distinguishing characteristic of fresh water. These extraneous substances are either found in a state of very subtle mechanical division, or in that of a complete chemical solution. It is extremely difficult, even by the most careful analysis, to ascertain exactly the proportions in which they are combined.†

They can, therefore, only be classed in a manner far from being strict. Acids easily combine with water, but they as rapidly incorporate with any salts, earthy, or metallic substance, so that acidulated or gaseous waters scarcely ever contain free unmixed acid. The spring of Latara, 32 miles from Viterbo, and that of Selvane, 46 miles from Sienna, are produced as examples in which the free sulphuric acid is combined with water.‡

The lakes of Cherchiaio, of Castel Nuovo, and Monte Rotondo, also in Italy, present the free boric acid;§ but these are rare cases. Carbonic acid is met with, almost free, in the spring, called Sauerling, near Carlsbad in Bohemia.||

The waters of this spring contain a quantity of the acid equal to their own volume; those of Selz or Seltzer, commonly contain only ‖; those of Plymouth ‖; and those of Spa ….

The acidulated ferruginous or chalybeate waters are the most common. We could reckon some hundreds in France and Germany. The acid in these is combined with ferruginous ochre: we also find magnesia, glauber salts, vegetable alkali, and nitrate of soda, so that an imitation of them is very easy. Bergmann made some forty years ago for his own use, and that of his friends. The simple chalybeate waters, such as those at Forges and Aumale, are still more common. Those of Passy contain vitriol or sulphate of iron, and become black with astringent vegetables. Bitter waters are charged with sulphate of magnesia; such are those of Steiditz and Epsom. The springs of Siberia, to the north-east of the Caspian Sea, have a number of lakes of this kind. They almost form a chain from the Kuma and Bas Wolga, reaching beyond the Jenissei.††

Near these pools there are some which contain alkali or carbonate of soda. In the plains of Hungary the same abundance of bitter waters is found. Perhaps this is a property common to all the basins of the ancient mediterranean seas. Aluminous waters are not very numerous; we mention only those of Bath in England, of Crims and of Halle in Germany,** and two or three in Russia. The soapy springs owe their properties to a small proportion of clay, which often floats on the surface like grease.

† Bergmann, Géog. Phys. § 73, 74, 57. Id. de Analyse aquarum in Opus. Chimico-Phys. Hydrologie de Wallerius, (in Swedish;) de Monnet, (in French;) d'Otto, (in German.)
‡ Vandelli, de Thermis agri Patavini. Bergmann, i. 346.
§ Lavoisier, Traité Elémentaire de Chimie, i. 266. Fourcray, Elémens de Chimie, i. 300.
‖ Klaproth, Mém. de Chimie, i. 320. ¶ Georgi, Description de la Russie, ill. 23—26.
* Vol. I.—T
The formation of the acidulated waters is one of those daily operations of nature, which has been subjected to the scrutiny of science. Running waters, and, in the bosom of the earth, acidiferous substances, the acids of which either disengage themselves by their affinity to water, or by the fermentation which a stronger acid causes among the weaker acids. This chemical process is perpetually renewed. Limes, which contains two-fifths of its weight of carbonic acid, supplies, in abundance, mineral waters with this acid, which constitutes their general basis.* Sulphuric acid is disengaged from pyrites, which are very widely distributed over the earth.† Waters impregnated with this acid, will dissolve iron, lime, magnesia, in a word, almost all substances. Silex itself, which for a long time was considered as insoluble in water, is, however, found dissolved, not only in the boiling water in the neighbourhood of volcanos, as in the springs of the Geyser and Raikum in Iceland, but also in springs of a moderate temperature, and even in common water.† It was at first imagined, that silex became soluble only by its combination with the mineral alkali, as in the Geyser; but it has been proved that it is soluble by itself. Mineral waters do not remain in that state, in which a first chemical operation placed them; in their flowing or filtering, they sometimes meet with a salt, and sometimes an acid; and these different substances, by uniting, separating, or changing, according to their affinities with the basis of mineral waters, communicate qualities to them, which serve to vary to infinity their chemical and medical nature.

Poisonous waters. We must not imagine that those combinations are all of them salubrious. Without mentioning those sulphurous or carbonic fumes which arise from several waters, it appears very certain that there are several springs impregnated with arsenical and mercurial vapours. But it is wisely and beneficially arranged, that it should be almost always under large masses of rock that these frightful laboratories are buried, in which nature sustains a poisonous character.§ According to Bergmann, arsenic before it can be dissolved, requires 14 or 15 times its own weight of hot, and 90 times of cold water,—a circumstance which, joined to the rare occurrence of this destructive mineral, renders arsenical springs extremely uncommon.

Metallic waters. There are also simple metallic waters, that is to say, those in which minute particles of metal are suspended, and which, not being combined with the fluid, are gradually deposited. Besides the common cementatory waters, as they are termed, which yield iron and copper, some are mentioned which have formed a deposit of argentiferous lead in a mine of Konigsberg. The auriferous rivers do not even retain the particles in suspension; they roll along grains of gold detached from some rock. These waters are not mineral in the proper sense of the word.

Salt waters. Salt waters, or, to use the modern term, muriated waters, are perhaps the most common of all; but they rarely exist in a state of perfect purity. They occur in abundance along the Carpathian and Uralian mountains, and in general in the zone comprised between the 50° and 30° parallels of northern latitude. More to the north they are hardly ever found; farther towards the south, crystallized salt abounds in certain regions, as in the great desert of Africa; but we find only a few salt springs there. It is equally in the temperate zone of the north that the salt lakes are abundant. The central part of Asia has a vast number of them.

Their origin. Whence comes that saline quality which generally characterizes stagnant lakes? Some say that the soil in the neighbourhood has been originally impregnated with salt. This no doubt is one way of removing the difficulty: it would, however, be no easy matter to point out the enormous banks of salt which this hypothesis necessarily requires. Others consider all these salt lakes as the remains of the ancient ocean, which, in order to substantiate our theories of the earth, must be supposed to have formerly covered the globe. But why should the ocean have particularly affected these regions? Why are not all the lakes left salt and brackish from the same cause? It is the opinion of very able and accurate observers, especially of

* Bergmann, Géog. Physique, i. 570. † Klaproth, Mém. de Chimie, i. 316. ‡ Bergmann, Dissertation sur la Source d’Upsala. Klaproth, Mém. de Chimie, i. 340, sqq. 119. § Varenius, Géographie Generale, ch. 17. prop. 12.
PHYSICAL GEOGRAPHY.

Halley* that all the lakes which receive a great quantity of fresh water, and which are in a state of stagnation, must have a brackish or salt taste, from the corruption of their waters, and from the decomposition of animal and vegetable substances which the rivers carry thither. There is only one objection to which this opinion is liable. We may ask, why do not the saltiness, and especially the bitterness of these lakes progressively augment? But is it not possible in some measure to unite these three opinions? We will grant that the ancient sea did cover those countries; and we will suppose it to have disappeared from the influence of absorption or evaporation, and not in consequence of any efflux either sudden or slow. We shall then say, that certain soils being more compact, more glutinous, more cold; in a word, soils constituted in a particular manner, would be able to retain in greater quantity, the saline particles of the ancient sea, which were already crystallized; finally, the decomposition of fresh waters, and of animal or vegetable substances, so far as it goes, ought to produce salt. With respect to the question, why the saltiness does not increase, it would be wiser perhaps to acknowledge, that the causes of this circumstance are not known.

The heat which sulphureous waters, or those charged with hydrogen sulphurated gas generally experience, has been explained in different ways. Common opinion attributes this phenomenon to the decomposition and combustion of the pyrites over which the waters pass; but it may be just as possible, that beds of burning coal may act an important part here.† Whatever the cause may be, hot springs are certainly one of the most curious phenomena in physical geography: their heat rises sometimes to an astonishing degree. The spring of Krabland, in Iceland, mounts even to 103 degrees of the centigrade thermometer of Celsius.

The most magnificent of these springs is the great Geysir in Iceland, which rises up in the form of a pyramid of water and foam, more than 100 feet high; and the Strokk, in the vicinity of the Geysir, that spouts up like a stream of water from a pump, to a still greater height.‡ This polar island beholds rivulets of hot water laying its shores, which are girdled with floating ice.

There are some waters which are capable of taking fire without being hot. Sometimes they contain inflammable or hydrogen gas, disengaged from mines of iron, zinc, and tin, dissolved by the sulphuric and muriatic acids. Such are the fountains of Porretta-Nuova, Barigazo, and others; such is the rivulet near Bergerac, which can be set on fire by lighted straw.§ Sometimes these waters are mixed with pitch, or bitumen, especially with naphtha and rock oil, which in general float on the surface, and burn in the bosom of water; this is seen at Bukow, and in several places in Persia. The burning lake of Iceland appears to belong to the first class, and it is not improbable that it may have sometimes taken fire of itself. Persons deserving of credit assert, that they have seen the ignis fatuus fluttering on the surface of the lake Wetter in Sweden.

Incrusting waters ought to be carefully distinguished from those possessed of a petrifying property. These last, charged with siliceous particles extremely minute, penetrate the pores of wood and other substances, and substitute for the elements of these bodies, other crystallized elements arranged in the same manner. This property shows itself stronger than any where else in Lonagh Neagh in Ireland, and in some few springs;|| but most waters possess it in a certain degree. The Danube and the Pregel petrify, in the course of some ages, the stakes which are planted in them.

Incrusting waters act in a more evident manner, by depositing like a crust the earthly particles with which they are loaded. The spring of Guancavelica, which by depositing calcareous sediments, furnishes the rough stones of which the neighbouring towns are built; the beautiful alabaster formed by the baths of St. Philippe in Tuscany, and by a hot spring near Tours; the deposits,

* Philosophical Transactions.
† Klaproth, Mém. de Chimie, i. 313.
§ Bruckmann, Magasin de Hambourg, 156, iv. 503, etc.
known under the name of sugar-plums of Tivoli; the magnificent basin which the springs of Carlsbad have constructed for themselves; and many more examples might be referred to, but it would be unnecessary and superfluous to illustrate so simple a fact. Let us rather observe, that this quality of incrustation, belonging more particularly to hot springs, is likewise found in several that are cold.

The ordinary deposits consist of calcareous tufa or sand-stone. The Geyser deposits a siliceous tufa. These observations may suffice for the theory of the soft mineral waters collected upon the surface of the solid earth. A more extensive scene now invites us, the immensity of the ocean.

BOOK XIV.

The sea is one of the most important subjects of physical geography. The ocean, by its exhalations, which refresh and moisten the air, supports vegetable life, and furnishes the necessary supply to those valuable canals of running water, which though constantly flowing, never become empty. Without the kindly influence of these vapours, which every moment escape from the surface of the sea, all the earth would languish like a desert; the drying up of the ocean, whether slow or rapid, would probably be sufficient to reduce all organized nature to a state of annihilation. That vast mass of water is equally useful for absorbing and decomposing a great quantity of noxious gas, and animal and vegetable remains. The ocean too, by affording increased facilities to commerce, secures the advantages of neighbourhood to nations which so many lofty mountains and so many rapid rivers seemed to have separated for ever from each other.

We have treated of the varied appearances of coasts which form the common boundaries of sea and land. As to the bottom of the basin of the sea, it seems to have inequalities similar to those which the surface of continents exhibits; if it were dried up, it would present mountains, valleys, and plains. It is, moreover, inhabited almost throughout its whole extent, by an immense quantity of tasteaceous animals, or covered with sand and gravel. It was thus that Donati found the bottom of the Adriatic sea; the bed of tasteaceous animals there, according to him, is several hundred feet in thickness. The celebrated diver Pescecola, whom the Emperor Frederic II. employed to descend into the strait of Messina, saw there with horror, enormous polypi attached to the rocks, the arms of which, being several yards long, were more than sufficient to strangle a man. In a great many places, the madreporas form a kind of petrified forest, fixed at the bottom of the sea, and frequently too, this bottom plainly presents different layers of rocks and earth. The granite rises up in sharp pointed masses.

Near Marseilles, marble is dug up from a submarine quarry. There are also bituminous springs, and even springs of fresh water, that spout up from the depths of the ocean; and in the gulf of Spezia, a great spout or fountain of fresh water is seen to rise like a liquid hill. Similar springs furnish the inhabitants of the town of Aradus with their ordinary beverage.

On the southern coast of Cuba, to the south-west of the port of Batabano, in the Bay of Xagua, at two or three miles from the land, springs of fresh water gush up with such force in the midst of the salt, that small boats cannot approach them

† Kircher, Mundus Subterraneus, l. ii. c. 15.
‡ Spallanzani, Journal de Physique, July, 1785.
PHYSICAL GEOGRAPHY.

149

with safety; the deeper you draw the water the fresher you find it.* It has been observed, that in the neighbourhood of steep coasts, the bottom of the sea also sinks down suddenly to a considerable depth, whilst near a low coast, and one of gentle declivity; it is only gradually that the sea deepens.†

There are some places in the sea where no bottom has yet been found. But we must not conclude that the sea is really bottomless; an idea, which, if not absurd, is at least by no means conformable to the analogies of natural science. The mountains of continents seem to correspond with what are called the abysses of the sea; but now, the highest mountains do not rise to 20,000 feet. It is true, that they have been wasted down and lessened by the action of the elements; it may, therefore, be reasonably concluded, that the sea is not beyond 30,000 feet in depth; but it is impossible to find the bottom even at one-third of this depth with our little instruments. The greatest depth that has been tried to be measured, is that found in the northern ocean by Lord Mulgrave; he heaved a very heavy sounding lead, and gave out along with it cable rope to the length of 4,680 feet, without finding the bottom.

The level of the sea is, generally speaking, the same every where. Level of seas.

This arises from the equal pressure in every direction which the particles of a fluid exercise upon each other. The ocean considered as a whole, has then a spherical, or rather a spheroidal surface, which may be considered as the true surface of our planet. The only exception to this position, may perhaps be found in gulfs and inland seas, which have only a slight communication with the ocean. In these parts of the sea, the level of the water may sometimes be a little more elevated than in the ocean. It was alleged that the Dutch found the level of the gulf of the Zuiderzee considerably higher than the North Sea.‡ It appears more probable, that the Arabian Gulf is more elevated than the Mediterranean, and that in general, small portions of the sea open only to the east, have a higher level on account of the accumulation of the waters driven into these gulfs, as into an alley, without an outlet, by the general movement of the sea from east to west, a movement of which we shall hereafter speak. There are also mediterranean seas where the level of the waters change with the seasons. The Baltic and Black Sea swell in the spring from the abundance of waters which the rivers bring along with them. These two interior seas approach more nearly the nature of lakes, which have generally a higher level than the ocean.

Sea water contains, beside pure water, several extraneous substances, in proportions which vary in different places. Chemical nature of sea water.

 Murie as, marine acid, vitriolic, or sulphuric acid, fixed mineral parts. By boiling or by evaporation in the air, common salt is obtained, (muriate of soda,) which is preferred for salting meat, to the salt of springs. The saltiness and bitterness of sea water, renders it disagreeable to the taste, and unfit for the use of man.

The saltiness of the sea seems in general to be less towards the poles, than under the equator. There are, however, exceptions in certain countries, and generally in all gulfs which receive a great many rivers. The following observations upon this subject are from Bergmann.§

Near Iceland, the sea contains of salt, \(\frac{x}{y}\) to \(\frac{y}{z}\) of its weight.
Near the coasts of Norway, North Sea,|| \(\frac{x}{y}\) to \(\frac{y}{z}\) .\\[\text{in general}]\\
In the Kattegat, near Warberg,\\[\text{in general}]\\
In the Baltic Sea,\\[\text{in general}]

• Humboldt, Tableaux de la Nature, i. 235.
† Dampier, Voyage round the world, ii. 119. Pontoppidan, Natural History of Norway, i. 109, (in Danish.)
‡ Verenius, General Geography, p. 101, edit. of Newton.
|| Hierses, Tentam. Chem. ii. 178.
‡ Swedenborg,Miscel. Observat. 103.
In the gulf of Bothnia, near Northumberland, upon the Coast of Holland, in the Irish Sea, near Cumberland, in the English Channel, in the Atlantic Sea, coasts of France, coasts of Spain, in the Mediterranean, near Castiglione, 5 miles to the north of Malta.

Sea water is in several places less salt at the surface than at the bottom. In the straits of Constantinople, the proportion is as 72 to 62. In the Mediterranean, as 32 to 29. It has been found, says Bergmann, that in the Øresund, the water taken at the surface, and from the depth of 5 to 20 fathoms, was in proportion to melted snow water, as 10,047, 10,060, and 10,059 to 10,000. Water ought to be denser and heavier at a certain depth, and from the result of experiments in which a pressure has been applied to it, equal to what it sustains 1,900 fathoms from the surface, it has been computed that at that depth it should be compressed \(\frac{1}{1057} \) by its own weight. Sea water, by acquiring additional saltness seems, at a certain depth, to lose its bitterness; so, at least, it appears from the observations of Sparmann, who took up a bottle of sea water from the depth of 60 fathoms, and found that it had the taste of fresh water, in which common salt had been dissolved. According to chemical analysis, it had very little magnesia.

Variations of the saltness of sea water from the variations of seasons, and from the action of the currents. Near Walloë, in Norway, where there is a salt-pit, it has been remarked, that the sea water taken at the surface contains \(\frac{1}{12} \) of its weight of salt at the moment the ice is detached, which extends 30 feet down; whilst the salt in every other season is in the proportion only of \(\frac{1}{16} \). Upon the coasts of Cumberland, in England, a still stronger evaporation is experienced, as there is generally \(\frac{1}{7} \) of salt in the sea water, which is sometimes reduced by excessive rains to \(\frac{1}{16} \). Upon the coast of Malabar, the sea water sometimes becomes drinkable.† In the Sound, the waters change their weight and saltness with the winds and currents: when they come from the east, the water weighs only \(\frac{1}{4} \) more than melted snow; on the contrary, when they come from the west, it weighs \(\frac{1}{12} \). It is supposed that in Iceland the sea is more salt before the flow than the ebb of the tide, whilst in the Gulf of Bothnia, it is quite the contrary; for the inhabitants know by the progressive increase of the saltness during the ebb, the moment when the flow approaches. In this gulf, the saltness of the sea is in general greater towards the winter, and less towards the summer solstice, which unquestionably arises not only from the flowing of the rivers, but also from the melting of the ice.†

Origin of the saltness of sea water. It is easier to perceive the great advantages resulting from the saltness of sea water, than to discover its origin. Without this saltness, and without the agitation in which they are continually kept, the waters of the sea would become tainted, and would be infinitely less adapted for the motion of vessels, and probably it is to this that the inhabitants of the ocean owe their existence. But whence comes this saltness? Is it from beds of salt lying at the bottom of the sea? These beds themselves appear rather to consist of deposits which the sea has formed by precipitation. Does the saltness originate from the corruption of river water? It seems, in fact, that the fresh water which is discharged into close and stagnant lakes becomes corrupted, decomposed, and forms deposits of salt. Now the ocean may be considered as a great lake, the common reservoir of all terrestrial waters. But in this case, it is said, that the saltness should increase from day to day. Halley,
who trod this opinion, wishes that experiments were made which, in future ages, might conduce to throw light on the subject. Several modern philosophers consider the sea as the residuum of a primitive fluid, which must have held in solution all the substances of which the globe is composed; that these sea waters having deposited all the earthly principles, both acid and metallic, with which they were impregnated, there remains in their residuum, (which is the present sea,) some of these elementary principles too intimately combined with water to escape from it; and with respect to the bitterness of sea waters, as it diminishes in proportion to the depth, it can arise solely from the great quantity of decomposed and putrifying animals and vegetable substances which float in the ocean, and which the running waters never cease to bring into it.

Various methods have been employed to render sea water drinkable. The only one which has succeeded is distillation; but it requires too much care, and too much fuel to be made use of frequently, or on a large scale. Even distillation does not divest sea water of all its bitterness, when it contains sal ammoniac. Thus mariners, though sailing in the midst of water, often see themselves exposed to all the horrors of dying of thirst when their stock of fresh water has been exhausted. But should they be fortunate enough to fall in with floating or fixed ice, pieces of it; when melted, afford them water which is fresh, although a little insipid.

The colour of the sea varies very much in appearance, but it is generally of a deep bluish green, which becomes clearer towards the coasts. This apparent colour of the sea seems to arise entirely from the same causes which impart a blue shade to distant mountains, and which give the atmosphere its azure hue. The rays of blue light, being the most refrangible, pass in the greatest quantity through the aquatic fluid, which, from its density and depth, makes them undergo a strong refraction.

The other shades in the colour of sea waters, depend on causes which are local, and sometimes illusory. It is said that the Mediterranean Sea, in its upper part, has sometimes a purple tint. In the gulf of Guinea, the sea is white, and around the Maldives Islands black. The Vermelle, or Vermillion sea, near California, has received its name from the red colour which it often assumes. The same phenomenon was observed at the mouth of the river Plata, by Magellan, and also in other places.

It is not impossible that a great number of certain insects may, for some time, give a reddish or whitish tint to an expanse of sea. The infusion of certain earthy or mineral substances, the nature of the soil, and other causes, may produce these appearances.

The green and yellow shades of the sea arise from marine vegetables. In some places, these vegetables have been observed to rise to the surface of the water, and cover it entirely, as between the Canary and Cape De Verd Islands, in the road or rade which the Dutch call Kroos-see, and the Portuguese Mare di Sargasso. This marine vegetation presents, upon a large scale, phenomena similar to the efflorescence upon lakes. In the lakes, there are very thin masses covered with hair, which rise during the day to the surface of the water, and sink beneath it during the night.

The light, or sparkling of the sea, is a magnificent and imposing spectacle. Sometimes the vessel, while ploughing her way through the billows, appears to mark out a furrow of fire; each stroke of the oar omits a light sometimes brilliant and dazzling, at other times tranquil and pearly. These movable lights are grouped in endless varieties. Here thousands of luminous points, like little stars, appear floating on the surface; and then, multiplying together, form one vast sheet of light. There the scene becomes more tumultuous, the refrangent waves heave up, roll, and break in shining foam. At other times, we see large
sparkling bodies resembling the forms of fishes, pursuing each other, disappearing, and bursting forth anew.

The explanation of this phenomenon has very much occupied the attention of philosophers. Valisneri, Rigaud, Diciquemare,* have shown, that, on a number of occasions, this light was produced by a little animal called the glow worms of the sea. This animal has a body extremely thin and transparent, is possessed of astonishing activity, and emits a dazzling and vivid light. The observations of Griselini, of Godin***, of Dagelet, and of Adanson,† have proved that the sea contains other luminous animals, particularly scolopendres, and polypi.

The medusas dart from their antennae, or horns, a very strong light, similar to that of a candle, whilst their body remains in obscurity.‡ The pennatula marina throws out so much light, that it makes all the other fish caught in the same net quite discernible at night.§

All the Zoophytes and the Mollusca seem to be phosphorescent in a greater or less degree. The observations of M. Péron,|| and Langendorff,\| confirm this explanation of luminous phenomena in the sea, and it is the only one that can be admitted as general. It appears that this emission of phosphorus arises from the excited state of the vital spirits in these different animals, and that it is chiefly at the moment of amorous enjoyment that they cast forth so brilliant a light.

Phosphorus of puncheled matter.† Fougeroux, Canton, Forster, and other accurate observers, while they agree with respect to the existence of glow worms, think that the light of the sea, when it is tranquil, and as it were united with the water, originates from the decomposition of vegetable and animal substances, collected together in it, and which, in putrifying, emit their phosphorus. Light of this description is chiefly observed in long calms, and after great heat.** The spawn of fish also possesses the power of emitting a certain light—it is perhaps to this cause that we owe those luminous appearances in the Northern seas, which are called by the fishermen herring lights. This marine phosphoric light has been noticed to be strongest during a storm, which has given rise to the belief that the phenomena was produced by the friction of the marine currents. Upon this subject, we shall quote a reflection of Newton’s: “Do not all solids,” says this great philosopher, “when they are heated beyond a certain degree, emit a portion of light—and is not this emission produced by the vibratory motion of their particles? And do not all the bodies which abound in earthy, and particularly sulphureous particles, throw forth light as often as these particles are sufficiently agitated? may not this agitation proceed from heat, friction, putrefaction, from vital motion, or from some other cause? It is thus that sea water in a strong tempest becomes luminous.”††

The light which arises from living animalcules generally precedes storms, the approach of which they thus in some degree appear to foretell.

Temperature of the sea.||| The temperature of the sea changes less suddenly and less easily than that of the atmosphere. Sea water is a bad conductor of heat. Besides, the visible solar rays cannot heat the bottom of the sea, as they only penetrate to 270, or, according to Bouguer, 680 (French) feet. Beyond that limit the sea receives no more light—but the heat perhaps penetrates a little farther. The temperature of the depth of the sea would appear then to follow that of the interior of the globe in different latitudes. But the experiments of M. Péron have proved that the temperature of the sea at great depths diminishes in a constant progressions,

‡ Forskal, dans Niebuhr, Voyage en Arabie, i. p. 7, (in German.)§ Philosophical Transactions, vol. liii. plate 19, fig. 1—4. Shaw, Spallanzani, &c.
‡‡ Bajon, Histoire Naturelle de Cayenne, vol. i.
* Newton’s Optics, p. 114.
from which fact, however, we must not conclude that the bottom of the sea is actually congested.*

Marine ice appears to be produced towards the poles, according as Marine ice, the saltness of the sea diminishes, and the rotatory motion of each point of the globe becomes less rapid. As low as the 40th degree of latitude, large pieces of ice are seen floating upon the sea, having been detached from some more northern place, and carried along by the currents which flow from the pole to the equator. At 50 degrees, it is common to see the rivers, the lakes, and even the edges of the sea covered over with ice. At 60 degrees of northern latitude, the gulfs and the interior seas are often frozen over their whole surface; at 70 degrees, the floating fields of ice become more frequent and more enormous; and towards the 80 degree, we find the ice more frequently stationary; not because the sea is frozen down to its bottom, but because the ice then sticks together, and becomes immoveable from the vastness of the masses in which it is accumulated. All these phenomena are met with in the southern hemisphere, but in a more rapid progression, so that fields of ice occur at 70 degrees, and extensive floating islands of ice appear in great numbers, and are sometimes even stationary in this side of the 60th degree of latitude.

The islands of ice are often half a league long, and rise 160 feet above the water. These enormous masses, so dangerous to ships, are formed, it is said, by the accumulation of sheets of ice which glide the one over the other; but we should be inclined to believe, that in several cases the masses of ice are like crystals formed simultaneously, and as it were at one cast. Congelation is in truth nothing but crystallization, and the principle which determines it may, towards the poles, be exerted with a force beyond our conceptions.

The fields of ice are frequently of immense extent. Cook found a chain of them which joined Eastern Asia to North America. The appearance of these continents and islands of ice surpass all that the imagination can conceive. Here, we fancy that we behold mountains of pure crystal and valleys sound with diamonds. There, greyish towers with their resplendent points seem to rise above a rampart crowned with ice. The magnifying medium of a hazy atmosphere, renders this spectacle still more gigantic. He must have a heart of iron who dare penetrate into these inhospitable seas; for, if the navigator has not to fear tempests, which are extremely rare in these latitudes, nor water spouts and hurricanes, which are there unknown, he will be assaulted with other dangers much more capable of appraising the most intrepid minds. Sometimes huge bodies of ice, impelled along by the winds and the currents of the sea, dash against his frail vessel; and there is no rock so dangerous, nor so difficult to avoid.

Sometimes these floating mountains treacherously surround the navigator, and block up every outlet; his ship is arrested in her course, and becomes immoveable. In vain does the feeble axe endeavour to break these enormous masses, in vain do the sails invite the winds; the ship is as it were soldered into the ice, and the mariner, cut off from the world of living beings, remains fixed in a solitude of death. How frightful is the situation of those who, thus hemmed in by the ice, have no other resource left than to quit their vessel and walk over that consolidated crust of sea, which is every moment cracking and ready to sink under their feet! When almost dead with cold and hunger, they consider themselves fortunate should the floating piece of ice on which they sail cast them upon the shore of Siberia, or Nova Zembla. But there is generally very little hope of life for the wretched beings who suffer shipwreck in these dreadful regions. Either the icy waves engulf them, or they are devoured by the tyrant of this dreadful empire, the white bear; or, lastly, the intensity of the cold extinguishes the vital heat, their feet adhere to the ice, their blood no longer circulates in their veins, and the polar night becomes to them a night which is eternal.

An ingenious writer† has imagined, that the poles were each of them surrounded by a vast cupola of ice, so extensive as to produce, by its daily melting, the pheno-

* Péron, Mémoire lu à l'Institut.
† Bernardin de Saint-Pierre, Études de la Nature.

VOL. I.—U
menon of tides, just as the melting of the snow in the Alps occasions periodical movements in certain lakes and fountains; but the phenomena of tides cannot be explained in this manner, and even the existence of two similar cupolas is very doubtful. As a certain agitation is necessary to produce ice, it may be supposed that congelation was more of a permanent character towards the 80th degree than at the pole itself. Some sudden squalls of wind, which navigators experience in these latitudes, and which come from the pole, appear to indicate successive changes in the state of this extreme point of the globe. It is, at any rate certain, that the melting of the polar ice contributes to form the currents which set from the pole to the equator.

The masses of ice do not diffuse so piercing a cold around them in the regions where they are found, as, when detached and melting, they are carried by the waves towards other parts of the ocean; for, as ice is formed only in consequence of the absence of heat or caloric, its melting is occasioned by a new combination with the caloric; which it absorbs with avidity from the surrounding air, and consequently renders it extremely cold.

Motions of the sea. The water of the sea yields to the slightest impression—and although its density and weight combine to retain it in a constant equilibrium, it is agitated to a certain depth, by very rapid and varied motions. These motions may be classified according to the manner in which the particles move, and according to the nature of the agents which give rise to the motion.

Difference of direction distinguishes the horizontal motions from the vertical. In the first, the water flows along the surface of the globe; in the others, it retires from, and approaches to the centre of the earth. Horizontal motions may be direct or recurred, or even circular; &c. On the extent and duration of the motion depends the difference between oscillations, in which the whole mass of water is moved at once, and undulations, in which the motion is propagated from one part of the mass to the other.

We may distinguish three kinds of motions in the sea, considered in reference to the causes which produce them; the tides are sidereal motions, because they depend upon the influence of the heavenly bodies; general currents, and the greatest number of particular currents, have their causes in the very element that is agitated by them; these then are motions of the sea itself. The third kind comprehends atmospheric motions, produced by the action of the winds. As to those violent oscillations which accompany earthquakes, and thus evince the ocean to be connected with volcanoes, I should wish to call them sea-quakes; they deviate much from the series of ordinary motions.

Regions of the sea. We may distinguish in the sea three regions or beds, one above the other, but without any constant limit; the first, agitated by the winds, is the region of undulations—this is immediately followed by the region of currents; and lastly comes the immovable region, where the density of the particles from pressure, and from their adherence to the globe and from friction, prevents all motion.

Waves, &c. The motions of the air produce corresponding motions on the surface of the water. Unequal and violent winds give rise to waves which tower aloft as foaming mountains, roll, rebound, and dash against each other; one moment they seem to bear on their surface the goddesses of the sea who come to sport in the dance; the next they are involved in the fury of the tempest, they appear to swell with rage, and present to the imagination the monsters of the deep contending in wrath. A strong, constant, and equal wind, produces long ridgy waves, which all rise as it were with the same front, push forward with uniform velocity, and precipitate themselves in regular succession on the shore. Sometimes the waves, suspended by a gust of wind, or arrested by a current, form a kind of liquid wall, to the imminent danger of the navigator.

Cause of undulations. All these oscillations arise from a current of air, which, by dislodging a certain portion of the waters, has destroyed the equilibrium which every moment they endeavour to recover. These motions are similar to those of a pendulum, they affect only the surface of the waters. The divers assure us, that in the greatest tempest, calm water is found at the depth of 90 feet. Geometricalians have attempted to subject these motions to calculation. "The rapidity of the propagation
PHYSICAL GEOGRAPHY.

of waves," says an eminent philosopher, "will be the same as that which a heavy body would acquire in descending from a height equal to the half of the depth of water in the channel. Consequently if this depth is one foot, the velocity of the waves would be $5\sqrt{\frac{1}{17}}$ feet in a second, and if the depth is greater or less, the velocity of the waves will vary in the subduplicate ratio of the depths, provided that they are not too considerable."

We must distinguish the waves produced by the momentary action of the wind, and those which arise from the impulse communicated by a preceding wind, or by a current, or by any other cause. Navigators often experience this double oscillation, which contributes to augment the agitation of the vessel.

The tides are regular and periodical oscillations, which the seas of the terrestrial globe undergo from the attractions of the celestial bodies, principally those of the moon and sun.†

Let us consider the single action of the moon upon the sea; suppose then that luminary in the plane of the equator. It is evident, that if the moon exerted upon all the particles of the sea an equal attraction, and parallel to the earth's centre of gravity, the entire system of the terrestrial spheroid, and of the waters which cover it, would be influenced by a common motion, and their relative equilibrium would not suffer any change. This equilibrium is disturbed only by the difference between the attractions which the moon exerts, and the inequality of their directions. Some parts of the globe are directly attracted by the moon, others only obliquely. The former are in conjunction with the moon; and a line drawn from the centre of the two planets would pass through their zenith. The latter are in quadrature with the moon, that is to say, a line drawn from the terrestrial centre to their zenith, would make an angle of 90 degrees with the line which joins the centres of the two planets. The attractive force acting obliquely is decomposed, on account of the obliquity of its angle of incidence; thus the parts in conjunction being more strongly attracted than those in quadrature, the weight of their particles is diminished. It is necessary then, to there being an equilibrium in all parts of the sea, that the waters should rise under the moon, in order that the excess of weight of the particles in quadrature, above those in conjunction, may be compensated by the greater height of the latter.

The waters, however, rise not only on the side where the attracting planet is, but also on the opposite side, because if the planet attracts the superior waters more than it attracts the centre of the earth, it also attracts this centre more than it attracts the inferior waters in the opposite hemisphere. These waters then will approach less towards the attracting planet, than the centre of the earth approaches to it. They will remain as far off from and behind the centre, as the superior waters advance from it on the side of the moon.

Two promontories, or eminences of water, will therefore be formed by the action of the moon upon the earth—one on the side towards the moon, the other on the side opposite to it, which gives the sea an appearance of an elongated spheroid, whose great axis will pass through the centre of the moon and of the earth. It is high tide under the moon, and in the opposite point at 180 degrees of distance; consequently, in the two intermediate points, or at 90 degrees distance from the moon, the tide will be low.

The earth, by its rotatory motion, successively presents to the moon, in the space of 24 hours, all its meridians, which, consequently, are found by turns, and at an interval of six hours, sometimes under the moon, and sometimes at a distance of 90 degrees from it: Hence it follows, that during the time which passes between the departure of the moon from one meridian, and its return to the same meridian, that is, in the space of a lunar day, which exceeds the solar day by about 50 minutes and a-half, the waters of the sea will ebb twice, and flow twice in every part of the

* Lagrange, Mécanique Analytique, p. 491.
earth, although in a manner almost insensible in those places which are distant from the path or orb of the moon.

The earth, in revolving upon its axis, carries along with it to the eastward of the moon, the promontories, or the most elevated particles of water; these will still continue therefore to rise by the action of the moon; and although that action, already less direct, is diminishing in force every moment, yet it subsists, and continues to combat with the inertia and friction which retard the elevation. It is for this reason, that the elevation does not attain its maximum at the very moment of the moon’s passing the meridian, but about three hours after.

A second cause tends to produce the same effect. The waters placed in quadrature, on the west of the moon, and carried towards conjunction with that planet, by the rotatory motion of the earth, will be continually accelerated during the quarter of the day, when they are in this position, and will move after the syzygies or conjunction, with the sum of these accelerations, and then meeting with particles continually more retarded than the earth, they will form two contrary currents, which will place the greatest elevation at about 45 degrees past the syzygies. For the like reason, the greatest depression of the water will not happen at the quadrature, but three hours after, and at 45 degrees from that point.

Action of the sun.

If we now imagine the sun to be in the plane of the equator, it is evident that, as its action is similar to that of the moon, it should excite in the ocean an agitation similar to the lunar tides. Thus the sea would ebb twice and flow twice during a solar day; but, on account of the immense distance from the sun, these solar tides will be much smaller than those which result from the action of the moon. According to Lalande, the influence of the moon is "\(\varphi \) times greater than that of the sun; Laplace considers it even triple.

On account of the inequality which exists between the solar and lunar days, the action of the sun will sometimes change the position of the lunar tides, and at other times will unite its influence with that of the moon. In the syzygies or conjunctions, the action of the moon concurs with that of the sun to raise the waters. This is the reason why the highest tides happen at new and full moon; or when the moon is in its first and third quarters. In the quadratures, the waters of the sea are depressed by the action of the sun, at the same point where the action of the moon raises them, and reciprocally. Thus the tides of the quadratures ought to be less. But the highest tide does not, and should not happen precisely on the day of the new and full moon, but two or three days after. The reason of this is, that the motion once acquired, is not all at once destroyed; it continues to augment the elevation of the waters, although the instantaneous action of the sun is in reality diminished.

What we have already mentioned regards the position of the sun and moon in the equator. Let us now consider these heavenly bodies in their various declinations, and we shall see the elevation vary in the inverse ratio of the cube of the distance of the water.

Without entering into details, which would require mathematical demonstrations, we will only remark, that the proximity of the sun and moon seems to be the cause to which we must refer the extraordinary equinoctial tides, which happen most frequently; the one before the vernal equinox, and the other, after the autumnal, that is, both of them at the time when the sun, passing through the meridional sign, is nearest us. But this does not happen every year, because there are sometimes variations produced by the situation of the orbit of the moon, and by the distance of the syzygies from the equinoxes. The great inequalities of the depth of the sea, the situation of the coasts, their declivity under water, sometimes rapid, sometimes otherwise; the different breadth of the channels and straits; and, lastly, the winds and currents; all these local, and sometimes accidental circumstances, alter the progress of the tides,—make them deviate from that regularity which they would have maintained in an open sea,—augment the impetus of the flow upon the coasts of confined channels, and by causing the degree of friction to which the waters are exposed to vary, shorten or prolong the relative duration of high and low water. Thus we see in the Islands of the South Sea, regular tides of only
one or two feet elevation," whilst upon the western coasts of Europe, and upon the eastern coasts of Asia, the tides are extremely strong, and subject to many variations. It is affirmed, that the island of Formosa, near China, experienced, in 1632, a tide which passed above the chain of mountains, which traverses the island; but it is rather difficult to give full credit to this phenomenon. Upon the coasts of France, which border upon the British Channel, the flux being confined in a basin, and at the same time repelled by the coasts of England, rises to an enormous height; at St. Malo, even to 50 feet.

In the gulf of Hamburg, the tide is sometimes the result of three combined forces, namely, one flux coming from the straits of Calais, another flux coming from the Orkney Islands, and turned towards the German ocean by the polar current, or by the very strong north-west winds; lastly, (as I believe,) the repulsion of the waters of the Elbe and other rivers. The ordinary tide at Hamburg rises 6 feet 8 inches. The tide of the syzygies, that is, of the new and full moon, is 7 feet 3 inches. But when the wind blows with violence from the north-west, the tide rises to 18 feet, sometimes even to more than 90 feet. Hamburg is 30 leagues from the mouth of the Elbe, and the tide makes these 30 leagues in 5 hours 23 minutes; when it arrives at the mouth of the river, it takes from three quarters of an hour to one hour and a quarter to force back or overcome the river current. The same current makes the flood-tide at Hamburg last only 4 hours 18 minutes; and the reflux or ebb-tide 8 hours 8 minutes. This example may serve to explain all the phenomena of the tide, when confined in a narrow channel, and acted upon by a current contrary to its direction.

In the torrid zone, the flood-tides run from east to west with the motion of the stars. In the northern temperate zone, they come from the south; and in the southern zone, from the north: that is, both of the temperate zones are affected by the influence which the heavenly bodies have upon the torrid zone; the waters of which are more directly under their agency. To this theory there are exceptions, but they are entirely local. The frozen zone of the north has very few tides; its distance from the equator, the land which surrounds it, as well as the ice with which its seas are encumbered, all combine to destroy the effect of a sidereal attraction. We know nothing of the southern frozen zone.

If it be objected to this theory of lunar attraction, that there are gulfs as well as inland seas in which there are no tides, we may answer, that these phenomena are fresh proofs in favour of the hypothesis against which they are brought. In small collections of water, the moon acts at the same time upon every part; it diminishes the gravity of the whole mass. But there is little or no surrounding water which can come and accumulate with the body thus attracted and elevated; for this swelling owes its origin less to a vertical or perpendicular motion of the attracted waters, than to the lateral flowing in of the neighbouring waters, in consequence of their superior gravity. This is the reason why the Mediterranean has only very small tides, which seem to be formed chiefly in the part extending to the east of the island of Malta, and to proceed northwards into the gulf of Venice.

The ocean communicates the effect of its tides to the gulfs and inland seas which have their entrances turned towards the cardinal points whence the tide comes. The Baltic and Mediterranean are not in this situation. But Hudson's and Baffin's Bays are, and there the tides are sensibly felt. The gulf of Arabia is also a striking example.

Let us now proceed to the consideration of the motions of the ocean itself, that is, of general and particular currents. It is remarked, particularly between the tropics, and as far as 30 degrees of north and south latitude, that there is a continual motion in the waters of the ocean, which carries them from east to west in a direction similar to that of the trade winds, but contrary to that of the rotation of the globe.† Navigators, in order to go from Europe to America, are

* Forster, Observations during a Voyage round the World.
obliged to descend to the latitude of the Canary Islands, in order to catch the current, which carries them with rapidity to the west. They observe the same rule in going from America to Asia by the Pacific Ocean. We might imagine that they do this on account of the trade winds; but they assure us, that the action of the atmospheric current is very easily distinguished from that of the marine current. Of this they are convinced, because the vessel makes more way than it could do with the assistance of the wind alone. This fact is likewise proved by the direction in which bodies are observed floating on the surface of the waters; and in many of the straits, these currents are at times productive of effects extremely violent.

A second motion impels the sea from the poles towards the equator. It has also its corresponding motion in the atmosphere. The most decisive evidence of this motion, is deduced from the direction of the floating pieces of ice, which invariably proceed from the poles towards the equator.

The origin of these two motions appears to depend upon the sun, and the rotation of the globe. The motion which carries the polar waters towards the equator, (and which I shall designate by the names of northern and southern polar currents,) is explained in the following manner: Every day the solar rays dissolve an enormous quantity of ice; thus the polar seas have always a superabundance of water, which they endeavour to discharge. As the water under the equator has a less specific gravity, and as, moreover, the evaporation, which is very powerful under the torrid zone, absorbs a great part of it, it is necessary that the neighbouring waters should flow towards the equator in order to re-establish the equilibrium. This motion is propagated from one aquatic region to another; and thus, every moment, the circumpolar waters are impelled towards the equator.

The motion from east to west, (which may be called a tropical or equatorial current,) appears to be the result of more complicated combinations. The trade winds, far from being the only cause of the general motion of the sea, may perhaps be rather the effect of it, at least in part. The sun and the moon in advancing every day to the west, relatively to a fixed point upon the earth, ought, according to Buffon, to draw the mass of waters on towards the west. This circumstance retards the daily tides, so that the flood-tide may be considered as a swelling of the sea, which makes the tour of the globe in 24 hours, 49 minutes, in retreating each day towards the west; whence, it may be concluded, that there ought to be an habitual tendency of the waters towards the west. This explanation is not sufficient for these phenomena: the following appears to us the most plausible.

The action of the sun, and the terrestrial rotation constantly diminish the gravity of the equatorial waters, and evaporation draws off a quantity infinitely greater than the rivers can supply. The waters of the seas more distant from the equator, are therefore impelled to fill up this vacant space; and thence arise the two polar currents. Now these waters, which come from the colder zones, (particularly in the great ocean, where the transition from one climate to another is more rapid,) these waters, I observe, have a considerably greater weight than those which they come to replace. But the most essential circumstance is, that they possess a rotary motion infinitely slower than the waters in the torrid zone; but these polar waters, from the force of inertia, do not at once lose the degree of motion which they first acquired. They cannot then follow the rotation of the globe; heavy and motionless in themselves, they have suddenly fallen into the sphere of the most rapid mobility; and preserve for some moments their primitive character. But the solid part of the globe moving with velocity to the east, leaves the waters always a little behind. Hence they seem to move towards the west with a rapidity proportioned to the superior velocity with which the solid parts of the earth really move towards the east; and thus the waters not readily conforming to the rotatory motion of the earth, retire from the western coasts of the continent, or rather the eastern coasts advance upon them.
PHYSICAL GEOGRAPHY.

Hence it appears that this great and wonderful motion is only a vast and calm oscillation, depending solely upon the equilibrium of the ocean. But when so powerful an oscillation meets with narrow straits, with obstacles which impede and divert, without stopping its regular course, it then changes into a current, which is violent and often very dangerous.

Let us now endeavour to explain, upon rational principles, the various modifications which the motion, peculiar to the sea itself, undergoes.

The Pacific Ocean, by its general motion, retreats from the coasts of America, and flows from east to west; and this motion is very powerful in the vast and uninterrupted extent of that sea. Near Cape Corrientes, in Peru, the sea appears to flow from the land, by this single cause. Ships are carried with rapidity from the Port of Acapulco in Mexico, to the Philippine Islands.* But in order to return, they are obliged to go to the north of the tropics, to seek the polar current, and the variable winds. On the other side, the south polar current finding no land to impede it, carries along with it the polar ice even to the latitudes where the motion of the tropical current begins to be felt. This is the reason why, in the southern hemisphere, floating pieces of ice are met with at 50, and even at 40 degrees.

The Pacific Ocean, in its motion towards the west, is impeded by an immense archipelago of flats, islands, submarine mountains, and even lands of considerable extent; it penetrates into this labyrinth, and there forms one current after another. The direction which the principal of these currents observe, is conformable to the general motion towards the west. But, as might be expected, the inequalities of the basin of the sea, the coasts, and the chains of submarine mountains, sometimes turn these currents towards the north or south. We may easily conceive, that a strong repercussion of the waters of the ocean, in consequence of their meeting with a large mass of land, (as New South Wales,) may even produce a counter current, which will return towards the east, and which, by breaking, will also produce other currents differently directed. Here then is the origin of these currents, so adverse and dangerous, which Cook and La Perouse mention in their voyages.

The principal current, setting towards the west, still acts with force in the recently discovered strait, which separates New Holland from Van Diemen’s Land; this is the current which bore away Captain Flinders, and which hindered so many ancient navigators from entering into that strait, because they approached it in a direction contrary to that of the sea.† The same current flows through the channel which separates New Holland from New Guinea; but here, from the innumerable inequalities which it meets with, it is subdivided into several currents, of varied and inconstant direction.

Let us now enter upon the consideration of the Indian Seas. There we shall find the celebrated perpetual current, which runs along from New Holland, and from the Island of Sumatra, always to the north, as far as the bottom of the Gulf of Bengal. This current arises from the pressure of the polar currents upon the large opening which the Indian Sea presents to the south. That sea is bordered towards the north by a continent; the equatorial current, which is formed there, is therefore only feeble, or altogether ceases, as there is no mass of cold water passing from the north. On the other side, the Pacific Ocean cannot carry its impetus thither; it is broken and dispersed in the labyrinth of islands. Thus the influence of the southern polar streams predominates without a rival, and without an obstacle in the Indian Sea; and these produce that perpetual current which sets towards the Gulf of Bengal, upon a line more and more inclined towards the north west, or following the conformation of the coasts.‡

* See, in the course of this work, Description of South America, New Holland, New Guinea, and the Philippine Islands, &c.
† Flinders, Observations during his Voyage to the Strait of Bass. London, 1811. Compare the Voyages of Entrecasteaux, i. 230.
The action of the general motion of the ocean, at first weak in the Indian Sea, as we have already mentioned, augments by degrees, till it gains the ascendency. It is easy to conceive that a general impulse which acts in a vast fluid, and which influences all its particles, ought to increase according as that fluid extends in the direction of the moving power. One part of the sea then reacts upon the other, and the sum of these repeated effects becomes in time immense. These principles show why, towards the Island of Java, the natural motion of the sea is changed by the northern current, of which we have already spoken, and why this same motion towards the west is found in the neighbourhood of Ceylon, and the Maldivia Islands. But a new local circumstance again makes this motion decline from its natural direction. A chain of islands and shallows extends from Cape Comorin, in the peninsula of India, to the northern point of Madagascar. The principal current being interrupted by these obstacles, turns towards the south-west; and, in maintaining that direction, glides along that chain of mountains, some of them submarine, others on the shore. Having passed Madagascar, it turns towards Africa, dashes against that continent, and sweeps with great violence the coasts of Natal, (Terre Natal) in Africa; at the point where the coast of Africa, turning towards the west, ceases to present an obstacle to the progress of the water, the current loses all its impetuosity, and mingles in the general motion of the Ethiopian Ocean.†

Current of the Natal Coast.

We have said, that towards the Maldivia Islands, the principal current, or great mass of water, turns to the south-west; but the more superficial currents, and consequently the most variable, continue their course from the east to the west, that is towards the Gulf of Arabia, and the coasts of Zanguebar. These are the currents which, setting towards the south-west, render the Mozambique Channel so difficult to navigate, and which have given the name it bears to Cape Corrientes, upon the coast of Inhambane. They reunite at the bottom of this Cape with the perpetual current.

Let us remark here, that in general the currents which do not extend to a great depth under the level of the waters, are liable to change with the winds, particularly when they blow for a long time with an equal and constant force, as the Mossoons do. These are the winds which give by turns entirely opposite directions to the currents which prevail from the Maldivia Islands to Arabia and Zanguebar. The shallows and rocks with which these parts are strewed, equally contribute to produce the same effect.

Currents upon the eastern coast of Asia.

The northern current which runs along Nova Zembla, and the Island of Sumatra, impels one of its branches through the strait of Suma. This current, according to some authors, is the same that predominates in the Chinese Seas, and which La Perouse found to be of such strength in the sea of Japan, and in the channel of Tartary.‡ But after comparing together the accounts of different navigators, it appears to us that these currents not only vary with the Mossoons, but that no connection subsists between them. All the southern and northern currents that we observe along the eastern coasts of the continents, are only necessary continuations of the general motion of the ocean towards the west; the waters, impelled by this motion towards the eastern coasts of the two continents, and finding no outlet, must with much force, flow back along the coasts in a southern or northern direction, as local circumstances determine them. In Behring’s Straits, the polar current, which brings the ice from the polar seas to the environs of Kamtchatka, is distinctly felt.

Currents of the Western Ocean.

Let us go on to the currents of the Western Ocean. The form of the basin, whose length is much greater than its breadth, is what in a great measure determines these currents. The first current which presents itself to our notice, is that which carries forward the waters from the Ethiopian Ocean, along the coasts of Brazil, and through the Strait of Magellan, into the Pacific Ocean. This course is conformable to the general progress of the ocean. It would appear from the voyages of Marchand and Ingraham, that between Terra del Fuego, the

* We say a Northern Current, or a Southern Current, to designate a current with such a direction.

† Varenius, Géographie Générale, ch. xiv. prop. 25.

‡ Voyage de La Pérouse. See after, the articles of Japan, of Corea, of the land Yesso, &c.
New Georgia of the south, and the Sandwich Islands, (or the Thule Australia of Cook,) there are several opposite currents, but our knowledge of them is far from being accurate.

The most celebrated perpetual current of the Atlantic Ocean that which commences on this side of Cape St. Augustin, in Brazil, and extends towards the eastern coasts of America. It is extremely rapid, and is felt in all the extent of sea over which the Antilles are scattered. This current is only the result of the general motion of the Atlantic Sea towards the west; it prevails between the 30th degree of northern, and the 10th of southern latitude, and begins at 20 or 30 leagues from the coast of Africa. This is the reason why European vessels, in order to profit by this current, and the trade winds, proceed to the Canary Islands before they attempt to traverse the ocean.

Upon the coasts of Africa, within the limits pointed out above, there exists a current directly contrary to the preceding; which is neither less rapid nor less steady. Ships, if they approach too near these coasts, are drawn into the Gulf of Guinea, and with great difficulty get out of it. No adequate cause can be assigned for this singular current. Some authors imagine, that there are two currents in the Atlantic ocean, one at the surface, the other at the bottom; and that it is this latter which brings the waters towards Africa; but such an explanation is inadmissible, from the well known fact of the general motion of the sea, which is not superficial, but which pervades the whole of the mass: It is more probable that the current in question comes from the Straits of Gibraltar, along the coasts of Africa only, where the waters have not acquired all the velocity of the general motion; but we can affirm nothing with certainty on the subject.

A third very celebrated current is that by which the waters of the Atlantic are carried violently into the Gulf of Mexico, and, discharging themselves through the channel of Bahama, run with inconceivable rapidity towards the north, or rather the north-east. It follows the coasts of the United States, becomes larger, and at the same time weaker, and extends, according to some navigators, as far as the coasts of Scotland and Norway. It is easily known by the beautiful blue colour of its waters.

The polar currents of the north exhibit very remarkable effects; it is they which bring upon the coasts of Iceland such an enormous quantity of ice, that all the northern gulf's of that country are filled with it to the very bottom, though they are often 500 feet in depth. The ice is sometimes raised up so as to form mountains. Some years no ice, but immense collections of floating wood, particularly pines and firs, are cast ashore. It is in the semi-circular hollow of the northern coast of Iceland that the wood and ices are accumulated. It is evident, that it is one and the same cause which brings them thither; and as it is impossible that great trees can be produced under the pole itself, the wood can come only from Siberia or North America.

The phenomenon of these floating forests, which are only found in the circumpolar seas of the north, has very much engaged the attention of geographers, and it is not yet perfectly explained. It is believed, that the wood is drifted partly from the Gulf of Mexico, by the current of Bahama, because specimens of timber have been occasionally seen, which grows only in Mexico and Brazil. These kinds however are in small quantities. Siberia and the unknown northern coast of America, contribute probably much greater portions.

It is very probable, that there may be in the same place a double local current, the one above, near the surface of the water, the other at the bottom. Several facts seem to prove this hypothesis, which was first proposed by the celebrated Halley. In the sea round the Antilles, there are some places where a vessel may moor itself in the midst of a current, by dropping to a certain known depth, a cable to which is attached a sounding lead. At that depth, there must unquestionably be a current contrary to that which is at the surface of the water; the stationary and quiet situation of the vessel arises from the equality of the

* See for a more detailed opinion, the article Iceland, of this work.
two forces which act, the one upon the ship, and the other upon the cable with the sounding lead.* Similar circumstances have been observed in the Sound. There is reason to believe that the Mediterranean discharges its waters by an inferior or concealed current. A difference of density in the beds of water, a great rapidity of motion, and the coherence of fluid particles, are plausible reasons in favour of this hypothesis of double currents. Opposite cur-
rents. It is more easy to prove and explain the existence of opposite cur-
rents which pass along by the side of each other. In the Kattegat, a
northern current proceeds from the Baltic along the coasts of Sweden, and another, a southern current, enters into the Baltic along the coasts of Jutland. In the North Sea there is a north current, which comes from the Pas-de-Calais, or that part which separates the English channel from the North Sea, and a south current which goes from the Orkneys along the British coast. The great rivers, while discharging them-
selves, occasion currents at their mouth often contrary to those of the sea. It would be superfluous to produce any examples of this.

Eddies of wa-
ter. When two currents of a more or less contrary direction, and of equal
force, meet in a narrow passage, they both turn as it were upon a cen-
tre, which is sometimes spiral until they unite, or one of the two escapes. This is)
Whirlpool.) What is termed a whirlpool or eddy. The most celebrated are, the Euri-
peus, near the island of Euboea, Cheironides, in the straits of Sicily, and the Mal-
strom, in the north of Norway. These eddies sometimes augment their force by
means of two contrary high tides, or by the action of the winds; they draw vessels
along, and dash them against the rocks, or engulf them in the eddies, the wrecks
not appearing till some time afterwards. Upon this simple ground, very marvellous
fables have been invented, and mention has been made of guls at the bottom of the
sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

ge-

ger of the sea, and subterraneous rivers, and other things, the existence of which is quite ima-

image-

image-
BOOK XV.

Continuation of the Theory of Geography. Of the Fluid which surrounds the Globe, or the Atmosphere. Of Meteors.

Having gratified our curiosity with contemplating the wonders of the earth, we proceed to the consideration of the vast assemblage of fluids with which it is surrounded, and which may be said to constitute an integral part of the globe itself. This celestial ocean, which is called the atmosphere, that is to say, the sphere of vapours, forms the subject of our present researches.

The atmosphere is the grand laboratory of nature, in which the various gases exhaled from our globe are collected together, and distilled, mixed, decomposed, volatilised, condensed, or precipitated in an endless round, according to laws which chemists often in vain attempt to discover. All terrestrial beings pay tribute to the atmosphere; all receive from it the principles necessary for life and vegetation, and probably even inorganic existence is dependent upon it. There is, perhaps, no substance which is not reducible to the aericiform state by heat, and which cannot be rendered a solid by cold. Were this planet transported into the temperature which Mercury possesses, a part of our sea and of our land would evaporate, and mingle with the atmosphere; and, on the other hand, should our globe at any time wander towards the cold regions of Saturn or Uranus, a great portion of our atmosphere would be condensed and pass to the solid form. Our atmosphere, therefore, may be thus defined: "The assemblage of all substances capable of preserving the aericiform state at the degree of temperature which prevails around the terrestrial globe."

The atmospheric fluids may be divided into three classes: the first comprehends air, the atmospheric fluid properly so called; the second consists of aqueous and other vapours suspended in the atmosphere; the third is composed of the various fluids that are aericiform, or supposed to be such, which show their existence in the atmosphere, either visibly or by their effects. We shall consider the bodies comprehended under each of these classes only according to the relation which they bear to physical geography, referring such of our readers as are anxious for more detailed information, to those excellent treatises which have served as guides to us.

Air, which forms the greatest part of the atmosphere, is not a simple element. Modern chemistry, by analyzing common air, and by again compound ing it, has proved that there are two substances which enter into it in very different proportions, namely, 27 parts of oxygen gas, which was formerly termed pure air, and 73 of azotic gas, otherwise called impure air. Sometimes we find only 71 parts in the hundred of azotic gas, and 2 of carbonic acid gas or fixed air. But the carbonic acid being very soluble in water, is quickly absorbed by rain, so that its continuance in the atmosphere is but momentary; besides, its gravity confines it to the lower regions. On the other hand, inflammable air, which is now termed hydrogen gas, gains the superior regions of the atmosphere by its great lightness. This gas appears to rise even to a greater height than the aerostatic balloons, machines which entirely owe to it their ascending force. Certain it is, that M. Gay-Lussac, at the height of 20400 feet, filled a bottle with air, which was not charged with more hydrogen than that which we breathe.†

It is only oxygen gas which is fit for animal respiration. But if it existed in too great a proportion, it would be the means of exciting our vital spirits to an excessive degree, it would exhaust our strength, and in fact make us live too fast. On the other hand, azotic gas, as its Greek name indicates, is incapable of supporting ani-

* Haüy, Traité de Physique, §§ 301—391.
† Libes, Dictionnaire de Physique, au mot Air.
mal life. It is then the mixture of these two gases which renders the atmosphere so favourable for animal existence.

Plants and insects absorb and respire azotic gas; the former especially exhale oxygen gas, only, however, when they are exposed to the rays of the sun. Hence the reason why the air in a fine plain lightly shaded with wood is so salubrious; whereas, in the interior of extensive forests, we generally find the air very thick and unwholesome.* But we can no where enjoy air better fitted to support the vital powers in just equilibrium than at sea, where the continual motion of the waters preserves the oxygen and the azote in due proportions.

The air is a fluid so extremely rare and subtle, that it becomes sensible to the touch, only when in motion, for example, when the wind is blowing. In its state of purity it is equally insipid and inodorous. According to rigid Newtonians, air is transparent, or rather invisible; and the azure colour of the atmosphere arises from the greater refrangibility of the blue rays of light.† Other philosophers imagine, that the blue tint is inherent in air, that is, that the particles of air have the property of producing a blue colour in their combination with light.‡

The weight of the air has been so much the subject of discussion, that we shall be very brief in our observations concerning it. Galileo has demonstrated the weight of air by the difference of weight between two vessels that were filled, the one with compressed air, the other with air in its natural state. The air pumps, the ascent of water in a pipe, and the elevation of mercury in the barometer, are all so many proofs of this fact. The pressure of a column of air reaching down from the extremity of the atmosphere to the level of the sea, is equal to the weight of a column of mercury of the same thickness, and of 28 inches in height. Take a tube of glass about a metre, or 3 feet 11 lines long, from 4 to 5 millimetres (about 2 lines,) in diameter, closed at one end, and open at the other; fill it with mercury, applying your finger to the orifice; invert the tube, and place the open end in a basin containing mercury; withdraw your finger, and you will observe at the same instant the mercury descend in the tube to the height of about 26 inches. In the same manner, in our common pumps, the water rises to a height of 33 feet, (10.4 metres;) now, this height is to that of 28 inches, the height of the mercury, in the inverse ratio of the densities of water and mercury. One and the same cause then operates here. It can be nothing but the weight of the external air which acts upon the mercury in the basin.

The barometer, a well-known instrument, depends for the principle of its construction upon the experiment which we have just now described. This instrument, which indicates the pressure or weight of atmospheric air, serves to measure the various elevations on the surface of the earth. The rising or falling of the mercury in the barometer, is inseparably connected with the density of the air, which varies according to the weight with which it is charged. It has been demonstrated, that when the densities are in geometrical progression, the altitudes are in arithmetical progression. We can thus ascertain the one from the other. The methods of calculation invented by Deluc, La Place, and Ramond, as well as the rules for correcting the errors occasioned by temperature, can only be fully developed in those treatises specially dedicated to the higher branches of physics.§

Physical geography ought, however, to express her gratitude to the sciences, for having brought to perfection an instrument, the multiplied use of which alone enables us, with facility and despatch, to form extended conceptions respecting the complex formation of the mountains, plains, and valleys of our globe. The pressure which the air exerts on a man, the surface of whose body is 15 square feet, is 32,505 pounds, and the variation of a single line in the height of the mercury pro-

* Ingenhousz, Expériences sur les Plantes.
† Newton, Optique Lucie. Traité de Haüy, de Libes, etc.
duces a change of 136 pounds in the pressure of the air. The diminution of the weight of the air upon very high mountains, combined with other circumstances, occasions vertigos, nausea, hemorrhages, and a feeling of universal uneasiness.\(^*\)

It is probable, that at a very great height, the extreme rarefaction of the air, the absence of azotic gas, and the abundance of hydrogen gas, would cause immediate death. The proportion subsisting between the weight of air, and of distilled water at the temperature of zero on Reaumur’s thermometer, and with a mean pressure of 29 inches of mercury, according to the very accurate experiments of M. Biot,\(^+\) is that of 1 to 77030.

The air exerts a pressure equal on all sides, otherwise fragile bodies would soon be broken. The moment that the equilibrium of its parts is destroyed, by whatever cause, this property produces an instant exertion to re-establish it; and this is the principle of all its movements. It is also necessary to observe that the weight of the atmospheric air, in its ordinary state, arises perhaps in a great measure from the presence of various foreign bodies which are floating in it continually. Lambert, after speaking of the difference which is found between the actual propagation of sound, and that which theory gives, has estimated, that if we consider a cubic foot of air as composed of 684 parts, 229 of these, or nearly one-third of the whole, will consist of extraneous matter.\(^\dagger\)

The elasticity of the air is the property which it possesses of resisting the force of compression, and of recovering its original volume, or even a volume of greater dimensions, as soon as the compressing force ceases to act. We cannot exactly compute the limits of the compressibility and the dilatability of the air; we know, however, that they are of vast extent. Boyle affirms, that without the assistance of heat, he has diluted air 13,586 times.\(^\S\) Every one knows the manner in which air is compressed in an air-gun, and the force with which it can be made to impel a ball.

The greater the elasticity possessed by the air, the larger space it occupies; in other words, the more it dilates itself. Newton calculated, that at the height of 87 leagues, the air would be many thousand million times more rarified than at the surface of the earth.\(||\) But this rarefaction must have limits. In proportion as the force with which each particle tending to escape from those which are under it, becomes less than the force of gravity which draws it towards the earth, in the same proportion the spring or elastic power of the air will be gradually weakened. The dilatability of the air must therefore have its boundary fixed at the point where these two opposite forces shall be equal: As we do not know to what extent the progressive rarefaction of the air is carried, we are unable of course to determine the precise height of the atmosphere. There are various methods of ascertaining it, which are all correct to a certain degree, but still insufficient to conduct us to the ultimate boundary. If we agree with Deluc,\(^\ddagger\) and regard the air as either condensated by gravitation, it will follow, that if the earth were the only great body in the universe, its atmosphere would know no bounds. But, as there are other globes, air at a certain distance must commence to gravitate towards them, and, gradually ceasing to dilate, will condense itself anew. This however conveys to us no positive information. Astronomers avail themselves of refractions, which are sensible to 15 degrees below the horizon, but they vary with the temperature; however, by taking a medium, we may conclude the height of the atmosphere to be 228,000 feet, or between 15 and 20 leagues.\(\underline{\underline{\text{**}}}\) The barometer would furnish a sure and easy mode of resolving the question, if air was not compressible; but the different extent of beds, or portions of air, of the same weight, and the pressure of heterogeneous bodies, render the calculation long and uncertain. Deluc has found that the height of the atmosphere, taken at that point where the mercury shall rise only one line, will be 150,600 feet, or about 11 leagues, and that where the mercury is elevated in the tube only one-tenth of a line, the height will be 213,030 feet, or about 15 leagues and a half.

\(^*\) Satonure, Voyages, Nos. 559 et 2021.
\(^+\) Mémoires de Berlin, 1768.
\(^\dagger\) Newton, Optique, Quat. 28.
\(^\S\) Wallis, Hydrostact. Prop. 13.
\(\underline{\underline{\text{**}}}\) Lalande, Astronomie, vol. ii. p. 559
The terrestrial atmosphere either dilates or compresses itself according to the prevalence of heat or of cold. Under the equator, the rarefaction produced by the rays of the sun unites with the centrifugal force in causing the atmosphere to swell in such a manner as to form around the earth a spheroid extremely flattened. Laplace imagines that the difference between the two axes cannot, at its maximum, be less than that of 2 from 3. It is very natural to suppose that there is a kind of flux and reflux in the atmosphere, corresponding to the tides of the ocean. But D'Alembert and Boseovich have shown that the attractive powers of the sun and moon act but feebly upon so subtle a fluid as the atmosphere.*

Evaporation. Its several methods.

The immense quantity of particles which terrestrial bodies emit by evaporation, rise into the air under the form of vapours. Under the equator this transpiration of the globe is very strong, and even the polar cold does not entirely prevent it. According to some philosophers, there exists a great difference between tranquil evaporation, by which only the particles of water, transformed into an elastic fluid, rise in the air, and tumultuous evaporation, in which the elastic vapours, disengaging themselves with great rapidity, carry along with them a great number of aqueous particles in their natural state.†

Tranquil evaporation, which takes place in temperate and cold regions, does not so much change the natural state of the atmosphere as the tumultuous evaporation, which is in continual operation in the torrid zone. The aqueous particles, which are numerously diffused through the atmosphere in torrid countries, deprive it of a portion of its calorie, and, consequently, of its elasticity, which renders it less sensible to every kind of commotion, and explains the great steadiness of the barometer in that zone. It is certain that neither the periodical rains, nor even the hurricanes, can disturb the uniform tranquility which the barometer exhibits in the neighbourhood of the equator; whereas, the nearer we approach the pole, so much the more considerable do its oscillations appear. This variation of weight in the atmosphere in the temperate zones can be attributed only to the variations of elasticity produced by evaporation. The different nature of terrestrial substances also, serves to modify evaporation. The exotic and carbonic gases abundantly disengaged from many rocks and earths, cannot be unconcerned in that chemical operation by which the atmospheric fluid is uneasiness renewed. A number of earthy particles, reduced to extreme tenuity, rise in the air, as is evident from the saline and sulphurous showers, which sometimes fall. Even the quantity of the evaporation depends upon the kind of substances composing the surface of the globe. Earth, mixed with water, furnishes more vapours than pure water;‡ owing undoubtedly to a sort of fermentation which disengages a greater portion of calorie.§ From a similar cause, water evaporates more powerfully at the moment of its congelation. The air is impregnated with an immense quantity of vapours from numerous plants; the evaporation from the helianthus annuus, is 17 times greater than that from an equal extent of the surface of the human body. What then must be the influence of those thick forests which in many countries still cover such vast spaces!

The majority of natural philosophers having not yet with sufficient minuteness examined the various ways in which evaporation is modified, are content with affirming, that part of the water which rises in vapour is intimately mingled with the atmospheric air which dissolves it; this water is invisible; but when the air is saturated, the watery particles which continued to rise are no longer dissolved, but remain suspended in vesicular vapours, the union of which forms the clouds and mists, and gives rise in general to all aqueous meteors. It happens also that a part of the water dissolved by the air in disengaging itself anew, from whatever cause, assumes the form of vesicular vapours.

Aqueous meteors present themselves to our view under two forms: suspended in the air as mists and clouds, or falling to the ground like

* Mann, Mémoire sur le Flux et Reflux de l'Atmosphère, dans les Mémoires de l'Académie de Bruxelles, tom. iv.
† Hube, sur l'Evaporation, p. 49—59, 103—402.
‡ Basin, Mémoire de l'Académie de Paris, 1741.
§ Is it not rather owing to the greater quantity of surface which the water thus moistening earth, exposes to the action of the atmosphere? T.
dew, rain, and snow. Cold, by condensing the vapours which are already elevated in the air; heat, by rarefying the air, and by disposing and exciting the vapours to disengage themselves and ascend from the earth, and, in short any change whatever in the physical constitution of the atmosphere, produces that visible union of vapours termed mist, when they are extended over the surface of the earth, and clouds when they float in the air. In ascending to the summit of mountains the traveller frequently passes through a zone of clouds, and beholds the extensive vapours of which it is composed stretched under his feet like a vast plain covered with snow;† but even on Chimborazo, the loftiest mountain of the Andes, there are always to be seen, at an immense height, certain whitish clouds, resembling flakes of wool. These clouds, which are perhaps a hundred leagues from the globe, probably owe their elevation to that negative electricity with which they are charged, which repels them from the earth, while positive electricity occasions the mists to descend.‡

Deluc observed a very elevated cloud descend with rapidity towards the earth, scatter around a shower of rain, and then with equal velocity remount to its original height. This was evidently the effect of electricity..§

Mists are of two kinds, dry and wet; the latter are seldom to be met with in the torrid zone, but they continually brood over the polar regions. It is easy to account for this difference; the habitually compression of the atmosphere and its density being much greater towards the pole, vapours can rise and detach themselves from the earth. The dry fog, according to some philosophers, arise from subterraneous vapours; they exhibit an intimate connection with volcanic eruptions. Such was the case with the celebrated mist which in 1753 enveloped all Europe, at the moment when the volcanic fire made Lascar tremble, and immediately after the disaster of Calabria.||

In 1766, before the dreadful calamity which befell Lisbon, a similar fog overspread the Tyrol and Switzerland; it appeared composed of earthy particles reduced to an extreme degree of fineness.†† Among the aqueous meteors which fall to the earth, none has given rise to more conjecture than dew, for it appears to have a two-fold origin; it may in part be produced from the transpiration of plants; but the greatest quantity is formed by the precipitation of vapours, which, during a warm day, have been elevated to a considerable height. The influence of electricity in this phenomena, is quite undoubted, although as yet indistinctly explained; for it is only after a day in which the air has been highly electrical,‡‡ that the dew is found in abundance; and it is no where found in larger quantities than on the surface of bodies which are non-conductors of electricity, as glass and porcelain. Metals, on the contrary appear to absorb it. There is hardly any dew in the Polar regions, in dry climates, or on the coasts of seas in temperate zones. It is much more abundant in hot countries, where it is often a substitute for rain; but, in several places, it is equally hurtful to the growth of plants, and to the health of man, particularly in marshy countries, where the vapours which rise during the day are of a very unwholesome nature.

Frost, is a kind of dew which has frozen the moment it falls. When attached to trees stripped of their foliage, it presents the appearance of crystallized vegetation.

Rain falls from the clouds, when the vesicular vapours, of which it is partly composed, unite into drops. These drops, in our climate, are only a few lines in diameter, but in the torrid zone they amount to an inch. So that the difference which we remark between the ordinary rain and that which falls during a storm, appears to be only accidental, and the origin of both may be attributed to a diminution

* Bergmann, Géographie-Physique, § 113, 114.
† Reichardt, Voyage aérien, Gazette de Berlin, Juin, 1810.
‡ Hube, sur l'Evaporation, chap. i. p. 291, sqq.
§ Deluc, Modifications de l'Atmosphère, ii. 724.
|| Berthollet, Réflexions sur le grand brouillard. Brunswick, 1893, (en All.) Magasin de Physique de Gotha, ii. 9, iv. 114, v. 119.
of electricity in the clouds. Mountains constitute so many points which draw off the electric fluid, and hence it rains almost continually in certain hilly countries, as on the eastern side of Norway and Scotland. In those regions where thunder is unknown, as in the environs of Lima, and on the side of Peru, rain is a phenomenon equally unknown.*

See. When aqueous vapours are congealed, either while falling, or when in the air previous to their falling, they form snow. The ordinary crystallization of sal ammoniac in little feathery crystals, presents phenomena similar to those which take place in the crystallization of snow.† "If," says M. Monge, "we fill a deep glass to which heat has been applied, with a saturated solution of sal ammoniac in a warm state, and then let it gradually cool in a calm air, the surface of the liquid will be the first to arrive at the point of supersaturation, as well from the direct cold which it experiences, as from the concentration which the vaporization promotes in that part; it is on the surface, then, that the first crystals are formed. These crystals, which are extremely minute, sink as soon as they are formed; and they descend with slowness, because their specific gravity is not much greater than that of the liquid which contains them, at the same time their volume increases by the addition of similar crystals, which are formed during their descent, so that they reach the bottom of the vase in large white flakes. The rapid progress of the crystallization is entirely owing to the affinity of the particles. The first crystal which begins to descend, forms, as it were, a rallying point, or nucleus, to all the particles which have a tendency to unite." By a reference to these phenomena, we may explain the formation of snow; the first crystals of which, produced at a great height in the atmosphere, determine, as they descend, by the excess of their specific gravity, the crystallization of aqueous particles, which without their presence, the surrounding air would have retained in a state of solution. The result is the formation of stars, or, six rays, when the weather is sufficiently calm, and the temperature not too high to deform the crystals by melting off their angles; but when the atmosphere is agitated, and the snow falls from a great height, the crystals clash together, unite in groups, and form irregular flakes. Rain, according to all appearances, is a species of snow, or of snowy rain, which has undergone a variety of conglomerations and superficial meetings in its passage through different zones, some temperate, and others frozen. But what cause can produce these great variations of temperature? We answer, electricity, which, in combining oxygen and hydrogens, deprives them of part of their caloric. Hail, accordingly, even that which falls in spring, is accompanied by marks of electricity. It is by an electrical apparatus that we can produce artificial hail. We may add, that volcanic eruptions are often followed by the fall of hailstones of enormous size. The violence with which hail is discharged upon the earth, under an oblique angle, and independently of the wind, would be explained by supposing, with the celebrated Volta, two electrical clouds drawn towards each other in a vertical direction, and by their shock producing hail, which, by the law of the composition of forces, would then be projected in the diagonal of its gravity, and of the result of the two directions of the clouds.

Such are the principal circumstances which natural philosophy has supposed to concur in the formation of aqueous meteors. Their influence upon the earth is a point more easy to determine. We observe all nature languish, when the atmosphere retains for too long a time the fluid arising from the earth. Plants fade and droop; animals feel their strength failing them. Man himself, breathing nothing but dust, can with difficulty procure shelter from the sultry heat by which his frame is parched and overpowered; but scarcely have the waters of heaven descended from the clouds, when all living beings begin to revive;

* Hube, sur l'Évaporation, chap. 51, 56, p. 296, 328.
§ Senebier, Journal de Physique, 1787, Mai.
|| Quinet et Seicrberchel, voyez Magasin de Gotha, vi. 189; vii. 45—47, &c.
¶ Stephenson's Picture of Iceland, p. 307, (in German.)
the fields resume their green attire, the flowers their lively tints, animals the sportive freedom of their motions, and the elements of the air their healthful equilibrium. Snow itself, whose very name alarms the natives of the tropics, is productive of real advantages in the economy of nature; it secures the roots of plants against the effects of intense cold; it serves gently to moisten those lands from which, owing to their local situation, the rain is too soon carried off; and it paves for the inhabitants of the north commodious and agreeable roads, along which his gait skims in his light and nimble sledge; whilst the occupants of the south, living under a cloudy sky, are strangers to the enjoyments both of winter and of summer. Hail alone, of all the aqueous meteors, never appears but as a harbinger of distress. Birds and quadrupeds instinctively conceal themselves, as soon as they have any presentiment of its coming.* Man can neither foresee its approach, nor arrest its ravages; he has been able to ward off the thunderbolts of the sky, but he sees the hail destroy his corn, break his fruit trees, and shatter the very housetops where he dwells, without being able to prevent it.

Excess of humidity might soon become harmful to the earth, but it is difficult for such excess to take place; the quantity of atmospheric water diffused by aqueous meteors varies according to the climate. At Paris, it has been found that there annually fall 74 inches of rain-water and of dew; at Iolimzzo, in Friuli, the quantity of rain alone amounts to 52 inches; at Carthagène, in the Appennines, to 92; there fall at Grenada, 105; and at Leogane, in the island of St. Domingo, 150 inches. It is probable that in every place the quantity of water evaporated, determines that which descends from the atmosphere.†

The salutary effects of aqueous meteors are modified by the chemical qualities of the waters of the atmosphere. The salt rain and dew in the environs of the Caspian Sea, owing to the vapours which arise from a soil impregnated with different kinds of salt,‡ probably contribute to those saline efflorescences, which, according to M. Olivier, are gradually overspreading the once fertile soil of Persia. They are so strong, that in one cold summer night, you may see them on the camels, under the appearance of hoar frost containing sal-ammoniac. In the west of Jutland, you may perceive fogs of a salt quality arising from the bosom of the sea, which consume the foliage of trees, and put a stop to their growth, without being pereicious to that of grass. In France, the autumnal fogs, charged probably with electricity, hasten sometimes the maturity of the grape.

Amongst the aqueous meteors, there are some which were once considered as miraculous, but which more exact observation has entirely divested of their supernatural character. Such are showers of blood, which take place when the rain water draws with it a great number of certain red insects; which float in the atmosphere, as motes on the earth. Showers of sulphur may actually have occurred, even independently of volcanic eruptions, as the air contains carbon and sulphuric gas, which, combined by caloric, form sulphur. In the month of May, 1846, these rained at Copenhagen a kind of substance, which, on being examined by the philosophers of that day, appeared to be a mineral sulphur;§ but the same phenomenon recurring in 1804, and in the same month of May, the philosophers of the present age, after analysing the precipitated matter, perceived only a vegetable substance nearly resembling the semen lycopodi.|| The phosphorescence of this substance, at the moment of the rain, which happened during the night, presented an alarming spectacle. Other examples concur in showing that sulphurous showers are in general nothing but the fall of a vegetable powder, taken up by a water-spat; a phenomenon which we shall hereafter describe. At Bordeaux, in 1761, the wind raised, and bore through the air a cloud composed of a sort of yellowish dust, covering the stamens of the flowers of the pine-trees in the

* Cours complet d'Agriculture pratique, par Rozier, Sonnini, &c. art. Meteorologie.
‡ Gmelin, Description de la Russie, iii, 11, 12.
§ Wormius, Museum, lib. i. cap. 9, sect. 1. || Mémoires de Vïburg et de Itaun.
neighbouring lands.* Hurricanes too have sometimes lifted up sheaves of corn, as well as animals of small size, such as locusts and toads, which, falling at a considerable distance, have frightened the peasants. The most frightful phenomenon of this description, a shower of fire, has been twice observed by a celebrated naturalist, who declares he saw nothing more than rain very strongly charged with electricity, and which sparkled on touching the ground.†

Optical phenomena.

We come now to consider luminous meteors; and first as to those which, according to the principles of common physics, depend on refraction and reflection.

Refraction and reflection.

The solar rays, say the Newtonians, in passing from a rare into a dense medium, undergo an inflection, a deviation from the direct line of their course, which is termed Refraction—the seven visible rays have different degrees of refrangibility: the red rays have the least; then come in succession the orange, the yellow, the green, the light blue, the indigo, and the violet. All bodies, which are visible without being luminous or transparent, have the property of reflecting light, that is, of repelling it, and throwing it back. Even the clouds and the air possess this property. The rays which have most refrangibility, are also the most refrangible. These two causes present us with the most delightful and the most majestic spectacles in nature. If the sky shines with a beautiful azure hue, it is solely the effect of the rays of blue, indigo, and violet, which are first reflected from the earth, and afterwards returned to us by the atmosphere. The refraction of light enables it to diffuse itself gradually over our hemisphere, obscured by the shades of night, long before the sun appears, even when that luminary is 18 degrees below our horizon.

Twilight and dawn.

The twilight and the dawn confer a substantial benefit on the labourer, the navigator, and the wretched inhabitants of the frozen zone. By their means the two poles enjoy the solar light for nearly the space of nine months. The sun himself appears by refraction above the horizon before he actually arrives there.

Rising and setting of the sun.

The brilliant tints which accompany the rising and setting of the sun, originate from this, that the air towards night and in the morning is considerably condensed, and loaded with a variety of vapours. The very refrangible rays seldom or never reach us. The red and yellow have alone inflexibility enough to penetrate through the atmosphere, and to render the vapours and clouds so many moveable mirrors. This then is the reason why the sun appears so often to be red, morning and evening. The delightful spectacle of the dawn and of twilight is almost entirely denied to those who live in the regions of the equator, where the sun rises in a direction nearly vertical. It is towards the poles that these reflected splendours of that great luminary are longest visible, often changing the whole of the night into a magic day, of which the inhabitant of the south of Europe can form no adequate conception.

Parhelions.

Parhelions, or false suns, are phenomena less common. We see by the side of the sun, often above and below, several images of that luminary, more or less bright. These false suns are sometimes surrounded by a circle of pale light; sometimes adorned by the colours of the rainbow; most commonly they are not exactly circular, and some have been observed with luminous trains. This meteor has never been seen at the same time in a number of distant places; it exhibits a different appearance even to spectators who are near each other; it is therefore an optical illusion. As it snows and hails generally at the very time when a false sun disappears, it is supposed that it is in a mass of little spires of ice suspended in the air that the image of the sun is reflected; the rays pass probably through an opening between thick clouds, as when one looks fall the solar image in a camera obscura.‡

There are also false moons. These illusions can take place only when the sun, being distant from the zenith, darts its rays obliquely upon the atmosphere; accordingly, al-

† Bergmann, Géog. Physique, ii. 45. sect. 115.
‡ Huyghens, Dissert. de Coronis et Parhelios, in Op. Relict. ii. Bergmann, Géographic-

Vxyique, § 122.
most all the parhelions occur either in the morning or the evening. False suns are often observed in countries where a damp cold prevails. These are frequent phenomena in Greenland; and we are assured, that in the environs of Hudson’s Bay, the sun, when rising, generally appears to have a tail.

The rainbow has a near affinity to parhelions, and generally accompanies them. Every one knows that this magnificent arch, so wonderfully coloured, is the effect of the seven solar rays refracted in drops of water suspended in the air, and reflected upon a dark cloud, as upon a canvas. It is to treatises on optics that we must refer our readers for an explanation of this phenomenon.*

What is termed the apotheosis of travellers, is a phenomenon much akin to that of the rainbow. The academicians Bouguer, Godin, and La Condamine, when standing upon the very elevated mountain of Pambamarca, in Quito, saw their own image reflected in a very light fog, and surrounded by several concentric circles, ornamented with the colours of the rainbow. The Spectre of Brocken is an optical deception of the same kind.

The “Mirage,” or appearance of objects which are not actually in the horizon, or which exist in a different situation, is one of the most remarkable of optical illusions. At sea, rocks and sands concealed under the water, appear as if they were raised above the surface. The Swedish sailors long searched for a pretended magic island, which from time to time could be described between the isles of Aland and the coasts of Upland. It was a rock elevated by the mirage.† At one time, the English saw with terror the coasts of Calais and Boulogne apparently approaching the shores of their island.

Vessels sometimes present themselves to the view, as if they were upset, or as if sailing in the clouds.‡ The most celebrated example of this phenomenon is that which is frequently seen in the straits of Messina, and which the people attribute to the fairy Morgana, Fata Morgana. The spectator, standing on the Italian coast, perceives, upon an inclined plane, formed by the waves driven towards the middle of the strait, images of palaces, embattled ramparts, houses and ships, at one time turned upside down, at another confusedly set up again, and presenting the spectacle of towns and landscapes in the air.§ Of all the effects arising from this cause, that which has been most thoroughly examined, is the optical illusion which the French experienced in the deserts in the vicinity of Egypt; the sandy plain, covered in the distance by a thick vapour, presented the deceptive image of a vast lake, towards which they eagerly hastened, but which appeared to fly before them.|| All these fantastic optical appearances, worthy of exercised the acuteness of philosophers, who unquestionably will trace through each of them only the varied effects of a single cause, can be but briefly specified in a treatise of physical geography.

The zodiacal light deserves our particular attention. It is a grand phenomenon, which must be referred either to the nature of the terrestrial atmosphere, or to the position of the globe with regard to the sun. This light, which exists constantly under the equator,‖ presents itself after sunset, under the appearance of a serene whitish clearness, of a lenticular form, having its base turned toward the sun, and its axis in the zodiac.

Mairan has supposed, that this light was the atmosphere of the sun;** but this explanation, so generally admitted, is totally rejected by M. de La Place. This illustrious geometer observes, as we think very justly, that the atmosphere of the sun cannot have a lenticular form, nor be extended beyond the orbit of Mercury, whilst the zodiacal light appears to extend itself even beyond the terrestrial orbit.††

† Mémoires de l’Académie de Stockholm.
§ Monge, sur le Mirage, dans les Mém. d’Egypte, i. 64.
|| Horner, Astronomie de l’Expédition de Kruenstern, dans Zach, Correspondance, x, 211, 219, 340, (avec une figure.)
** Mairan, Traité de l’Aurore Boréale, p. 12.
†† Laplace, Systeme du Monde, lib. iv. ch. 10.
If we were permitted, in a work of this description, to develop new opinions in physics, we should endeavour to render it probable, that the zodiacal light is nothing else than the luminous fluid belonging to the terrestrial globe, attracted by the sun in the direction of his apparent daily path, and which, being accumulated upon the line of that direction, becomes visible at the moment of the decline of the sun. This efflux, forming an elliptic belt, the great diameter of which is always directed towards the sun, must present itself under a lenticular figure, the largest part of which is turned towards that luminary. It is true, that this explanation supposes that the luminous fluid, diffused throughout the universe, accumulates around the celestial globes in the ratio of their mass and density, which as yet is only an uncertain hypothesis.

Amongst the igneous meteor, of which we are now about to treat, thunder occupies the first rank. It is universally known to be the effect of electricity, the theory of which must be studied in philosophical treatises. We have seen, that all the powerful agency of the electric fluid is sensibly present in the air, in rain, snow, hail, and in the clouds which float in the midst of the atmosphere. These bodies receive their electric properties from the hand of nature, in a manner not exactly known, though the experiments of Lavoisier and La Place have unquestionably proved, that terrestrial bodies, in evaporating, carry up from the earth a part of the electric fluid which belongs to it. It is to the celebrated Franklin we owe the direct proof of the electricity of the atmosphere. He was the first who was bold enough to make an experiment on the clouds, and to draw down the lightning from the sky.

The electricity of the clouds in storms is almost always that which philosophers term vitreous or positive; it augments in proportion as we ascend in the atmosphere, and consequently ought to be very strong in that part of the air which gives birth to storms. The whole terrestrial globe may be looked upon as a vast reservoir of both kinds of electricity, but more frequently of the resinous or negative. As long as these two bodies remain in their natural state, the two electricities consequently are in equilibrium, and at rest; but if one of these two bodies, whether it be the earth or the atmosphere, acquire an excess of the electric fluid, there is no longer an equality between the repulsive and the attractive powers. The excess of the fluid is discharged in the form of a flash. This constitutes thunder, which is either descending or ascending. We sometimes observe these two kinds of thunder almost at the same moment, the earth and the atmosphere appearing to make a mutual exchange of their surplus electricity. The flash, which is attracted and conducted by metals and moist bodies, in preference to other substances, commits ravages which, from our inability to observe them with coolness, still remain in circumstances of obscurity; here, the thunder kindles rapid and devouring flames; there, it bends and shivers the objects which it meets with. Sometimes it instantaneously deprives animals of life, and sometimes it passes over the clothes without injuring the person.

A kind of periodical flux and reflux has been observed in the electrical fluid of the atmosphere. In summer, when the earth is dry, and the day is warm, dry, and serene, the atmospheric electricity increases from sunrise till mid-day, when it arrives at its maximum, then it remains stationary for a couple of hours, and afterwards diminishes until the fall of the dew. Towards midnight, it revives, to be again almost entirely extinguished. In winter, the maximum of electricity is at eight o’clock in the evening; it is weaker during the day. In all these variations, atmospheric electricity seems very exactly to follow up the development of hydrogen gas, which is more or less considerable at different periods of the day.* Electrical phenomena are more prevalent in some quarters of the globe than in others. Towards the poles, the disengagement of hydrogen gas is extremely scanty, and there is also no continual friction between the earth and the atmosphere. Thunder, accordingly, is rarely observed in those regions; it is only a weak decrptionitation. As we advance towards the equator, hydrogen gas becomes more abundant, and at the same time the storms are more violent. It is under the line, that we meet with

that vast extent of sea where thunder storms almost constantly prevail. There are, however, countries under the line, in which it rarely thunders. If thunder seems to be particularly attracted towards marshy places, may not the cause be found in the presence of the inflammable gas of marshes, which is only an impure species of hydrogen gas? It is supposed that there are, in the electric fluid of the globe, two currents, the one from the poles towards the equator, the other in an opposite direction. This is a very probable hypothesis.

Storms, notwithstanding the calamities which they frequently occasion, and which the thunder-rod cannot infallibly prevent, deserve to be considered one of the greatest benefits that our Creator has bestowed. They diffuse freshness through the atmosphere when it is in a confined and sultry state; the plants resume their lively green, the flowers raise their drooping heads when their thirst has been quenched by the rain; the crops and fruit, penetrated by the new warmth, ripen more rapidly, and man silently adores the Great Being whose power has been displayed.

We now proceed to consider other igneous phenomena, none of which possess the dreadful energies of thunder.

The aurora borealis, so often celebrated by Ossian, presents a spectacle equally magnificent and astonishing. In these bloodstained and fiery meteors, what poet is there who could not discover the shades of warriors, who, once conquerors of the earth, and now rulers of the air, stoop from the clouds to behold the combats of their posterity? Are not those pale and soft lights the daughters of heroes who, cut down in the early bloom of their beauty, now float upon the wings of the wind? We hear their sighs, and the rustling of their resplendent robes; and we see, rising towards the zenith, and assembling on every side the luminous columns of the wandering palace of departed spirits. But we must leave to the painter and the poet the delineation of such enchanted scenes, and confine ourselves to a more rigorous and sober description. The aurora borealis, in our European countries, uniformly appears in the north, and inclining generally a little to the west. In Greenland, we sometimes perceive this phenomenon towards the south. In the other hemisphere it is observed, but with a feeble lustre, in the direction of the south pole. The ancients appear to have described it under the name of lampes, or burning torches, and other designations. In our age, it is a rare occurrence in the temperate zone, and becomes common only towards the 60th degree of latitude. It commences generally three or four hours after sunset, and is preceded by a sombre cloud, nearly resembling the segment of a circle, of which the horizon forms the cord. This segment, seen at Upsal, for example, is of a deep black, whilst in Lapland it appears greyish, or even becomes almost invisible. Its circumference very soon borders upon a whitish light, which sometimes appears gently to expire. Most frequently the cloudy segment opens in chinks, whence issue streams and rays of light, of a yellow, a rose, a purple, or a sea-green colour. A general movement agitates all the cloudy and enlightened space; rays becoming more and more bright, shoot across each other like lightning flashing in the midst of effulgent splendour; by degrees, there is formed in the zenith a luminous crown, which seems to be the central point of all the motions of the luminous matter. After having occupied, for the space of an hour or two, almost the whole expanse of the heavens, the phenomenon contracts itself at first on the southern side, afterwards on the west and the east, and finally disappears towards the north. The rising sun invariably extinguishes these rival luminaries. The further we remove from the pole, the less distinctly do we perceive these different appearances of the aurora borealis. It generally appears in France, only like a light not much elevated above the horizon.

Philosophers have given different explanations of these phenomena. That which professor Libes lately proposed, appears to unite simplicity to probability.†

This philosopher lays down the six following principles: 1st, If the electric spark be transmitted through a mixture of azotic and oxygen gas, the result is the produc-

tion of nitric and nitrous acids, or of nitrous gas, according to the proportion subsisting between the oxygen and azote, which compose the mixture. 2d, Nitric acid acquires additional colour and volatility from being exposed to the sun. Scheele first observed this phenomenon, and M. Liebig has made frequent observations on the subject. Having placed a glass receiver over a saucer containing nitric acid, and having exposed the whole to the sun, he observed that the acid became coloured, and that the receiver was filled with reddish-looking vapours, which remained in it a long time, diffusing a lustre similar to that of the aurora borealis. 3d. In phials containing nitric acid, we always perceive above the acid a very red and very volatile vapour, which never condenses. 4th, Nitrous gas, when in contact with atmospheric air, emits deep red vapours, which fly away into the atmosphere. 5th, The hydrogen gas which is disengaged from the surface of the globe, occupies, in the higher regions of the atmosphere, a place marked out by its specific gravity. 6th, The solar heat has but little influence in the polar regions. In reflecting upon these principles, it is easy to perceive, that the production of hydrogen gas being extremely scanty, if at all occurring, in the polar regions, the electric fluid in flowing back from the equator towards the pole, must pass through a space occupied only by a mixture of azotic and oxygen gas; that the electric spark fixes and combines these two gases; that this combination ought to cause the production of nitrous acid, or of nitrous gas, according to the proportion which prevails between the two component gases; and that the gas and the nitric acid thus formed, should exhale red and volatile vapours, which give rise to the phenomena of the aurora borealis. If these phenomena do not occur in the temperate zones, the reason is, that in their strongly heated atmosphere, there is always to be found a mixture of oxygen and hydrogen gas, which attracts the electric spark, thus occasioning thunder and lightning. These two phenomena are not known in the polar regions, from their deficiency in hydrogen gas.

The observations of the elder Gmelin, in his travels in Siberia, tend to confirm the opinion of M. Liebig. As we advance into eastern Siberia, the aurora borealis becomes more frequent and more dazzling; and it appears that the frozen regions, between Jenissea and Cape Behring, are the native country of these phenomena. Now, that is exactly the quarter of the old continent where the cold is most intense, and consequently where the least hydrogen is disengaged.

This explanation, however, does not account for several circumstances of the phenomena; amongst others, for the blackish segment which forms the base. We must wait until enlightened observers have applied the principles on which it is founded to a certain number of these phenomena. We would ask these observers, whether the aurora borealis might not be in some measure the effect of one of those optical illusions of which we have been speaking, viz. the mirage? and whether the circular segment be not the image of the terrestrial globe itself, repeated in the nocturnal atmosphere? And then the luminous rays which appear to issue from this cloudy segment, would in fact issue from the earth itself. This is a solution which we submit to the examination of philosophers.

Other igneous phenomena recall us towards the surface of the earth. We know that animal substances, in a state of putrefaction, always emit phosphorus, which, taking fire from the contact of the atmosphere, produces light and wandering flames. Ignis Fatuus. Such is probably the origin of those ignis fatuus, which flutter at night over church-yards and fields of battle, and which have given rise to pretended apparitions of spirits in churches where it is the pernicious custom to accumulate the remains of the dead. Hydrogen gas is often combined with phosphorus; this mixture is not fit for respiration; it quickly suffocates. This is also a circumstance which seems to enter into many histories of spirits and apparitions, namely, the inflammable air disengaged from marshes, which is hydrogen gas mixed with azotic. The air which inflames on the surface of certain springs, known by the name of Burning Fountains, arises from the presence of hydro-phosphoric gas, or as it is otherwise termed, phosphureted hydrogen. One of these springs is met with in the parish of Saint Bartholomew, in the department of the Isere. The disengagement of inflammable gas during the summer, is so considera-
ble, that we continually see a flame seven feet high; and travellers, when they first behold it, imagine that the whole village is on fire.*

Ignis fatuus, arising from the development of phosphureted hydrogen, are necessarily soon extinguished; a succession of these fires will therefore appear to the spectator to be one single flame, which moves with rapidity from place to place, when we attempt to approach it. The air, driven on before us, forces the lambent flame to recede.† There are other similar fires, which appear to be immovable when viewed from a particular spot. There was one near Bestwick, in Sweden, which was supposed to issue from the mouth of a dragon that kept watch over some hidden treasures. A simple miner ventured to sink a shaft, which discovered a cavern filled with sulphurous pyrites and petroleum, the combustion of which had occasioned the phenomenon.‡

Falling, or shooting stars, are appearances everywhere observed. | Falling Stars.
They are probably the effect of hydrogen gas more or less phosphureted, for phosphorus is too rapidly inflamed, by the contact of the air, to be capable of reaching so great an elevation. What seems to prove the hydro-sulphureted origin of these meteors, is the nature of the circumstances by which they are accompanied. These fires, we are assured, often fall to the ground; and nothing is found at the place of their fall but a fetid, glutinous matter, of a whitish colour, bordering upon yellow. Now, we know that sulphured-hydrogen gas holds sulphur to it in solution; that the hydrogen and the sulphur does not burn at the same moment; that, consequently, the sulphurous part may be precipitated to the earth, whilst the hydrogen, mixed with the oxygen of the air, is kindled by a slight electric spark.

The Fire of St. Elmo is generally considered as an accumulation of electric matter around a point, which moves in the air. This fire, then, may be expected to appear frequently at the top of the masts of a vessel sailing along with rapidity. The ancients observed this phenomenon. These fires, when seen in pairs, were called Ouster and Faisax; when the flame was single, it bore the name of Hefan. The spears of an army often appeared ornamented with these electrical plunges.§ A Swedish naturalist, travelling on horseback in snowy weather, saw his fingers, his switch, and the ears of his horse covered with a fire of this description.¶

Globes of fire present a spectacle much more imposing than all the | Globes of fire preceding phenomena; they are seen of an immense size; their light is sometimes red, but oftener of a vivid and dazzling whiteness, like the flame of zinc mixed with nitre: they move with the rapidity of lightning, and appear to belong to the higher regions of the atmosphere, as they have been observed at the same time in places very distant from one another. This, however, may be only a continuation of their rapid flight, sometimes shooting along at the rate of six leagues in a second. We see them often in the space of a few seconds appear to traverse the horizon, blaze like fire-works, then break in pieces, or discharge torrents of flames, with a detonation that shakes the air and the earth at the moment of their explosion. There are some which are precipitated like a thunderbolt, break through the roofs of houses, destroy animals, and dismast or shatter vessels. At other times, they move over the earth like a whirlwind of flame, set fire to trees, devour, or at least overthow, every thing which obstructs their course. They are occasionally accompanied with thunder. Electricity and hydrogen, perhaps also nitrous gas, seem to act here an important part; but the appearance of these phenomena is so momentary, that we cannot examine them with the requisite care. It is only, then, on hypothesis, that we consider the stones thrown down from the air as the kernels of those little comets of the terrestrial atmosphere; this hypothesis, however, possesses a considerable portion of probability.¶

* Bouvier, Journal de la Médecine Éclairées par les Sciences Physiques, tom. iii. No. 8.
† Derham, Philos. Transact. No. 411.
¶ Forskål, dans Bergmann, Géogr. Phys. § 130. ¶ See Book xi. p. 123.
All the phenomena which we have just been considering, appear attended with brightness, and even with noise. There is one, however, which presents itself to our notice, as the result of a gentle, invisible, and noiseless force, but which is dif-
Magnetic. | fused over the whole of the terrestrial globe: I allude to magnetism. This phenomenon is very little understood as to its real nature—all that we know is reduced to this: there appears to exist a substance, or force, of some kind or other, which exercises an influence probably over all terrestrial bodies, but which is chiefly shown as it acts upon the are of oxidized iron, called loadstone. These substances, presented to each other, are naturally attracted at one end, and mutually repelled at the other: they constantly turn these two points, in which their magnetic action is concentrated, towards the two poles of the world: they communicate by friction, or by contact, this power to bars and needles of iron, or rather of steel; so that such a magnetic needle indicates by one of its points the north, and by the other the south, allowing for some deviation. This phenomenon of the direction of loadstones is attempted to be explained by supposing that the globe itself is a great loadstone, which exercises its magnetic force upon all bodies more or less sensibly. We shall not enter upon the discussions to which this hypothesis must lead.*

The earth, considered as a great magnet, has poles and an equator different from those which give to it its shape and its rotation. It is this which shows the two kinds of deviation observed in the magnetic needle.

The deviation, or the angle that the axis of the magnetic needle makes with the meridian of a place, is termed its declination. It is either west or east, and varies in different parts of the globe, at different times of the year, and even at different hours of the day. These diminutions and augmentations seem to vary periodically; and the variations are very considerable. At London the declination was 11 degrees, 15 minutes east in 1680; in 1657 the needle pointed directly north; in 1692 it already indicated 6 degrees of western declination; and in 1799, this declination increased to 21 degrees. In 1666, there was none at Paris; in 1795, it amounted to 22 degrees, 30 minutes towards the west. We find upon the globe a number of spots, in which there is no declination; but these balls without declination change their position every year. We are obliged to revise the magnetic maps every 10 or 12 years.

The diurnal oscillations are also considerable. Cassini observed a variation of 12 minutes in an hour, and from 2 to 7 minutes in the 24 hours. The experiments of Cassini, made at Paris, give the following interesting result. From 8 o'clock in the morning, until 5 in the afternoon, the direction of the needle approaches the meridian; it afterwards deviates until 9 in the evening, and remains stationary during the night. The sum of the oscillations towards the west exceeds that of the movements in a contrary direction.

Inspection of the needle.

The inclination consists in this: the magnetic needle, which, under the equator, generally supports itself in a horizontal equilibrium, which is given to it when placed on the pivot, deviates from its horizontal position, as it approaches the poles; one of its extremities always dips towards the pole. The greatest inclination yet mentioned is that of 82 degrees, observed by Phipps, in the latitude of 79 degrees, 44 minutes north. According to the observations of M. de Humboldt, the intensity of the magnetic forces, and above all, the inclination augments as we go from the equator to the poles, whilst the aerial traveller, Gay Lussac, has proved, that at 21,600 feet above us, they were the same as upon the earth.

Magnetic meridians, poles, and equator.

The circle which coincides with the vertical plane, passing through the direction of the needle, is called the magnetic meridian: the points where all these meridians would cut each other, would be the magnetic poles of the earth. A great circle, upon which there is no inclination of the needle, will be the magnetic

PHYSICAL GEOGRAPHY.

According to the philosophical researches of the celebrated Biot,* the magnetic equator now forms, with the terrestrial equator, an angle of 10 degrees, 58 minutes, 56 seconds; its western node upon the terrestrial equator is at 120 degrees, 2 minutes, 2 seconds, to the west of Paris, that is to say, near the Galapago Islands, in the southern sea; consequently, its eastern node is at 50 degrees, 57 minutes, 55 seconds, to the eastward of Paris, in the Indian sea. The magnetic equator descends to the southward of the terrestrial equator in the Ethiopian Ocean, and rises to the northward in the great Eastern Ocean. Thus, a northern hemisphere projected upon the magnetic equator, would present a still greater excess of land upon the opposite aquatic hemisphere, than a northern hemisphere, already projected upon the terrestrial equator—a circumstance which, joined to the magnetic direction of several chains of islands, presents to our notice the great agency which magnetism has exerted in the formation of the globe.

Having endeavoured to explain the nature and operations of atmospheric fluids, let us proceed to consider the agitations with which this ocean of gases and vapours is affected.

BOOK XVI.

Continuation of the Theory of Geography. Of the movements peculiar to the Atmosphere, or of Winds.

The atmosphere experiences agitations which displace its particles in various directions, and which all depend on a single cause, an interruption of its equilibrium, the restoration of which necessarily takes place in conformity with the laws common to all fluids. A change in the temperature of a column of air, the transformation of a portion of the atmospheric gases into water, their congelation, in a word, whatever causes a vacuum, a condensation, an expansion, and consequently destroys the equilibrium subsisting among the different parts of the atmosphere, necessarily produces the rapid displacement of a mass of air, that is to say, a wind.†

The velocity of winds being the circumstance most palpable to our senses, several arbitrary denominations have resulted from it, the principal of which are as follows:

<table>
<thead>
<tr>
<th>Wind Type</th>
<th>Description</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentle</td>
<td>(a breeze,) one that traverses 10 feet in a second.</td>
<td>1 to 10</td>
</tr>
<tr>
<td>Moderate</td>
<td>(an easy gale,)</td>
<td>16</td>
</tr>
<tr>
<td>Strong</td>
<td>(a stiff gale,)</td>
<td>24</td>
</tr>
<tr>
<td>Violent</td>
<td>(a squall,)</td>
<td>35</td>
</tr>
<tr>
<td>Storm</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Slight</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Considerable</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Violent</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Hurricane</td>
<td>Of the temperate zones,</td>
<td>60</td>
</tr>
<tr>
<td>Of the torrid zone,</td>
<td></td>
<td>120 to 300</td>
</tr>
</tbody>
</table>

The direction of winds is not designated, like that of marine currents, by the point of the compass to which they tend, but by the point from which they come; thus, a northerly wind is directly contrary to a northerly current.

In regard to duration, winds are distinguished as constant and variable; in regard to extent, as general and partial.

Two general and constant movements exist in the atmosphere; the one prevails in the torrid zone, and carries the air westward in respect of the earth, in a direction conformable to that of the general movement of the ocean; the other, which is principally felt in the temperate zones, carries the polar air towards the equator, and by this means produces two polar currents or effluxes, similar to those already pointed out in the ocean.

Origin of the constant easterly winds.

We shall first consider the equatorial movement of the atmosphere; that which occasions the trade-winds, or the constant east wind which blows in the torrid zone. The primary cause of those winds seems to be the expansion which the air undergoes from the action of heat; for the sun (which we suppose to be situated in the plane of the equator) must evidently, by its heat, rarefy the columns of air beneath it, and raise them above their level, from which they must of necessity either be dissipated in the celestial space, or sinking again by their weight, flow towards the poles, along the higher parts of the atmosphere. At the same instant, however, a fresh quantity of air must arrive; proceeding from the polar regions, it comes to replace the air which has been rarefied at the equator. Thus two opposite currents of air will be formed; one in the higher, another in the lower strata of the atmosphere. But the real velocity impressed on each particle of air, being caused by the earth's rotation, must be smaller the nearer that particle is to the poles; and hence the circumpolar air, as it advances towards the equator, and preserves for a time its primitive velocity, must revolve more slowly than the corresponding parts of the earth; bodies situated at the earth's surface will therefore strike against it with this excess of velocity, suffering, from its re-action, a resistance opposed to their rotatory motion; and to the observer, who imagines himself to be at rest, the air will appear to move in a direction precisely contrary to that of the rotation of the globe; in other words, from east to west.

Modifications of the constant easterly winds.

The different positions of the sun, at different seasons of the year, will produce certain modifications in those atmospheric movements. We shall indicate their general character. When the sun passes to the north, in April, May and June, the air of our hemisphere is proportionably dilated, from the equator to the pole. It will rise, therefore, and the void produced by its rarefaction, in the lower strata, will be filled by a polar current. At this season, accordingly, we shall have a north wind; but in a certain latitude, suppose 30°, our north wind will encounter the general east wind; if they meet at right angles, a compound movement will result, and we shall have a north-east wind. On arriving at the summer solstice, the sun will warm every part of the northern hemisphere, more or less considerably; the heat will continue for a certain period of time; and hence in July and August we shall have fewer north winds. But our luminary retires; the polar air is cooled and condensed anew; the equatorial atmosphere becomes more and more dilated. The general north wind will, therefore, re-appear in September and October. It will go on increasing as the sun recedes from us, and approaches the winter solstice. There will be a limit, at which the condensation of the air north of the equator, and the expansion of the air to the south of it will cease; an equilibrium more or less perfect will then reign throughout all the atmosphere.

The same phenomena, in a contrary order, must happen in a southern hemisphere. Over all the globe, therefore, we should find equatorial and polar winds of regular occurrence, if those general movements were not resisted and deflected by an infinite number of causes. Similar variations, we have seen, produce an influence on the currents of the ocean; and the atmosphere being incalculably more subtle, and also less homogeneous than water, we cannot wonder that it should be more sensible to the smallest impulse, and more liable to unexpected changes.

Origin of variable winds.

The inequalities of the earth's surface, and the diversity of its soils, have, no doubt, a powerful influence on the constitution of the atmosphere. At one place, mountains covered with eternal snow arise, and prevent the air from undergoing the same expansion as in valleys; at another, burning sands, forests, marshes, savannahs, are spread out, and exhale various inflammable gases; at a third, we observe large basins of water surrounded and irregularly inclosed by
land. The air must, therefore, suffer relative and partial condensations and expansions: hence the sea-breeze, the land-breeze, the mountain-breeze. Those changes too will occur differently in summer and in winter, during the day and during the night. Hence the morning and the evening breezes,—those amors matinales, those zephyrs, whose refreshing breath re-animate us in the warm season.

These alternate breezes are felt at very high latitudes, as for example, at Bergen in Norway. The South Sea Islands, notwithstanding their small circumference, in this manner, during day-time attract the general east wind, which is thus made to embrace them, as it were, on every side, and to blow from all points of the compass towards the central summit of the island. When night arrives, the air flows back again from the summit towards the sea in every direction.

This observation of Foster's throws great light on the theory of winds.

In the last place, chains of mountains may arrest winds in the lower regions of the atmosphere, or turn them from their direct path, and sometimes give them more impetuosity, as marine currents acquire greater force in the neighbourhood of straits and promontories. Such violent movements of the air, when arrested by an obstacle, have given particular notoriety to Cape Horn, the Cape of Good Hope, and the South Cape of Van Diemen's Land, to the Strait of Bab-el-Mandib in Arabia, and the Dragon's Mouth in America, not to mention others.

Exhalations from the soil impart their own peculiar qualities to winds. Thus, in Arabia, the Simeen carries much nitreous gas along with it; the Harnmatin of Guinea much oxygen; the Chamsin of Egypt much azote.

The positions of the moon may exercise an influence on winds, by producing a sort of ebb and flow in the atmosphere; but we are by no means of opinion, that the immediate agency of the lunar attraction can excite such oscillations. This immediate agency, in so subtle a fluid, must be altogether transient, and, consequently, its effect almost imperceptible. The phenomenon appears rather to be caused by a re-action of the ocean on the atmosphere. Indeed, the movements of the sea must generally have an important influence on those of the air. It is chiefly from the bosom of the sea that the constituent principles of our atmosphere are unfolded; and its parts must, therefore, have a velocity proportionate to that of the aqueous particles from which they have just been disengaged.

Clouds, by intercepting or condensing the sun's rays; common rain, by its cooling effect; vegetation, by absorbing great quantities of air; the decomposition of animal and vegetable substances, may all contribute to the formation of local winds.

Hurricanes appear to have an electric origin. At the moment when an hurricane, the electric spark unites a quantity of oxygen gas with a quantity of hydrogen, to produce a rain-storm, in all probability a considerable mass of hydrogen is consumed, and thus occasions a sudden fall of rain or hail; by which means a very large vacuum is formed, and the ambient air rushes into it, with astonishing rapidity, and sometimes in the most opposite directions.

The Antilles, the Isle of France, and the Isle of Reunion, the kingdoms of Siam and China, are the countries in which hurricanes most frequently exercise their ravages. The hurricanes of Europe are not, in any way, to be compared with those of countries farther to the south; generally speaking, the former are nothing more than whirlwinds occasioned by the meeting of two opposite currents. But in a real hurricane, all the elements seem to have combined and armed themselves for the destruction of nature. The lightnings cross each other; the thunder roars without interval; rain falls down in torrents. The velocity of the wind far exceeds that of a cannon ball, or of the powder which impels it; growing corn, vines, sugar canes, forests and houses, everything is swept away; one might imagine the ground it had passed over was cleared and levelled. It begins in various ways; sometimes we have one little black cloud appearing on the summit of a mountain; at the instant when it seems to settle on the peak, it rushes down the declivity, unrolls itself, dilates and covers the whole horizon; at other times the tempest advances in the shape of a fire-coloured cloud, showing itself suddenly in a calm and serene sky.*

The water spout or syphon, is a no less dangerous phenomenon. Syphons are distinguished as terrestrial and marine; it were better to divide them into air syphons and water syphons. The latter usually occur in the manner we are now to describe. Underneath a dense cloud, the sea becomes agitated with violent commotions; the waves dart rapidly towards the centre of the agitated mass of water; on arriving at which, they are dispersed into aqueous vappours, and rise, whirling round in a spiral direction towards the cloud. This conical ascending column is met by another descending column, which leans towards the water, and joins with it. In many cases, the marine column is from 50 to 80 toises in diameter near its base; both columns, however, diminish towards the middle where they unite; so that here they do not extend more than three or four feet in diameter. The entire column presents itself in the shape of a hollow cylinder, or tube of glass empty within. It glides over the sea without any wind being felt; it indeed several have been seen at once following different directions. When the cloud and the marine base of the water-spout move with unequal velocities, the lower cone is often seen to incline sideways, or even to bend, and finally to burst in pieces. A noise is then heard like that of a cataract falling in a deep valley. Lightning frequently issues from the very bosom of the water-spout, particularly when it breaks; but no thunder is ever heard.*

Philosophers explain this phenomenon in the following manner: Two winds meet; a vortex ensues; any cloud which happens to lie between them is condensed into a conical form, and turned round with great velocity. This rotation imparts all the particles of the cloud with a centrifugal force; they are driven towards the exterior surface; a vacuum is produced within, about the axis of the cone; water or any other body lying beneath this vacuum, is carried into it by the effect of gravity striving to re-establish an equilibrium.

Having considered the general and the modifying causes of winds, let us now trace, with greater minuteness, such of those atmospheric movements as, by their regularity and extensive occurrence, are most important to geography.

The Atlantic Ocean, the general east or trade-wind prevails up to the 32d or the 28th degree of north latitude; according as the sun is in this or the other hemisphere. On the north-east coasts of America, the trade-winds extend as far as 40 degrees; a fact evidently showing that currents in the atmosphere, like currents in the ocean, grow broader as they proceed: while, on the other hand, the east winds, like the westerly movement of the ocean, do not begin to produce a vigorous effect, till they have reached a certain distance from the eastern continent, their point of departure. The same peculiarity occurs in the Ethiopian Ocean, where the east wind extends, in like manner, some degrees farther on the coast of Brazil, than near the Cape of Good Hope. As those east winds always receive the impulse of the two polar atmospheric currents, at an angle approaching more or less to a right angle, they change into north-east in the northern hemisphere, and south-east in the southern hemisphere. But on approaching the coasts of America, the general east wind resumes its force, overcomes the effect of the polar currents, and follows its own direction from east to west, with more or less exactness.

On the coast of Guinea, particularly from Sierra Leone to the Isle of St. Stephen, south and south-west winds prevail over an extent of 500 leagues of shore. They turn more to the south-west and west, as we approach the land. If to this circumstance be added the fact, that, in Guinea, there sometimes occurs an east wind of extreme violence, it appears natural to regard those two movements as having a direct connexion; and the south and south-west winds will thus be nothing more than partial currents of the general trade-wind, attracted to the vast continent of Africa, where the air is prodigiously rarefied by means of the solar rays reflected from its burning sands. But as the general trade-wind must, notwithstanding, sometimes produce its effect in the interior of that continent, those great

masses of air, accumulated and condensed on the central platform of Africa, will now and then make violent eruptions.

On the confines of the two trade-winds, in the western ocean, between the 4th and 10th degrees of north latitude, and the 330th and 365th of longitude (from Ferro,) there is a space of sea where navigators find perpetual calms, accompanied by a suffocating heat, by thunder-storms and dreadful lightning, with rains so frequent and copious, that this tract has been called the rainy sea. The slight winds that occur here are but sudden squalls, of short duration and little extent; so that sometimes every hour affords a different wind, which degenerates into a calm before another succeeds it.

Calms prevail equally about the common limits of the trade-winds and variable winds; but, in these cases, they are soon destroyed by blasts and tornadoes. It is from observing this habitual condition of the atmosphere, that fixed methods have been laid down for sailing to and from the continent of America. In the first case, a navigator always endeavours to get southward to a latitude near the tropic, because in that quarter he is sure of finding a fresh easterly or north-easterly wind, which, joined to the prevailing current, will rapidly drive him towards the American coast. For returning to Europe, he endeavours to reach at least the 30th degree of latitude; because it is there that the winds first become variable, though still more frequently they blow from south-west.

In the Great Ocean, or Pacific Sea, we again find the general movement of the atmosphere from east to west, modified by the two polar currents. The vast extent of this sea allows the atmosphere to unfold its natural movements in a regular manner. The north-east and the south-east winds are here so steady and strong; that, if at Panama, in place of an isthmus, there were a strait, the voyage to China would be accomplished much sooner by sailing westward than by sailing eastward. As those movements set out from America and the Andes, mountain-chain, they are more feeble and circumscribed on the coast of America, where they begin, than near or even within the tropics. On the opposite coasts of Asia and the regions to the south, they extend as far as the forty-fifth parallel. In sailing from Acapulco to the Philippines, the Spaniards simply allowed themselves to be carried forward by the winds and currents, which drove them in a straight line, and very speedily, to their place of destination; and this is the reason why, though navigating that ocean so long, they have discovered so very few of those southern regions, from which they were frequently at no great distance. In returning to Mexico, they ascend as far as Japan, and then direct their course to the north-west coast of California. This great extent of the trade-winds must be attributed to the weakness of the polar currents, aerial as well as marine; while it is the superior strength of the south polar currents which causes south-west winds to prevail along the coast of Peru.

It is in the Indian Ocean alone that the famous monsoons, or half yearly winds, seem to destroy the uniformity of the general atmospheric movement. No doubt, however, they might be made to accord with it, provided we know all the circumstances which influence them. We exhibit the facts in the first place. From the 10th degree of south latitude to the tropic of Capricorn, and beyond it, the general east or south-east trade-wind prevails over all the Indian Ocean, sometimes in summer extending as far as the 2d and 3d degrees of south latitude. On this side the 10th degree, we first meet with the monsoons, or periodical half yearly winds. North of the equator, from April to October, a violent south-west wind prevails, accompanied with tempests, storms, and rain; while a soft and pleasant north-east wind blows during the other six months. Between the second and twelfth parallels of south latitude, the winds blow generally from south-west during the winter six months, from south-west in summer.

During winter, then, the constitution of the atmosphere exhibits the following principal circumstances: north-east winds north of the line; north-west winds south of it to the 10th parallel; and finally, the east and south-east trade-winds. In summer,
the phenomena are less contradictory: South-west winds from the 10th parallel to the northern limits; trade-winds south of the 10th parallel.

Varieties in the Monsoons.

These general tendencies are subject to variations, depending on the figure and elevation of coasts, on straits, and currents of the sea. The north-west and south-west monsoons are weaker and more variable in the Bay of Bengal, more steady and violent in the gulf of Arabia. Both these monsoons grow broader to the west, ranging in this direction over the whole tract of sea that lies between Africa and Madagascar. In the seas extending between China, the kingdom of Siam, Sumatra, and the equator, those monsoons are felt likewise; but here, excepting local variations, they are almost entirely north and south. They extend as far as the Philippine Islands, and though with much inconstancy, even to Japan. Between the equator, the island of Java, and New Guinea, the monsoons are nearly similar to those of the Chinese Sea in regard to their direction, which merely varies a little to the north-west in the north monsoon, and a little to the south-west in the south monsoon. But they do not begin till six weeks after those of the Chinese Seas.

How the Monsoons Change.

Some other striking circumstances still remain to be noticed. The monsoons do not change, or, as sailors express it, do not break, of a sudden. Their change, which usually takes place fifteen days or four weeks after the equinoxes, is announced by the decay of the existing monsoon, by calms and squalls in rapid succession, by storms, water-spouts, tornadoes, and by Indian hurricanes, called *tajouns*, particularly terrible from the explosions of electric matter accumulated by the monsoon. The beginnings of the subsequent monsoon are, at first, liable to variations, till finally it establishes an absolute dominion.

Double Winds.

Navigators assert, that, on quitting the region where a monsoon prevails, one is sure, in ordinary circumstances, to fall in with a very strong and impetuous wind, blowing from a quarter directly opposite. They must naturally have observed this phenomenon with much care, since the calms and whirlwinds it occasions are productive of great danger. It can hardly be explained, except by admitting, with Halley, the existence of two currents—one above, composed of warm and rarefied air; another below, composed of the column of cold and condensed air. This hypothesis will become almost a settled truth, if we observe how small is the elevation to which the monsoon extends—a fact clearly exhibited in the peninsula on this side the Ganges, where the monsoons are arrested for several months by the mountain chain of the Guts, (not certainly of extraordinary height;) so that the coast of Coromandel, and that of Malabar, have always their dry and their rainy seasons, at opposite periods of the year.

According to the preceding description, it is the south-west monsoon alone which presents any phenomena directly contrary to the general movement of the atmosphere; for the north-east monsoon is in conformity with it, and the north-west wind south of the line seems not to be altogether constant, and may, perhaps, arise from nothing more than a compound movement, or a higher current of air. What, then, is the origin of this half-yearly wind, which in summer blows from south and south-west, over all the Indian ocean? The sagacity of physical geographers* has long been exercised by this question. We gave the explanation of which Halley laid the ground-work, and which appears to us the most plausible.

General Explanation of the Monsoons.

The monsoons always change some time after the equinoxes; they constantly blow towards that hemisphere in which the sun is found. The action of this luminary on the atmosphere, is, therefore, plainly one of their causes. When its rays, reflected from the mountains of Thibet, scorching the plains of Bengal, and the valleys of the kingdom of Siam, rarely and dissipate the atmosphere, the cold air becomes violently attracted from the regions about the south pole. The sun's action is seconded by the marine current, which proceeds from the south polar seas to those of India. This current must bring with it a column of vapours, continually disengaging themselves from its surface. The absence of a northern marine current must farther be added; we can even imagine, that the mountains of Thibet, and the whole central platform of Asia, may arrest and preserve the cold air, which would otherwise proceed from Siberia towards India.

* Deluc, Modifications de l'atmosphère, No. 730. Muschenbroek, Essai de Physique, li. 879.
But why does not this polar wind prevail south of the equator also? For the same reason which renders the aquatic polar current inconsiderable there. The general movement of the ocean being here opposed by no obstacle, has too much force to be modified by the polar current. A similar result happens in the atmosphere, at all times intimately connected with the ocean, which feeds and modifies it. But on leaving New Holland between us and the Pacific Ocean, the general movement of the Indian sea must evidently be more and more abandoned to its individual force, and that force must soon be overcome by the polar current, which, after being long deflected or concealed by the general movement of the ocean, now re-appears in all its energy. The polar column of water now fills the atmosphere with cold particles, which, by their gravity, determine the whole atmospheric mass to flow towards the equator, more strongly, and more directly than it would have flowed otherwise. It is possible, moreover, that higher currents may exist in the atmosphere, and descend towards the earth at the time when the monsoons commence.

On the west side, the mountains of Lupata in Africa, and those of Madagascar, may, or rather must concur in furnishing their cloudy and stormy air to the south-west monsoon, which, from this circumstance, begins here, in the channel of Mozambique. It is possible that mountains in the interior of New Holland may exert a similar influence on the east side.

When the sun has passed into the southern hemisphere, the monsoon alters its direction; the mass of air which had been accumulated during summer on the central platform of Asia, now bestirs itself, and moves towards the regions south of the equator, where the atmosphere has been diluted and dissipated by the solar heat. Over most part of the Indian ocean, this monsoon proceeds from the north-east, because the central platform lies to the north-east. On the other hand, as the seas of China, of Borneo, of New Guinea, of Java, have the centre of Asia to the north and north-west, the monsoon comes to them from those points. It arrives in a slow progression, in consequence of the many islands whose elevated summits arrest and turn it aside. The north-east monsoon is mild and agreeable, because the mass of air, condensed on the central platform of Asia during summer, having originally passed through the torrid zone, and afterwards remained exposed to the sun's action about the time of solstice, it has thereby lost the cold and the cloudiness which otherwise it might have acquired from contact with the Siberian atmosphere. It seems possible that this north-east monsoon may fall in with a remnant of the preceding monsoon, about the second or third degree of south latitude; a remnant, which is perhaps maintained in existence by the mountains of Africa, Madagascar, and New Holland, since the cold air of those mountains is not solicited to flow towards the south pole, and has no outlet but towards the equator. From this direct remonter of the old and the new monsoon, a compound movement would result, which might produce those north-west winds so common between the equator and the tenth southern parallel, during the whole continuance of the north-east monsoon.

Both monsoons are more powerful in the Arabic Gulf, because this strait and shallow piece of water has no currents in it but such as are superficial, and therefore unable to resist the action of the winds.

All the irregularities displayed by winds pertaining to a place or a region of the globe, are thus nothing more than combined effects resulting from the general atmospheric currents, from partial interruptions of them, from the sun's apparent motion, and the arrangement of mountains.

The reader who has followed us through those wide but indispensable details, may perhaps desire that we should recompense him by again portraying the useful or agreeable effects, of which the winds, whose paths we have just been tracing, are productive. Shall we stop to repeat observations so familiar? The winds, it is well known, purify our atmosphere, by keeping a perpetual agitation in it; they dissipate the miasmas exhaled from marshes and stagnant water: they raise and transport the clouds destined to fertilize the ground by means of rain. Millions of seeds, furnished with their little pinions, ride upon the wings of the wind, and spread afar the empire of vegetation. The ingenuity of man has made a lever of the winds, which, when applied to machinery, spares hir
an immensity of soil. If the ocean is the highway of our globe, winds are the indo-
fatigable couriers which rapidly transport our ships from pole to pole. Considering
winds merely in a picturesque point of view, how many enjoyments do they procure
to a lover of the great spectacle of nature—above all, to the inhabitant of moun-
tains! Sometimes they spread over every valley a curtain of clouds, which shows
the summits of the far distant Alps like so many islands scattered on the surface of
an ocean; sometimes partially drawing this curtain aside, they open to us all at once
the most astonishing prospects, in which the brightest sunshine forms a happy con-
trast with the contiguous shades. It is to storms of wind, that the painter and the
traveller are indebted for the most extraordinary scenes which can meet their view.
In the evenings of summer, and still more of autumn, it is the winds which, accumu-
lagating and marshalling, their long trains of clouds, create, and destroy before us
those fugitive landscapes, those aerial mountains, which are tinged by the fires of the
setting sun.

The atmosphere undergoes various other modifications in respect of its local tem-
perature, or of physical climate. They will form the subject of our next book.

BOOK XVII.

Continuation of the Theory of Geography. Of the Local Temperature of the Atmo-
sphere, or of Physical Climates

In no department of geography have authority and preconceived opinions been
permitted to prevail more generally than in that which treats of the causes of physi-
cal climates. The sun was long considered as the only source of those varieties of
temperature which we experience in the different regions of the earth. The influ-
ence ascribed to winds was determined only according to some local observations
which had been made by Hippocrates in Greece, or in the neighbouring countries.
That this branch of physics may be thoroughly investigated, it is requisite for civil-
ized nations not only to despatch travellers to the neighbourhood of the poles and
the equator, but also to form permanent establishments in those quarters of the
globe. It is by uniting together and arranging, under general points of view, the
results of particular local observations, that we shall endeavour to trace a sketch of
climatology, in some measure corresponding to the present state of the other sci-
ences.

Physical cli-
nate

The causes of physical climate are nine in number:

1st, The action of the sun upon the atmosphere. 2d, The interior temperature of
the globe. 3d, The elevation of the earth above the level of the ocean. 4th, The
general inclination of the surface, and its local exposure. 5th, The position of its
mountains relatively to the cardinal points. 6th, The neighbourhood of great seas,
and their relative situation. 7th, The geological nature of the soil. 8th, The degree of
cultivation and of population at which a country has arrived. 9th, The prevalent winds.

The air does not appear to acquire immediately, by the passage of the rays, a
considerable degree of heat. It is this which proves the successive coldness of the
different strata of the air which is observed upon all mountains.

Sensible and
latent heat.

The distinction between sensible heat, which warms the particles, and
latent heat, which only dilates them,† makes us imagine that the supe-

* Deluc, Modifications de l'Atmosphère, ii. § 797, sqq.
† Laplace et Lavoisier, Mémoire sur le Calorique latent, dans les Mémoires de l'Académie
Sciences, 1780, p. 388.
rior air, more disengaged from vapours, and less compressed, must allow the calorific rays to pass more freely; and that, on the contrary, the more the air is condensed, the more will the rays be stopped in their course, and repelled, and reflected; in various directions the shock of the two fluids will thus be more forcible; and it is probably a similar shock that causes the disengagement of latent calorific, which is the principal cause of the sensible heat of our atmosphere.

But what chiefly contributes to warm the lower regions of the air, is the reflection of the rays which strike against the ground, and which, thrown back again towards the atmosphere, stop in the inferior part of it, and are confined in the midst of the watery vapours with which it is loaded. This reflection necessarily accumulates the heat in the regions nearest to the surface of the earth. We cannot here explain the theory of calorific considered as a radiant body, a theory which has been recently developed;* but it is sufficient for our purpose to observe that extraordinary degree of heat which often exists on two sides of the same mountain, whilst the neighbouring plain is but moderately warmed.

The degree of immediate solar heat is determined by four causes.+] The first is the distance of the sun from the earth. If we take the mean distance equal to 10,000, the distance at the summer solstice is equal to 10,166, and at the winter solstice to 9,834; the proportion is nearly as 30 to 29. The quantity of rays falling upon the same plane, being inversely as the squares of the distances, their proportion will be as 841 to 900, or as 1 to 1 9. Thus the quantity of solar rays which the globe receives in winter is greater than that which it receives in summer. The second cause which we have to consider is the direction more or less oblique, in which the rays strike the earth, and which depends upon the height of the sun in the ecliptic. The more directly the rays fall the more force they have, and, at the same time, the greater is the number falling upon a given space.

Fatio, in considering the perpendicularity of the rays, which gives them a great force, computes, that, independently of all other causes, the heat of summer should be to that of winter as 9 to 1. But these calculations suppose the surface of the earth to be exactly spherical, without the least local declivity. The third circumstance to consider is the length of the day,* or the length of that semi-diurnal arc which the sun describes. The continuity augments the effect, and the short nights allow only a small quantity of the acquired heat to evaporate. The fourth and last cause, which modifies the solar heat, is the refraction which the rays experience in passing more or less through the different strata of the atmosphere. Bouguer has calculated, that, taking 10,000 rays, 8,123 of them arrive at a given point, if they come perpendicularly, 7,024, if the angle of direction is 50 degrees, 2,831 if it is seven degrees, and only 5 if the direction is horizontal.

The solar heat, distributed according to these four principles, would be entirely different from that which we actually experience. We should have in the summer solstice under the line, 20 degrees of Reaumur's thermometer; at Paris, 36; under the polar circle, 68; and under the 74th parallel of latitude, we should find the terrible heat of 80 degrees of Reaumur. It would then diminish towards the poles. In the winter solstice, the cold would be equally distributed in a manner perfectly contrary to experience. We are therefore certain that the direct and immediate action of the rays of the sun does not of itself determine physical climates.

Some persons have sought for the cause of climates in the internal heat of the globe, which generally appears to be about 10 degrees of内部 heat of the globe. Reaumer above zero.

That heat is not the effect of a central fire. Such a fire might, with-中央火。
out doubt, exist in the bosom of the globe, as there are cavities filled with air, but it would act more powerfully, and with greater uniformity. The beneficial influence of it would be felt towards the poles, as well as under the equator. All the deep springs would be hot. Romé de l'Isle, in his work upon the heat of the globe, has refuted all the false reasonings by which Buffon and Bailly had deceived themselves.

We shall form a juter conception of the internal temperature of the globe, if we regard it as the result of the different degrees of heat which it may have acquired from the successive action of the sun, and which are accumulating in the course of ages, as far as the density of the globe admits of it, and the force of the solar rays is adequate to the production of such an effect. The globe having once acquired this depth of heat, which is uniformly diffused through all its parts, the variable temperature of our summers and winters can no longer produce a change in its interior. But if we suppose some local fermentations in the interior, these might influence and modify the external temperature. It is possible, too, that some kinds of soils transmit with more facility than others, the internal heat. Finally, observations having shown that the internal temperature of lakes and of seas is much below that of continents; the inference is, that in summer, the atmosphere, which is in contact with these masses of water, must always be less heated than that portion of it which is contiguous to the earth.

With the elevation of the land, cold increases in a very rapid progression. It is superfluous to produce examples of this; who does not know that winter continues to reign on the Alps and the Pyrenees, while the flowers of spring are covering the plains of northern France? This beneficent appointment of nature, considerably increases the number of habitable countries in the torrid zone. It is probable, that at the back of the flat burning coasts of Guinea, there exist in the centre of Africa, countries which enjoy a delightful temperature; as we see the central valley of Quito, situated under the same latitude with those destructive coasts of French Guyana, where the humid heat constantly cherishes the seeds of disease.

On the other hand, it is the continued elevation of the ground, which, in the central part of Asia, extends the cold regions to the 35th parallel of latitude, so that in ascending from Bengal to Tibet, we imagine ourselves in a few days transported from the equator to the pole.

The general aspect should be distinguished from the local aspect. The west of France, for example, has a general western aspect; and notwithstanding this, the valley of Allier is exposed to the north; that of Mayenne to the south; that of Ouest in Brittany to the south-east. Thus, the general declivity of a country, large in itself, does not exclude the most opposite local declivities. It may, however, be admitted as a general principle, that the positive sum of all the local aspects is in the same direction as the general aspect. This principle can be applied only to spaces of great extent; for example, the entire tract of country through which a river flows.

Every one knows of what effect, as to temperature, is the exposure of a soil relatively to the sun. A hill, inclined 45 degrees towards the south, when the sun is elevated 45 degrees, receives the solar rays perpendicularly, whilst upon a plain, the same rays strike the soil under an angle of 45 degrees, that is, with one quarter less of force; and a hill inclined 45 degrees to the north, will be struck by the solar rays in a horizontal direction, which makes them glide along its surface. If the ground is still more inclined to the north, it will receive no rays, and will remain always in the shade. These differences, which are easily perceptible in hilly countries, are extreme in regions covered with high mountains. It is thus, that in the Valais, we see the Alps on one side covered with eternal ice, whilst vineyards and orchards adorn the opposite hills with all the charms of fertility.

There is still another circumstance to be observed. The angle of incidence of the rays of the sun is determined for any given moment of the day, by the exposure of the land, but it varies also with the diurnal course of the sun. The hill, which in the morning received the solar rays under a direct angle, receives them more obliquely at noon, and perhaps the rays in the afternoon will merely glide over the surface of the ground. The case is precisely the reverse with hills exposed to the west. This is attended with some very remarkable consequences, which we are about to explain.

Every western exposure (from south-west to north-west) ought to be warmer than the corresponding eastern exposure, all other things being

* See the authors quoted by Delamétherie, Théorie de la Terre, iii. sect. 755, 756, &c. &c.
equal—for the rays of the morning, which directly strike the hills exposed to the east, have to counteract the cold which has accumulated there during the night. When the atmosphere, in the afternoon, shall have reached its greatest degree of warmth, the solar rays will no longer serve to concentrate this mass of heat upon soils lying towards the east; for they will fall only obliquely. On the contrary, those hills which incline towards the west, have been already provided with heat during the whole morning; and as soon as the solar rays strike them in a direct manner, they collect and concentrate all the caloric of the atmosphere, without encountering any obstacle. Every thing, on the contrary, will concur in promoting their action.

Without stopping to give more detailed explanations, we shall only remark, that according to this principle, south-south-west and south-west situations are the warmest of all; whilst, on the contrary, those of the north-east are the coldest. It is scarcely necessary to observe, that we speak here only of the Northern Hemisphere, and that we leave out of view all local and temporary circumstances.

As a moderate degree of cold is favourable to health, and as, under the latitude of Greece, any degree of cold to which they were ordinarily exposed, may rather be looked upon as refreshing than disagreeable, it is clear that Hippocrates was right in recommending eastern situations with regard to salubrity.* But it is not contrary to good sense to apply the same principle to climates much nearer the Pole, where the cold is regarded with apprehension, and where the heat, generally more moderate, brings with it none of those epidemic maladies of which Hippocrates speaks. There are so many circumstances which combine to render a climate salubrious or unhealthy, pleasant or inhospitable, that the attempt would be extremely injudicious to characterize climates solely according to general or local exposures.

If we consider exposures only by themselves, and without reference to other circumstances, we may, with Hippocrates, compare the eastern one to Spring, those of the south to Summer, those of the west to Autumn, and those of the north to Winter—for although it is true that the constitution most common to climates under these exposures answers to that of the seasons which they resemble, yet a more exact and more intelligible comparison would be one with the different divisions of the day. The most severe cold is felt early in the morning; this division corresponds to the north-east exposure, which is the coldest; the heat augments until three in the afternoon. In like manner, exposures become always more favourable to heat, till we come to the south-west. Evening and midnight follow, corresponding to western and northern exposures.

In considering the climates peculiar to each country, in the subsequent volumes of this work, we shall see these general observations confirmed by a great number of examples.

The position of mountains is not always essentially connected with declivities of ground, since there are some mountainous plateaux or upland plains, which (at least as to a portion of their extent) have no general declivity, as in Mongolia, in Thibet—and since, on the other hand, we find countries which incline on several sides, without their most elevated parts being furnished with real mountains, as for example, the centre of European Russia.

Mountains act upon climates in two ways—they attract the vapours suspended in the air; these vapours, by their condensation, produce clouds and fogs, which generally conceal the summits from our view. Often, also, these assemblages of watery substances, which the winds waft in every direction, are stopped in their deviuous courses by chains of mountains, in the elevated valleys of which, they continue to accumulate. These effects are still more sensibly felt, when a chain of mountains is crowned with extensive forests. They add to the elevation of the mountain, they block up its passages, and they furnish, above all, inexhaustible nourishment to the running waters. The destruction of forests may sometimes prove a blessing to a country, by procuring a freer circulation of air—but, carried

* Hippocrate, Traité des Airs, des Eaux, et des Lieux.
too far, it becomes a scourge which may desolate whole regions. We have a sad example of this in the Cape de Verde islands, not to mention others of a less striking character. It is the destruction of the forests and not a supposed cooling of the globe, which has rendered the southern part of Iceland more accessible to the dreadful cold which is too often produced by those masses of floating ice which are intercepted and detained by its northern coasts. Although mountains cannot prevent the general motions of the atmosphere from taking place, they may, however, by stopping them in part, render particular winds more or less frequent throughout a certain extent of country.

There cannot be a doubt that the Alps do contribute in securing to Italy its delightful and happy climate, its perpetual spring, and its double harvest. Examples of climates, rendered colder by the position of mountains, are frequent enough. If central and southern Russia are exposed to colds disproportionate to their latitude, and to their exposure, which is in a great measure southern, it is owing amongst other causes, to the want of a chain of mountains to the north, which might weaken the action of the chilling icy wincls that blow from the White Sea and the Uralsian mountains. Siberia is in a different, and still more unfavourable predicament. It slopes to the north, and consequently lies open to winds from the Frozen Sea; at the same time, its great inclination is on the south side, crowned by the Altai mountains, which, while they hinder the cold winds from getting vent, and passing farther away, intercept also the warm breezes of Southern Asia.

The shelter from winds which is afforded by mountains, may sometimes become hurtful from excess. Thus we find the heat proves insupportable in those valleys, which in summer concentrate and strongly reflect the rays of the sun. When valleys are extensive and wide, when they present a considerable declivity for the flowing of water, and afford free access to winds from the north, the temperature may then be dry and cold, as in the Champsaur described by Villar. The inhabitants of such places will have good complexions, and enjoy a sound state of health.

In valleys which are low, narrow, and hollow, and which receive dry winds only very obliquely, torrents of water and the rains find no vent, the surface becomes marshy, the air does not circulate, and dampness and fog perpetually prevail. It is in such places that we meet with beings feeble, indolent, and stupid, that are called cretins: they become deaf, dumb, and almost blind; they remain insensitive to all impressions, except sensual appetites; if we strike them, they testify no sensation; and they appear to be excited by no wants. Their dangling arms, their gaping mouths, their necks swollen and pendant, their cadaverous colour, indicate the lowest state of human degradation, and of animal degeneracy. The chilling damp which constantly broods over these countries, except when it is exchanged for the warm and equally relaxing vapours of summer, may be regarded as the true cause of the goitre and of Cretinism. These maladies bear a great analogy, in their cause and principal effects, to the swellings, the articular tumours, and the imbecility of the effeminate Scythians mentioned by Hippocrates. Fodéré, who purposely visited the valley of Aosta and Maurienne, where cases of goitres and mental imbecility chiefly occur, remarks, that they appear only in the centre of the valleys of the Alps, and that even there they are confined to the narrowest part of the valley, which ceases to produce them as it widens towards the summit of the mountains, where brisker and drier air prevails, in which the inhabitants enjoy health.

These maladies are to be found in the Bas Valais, at the base of the Pyrenees and Apennines, and in some of the valleys of Dauphiny and Upper Provence. The sallow inhabitants, which we see in several humid districts of America, the white Negroes of the Ethiopian and Madagascar mountains, and the piebald Negroes, appear all of them to be a species of cretins in a greater or less state of degeneracy. Zimmerman attributes to the suffocating heats, which are felt in certain deep valleys of Switzerland, the instances of madness which are so common in these places; and he states, that the inhabitants of these defiles are obliged, during summer, to send
away their children to the neighbouring mountains, for the preservation of their memory and reason.*

The neighbourhood of the sea moderates the excess of temperature. In hot climates, the maritime regions are not so warm as the centre of the plains. In high latitudes, the coasts and the islands are less cold than the interior of the continents. In the mountains of Norway, so intense is the cold, that it has sometimes proved fatal to the Swedish armies; the dead bodies have been found lying rank and file; at the same time, the coasts of the country enjoy a very mild climate. The port of Bergen does not freeze so often as the Seine. Laurels, fig-trees, myrtles, and pomegranates, which cannot subsist in the centre of France, grow naturally in abundance at Brest.† The temperatures of the different seasons also approach nearer each other in the neighbourhood of the sea. At Plymouth, although the mean heat of the year is, on the whole, a little less than that of Paris, the winter months are much less cold. The thermometer never sunk lower in the time of Huxham than ten, or ten below zero, nor rose higher than 21.2 on the scale of Reaumur.

The internal nature of the soil must have an influence on climate in a variety of ways. All grounds are not heated equally soon. One soil quickly parts with its acquired heat, while another retains it for a long time. Exhalations, which vary according to the nature of the soil, rise into the atmosphere, and become identified with it. Clayey grounds, and those which are impregnated with salt, cool the atmosphere; extensive accumulations, when they are dry, augment the heat. It is supposed, for example, that the severe cold, and the unwholesome air, which prevail in the governments of Astracan and Orenburg, partly arise from the saline nature of the soil; while several provinces in France owe in part their dry and salubrious temperature to this, that their soil is sandy, calcareous, and in general light; ground which is stony and barren, emits fewest vapours. The contrary may be said of marshy soils; grounds of this description, and even sands impregnated by moisture, diminish the heat; and as the waters there are for the most part stagnant, the duration of the frosts is prolonged without bringing in return a sky serene and unobserved by noxious fogs. This is the reason why the winter in Holland, under 52 degrees of latitude, is often more disagreeable than that of the Danish islands under the 55th parallel.

The effect of marshes, in hot countries, is still more fatal, for they ferment and evolve a great quantity of putrid effluvia; it is to these that the eastern coasts of Africa, and some parts of America, owe their pestilential climate.‡

In every country, the sky has a different aspect. The azure arch, which, by an optical illusion, on every side limits our view, seems to be lower in England than it is in France. In vain does the Italian, upon the borders of the Seine, look for that pure, serene, and boundless sky, that atmosphere of clear blue, or of vivid red, which so much contributed to inspire a Raphael and Correggio.

But even the Italian sky is cloudy, in comparison of that which, in summer, canopies the blissful islands of the Pacific Ocean, that paradise of the torrid zone. It is to the different degrees of the rarefaction of the air, as well as the nature of terrestri al exhalations, that we must attribute these different appearances of the sky, on which the beauty of a climate partly depends.

Man exercises a slow but powerful influence upon the temperature of the air. Without cultivation, few climates would be salubrious and agreeable. Let us contemplate a desert country; the rivers, abandoned to themselves, become choked, and overflow; and their waters serve only to form pestilential marshes. A labyrinth of thickets and of brambles overspreads the most fertile hills. In the meadows, the unsightly wild mushroom, and the useless moss, choke the nutritious herbs; forests become impenetrable to the rays of the sun; no wind disperses the putrid exhalations of the trees which have fallen under the pressure of age; the soil, excluded from the genial and purifying warmth of the air, exhales

* See the articles Switzerland, Carinthia, &c. in this work.
† See the articles France and Russia.
‡ See the description of Africa, in this work.
nothing but poisons; and an atmosphere of death gathers over the whole country. But what do not industry and perseverance accomplish? The marshes are drained; the rivers flow in their disencumbered channels; the axe and the fire clear away the forests; the earth, furrowed by the plough, is opened to the rays of the sun and the influence of the wind; the air, the soil, and the waters, acquire by degrees a character of salubrity; and vanquished nature yields its empire to man, who thus creates a country for himself.

The cultivation, however, of a new country, is often attended by most disastrous consequences, which ought not always to be imputed to the improvidence of colonists. The new soil, the moment that it is broken up by the plough, and penetrated by the rays of the sun, must necessarily undergo a strong evaporation, and its exhalations, which are not always of a harmless kind, little elevated in the air, are condensed by the cold which still continues to be sharp, particularly during the night. Hence arise those epidemic maladies which ravage colonies newly established. The destruction of forests, especially when carried too far, is followed by pernicious effects. In the Cape de Verde Islands, it is the burning of the forests which has dried up the springs, and rendered the atmosphere sultry. Persia, Italy, Greece, and many other countries, have thus been deprived of their delightful temperature. The cutting down of the forests which once covered the Pyrenees, has rendered the air very unwholesome in the valley of Azun, in the department of the Eastern Pyrenees, because the absence of that barrier now permits a free passage to the southern winds. Similar complaints are made in Castile and Arragon.

Influences of the predominant winds.

The predominant winds of every country variously modify the united influence of all the elements which constitute physical climate, and which we have just been considering. But the nature, the direction, and the intensity of the winds, depend upon general and local exposure, the neighbourhood of seas, the elevation of mountains, and other circumstances. Thus the causes of climate form together a circle of which we can point out neither the first link nor the last. We ought not to characterize the physical nature of winds in a general manner, according to the points of the compass from which they blow. Hippocrates made use of this method, but confined his observations to a small part of the globe. But we should only injure the reputation of this great man by attempting to apply his local maxims as general rules.

All the variations of the winds depend upon the equilibrium of the atmosphere. Hence it follows, that the heat of one climate, and the cold of another, exercise a continual influence upon each other. The northern parts of a great continent will sometimes send forth their cold air towards the southern parts; and sometimes they will receive warm air in return. The great facility with which the atmosphere is put in motion, does not permit us to limit these facts to particular places: the whole of the heat and cold which surrounds the globe, is in a state of constant and universal flux and reflux. We may, therefore, lay down the following principles. The heat of the torrid zone, and the polar cold, balance each other; and upon the fluctuation of their equilibrium depend the variations of heat and cold, which are felt in the temperate zones. All winds, in the temperate zone, coming from the neighbouring pole, are cold; and all winds from the equator are hot, with some exceptions occasioned by local circumstances. Thus the southern wind cools and refreshes the environs of the Cape of Good Hope, whilst the northern wind has the same effect upon Europe. A land wind, if it pass over plains very elevated and open, is almost always cold and dry in the temperate zones. But between the tropics, if it blows over plains little elevated, and covered with burning sands, it must be dry and warm. The winds which arise on mountains, are not more conformable to any general rule; for there are some mountains covered with ice, whilst upon others there prevails a remarkable dampness: the winds from these, therefore, will possess different properties. As to winds from the sea, they are, almost without exception, damp, and charged with fogs and saline vapours; and as the air they

* See Africa, Cape de Verd Islands, in this work.
bring with them is always either hotter or colder than the air upon the land, they constantly occasion that kind of decomposition of atmospheric vapours, which produces rain. It follows, then, that every country of the temperate zone which is separated from the equator only by a great extent of contiguous land, has necessarily the air more habitually hot, than that country which has vast seas flowing between it and the torrid zone. On the contrary, the countries of the temperate zones, which have extensive tracts of land between them and the neighbouring pole, and which are separated from the equator by seas, will have a climate habitually colder than other countries under the same latitude, but under another combination of local circumstances.

If we apply these different principles to the northern part of the old continent, we shall see that the enormous diminution of heat which we observe as we advance towards the East, under the same latitudes, is in a great measure owing to the form and position of that mass of earth. The western part derives warmth from being in the neighbourhood of Africa, which like an immense furnace, distributes its heat to Arabia, to Turkey in Asia, and to Europe. On the contrary, Asia, in its north-east extremities, experiences extreme cold; partly, because on that side it has no land extending towards the equator. If Greenland, under the 60th parallel, notwithstanding its southern exposure, and the neighbourhood of the sea, has a much more rigorous climate than Lapland under the 73d parallel, with a northern exposure, what other reason can be assigned for this phenomenon, than the separation of Lapland from the arctic region by means of a vast ocean, whilst Greenland, gradually widening, extends probably towards the pole, or at least towards the 82d degree of latitude? North America has few tracts of land situate in the torrid zone; it has little communication with South America, and it stretches out probably to the north of Baffin's Bay towards Greenland. This quarter of the world does not present so great a difference of climate as Europe.

These results also from our principles, a general consequence as to the countries of the torrid zone. The trade-winds, by blowing continually from the east over the sea, contribute to render all the maritime coasts on the eastern side colder than those coasts which look to the west. On the other hand, the more a continent extends from east to west, the more those winds are heated by passing over the lands scorched by the sun. This is the reason why the Antilles, or Caribbee Islands, enjoy so moderate a temperature, whilst Senegambia is affected with the most overpowering heat of which we have any example. Congo also is warmer than Zanguebar. If the mountains of Peru have a colder climate than Brazil, it is because the elevation of ground, or any other local circumstance, may often have sufficient influence to neutralize the effect of a general cause. Such are the different causes which concur in forming that general constitution of the atmosphere which is termed climate. We may perceive that the results of so many different causes do not easily admit of classification. Hippocrates, indeed, has attempted this with regard to Greece. He takes for the basis of his arrangement, exposure and winds. But it is easy to prove, that his four climates, though actually existing in the places where he observed them, are not to be found in all the regions of the globe, to which his commentators, possessing little of his genius, wish to extend his system.

Hippocrates commences his treatise upon air, water, and situations, by an explanation of the object which he has in view. "It is necessary," says he, "for a physician, when entering a city of which he knows nothing, to examine its exposure, the predominant winds, the seasons, the nature and elevation of the soil, the quality of the waters of which the inhabitants make use, and the kind of life they follow. Now," continues he, "I am about to show how we ought to investigate and ascertain each of those circumstances."*

Is it not clear, according to this phrase, so vaguely rendered by all translators, that the intention of Hippocrates was not to compose a treatise upon physical climates, the materials for which were not collected together in his time, but that he

* ἀναδεικνύεται; literally, to look for and bring to the test.
meant nothing more by detailing his own local observations than to point out to his successors the path to be followed for the purpose of making new ones? This modest intention of the author has been overlooked, or at least but indistinctly pointed out. His work contains observations highly interesting, but confined exclusively to the countries which extend from the Sea of Azof to the mouth of the Nile, and from the borders of the Euphrates to the shores of Sicily; but these local observations, by being made general, have been converted into false and dangerous ones. We shall here produce some examples: Hippocrates represents to us "countries entirely exposed to the hot winds of the south, as necessarily abounding in brackish and unwholesome waters; for these waters, in general, not being deep, are warmed in summer, and cooled in winter." He then describes the maladies which will prevail in such regions: "The inhabitants have heads full of humidity and phlegm—they are destitute alike of strength and activity."

These observations refer to the southern coasts of Greece and of Asia Minor, in the neighbourhood of the island where Hippocrates was born. According to Mariti, the whole of the south coast of the island of Cyprus frequently experiences an unwholesome state of the atmosphere; brackish waters are in abundance there, and the country is very unhealthy. The same observations hold true as to the coasts of Caramania, or ancient Cilicia. At Salata, at Agas, and at Adana, the bad air compels the inhabitants, during summer, to retire towards the mountains. And why is the southern exposure of these countries so unwholesome? Strabo and Quintus Curtius tell us the reason. "Because Cilicia is a narrow plain, bounded on the north by the chain of Mount Taurus; and the winds which flow from the south being reflected by the mountains, cause suffocating heat; besides, there are marshes and stagnant ponds on the coast." On the other hand, Cicero informs us, that the snow rendered the passage of Mount Taurus difficult before the month of June.†

This is the reason why the temperature of the air and of the waters of Cilicia, experience variations too great not to be hurtful. This observation undoubtedly admits of being applied to other countries where the same combination of circumstances takes place; the southern wind is known to be generally damp, hot, and unwholesome, upon the shores of the Mediterranean. In the island of Lesbos, according to Vitruvius, southern winds often cause epidemic complaints: In Attica, they once occasioned the plague. Virgil describes them as winds "whose damp breath is injurious to orchards, corn, and flocks."§

Let us extend this general character to the coasts of the Gulf of Persia. The southern winds there bring on the rainy season, and suffocating heat. At Susa, says Strabo, the inhabitants dare not expose themselves to the heat of the sun in the middle of the day. At Bassora, according to Otter, the southern wind paralyzes all the strength of the human body.

Contrary examples. But let us pass to the opposite coast of Africa. Aristotle, in his day, knew that the southern winds are often cold, and always dry there, because they blow from Mount Atlas. At Paris too, we have southern winds charged with the atmospheric cold of the mountains of Auvergne. These same winds are very cold in Saubia and in Bavaria, for they pass over the Alps. Every where winds are modified according to the nature of the places over which they blow.

We do not, however, stand in need of these examples. Does not Hippocrates himself immediately add, "But even amongst those towns, (exposed to the hot southern winds) such as are very much open to the sun and to the winds, ought to experience these disagreeable alterations to a less degree." In fact, Tarsus in Cilicia, notwithstanding its southern exposure, furnished an example of wholesome climate and limpid waters.¶

* Hippocrates, de Aer., aquis, locis, §§ 9—14, edit. de Coray.
‡ Cicero. Epist. ad Famil. X V. 4.
¶ Dio Chrysostom, Orat. de Tarso.
The Northern climate of Hippocrates is not more universal than that which we have been considering. Winds from the north at Archangel, and at Dantzig, bring humidity, and are less cold than the southern winds. These variations in the nature of winds do away the other consequences. A proof of this is to be found in the Spanish peninsula, under the same latitude as northern Greece. The Asturias are exposed to the north; the climate is cold, but extremely damp. The prevalent diseases are a species of leprous, dysenteries, scrofulous swellings, and others of that kind which the father of medicine attributes to southern exposures.

The resemblance which Hippocrates endeavours to establish between the southern and eastern climate, is also unfounded as to western Europe, where the south winds more generally resemble those from the west in humidity and mildness; whilst, on the contrary, the winds from the east are evidently colder even than those from the north, because these east winds come to us over central Russia, the Uralian mountains, and the confines of Siberia. The catarhral affection which was prevalent in 1782, was generally ascribed to the severe cold suddenly brought on by an eastern wind.

We are equally unwilling to admit the theory of Hippocrates with respect to western climates. "Every nation," says he, "exposed to western winds, has an unhealthy climate, the waters which they drink are not limpid, because the morning fogs mingle with them before the sun has had time to dispel them. Secondly, the inhabitants of these places are exposed to sudden changes of temperature; for, in the summer mornings, cool winds blow, and dews fall. In the afternoon, the heat torments them; they have a pale complexion, and a feeble constitution. Breathing always a thick and unwholesome air, their voice becomes rough and hoarse. The west presents to us the image of autumn; the people who live under this climatological constitution, should participate in the maladies of the inhabitants of the north and south." A commentator adds, "They will join the ferocity of the natives of the north to the sickness of those of the south."

All these observations of Hippocrates, though sound and just, when properly restricted, become puerile and absurd when they are extended into general rules.

Who are there that lie more to the west than the Portuguese? Have they therefore a raw and hoarse voice? On the contrary, their language is infinitely softer than that of the Spaniards. Is the air which is breathed in Portugal thick and unwholesome? So far from it, that the English send thither their invalids to recover their health. Look to the Irish, who are continually exposed to storms from the west; have they a pale complexion? On the contrary, a native of Ireland may be distinguished by the freeness of his looks.

Has Hippocrates then advanced assertions which are utterly false? We disclaim the thought of bringing forward such an accusation. But he meant to speak only of certain countries of Greece, and his observations are just when they are thus locally interpreted.

All the western coasts of Illyria, of Epirus, and of the Peloponnesus, have in fact that inconstant climate which Hippocrates compares to autumn. There the west wind often brings rain and fog; and even in our days the impetuous and baleful west wind, of which Homer so often sings, is still felt in these regions.

The Eilians, according to Strabo, Hesychius, and Eustathius, had, of all the Greeks, the rudest pronunciation; that nation and their colonies often inserted a canine letter (r) where the other Greeks put none, they said heros or her instead of Héros.

The Etolians probably spoke still worse, their ferocity besides is well known. Polybius and Thucydides consider them as semi-barbarians. Lastly, the inhabitants of the island of Zanto, according to Scrofani, have a pale complexion. The

* Kant, Geographie Physique, iii. Part ii. p. 110.
‡ Homére, Odys. v. 295.; xii. 289.; xiv. 458.
§ Strab. x. 308. Hesychius, in voces, Eretria, Eustat. in Illiad. ii. 279.
Vol. I.—R b
western Greeks were in general not so tall as those of the east and the north. Ulysses was called by the Etrurians the wandering dwarf.

Thus are the observations of Hippocrates justified; and this, we presume, is the true way of reading and explaining an ancient author, by comparing him with other writers who were his contemporaries, or his countrymen. The critical examination of the four climates of Hippocrates should convince us of the impossibility of founding a classification of temperatures on the principle of the causes which produce them, since every one of these causes varies with geographical circumstances. It is by considering the principal combinations of the properties which characterize climates, that we can classify them in a general manner. Heat and cold may be accompanied with humidity and dryness; from thence there results four principal climates.

We have first the hot and dry climate. Such is in an extreme degree that of the deserts of Sahara and of Arabia. The earth beneath is scorching, the sky above is on fire; even the brackish water is scarce and valuable as gold; plants languish for the want of nutriment; the men and animals indeed are strong and brawny, but few in number; olive complections and bilious temperaments prevail amongst the natives of these countries. Their ferocious and sanguinary dispositions correspond to the character under which nature has appeared in these dreary and inhospitable regions.

The hot and humid climate prevails in Bengal, in Mesopotamia, in the coasts of Zanguebar, Senegambie, Guayana, and Panama; these countries enjoy the verdure of perpetual spring; and furnish the most gigantic productions of the vegetable kingdom; but there also reptiles of unwieldy length wallow in the mud of marshes, steaming with pestilence; there man, robust in his frame of body, propagates with rapidity, but his moral character is sunk almost as low as that of the brutes. The deep swarthy skin, and the phlegmatic temperament belong peculiarly to these countries. The cold and dry climate supports a hardy, though certainly not a profuse vegetation; the waters are generally pure, but hard; animals and men, respiring more oxygen, are strong, active, and healthy; the moral and the physical part are in a state of equilibrium. They propagate slowly, but with regularity; the sanguine temperament, and the white skin, are characteristic of this climate, which comprehends the greatest part of Europe and of Asia.

The cold and humid climate, in its extreme, such as is experienced in Siberia, and to the north of Canada, envelops the atmosphere with wholesome fogs, and reduces vegetation to a few cheerless stunted shrubs, and to creeping moss. The animals are covered with a thick fur under which they remain torpid one-half of the year. Man himself, tall, but weak and sluggish, thinks only of defending his physical existence against the unkindness of nature. The red copper-coloured skin, and the melancholic temperament, seem to be the native growth of such a climate. By unfolding, in this manner, the views of the celebrated philosopher Kant,* our design has been only to exhibit a sketch of the combinations of extreme temperatures, and their most probable effects. We admit, that the four principal climates are, perhaps, no where to be found without some modifications, which alter their nature. These modifications are of two kinds; the one kind arises from a succession of two different climates in the same region; the other is owing to the more or less elevated degree of any of the four qualities which constitute climate. It is these modifications which, in opposition to the system of Hippocrates, can entitle any climate whatever to the appellation of temperate, since the true sense of this term denotes an atmospheric constitution in which the hot, the dry, and the humid, are equally moderated by each other. Thus, in Egypt, the succession of humid heat, during an inundation, and of dry heat for the remainder of the year, tempers a climate, which, without either alternative, would be insupportable. Thus, the Dutch see with pleasure the dry cold succeed the humid cold, which, of itself, would render their country extremely insalubrious. At other

* Memoir upon the four principal constitutions of the human race, in the collection, entitled, Mundane Philosopher by Engel. (In German.)
times, the succession taking place too rapidly, or the two temperatures being too remote the one from the other, the climate is rendered more disagreeable than if one uniform temperature continued. It is thus that the inhabitants of Astrachan, and of some other towns, feel in summer the heat of Africa, and in winter the cold of Siberia. These atmospheric constitutions are also modified by the solar climate; thus, the dry heat, which renders Sahara almost inaccessible, becomes, at Madrid or at Marseilles, a temperature very suitable to man. The baneful effects of humid heat, are, in like manner weakened, as we recede from the equator. On the other hand, we find the cold, dry or damp, more and more supportable as we advance from the pole towards the tropics. For example, at Bergen in Norway, and at Brest in France, there is always the same constitution of winter rendered variable and humid from the vicinity of an ocean which never freezes. But how great is the difference in the intensity of the cold!

These observations upon the true acception of the word climate, naturally lead us to take a general view of the different temperatures of the five zones into which we are accustomed to divide the globe.

The torrid zone experiences only two seasons, the one dry, and the other rainy. The former is looked upon as the summer, the latter as the winter of these climates; but they are in direct opposition to the celestial winter and summer,—for the rain always accompanies the sun, so that, when that luminary is in the northern signs, the countries to the north of the line have their rainy season. It appears that the presence of the sun in the zenith of a country, continually heats and rarifies its atmosphere. The equilibrium is every moment subverted, the cold air of countries nearer the poles is incessantly attracted, it condenses the vapours suspended in the atmosphere, and thus occasions almost continual rains. The countries of the torrid zone where no vapours rise into the air, are never visited by the rainy season.

Local circumstances, particularly high chains of mountains, which either arrest or alter the course of the monsoons and the winds, exercise such influence over the physical seasons of the torrid zone, that frequently an interval of not more than several leagues separates summer from winter. In other places, there are two rainy and two dry seasons, which are distinguished by the names of great and little.

The heat is almost always the same within 10 or 15 degrees of the equinocial line; but towards the tropics, we feel a difference between the temperature which prevails at the moment the sun is in the zenith, and that which obtains, when, in the opposite solstice, the solar rays falling under an angle of more than 47 degrees. We may therefore, with Polybius, divide the torrid zone into three others. The equatorial zone, properly so called, is temperate, compared with the zone of the Tropic of Cancer, composed of the hottest and least habitable regions of the earth. The greatest natural heat ever observed, which is 35 degrees of Reaumur, (111° Fahr.) has been at Bagdad, at 33 degrees of latitude. The zone of the Tropic of Capricorn contains but little land, but it appears to experience momentary heats of extreme density.

Most of the ancients, disregarding the observations of Polybius, conceived that the heat continued to increase from the tropic towards the equator. Hence they concluded that the middle of the zone was uninhabitable. It is now ascertained that many circumstances combine to establish even there a temperature that is supportable. The clouds; the great rains; the nights naturally very cool, their duration being equal to that of the days; a strong evaporation; the vast expanse of the sea; the proximity of very high mountains, covered with perpetual snow; the trade winds, and the periodical inundations, equally contribute to diminish the heat. This is the reason why, in the torrid zone, we meet with all kinds of climates. The plains are burnt up by the heat of the sun. All the eastern coasts of the great continents, fanned by the trade winds, enjoy a mild temperature. The elevated districts are even cold; the valley of Quito is always green; and perhaps the interior of Africa contains more than one region which nature has gifted with the same privilege.

Nothing equals the majestic beauty of the summer in the torrid zone. The sun rises vertically—it traverses in an instant the burning clouds of the east, and fills the heavens with a light, whose effulgent splendour is unobserved by a single shade. The moon shines here with a more brilliant lustre, Venus blazes with purer and more vivid rays, and the milky way glitters with augmented brightness. To this magnificence of the heavens, we must add, the serenity of the air, the smoothness of the waves, the luxuriance of vegetation, the gigantic forms of plants and animals, all nature more grand, more animated, and yet less inconstant and less changeable.

Seasons of the temperate zone.

The temperate zones, on the other hand, are indemnified by the mild and varied charms of spring and autumn, by the moderate heat of summer, and the salutary rigours of winter. This succession of four seasons is not known beyond the tropic, nor towards the poles. Even that part of the northern temperate zone which lies between the tropic and the 35th degree of latitude, in many places resembles the torrid zone. Until we come towards the 40th degree, the frost in the plains is neither intense nor of long duration—it is equally unusual to see snow fall there, though unquestionably it is not true, that when a fall of snow does take place, the ladies of Rome or of Naples leave the theatre to enjoy so extraordinary a spectacle, or that Academicians run out, with their glasses in their hands, to examine this singular phenomenon. Elevated countries feel all the rigour of winter—and the trees even in the plains lose their foliage, and remain stripped of vesture during the months of November and December.

The most temperate climates.

It is from the 40th to the 60th degree, that the succession of the four seasons is most regular and most perceptible, without however endangering the health of man: And it is within these latitudes that we must look for the nations that are most distinguished for knowledge and civilization, and those who display the greatest courage by sea and by land. It would appear, that in countries where there is no summer, the inhabitants are destitute of genius, or at least of intelligence and taste; while in those regions where there is no winter, true valour, constancy, and loyalty, as well as other civil and military virtues, are almost unknown. But, let us remember, that it is man himself, who has in a great measure created these salubrious climates:—France, Germany, and England, not more than twenty ages ago, resembled Canada, and Chinese Tartary, countries situated, as well as our Europe, at a mean distance between the equator and the pole.

Seasons of the frozen zone.

Beyond the 60th degree, and as far as the 78th, (which appears to be the limit of the habitable earth in the northern hemisphere,) only two seasons are generally known; a long and rigorous winter, succeeded often suddenly by insupportable heats. The power of the solar beams, though feeble, from the obliquity of their direction, accumulates during the day, which are extremely long, and produces effects which might be expected only in the torrid zone. There have been examples of forests having been set on fire, and of the pitch melting on the sides of ships. In winter, on the contrary, hardly has been frozen in heated rooms; a crust of ice has covered even the sheets of the bed; the earth has been found frozen to the depth of 100 feet; and mercury congealed in the thermometer, leaves the degree of cold indeterminate. I speak here of extreme cases, and of the zone in general. For, in some places, a southern exposure, and the neighbourhood of the ocean, soften the climate to an almost incredible degree. Bergen, in Norway, and the whole of the adjoining coast, between 60 and 62 degrees of latitude, has a very rainy winter, but seldom snow or frost—that season of the year is there less rigorous, and requires less fuel than at Orcaowia, or Prague, or Vienna, in Austria, between the 48th and 50th degrees of latitude. The frigid zone enjoys an atmospheric calm which is unknown in temperate regions—it has no storms, no hail, scarcely a tempest—the splendours of the aurora borealis, reflected by the snow, dispels the darkness of the polar night. The days for several months, though of a monotonous magnificence, astonishingly accelerate the growth of vegetation. In three days, or rather three times twenty-four hours, the snow is melted, and the flowers begin to blow.

* Bergmann, Geographie Physique, § 144. † Gmelin, Voyage en Siberie.
This succession of physical zones is not equal in the two hemispheres. When speaking of the ice of the sea, we observed, that, in the arctic seas, we scarcely meet with the large floating masses before we arrive at the 70th degree, nor the stationary fields, until towards the 75th or 80th degrees of latitude; while, in the antarctic seas, both occur at from 50 to 60 degrees of southern latitude. In the island of Terra del Fuego, in that of Sandwich, and in several others situated towards the 54th and 59th degrees of south latitude, the mountains even in the southern summer remain covered with snow quite to the shores of the sea.

This diminution of heat appears to cease all at once between the 30th and 40th degrees of latitude; for hot winds arise from the interior of New Holland, whilst the mountains of Van Diemen’s Land remain covered with perpetual snow; thus there is felt in these latitudes the most sudden transition from a suffocating heat to a very sensible cold.

Astronomers seem to ascribe this contrast solely to the shorter stay which the sun makes in the southern signs; that is to say, to the greater rapidity of the earth’s motion when it is in its perihelion. The sun’s stay is 7 days and 18 hours shorter in the meridional than in the northern signs. But the difference produced by this cause would be only ⅔, while the actual existing difference is nearly ⅔. The theory of radiant heat has furnished another explanation; and an attempt has been made to demonstrate, that in a given time, the southern hemisphere gives out a greater quantity of its own constant heat than the northern. But this cause should not all at once cease to act towards the 40th degree. It is necessary, therefore, to search upon for the cause of this phenomenon in the earth itself.

The vast extent of the antarctic seas, the total absence of any great extent of land, and the form of the continents which terminate towards the south, almost in points, open a free and unincumbered field to the currents from the polar seas; and allow them to push forward the icy masses in every direction from the south pole towards the southern temperate zone. There some of them accumulate, and are stopped by getting entangled with each other; some of them are hindered from advancing further by the force of the general movement of the ocean towards the west, which must now be very perceptible; and some of them melt by the action of the solar heat, which must be considerable at 50 degrees, although it has but little effect upon the thermometer, because the ice in melting absorbs it the moment it is diffused through the air.

As there is no fixed limit where the motion of the polar waters towards the equator stops, and changes into the general motion towards the west, this change depending on the influence of several local and temporary causes, as little will there be any determinate boundary for the southern ice. Accordingly, navigators have sometimes met with entire and fixed islands of ice towards the 50th degree, and sometimes they have advanced 10 degrees nearer the southern pole, and met only with floating pieces. These variations of their latitude, under the same meridian, seem to establish our explanation: it seems indeed, impossible to assign any other sufficient cause than the action of the polar currents. These moveable masses of ice, propelled on all sides towards the tropic of Capricorn, are stopped in their progress only when they meet with currents which set to the west, and which, as they draw them along, impart to them a compound motion—a motion which, being constantly modified by the equatorial current, makes them describe a spiral line until they melt. They thus enter unexpectedly into a zone otherwise temperate, where their presence causes these sudden transitions from heat to cold, and those extensive fogs, which are spoken of by navigators.

In adopting this explanation, we are under no necessity of supposing the quantity of southern ice to be so enormous as it would be according to the

* Poster, Cook, Dalrymple, &c.
\+ Péron, Voyage aux Terres Australes, ii. (in edit.)
\+ Labillardière, Voyages à la recherche de La Pérouse, ii. 27.
\| Prevost, sur le calorique rayonnant, p. 328, sqq.
* See Book xiv. p. 158.
to any other hypothesis; for upon our principle, this ice, which appears towards the 50th and 60th degrees of latitude, would form but a very small part as to quantity when compared with a single mass of fixed ice around the pole, indeed they would consist of only a girdle or belt of variable thickness, behind which there might be found vast expanses of sea, which from time to time would contain no ice.

Whether the general temperature of the globe changes. — The theory of physical climate suggests still another inquiry; Can we admit a change in the direction of the terrestrial axis? This inquiry is highly interesting, not only to geographers, but to the whole of the human race. Without the obliquity of the ecliptic, without that angle of inclination, which exists between the plane of its diurnal rotation and the plane of its orbit, there would be no inequality between the days of winter and summer, and no change of seasons as far as that depends upon celestial causes; the equator would be still more constantly heated, than it is at present, and we should perceive the heat diminish on both sides in a very rapid progression; each climate would have an invariable temperature, which would be that of its present spring and autumn, but very probably somewhat lower. The earth would then be scarcely habitable beyond the 45th or 50th degree of latitude. Here, then, would be that eternal spring which the poets wish us to deplore the want of. Many philosophers and astronomers entertain the opinion that the ecliptic and the equator actually tend to coincide. The ancient astronomers found the obliquity of the ecliptic to be 24 degrees. Eratosthenes, 250 years before Christ, found it to be 23 degrees 50 minutes. Albategnius, in 880, 23 degrees, 35 minutes, 40 seconds. Tycho-Brahe, in 1587, 23 degrees, 31 minutes, 30 seconds. It oscillates in our day about 23 degrees, 23 minutes. Its average diminution for each century seems to have been hitherto 57 seconds. But Euler and Laplace have proved, by profound calculations, that this diminution arises from the mutual attraction of all the planets, the orbits of which being differently inclined, seek constantly to mingle in the same plane, from whence there result only temporary inequalities, confined within determinate bounds. The sun contributes above all constantly to bring back all these variations to the point whence they had originated. Were it not for the attractive force of the sun, the planets, especially Jupiter and Venus, might have power to change the obliquity of the ecliptic from 10 to 12 degrees. But the mighty monarch of the planetary system represses these attempts, and prevents the obliquity from ever varying more than from 2 to 3 degrees.

In general the whole system of the world appears now to oscillate round a mean state, from which it deviates only very insensibly either to the one side or the other. The violent contests between the great powers of nature have ceased; we live in a period of physical repose, but we perceive around us the traces of anterior revolutions. These are about to become the subject of our inquiries.

BOOK XVIII.

Continuation of the Theory of Geography. Of the Revolutions which have taken place upon the Surface of the Globe.

We have described the existing physical state of the terrestrial globe, at every stage in our progress. It would seem that the order of things which now subsists, must have been preceded by several orders of a different kind. The existence of the material world is only a series of metamorphoses. As in the ocean wave sinks into and blends with wave, so the elements, agitated by a never-ceasing motion, mingle, and combine, and replace each other, under forms continually changing and continually renewed.

In this ebb and flow of existence and destruction, we float along like the light and unsteady leaves, which are borne, heaved aloft, hurried on, and swallowed up by one
and the same billow. How then should we hope to form a conception of the unmeasured chain of revolutions which our globe may have undergone? We walk upon the wrecks of anterior worlds; but can we compute their number? The lapse of ages has heaped up ruins upon ruins: at every step we tread on monuments, upon which the band of nature has engraved the history of the globe; but the record is couched in hieroglyphical symbols, the key to which shall never perhaps be found.

The feeble light which reasoning or experience has furnished, relates to two classes of changes which have taken place on the globe. Some repeatedly occur under our own observation, or at least have been observed by men who have conveyed accounts of them to us. Other revolutions are unknown to us only by their astonishing effects, and by traces which it becomes us to follow in silence, resolved to stop where they cease to guide us. It is of importance to separate, with rigorous exactness, the class of supposed or inferred facts, from that of established facts. But enthusiasm has already singularly perplexed this question: the inventors of geological systems have brought forward as historical facts, events which have not any contemporary and substantial authority: the vague description of poets, and even popular traditions, have been collected and repeated without undergoing any scrutiny. Aristotle complained in Greece of this abuse. Pliny, in a later age, introduced it at Rome. As to the moderns who have undertaken to write the history of the changes which have happened on the surface of the globe, they have chosen rather to display superficial erudition, by compiling anew what the ancients had compiled before them, than to make use of that difficult art by which facts of an established and definite character are distinguished from uncertain traditions that are altogether unfit for the purpose of the philosopher. It is an undertaking beyond our strength to re-establish historical truth in all its purity: we shall, however, refrain from repeating any of the fables with which geologists have adorned the first ages of the history of the globe.

The changes whose actual occurrence is capable of proof, are marked by characters extremely different. Some have taken place with the most inconceivable rapidity; while, in the imperceptible progress of others, we perceive that the power of time has no limits.

Of all the known powers and agents, there is none which has not contributed, however little it may have been, to change the surface of the globe. Fire performs the most conspicuous and noisy part; but water appears to have had a still wider sphere of activity. The air conceals under its appearance of weakness a very powerful disintegrating and recomposing energy. The earth itself, by yielding obedience to the laws of equilibrium, has assisted in giving shape to its own surface. And the labours of man, though in the last rank, occupy a place in some corners of this vast picture. We shall now take a rapid survey of the annals of the globe.

The atmosphere generates meteors whose slow but continual effects, by accumulating from age to age, must collectively amount to an incalculable sum.

The winds, which uproot entire forests, have laid, in some remote period, the foundations of coal mines. The rains, by running down the sides of the mountains, bare and roughen some parts of them; whilst, to other parts, they give roundness and elevation. The hail and the snow harden and accumulate into vast masses of ice and snow, whence flow the impetuous rivers which excavate the valleys. Raymond observed the summits of the Pyrenees every where furrowed by the thunderbolts. But the air of itself is possessed of a very considerable dissolving power; it ultimately decomposes all known substances. The most solid rock is cleft, and divided into stones; the stones crumble into gravel, or dissolve into sand, which are lifted by the winds, or rolled by the waters to a great distance from their original soil.

The succession of heat and humidity accelerates that slow disintegration which is continually going on before our eyes. The air disseminates the pollen, or fracturing dust of plants, transports whole clouds of sand and of volcanic ashes, and
holds in solution a great number of watery, saline, and earthy particles. It contributes, therefore, incontestably to change the surface of the earth.

This action of the air is especially perceptible in the continual extension of moving sands. The effects of it have been severely experienced near St. Pol de Leon, in Bretagne, where a whole village was so completely buried beneath the sand, that nothing was seen but the spire of the church. England, Jutland, and Scania, have undergone, and do still undergo, similar inundations. In Greenland, the famous ridge of hills of pure ice, named the Iceblink, is situated between two promontories of moving sand with which the winds sometimes strew the decks of vessels more than 12 leagues distant. Thus the phenomena of the African deserts are met with near the pole. In Jutland, we have seen places where the sand is so extremely fine, as to exhibit the appearance of a fluid mass in which we might swim. It is easy to conceive that the wind may carry this powder to considerable distances, and in this manner create new deserts of sand.

The industry of man, by paviing streets, by building houses, by spreading manure over the fields, by erecting dikes along the sides of rivers, tends insensibly, but powerfully, to elevate the soil of a country. We perceive this chiefly in towns near ancient buildings. To enter the Pantheon at Rome, it was once necessary to ascend eight steps: we must now descend as many. Nor should it be alleged that the building has sunk, for it has preserved the same level for two centuries past.

The aquatic plants often change a marsh into a damp meadow. These are, first, the Hippuris, the Utricularia, the Sphagnum, and different rushes which form with their interwoven roots a floating tissue upon the muddy water. Next, the Sphagnum palustre is diffused over the whole surface, absorbs the water like a sponge, and creates a bed for the briars and lichens which thicken and raise the soil by their annual depositions. At other times, the expanse of a tranquil bay is peopled by water lilies, the Arundo phragmites, and other plants which retain the earthy particles cast up by the waters without. As soon as this mud has acquired a little solidity, we see the willows spring up, together with osiers and other trees which prefer an aquatic soil.

Vegetation contributes also still in various ways to change the appearance of the earth. Observe that slender plant, that moss which mounts up along the walls of a deserted palace. By being repeatedly decomposed and renovated, it will, some ages hence, have covered, and even have concealed beneath it, those stately piles which were reared by luxury for the residence of sovereign power. The remains of the wildest animals are collected in heaps where the thrones of monarchs once glittered with splendour. Brambles cover the temple of Olympic Jupiter, and the towers of Babylon lie concealed beneath the grass.

Mountains sink down, or separate into fragments, from the agency of other causes than earthquakes or volcanic explosions. Sometimes the waters of a rapid river, of an agitated lake, or even of a subterraneous current, waste, consume, and secretly undermine a mass of rocks, or of solid earth. The beds of sand, gravel, clay, and chalk, which serve as a support, are dissolved or swept away; an excavation is formed, and the superincumbent mass sinks down by its own weight. At other times, subterraneous waters penetrate under a new stratum, under a vegetable bed; they at first support this crust, then loosen it, tear it off, and at last finally wash it away piece-meal, or swallow it entirely up. Sometimes there is a fissure, by means of which part of a mountain is detached from the principal mass, and overturned in consequence of being deprived of its natural support. These kinds of fissures are in the argillaceous rocks, the effects merely of dryness, accompanied by the shrinking in of certain particles; in calcareous rocks, a species of fermentation may very much contribute to produce them; and in granite

† Crantz, Relation du Groenland. Egede, &c. &c.
‡ Bergmann, Géographie-Physique, § 148, ii. 170.
§ Mison, Voyage d’Italie, ii. 195.
rocks they appear to arise from the decomposition of certain lamines of a less powerful crystallization, acted on by the oxygen of the atmosphere. The granite of Finland, named Rapahiwi, is decomposed wherever there predominates in its composition ferruginous, or a kind of sulphuro-ferruginous mica. Bergmann has often seen the petrosilex covered with a slightly coherent crust, which, when washed off by the waters, exposes to view small fragments of quartz and ferruginous garnets. Thus the mountains may be destroyed even by the influence of that imperceptible humidity which is inherent in all terrestrial substances.

There can be no doubt that these two kinds of subsiding, must have contributed to the formation of the existing surface of the globe. We perceive every where around us nothing but wrecks and ruins; those beds of rocks, displaced, overturned, shattered; those lakes so deeply excavated; those caverns which reach down towards the centre of the earth; those peaks which tower to the sky; those precipitous coasts which surround us with an immense rampart all the seas of the globe; those Alps which overhang Italy; those Andes which plunge their gigantic sides into the ocean; those forests, those races of quadrupeds, those aquatic animals buried in the earth in mingled confusion; all these circumstances impress us with the awful and overwhelming thought, how vast must have been the heavings and agitations which have contributed to give to the globe its present appearance.

M. Deluc has very happily applied this physical truth to illustrate the account of a universal deluge contained in the sacred writings. According to him, this catastrophe, which some have endeavoured to represent as impossible, may be naturally explained, merely on the supposition of a general sinking down of the inhabited regions of the earth; then the waters of the sea, instead of being elevated, as has been generally imagined, would have needed only to follow the laws of gravitation, in order to cover the omnium world, and leave dry our present continent.

But we wish to speak here of facts of which history has preserved the details.

The subsidings which take place from excavations made by water, happen yearly in mountainous countries along rivers. It is thus that the Rhône has formed the vault under which it appears to lose itself; it is thus that the Adige swallowed up the town of Neusark and others in 1767. In the south of Norway, the rapid Glömmen descends from the summit of the Dofrine mountains towards the North Sea, and forms, a little above its mouth, the fine cascade of Sarpen. The eddy of the waters of the cascade has formed under the bank a subterranean lake 600 feet in depth. On the 5th February, 1702, the Castle of Borge, with all its dependencies, was engulfed in this excavation, and entirely disappeared, so that there appeared nothing in its place but a lake 800 feet long, and from 300 to 400 broad. The disaster which befell the town of Pleurs, in the country of Chievonna, arose from a similar cause.

Rivulets and springs without number wore away the frail foundations of Mount Conto; on the 25th August 1618, the masses of rock of which that mountain was composed, separated from each other and rolled upon the town, which they completely overwhelmed, as well as the small town of Schilano; 2430 individuals perished; a lake occupied the place where 200 elegant houses once stood. All the wealth, which for a century commerce had amassed, was at once restored to the maternal bosom of the earth.

The plains experience depressions of another kind. The platforms of turf suspended upon water, sink under the weight of forests, houses, and inhabitants. Ireland every year sees the number of its lakes increase by the sinking in of its bogs. It is to these that subterraneous forests, in some measure, owe their origin. There are some which, like those on the shores of Lincolnshire, are formed conjointly by the sinking down of marshy coasts, and by ancient invasions of the sea. Others, like those which have been discovered near Morlaix,
appear to owe their subterraneous situation to changes anterior to the existing state of the globe, but for the most part, they are met with in turf or peat grounds. In the Isle of Man, accordingly, in the midst of a marsh, at the depth of 20 feet, fir trees are found still on their roots. At Halfayl-charge, we find trees which have their nuts and acorns lying at their sides. Holland, Switzerland, and France, present similar facts; but it is Sweden which furnishes us with the most curious example. Near Asarp, in West Gothland, there are two peat bogs composed of a thick mud, and of a slight turf. We discover there a great quantity of trunks, and roots, which are carried off every year to serve as fuel; the following year they are equally abundant, which arises unquestionably from an immense collection of trees buried in this great ground, and raised to the surface by the annual thaw.*

In the Electoral Marche of Brandenburg, there is the lake of Arendt, formed by two subordinings, the one, it is believed, happened in 815, the other in 1885. How many lakes are thus formed in Prussia and in Poland! How many other events are there of this nature, the knowledge of which is lost to us, or has been disfigured by tradition! Strabo tells us, that around the Lake Copaia, in Bessotia, the sinkings of the ground were very numerous, and often changed the course of the river Cepissus, which at last flowed in subterraneous canals constructed by the hand of man. As these canals are no longer kept in repair, and as the lake Copaia is changed into a marsh, we may ask, what is become of the waters of the Cepissus? It appears only too probable that they have hollowed out a subterraneous reservoir, an invisible lake, but which may one day swallow up Bessotia, and thus renew the deluge of Ogyges.

We have spoken of subterraneous lakes, and amongst others, of that in the West Friesland, which was discovered in the 12th century; by degrees there was formed on its surface a crust of peaty and slimy substances, which in their turn were covered with vegetable mould. This crust is now strong enough for a carriage to pass over it, and to be laboured, sown, and reaped. At the same time the inhabitants have only to make two or three holes, four feet deep, to find water to serve them for steeping their flax. These probably make a subterraneous lake near Narbonne, in the territory of Liviere. We there see five abysses, named the Oediefs, of an extraordinary depth, and filled with fish; the earth which surrounds them tumbles under the steps of the adventurous peasants who are attracted thither for the sake of fishing.

We may easily conceive the disasters which, from time to time, indicate the existence of these subterraneous lakes, in places where no one suspects them. In 1793 a lake was formed in the town of Lons-le-Saulnier; several houses disappeared, as well as a part of the high road from Lyons to Strasbourg.† It is supposed that this was an old pond of brackish water; on which at first there was formed a pellicle, then a slight vegetable crust, and then ground, to all appearance, solid; but a great drought having made the subterraneous waters full, this crust was deprived of support, and consequently sunk down. Mount Jura presents a number of vestiges of similar sinkings. The Pyrenees, another calcareous chain, exhibit them in as great abundance. Buffon relates, that a mountain in 1678, having sunk down into subterraneous caverns filled with water, caused a great inundation in a part of Gascony. The Julian Alps, where the famous lake of Cirknitz is, contain in their numerous caverns many similar reservoirs.

Justly, then, might Seneca ask, "In what part of the globe has not nature water at her command, to assail us with, whenever she pleases? Our excavations, our pits, almost everywhere terminate in water. Let us add, also, those immense invisible lakes, those subterraneous seas, those rivers which are enveloped in continual night. How many causes are there of inundation in those waters which flow beneath us and around us? For a long time prisoners, they will one day set themselves at liberty; the rocks, open on all sides, will furnish numerous currents of water, which will rush towards the ocean. These deluges of water or fire happen whenever it pleases the Almighty to re-commence a more perfect order of things."
We are now to speak of subsidings, in which the agency of water has not been immediate and predominant; for rarely does a disaster happen, in the production of which this element is entirely inactive.

Many mountains, as we have seen, are originally composed of large stones, perfectly detached from each other. There are many such mountains between Norway and Sweden. A transverse section of mount Qedlie shows a mass or stratum of 240 feet, composed of small flat stones—some calcareous, some sandy, and always without any cement to bind them together. The slightest force is sufficient to roll down these masses; which have been formed by changes anterior to the records of history.

There are other causes which concur in decomposing the most solid mountains; extreme cold often makes large blocks of rock burst asunder and tumble down. In West Gothland, near Hunneberg, there are two regular pillars detached from a rock, solely by the action of frost.*

Norway suffers great devastations from the avalanche of stones, which are in like manner occasioned by the effects of cold. In the milder climates, the successive action of cold and heat is not less destructive, though more silent. In these same mountains of West Gothland, of which we have just now spoken, Bergmann has observed that the rocks of trap had a paler and more porous crust on the side lying towards the sun.

In a great many places the skeletons of mountains attest these changes. Near Aderbach, in Bohemia, you pass through a sort of labyrinth of blocks of free-stone, placed perpendicularly, from 100 to 200 feet high, and of a circumference equal to the half of their height. These columns, or rather these square towers, occupy a space of ground a league and one-third in length, and half a league in breadth. A rivulet meanders amongst them, and loses itself in a gulf. The verdant foliage of trees and shrubs is mingled with the grey masses of the rocks. This labyrinth is evidently the remains of a mountain, the less solid parts of which have crumbled down, and been carried off by currents of water. The famous stones of Carac, which the vulgar regard as a Druidical temple, appears to us only a labyrinth of Aderbach in miniature. Other countries present similar pictures: such as Stonehenge in England, Griffenstein in Saxony, the rocks of Siw-Fene in China, and several assemblages of enormous stones in the Cordilleras of Peru. The primitive nations chose such places, stumped with the imprints of divine power, to solemnize the rites which they dedicated to beings of a superior nature.

The slow, but continual and combined action of all the causes which we have specified, is followed by the most astonishing catastrophes.

The remains of the mountains called Diableret, in Switzerland, present, it is said, a very picturesque scene; portions of wood and pasture, which have escaped the common disaster,—rocks, upheaved, dismantled, cleft from top to bottom, and seeming to announce new desolations,—torrents, which are forced to scoop out for themselves a new bed, wear away the trunks of birch trees and fires, half buried in their waves. Such are the varied groups which adorn this theatre of devastation.

It was, according to the History of the Academy of Sciences, in the month of June 1714, but, according to M. Bourrit, and other Swiss writers, the 23d September 1713, that the summits of the Diablerets suddenly fell, and covered the extent of a square league with their fragments, which often form a bed of stones 30 yards and more in thickness. Although several hundred cottages were buried in the ruins, fortunately only 18 persons perished. Cows, goats, and sheep, were the principal victims. The dust which was raised by the fall of the mountain occasioned for some moments a darkness like that of night, although the event took place at three o'clock in the afternoon, and in fine weather.†

We have a more satisfactory account of the falling down of a mountain, which took place in 1751, near Sallenche, in Savoy. The naturalist Donati thus describes this event: A great part of the mountain, situated below that which fell down, was

* Bergmann, Géographie Physique, ii. 242.
† Bourrit, Description des Alpes Pennines, &c. Ebel, Itinéraire, ii. 36.
composed of earth and stone, not arranged in strata or beds, but confusedly heaped up. The rolling down of these stones, in former times, had left by degrees the principal rock of the greater mountain without support. This mass was composed of five horizontal and distinct strata, the two first were of a slaty and brittle kind, the two following presented to view a shelly marble, cleat transversely in its beds. In the fifth, the slate reappeared, but its laminae were in a vertical position, and entirely dissuited. The waters of three lakes, formed in this last stratum, continually penetrated through the chinks of the mountain. The abundant snow of the year 1751 augmented the force of these waters, and determined the fall of 648 millions of cubit feet of rocks, bulk enough to have formed a great mountain. The fall of this mountain was accompanied by a quantity of dust uncommonly subtle, and which was taken for smoke, because it supported itself in the air for several days. A report was spread that a new volcano had broken out in the midst of the Alps, where the ravages of subterraneous fires had never been known. But Donati, having been sent to the spot, soon dissipated these groundless fears.*

There is also another kind of catastrophe, which is not less extraordinary in its causes, than destructive in its effects:—it happens when one bed of earth or rock slides over another bed without breaking, or separating into pieces. Some years ago, the commencement of an event of this kind was observed at Solutre, near Macon. After some great rains, the strata of earth which lay upon the mountain of Solutre slid along over couches of calcareous stones, which constituted the body of the mountain. They had already advanced several hundred yards, and the village was about to be buried in ruins, when the rain ceased, and this moving mass of earth was arrested in its progress.† A still more astonishing fact of this kind is related: a part of the mountain Gomma, in the Venetian State, detached itself during the night, and glided along, with several houses, which were carried into the neighbouring valley; in the morning the inhabitants, who had nothing, were extremely astonished, when they awoke, to see themselves at the bottom of a valley, and for a long time imagined that a supernatural power had transported them through the air into some distant climate, until, upon examining the environs, they perceived the traces of the revolution which had so wonderfully spared them.

Various disasters are often connected together: inundations originate from the fall of masses of earth, and occasion such falls in their turn.‡

In 1773, the mountain of Piz, in the marquis of Treviso, in the state of Venice, was cleat in two; a part was overturned, and covered three villages, together with their inhabitants. A rivulet, stopped by the rubbish, in three months formed a lake. The remaining part of the mountain precipitated itself on that side, the lake overflowed its banks, and many people perished. Several villages were also buried under the waters.‡

This brief sketch is sufficient to show the difference that exists between a subsiding or falling down, and a shaking of the earth, or earthquake, catastrophes too often confounded by the ancients, and even now by the vulgar. The effects are often the same, but the mode of action and the causes are different. There are fellings down without volcanic shocks, but these shocks often occasion them. The only point of necessary coincidence is, that great rains, which succeed great droughts, equally bring on displacements and earthquakes. They occasion earthquakes, by evolving in the bosom of the earth elastic and inflammable gases; and they occasion the fall of large masses by cracking, softening, and detaching the different strata of the mountains. The ancients imagined that they could prevent earthquakes, by digging in the towns and surrounding country, ditches and deep wells, to give vent to the subterraneous vapours. It is more certain that men may, with a little care, avoid the destructive effects of fellings down. At first, in choosing the site of a town, or of a village, we ought to level the neighbouring heights, and examine the nature of the rocks, whether they are solid and durable, or the contrary; it is then, generally speaking, easy to place the buildings beyond the

* Donati, cité par Sausure, Voyages, sect. 493.
† Delametherie, Théorie de la Terre, vol. v. sect. 1420.
‡ Geography of Gaspari, (in German), vol. i. p. 370.
reach of such accidents. A Greek naturalist foretold to the Spartans the fall of a projecting part of Mount Taygetus, which soon after overwhelmed in ruins a considerable portion of the city of Lacedemon. Canals and drains, to carry off from the mountains their superabundant waters; reservoirs, where these waters may be collected for distribution over the country, to irrigate the fields and to drive machinery; dikes, walls, and perhaps deep ditches, to stop and weaken the shocks of avalanches; these are the barriers which human industry can oppose to such alarming and disastrous occurrences, one of the most salutary effects of which is to awaken our dormant powers, and to heighten our courage, by giving scope for its exercise.

In tracing out terrestrial hydrography, we have already noticed the very considerable force of running water; and the precipitation of parts of mountains, which we have just been describing, serves to exemplify some of its effects. Its action is still more general; the wandering torrents which roll down rocks, and root up forests, the deep stream which gradually undermines the mountains at whose base it flows, the vast and powerful river which shifts at pleasure the place of its bed, and sometimes creates, by the matter it deposits, a Delta of Egypt, and sometimes, by swallowing up extensive districts, forms new lakes, as, for example, the Lake Biesboch in Holland; these are the powers which, set in motion by the hand of nature herself, in whose operations ages are accounted as moments, have been able to produce a very great proportion of the changes which the secondary and tertiary soils have undergone.

We shall now produce some examples of very singular changes arising solely from the action of running water. Upon Mount Lé mor, in Norway, we see two roads worn in a rock of marble, the one above the other. The marble itself which separates them, and which is only three inches thick, allows you to perceive, through its crevices, a river flowing in the lower road. It appears that the waters of a lake, unnamed, some hundred feet higher, have by degrees hollowed out for themselves these two openings through the rock. It was thus, that the river Gaula, in the same country, lost itself in 1296, and re-appeared some years afterwards with extreme violence, driving before it the ruins of the subterraneous prison into which it had descended.*

Mount Jura, and in general all calcareous mountains, present facts of the kind. The lake of Joux, and that of Grand-Vaux, and many others, have worn in the rock the tunnels through which their waters flow. Sometimes, when the sides of the passage which the waters had made for themselves, became in part worn away and excavated, the roof falls down; but then forms an outlet, cut perpendicularly, through which the waters escape, as near Orgelet, upon the road of St. Claude;† or the mouth of the valley, blocked up by the rubbish, forces the waters to give birth to a lake, such as that of Sillais, near Nantua.‡

Another singular phenomenon occurs in the tunnels with no outlet, called in Sweden Giants' Cauldrons. These are circular excavations, sometimes of a spiral form, having their sides very smooth, situated for the most part on the sides of mountains, and frequently containing in the centre a rounded stone. The traveller Kallmärk observed these hollows in the United States, near Fort Nicholson. Several examples, observed in Switzerland and in Siberia, might be mentioned, but they are to be met with only in sulphated calcareous rocks. On the contrary, those of Sweden and the United States exist in granite. According to Bergmann, they have been formed by running waters, which had become engulphed there, and had imparted a rotatory motion to a stone detached from a neighbouring rock.¶

In admitting this explanation, the giant's cauldrons would incontestably prove, that there was a time when the granite was not harder than common limestone or gypsum.

There are many lakes which hold in solution saline, earthy, metallic, and bituminous substances: these substances form sometimes simple

* Postepptian, Natural History of Norway.
† Bertrand, Nouv. Principes de Géologie, p. 175.
¶ Bergmann, Géog. Phys. ii. 228.
deposits; at other times, they are thrown down to the bottom of the lake, by chemical precipitation. Several causes may here concur. The different gases and acids with which the waters of these lakes are charged, may give rise to crystallizations; a cooling in lakes which possess a certain degree of heat, may also have the same effect. It is certain, that the remains of the beings that live and die in these waters, form beds of calcareous earth. Trees and vegetables, which are carried along by the waters, form floating islands, which, by degrees, unite together, and either cover the lakes with a crust of earth, or, by sinking, raise up the bottom. We must add, that the more a stagnant mass of water loses in depth, the more it evaporates; for the evaporation of water is always in the direct ratio of its surface, and in the inverse ratio of its depth, as experiments have proved. There are in all mountainous and marshy countries numerous instances of small lakes which have been dried up by one of these causes; we may therefore safely infer, that the same phenomena have taken place upon a larger scale, and that the formation of several extensive plains is to be ascribed to the drying up of inland seas, or great lakes; as for example, part of those which border on the Caspian Sea.*

The damming up of a lake commences by confining its basin, but the lake always receiving the same quantity of water, it necessarily overflows, and if it happens to discharge itself into other inferior lakes, it may produce successive overflows, which change the surface of the surrounding country. These efforts would be more violent if a sudden thaw, and a superabundance of water, took place at the same time. The waters in this case would perhaps be impelled by so impetuous a force, as to overthrow every thing they met with in their course, and make large excavations in the chains of mountains, and thus form great valleys. This idea was developed by Sulzer, and carried to extremes by Lamanon.† It occurs very naturally, when one considers the great lakes of North America, which flow into one another, and finally into the river Saint Lawrence. If the soil which borders the Ohio, and where we find the banks of the monongahela, is impregnated with salt; if the plain which surrounds the river of the Amazons, is, as is said, entirely composed of soft earth, without any stones; if we find in the plain of Cruat and in Dauphiny the same pebbles and rounded flints, as upon the borders of the Lake of Geneva, then all these circumstances may be accounted for on the supposition of the overflowing of the interior lakes;—but historical certainty is wanting, and will always be wanting, to these hypotheses. It is, besides, very certain, that valleys must have existed before the flowing of the waters could take place. All, therefore, which can be conceded to this theory of the excavation of the earth by currents of water, must be limited to effects which regard only the superficial strata.

Do the waters of the sea diminish? We come to a question which has greatly engaged the attention of physical geographers: the diminution of the waters of the sea.

Let us begin by defining the subject of inquiry. We have nothing to do with those marine or other fluids, which at different epochs covered the globe, and in which lived innumerable shell fishes, sea petrifications, and polypuses, which we have seen upon the summits of the highest mountains. It is plain that these fluids have disappeared; but the slow or rapid manner of this disappearance, and its internal or external causes, can be known to us only by conjecture. Man existed not at the time of those revolutions which have heaped up on one another the remains of the sea, and of fresh water animals. The question is only concerning changes which the sea of the terrestrial globe may have undergone since the last revolution, which has created our existing continents. To the question thus limited an answer may be given.

A very long experience, that of more than twenty centuries, enlightened by the torch of history, seems to prove that the present sea, considered as to its entire quantity, is in a state completely stationary, so that the evaporation of its waters is equal to the quantity with which the rivers augment it, and its extent is neither diminished nor enlarged. But local circumstances, as for example the clearing of

* Delamétherie, Théorie de la Terre, sect. 1417.
† Lamanon, Journal de Physique, 1780, December, p. 474.
waste land, the destruction of forests, the choking up, or the turning away of the channels of rivers, may for a certain time alter the level of some interior seas. Other temporary or local causes may produce in the same ocean, not an augmentation or diminution of volume, but small oscillations, which, by subverting the equilibrium of the waters, occasion on one side the little retirings of the sea, consequently the formation of new ground; and, on the other side, little invasions of the sea upon the earth: these changes mutually compensate each other, and are limited, and too variable to have any sensible influence upon the form of great continents. The present sea endeavours in two ways to change the form of its banks: it creates new lands by depositing sand, gravel, shells, and marine plants, by casting up and by retaining the mud, and other substances brought down by the rivers; by undermining the mountains which border it, which causes them at last to fall; by retiring of itself, either because the rivers bring to it a diminished supply of water, or, because on another side, it has overflowed some ground over which it has spread a part of its waters. It has invaded the ancient shores, by washing them away, or by rising above their level, when from any cause whatever, its basin has been elsewhere confined. The seas of Europe, being the best known, will furnish the best proofs of our assertions. Let us begin with the Mediterranean.

We have seen, that by taking in Homer the word Egyptos for the name of the river, and Παγος for that of the country, we may dispense with admitting, that the sea has filled up the supposed ancient gulf, which penetrated into Egypt as far as Thebes, and which separated by one day's navigation the island of Pharos from the mainland, as has been commonly affirmed. Some less considerable additions have, without doubt, been made to the land since the time when Herodotus gave the first description of the country; but these are owing, less to the mud which the river carries down, than to the winds which bring with them the sands of the neighbouring deserts. This is what daily happens upon the coasts of Egypt. The port of Alexandria is dammed up, the town of Damietta, whose walls, in the time of Louis IX. were washed by the sea, is now at a considerable distance from it. As a kind of compensation, the lake Mezalja appears to be formed, either by the overflowing of a branch of the Nile, the cleaning of which has been neglected, or by an irrigation of the sea.

Along the eastern coasts of the Mediterranean and its gulf, there is but little increase of the land. The island of Tyre, however, has been united to the continent by a more powerful hand than that of Alexander. At the mouth of the river Pyramus in Cilicia, a depression of sand has extended the modern coast six miles beyond the ancient; and similar effects have taken place at other points on the southern shore of Asia Minor, where the coast is flat.† The Meander has, by little and little, filled up the valley into which it flows, and which was formerly a gulf. The inhabitants of Miletus, and of Ephesus, have several times changed the situation of their towns, by following the sea, which retired from their walls. On the coast of Greece, a great many small islands, situated in front of the openings of the rivers, are joined to the mainland.§

In the gulf of Venice, very remarkable changes have taken place. Ramazzini having observed that all the country round Modena is suspended over a subterraneous lake, and that a great number of shells are to be found there, is persuaded that Lombardy has, in a great measure, been formed by the combined deposits of the Po, and of the sea. All that is certain is, that the Po in former times committed great ravages, by inundating often whole provinces: it has been confined by strong dikes, but by renewing from time to time these embankments, which preserve the country from total submersion, the bed of the river has been elevated, so that the level of the waters of the Po is now raised several feet above the lands which surround it.

* See the description of Egypt in a subsequent volume.
† Shaw's Travels, vol. i. p. 173, 188. Telliamed, (De Maillet) sur la diminution de la mer, &c. ‡ Beaumont's Account of Caramania, p. 298.
The environs of Ravenna, Aquileia, and Venice, present facts more uniform and better established. There is no doubt, according to the observations of Manfredi,* that the ground near Ravenna has sunk to such a degree, that the pavement of the cathedral is only six inches above the level of high water; but, at the same time, the land is extended in such a manner that this town, formerly situate in the midst of marshes and canals, and furnished with an excellent port,† is now three Italian miles distant from the sea, and surrounded by meadows and fields. The Venetians are very much afraid of seeing their canals dry up, and yet the ground on which Venice stands is a little sunk. Aquileia was once close to the sea. It is alleged that the sea, on the other hand, makes encroachments upon the coasts of Istria and Dalmatia. Columns, and pavements in Mosaic, and urns, are there found under the waters.

Changes in the western part of the Mediterranean.

The western coast of Italy presents within a small space two phenomena of contradictory appearance. The Poentine marshes now cover part of the Appian Way, whilst in the mouth even of the Tiber, we perceive land which was not there in the time of the ancient Romans. It is not, however, the sea which has covered the Appian Way, but the rivers, which the negligence of the modern inhabitants has suffered to be choked up at their mouths. In the same way, if the renowned villas of the ancient Baja are now found buried beneath the water, the reason is that these edifices, once the abodes of luxury and ostentation, were built at the first in the midst of the sea.‡

Upon the coasts of Spain, and of France, the Mediterranean has receded. Aigues-Mortes, in Languedoc, was, in the thirteenth century, close to the sea, but at present it is two leagues distant.§ From the mouth of the Rhone to Agde, the sea has lost ground, or has retired. The port of Barcelona becomes every day less deep. Thus, without entering into a longer detail, we may say that the sum of known additions made to the land on the shores of the Mediterranean, appears to be more considerable than the sum of the encroachments of the water. But, on the one hand, we are totally unable to compare the modern and ancient states of the coasts of Africa; and, on the other hand, there are upon the Mediterranean a vast number of celebrated harbours, which preserve exactly the same level of waters as in the time of the ancients. Marseilles, Genoa, Syracuse, Navarino, or Pylos, and twenty other places, are found in the same situation. The ruins of Herculaneum touch the sea, so did the town itself in the time of Strabo; there is, therefore, no reason for supposing a general diminution.

Changes in the Atlantic Ocean.

The Atlantic Ocean has made some additions to the land upon the coasts of France, and has contributed to raise the level of those sandy plains which reach from Bordeaux to Bayonne; several basins have been filled up, and the Adour has been obliged to seek a new opening into the sea. A district between La Rochelle, and Lucon, and in general all the marshes of La Vendée, have been gained from the sea.|| The small bay where Mount Michael is situate, between Bretagne and Normandy, appears to be equally drying up; but near Dob the sea has resumed possession of those lands which had formerly belonged to it.

Varenius, Lulof, and other geographers, have described the quantities of soil left by the German ocean upon the coasts of Holland. A number of effects of different kinds are visible here, which all tend to the same result; and we see, above all, a striking example of those changes to which the action of the sea upon the land appears to be subject. In the remotest periods to which history extends, these countries were immense marshes, for which the sea and the rivers contended together. The first deposited sand, the second mud: thus were formed the more elevated grounds which were in some measure habitable. These grounds, however, being sometimes covered with water, and sometimes left dry, belong equally to both elements. Human industry gave a steady direction to the wandering course of the rivers, checked the fury of the waves by immense dykes, and thus created a

* Manfredi, De Auct & Marr Altitudine, in Opusc. Bononiens, ii. 120.
† Bianchi, Specim. Marini. Moro, des Changemens de la terre, ii. ch. 25.
‡ See Peintures d'Herculanenum, tom. iii.
§ Strabo, V. 246, edit. Almelov.
|| La Bretonniere, Statistique de la Vendée.
country even in the bosom of the waters. But there remain lakes, bogs, and marshes; the rivers silently undermine these ill-consolidated grounds; the sea penetrates them through the large openings of the rivers. Several great tides were the epochs of dreadful disasters, of which the following are the most remarkable.

The Zuyderzee was anciently nothing but a lake of trifling extent, which flowed into the sea by the river of Ulio, (the Fleum of Tacitus,) and considered as a branch of the Rhine. About the year 1250, the sea made an irruption into it. Vast tracts of land, which the running waters apparently had undermined, gave way, and thus the Zuyderzee was formed. The gulf of Dollart, between West Friesland and the province of Groningen, was, in 1300, a fertile canton covered with delightful meadows. In 1421, the united force of the sea and of the rivers, destroyed near Dort, 72 considerable villages, with 100,000 of the inhabitants, (as it is said,) and formed the lake of Biesbosch.*

The Danish coasts of Slewick and Holstein present a spectacle nearly similar. There the sea has both lost and gained. The island of Nordstrand was swallowed up in 1634; that of Heligoland sustained great damage, in the 13th century. On the other hand, the sea brings to the shores of the main land a great quantity of greasy mud, bluish clay, and sand; and when these substances have acquired some consistency, the ground is enclosed with dykes. The soil thus formed becomes so fertile, that in a very few years it indemnifies the cultivators for all their outlay. Upon the coasts of Jutland, in the district of Thy, the sea has filled up with sand several gulfs, which once afforded retreat to pirates, according to the ancient history of the north; and it has probably formed the isthmus that now separates it from the gulf of Limford, which seems to have been formerly a strait. All the western and northern coast of Jutland, (from 55 degrees 24 minutes, to Cape Skagen, 57 degrees and about 40 minutes,) appears to owe its formation to the sea, which by accumulating sand, has made an unbroken coast of what was once a chain of islands.

The inconsiderable changes which have taken place in the Baltic, by no means prove a general diminution of the waters of that sea.† Naturalists have considered the shells and other remains of animals, as evidences of this general diminution; while historians have endeavoured to prove it by the damming up of ancient harbours and straits. These two arguments evidently relate to two different epochs. We have seen that all the remains of animals belong to an age when man did not exist. As to the records of history, which with regard to Sweden, commenced only with the 9th century, there have been upon the same coasts of Sweden, accumulations of sand and gravel, particularly among those labyrinths of rocks by which it is in a great measure surrounded. These accumulations are owing to the violence of the currents, which at the same time are very variable; but the gains and losses of this sea compensate each other. If the strait opposite Swedish Pomerania is filling up towards the north, it becomes every day deeper towards the east. In general, we should say with Browallius,‡ that if a thousand observations proved the diminution of the waters, one single observation of the contrary, would be sufficient to reduce these observations to the limits of a local fact. But there is not one: there are a hundred contrary observations, which prove that there has been no general depression in the level of the Baltic sea. Oaks of the age of three centuries, growing on low lands close to the sea; castles which have existed for ages in places which, according to the hypothesis of Celsius, must have but lately arisen under the waters,—these are the facts which have been triumphantly opposed to the computed results of the advocates of desiccation. Browallius points out a number of places even upon the Swedish coasts, where the sea has become

* Lulof, Introduction à la Géographie-Physique, en Hollandaïs, § 432, sqq.
‡ Browallius, Recherches Physiques et Historiques sur la prétendue Diminution des Eaux, &c. Stockholm, 1756.
I should add, that the German geographers commonly assert the same thing, as far as relate to the German coasts of that sea.

The historical arguments in favour of the diminution of the waters of the Baltic, have been equally overthrown. Some have insisted upon the vague language of Grecian and Roman geographers, who represent Scandinavia as a large island; but if the sea had, since the time of Pliny, sunk sufficiently to make the soil of Finland, elevated from 500 to 1000 feet, emerge from under the waters, it would then follow that Mecklenburgh Holstein, the wastes of Hanover and of Westphalia, and the island of Batavia, now called Botuwe, grounds elevated only from 2 to 400 feet, must have been equally under water. It is, however, certain that the Roman armies carried on war there, and that Ptolemy, at the commencement of the second century, describes those regions in such a manner, that we recognize their existing forms with very few changes.

The charts of the middle age prove nothing in favour of the diminution of the waters. In the convent of St. Michael de Murando at Venice, there is preserved a map of the world, which was made by one of the monks, whose name was Mauro. This chart had been made with the assistance furnished by a person called P. Quirini, who, in 1431, had sailed to Trondheim, and from thence had traversed Sweden by land. The Baltic is there seen to be more extensive than it is now. But who does not know that upon all the old charts, unskilful designers and engravers have rounded the capes, contracted or extended the islands, and marked out the seas according to their own fancy? How can we allow so great authority to general maps, constructed in ages in which there was not one special map projected with any care? The decisive argument in favour of the stationary condition of the Baltic, for twenty centuries, is the identity of so many names of provinces and districts, known in the ancient history of the north, with those which are still applied to the same places; the resemblance of the country as it now exists, with that which we read of in ancient history; the ancient celebrity, in Scandinavia, of countries which could not even have existed, if we admit the hypothesis of Celsius, the absolute silence of popular traditions, and of ancient Scaldic poetry, which would not have failed to preserve some brief recollections of so great and so memorable a change. In short, if the Baltic sea has diminished, such an occurrence must be referred to those remote periods, involved in the obscurity of ages, when perhaps some very great catastrophe caused a general drying of the ocean, which covered a great part of the earth. But if such a change has taken place, it is certainly an event altogether unconnected with the order of nature under which we live, and with a successive diminution of the present sea.*

A less bold hypothesis may be proposed with regard to the Baltic sea. We may attribute solely to the clearing of Finland, and some extensive Russian provinces, as well as to the successive destruction of forests in the north, a successive diminution in the quantity of river water flowing into the Baltic sea; consequently this sea, once a little more elevated than the northern sea, and that of the ocean, will have sunk to the general level of other seas. Not only does the clearing of the ground sometimes diminish, and at other times increase, the quantity of running water in a country, but it also changes the atmospheric constitution; it renders it, generally speaking, warmer, consequently it augments the evaporation which daily takes place at the surface of the waters. We think that this explanation will be sufficient to account for all the changes which are observed in the level of inland seas.

We have seen the effects produced by the Baltic sea: we have seen the island of Hveen, the celebrated residence of Tycho Brahe, diminished by the violence of the waves; whilst a few leagues from thence, near the southern point of Scania, an island is formed, composed of sand: some grass having root there, has raised and consolidated it; and it increases every year.

* Bring (since named Lagerrbring) de Fundamentis Chronologiz Sueo-Gothicæ, p. 48, 50, 55, 73, 76. Rhyzelius, Episcopia Sueo-Gothica, ii. 148. Suhm, Esquisse de l'Origine des Peuples, p. 11, &c.
PHYSICAL GEOGRAPHY.

without any sinking of the neighbouring sea. The straits through which lakes and inland seas discharge themselves, may be compared to large rivers, which often experience local changes upon their banks.

The frost contributes to elevate certain parts of the Baltic coast. When the lakes and large rivers are frozen, the porous earth which borders them, forms, with the neighbouring water, one single mass of ice. If now, waters which are not frozen, happen to join the mass also not frozen, of either lakes or rivers, the crust of ice must be raised, and the frozen earth must be raised along with it; the void which is formed below these raised masses is filled by mud and gravel from the bottom of the lakes and rivers. Thus after the thaw, the porous earth is left lying on a more elevated level than it had at first. These facts may be observed every year in East Bothnia.* The marine ice, suddenly broken by some oscillation of the sea, lifts up whole rocks, and carries them further upon the land. In Sweden, there are two rocks which owe to this cause a more elevated position than they once had.† Kalm, who has made such accurate observations on North America, says, that there are considerable additions made to the land in the province of New Jersey, along the rivers, but he attributes them to the clearing of the country. Uncultivated ground covered with rocks, moss, and briars, is proof against the influence of running water; whilst cultivated land presents to the action of the water a surface rendered moveable by the plough, and decomposed by the air and the sun, the small and light particles of which are easily carried along by the waters. This observation appears to us to be very correct, and perfectly conformable to what we see in the north, especially in the clayey and muddy ground.‡ It is useless to enter into a minuter detail concerning other quarters of the world. The augmentations of soil near Tehama in Arabia, and the alleged submersion of the Bridge of Adam, which, it is said, joined the island of Ceylon to India, would furnish us with a decided contrast. From the Voyage of Nearcuss we should learn, that notwithstanding the immense tides, the coasts at the mouth of the Indus have not been sensibly changed since the time of Alexander. Were we to believe the Chinese annals, we should or the other hand have clear proofs of the progressive desiccation of the globe. But the coasts on the north-west of America, would present us with traces of the encroachments of the ocean. In short all the facts that have been collected, when carefully examined and carefully weighed, bring us to no other conclusion than this—that the existing sea is completely stationary, and that its level falls and rises from local and temporary causes, without any change in its general volume.

If, notwithstanding this historical truth, we find, on the continent, and even at a considerable height, anchors and wrecks of vessels, we can explain these phenomena by admitting a tradition recorded in the inspired pages of Moses, and ably defended by Deluc. When the soil of our present continents formed the bottom of the ocean, there existed another continent peopled with inhabitants; a continent which disappeared in consequence of a great catastrophe, which at the same time left dry the existing habitable earth. The antediluvians, therefore, navigated above the level of our present fields: they pursued the whale where we now reap our harvest; they cast anchor upon our mountains, which were then rocks and islands in the bosom of the sea. Whatever may be the fate of this hypothesis, Deluc has clearly shown that these ancient wrecks cannot establish a progressive diminution of the existing sea.§

Let us now contemplate the ravages of another element. The name of volcano, taken from that which the Romans gave to the God of Fire, now designates those mountains which vomit forth flames, smoke, and torrents of melted matter. The chimney through which the smoke and melted matter issue, terminates in a vast cavity in the form of a truncated and inverted cone. This mouth of the volcano is termed the crater.

* Bergmann, Géographie Physique, ii. 244, sqq.
‡ Kalm, quoted by Browalliuss, § 108.
§ Deluc, Lettres Physiques et Morales, ii. Lettres 82 et 90.
The eruption of a volcano is a most frightful and most majestic phenomenon. The signs which are the forerunners of the explosion, announce that the invisible combat of the enraged elements has already commenced. These are, violent movements which shake the earth afar off, prolonged bellowsings, subterranean thunders, which roll in the sides of the agitated mountain. Very soon the smoke, which is almost continually emitted from the mouth of the volcano, increases, thickens, and ascends, under the form of a black column. The summit of this column, yielding to its own weight, sinks down, becomes rounded, and presents itself under the appearance of the head of a pine tree, having the lower part for its trunk. This hideous tree does not long remain immovable: the winds agitate its blackened moss, and disperse it in branches, which form so many trains of clouds. At other times the scene opens with more brilliancy. A stream of flame rises beyond a collection of clouds, keeps immovable for some time, and then appears like a pillar of fire which rest upon the ground, and threatens to set the sky in a blaze. A black smoke environs it, and from time to time intercepts the dazzling brightness. A number of lightnings appear to flash from the midst of the burning mass. On a sudden, the brilliant cascade seems to fall back into the crater, and its fearful splendour is succeeded by profound darkness. The effervescence, however, goes on in the interior abysses of the mountain; ashes, dross, and burning stones, are projected in diverging lines, like the spouts of fireworks, and fall around the mouth of the volcano. Enormous fragments of rocks appear to be heaved against the skies by the arms of the new Titans. A torrent of water is often thrown out with impetuosity, and rolls, hissing over the inflamed rocks. There is then raised from the bottom of the crater a liquid and burning matter, similar to metal when in fusion. This fills the whole of the crater, and reaches to the very edges of the opening. An abundant quantity of dross floats on its surface, which ultimately appears and vanishes as the liquid mass rises or falls in the crater where it seems to boil. This scene, of so majestic a character, is but the prelude of real disasters. The liquid matter overflows, runs down the sides of the volcano, and descends to its base. There it sometimes stops, and appears like a fiery serpent recoiling upon itself. More frequently it dilates itself, and rushes out from beneath a kind of solid crust which is formed upon its surface: it advances like a large and impetuous river, destroys whatever it meets with in its course, flows over those obstacles which it cannot overturn, passes along the ramparts of the shaken cities, invades a space of country of several leagues in extent, and transforms in a moment flourishing fields into a burning flame. Equal ravages may be sustained, though the liquid matter called lava, does not issue exactly from the top of the volcano: it is sometimes too compact and too weighty to be elevated to the summit; its violent efforts then occasion new ruptures in the side of the mountain, through which the igneous torrent rushes out.*

A great chain of ignivomous mountains stretches around the great ocean. Terra del Fuego, Chili, Peru, all the chain of the Andes, are full of volcanoes. We distinguish in Peru, those of Arequipa and of Pitchinca; and that of Coto Pachi, whose flames, in 1738, rose higher than 2000 feet, and whose explosion was heard at the distance of 120 leagues, if we may give credit to the Spaniards. Chimborafo, the highest mountain of the globe, is an extinguished volcano; and there are a great many others. Humboldt has seen the smoke of Antisand rise 18,000 feet.† If we pass the isthmus of Panama, we find the volcanoes of Nicaragua and of Guatimala. Their number is infinite: there are some which are covered with perpetual snow, and which consequently are elevated to a great height.—Then come those of Mexico, properly so called; namely, Orizaba, Popocatepetl, 16,626 feet high; Jorullo, which first broke out in

† Humboldt, Tableau des Régions Equatoriales, p. 124.
PHYSICAL GEOGRAPHY.

1759, and several others, all situate under the 19th parallel of latitude.* California contains five volcanoes, that are now burning. There can be no doubt, according to the accounts of Cook, La Perouse, and Malaspina, that there is a number of very considerable volcanoes on the north west of America. Mount Saint Eli is nearly 16,500 in height; these volcanoes form the intermediate link between those in the Aleutian islands, and the peninsula of Alaska. These last, which are very numerous, both extinct and burning, serve to continue the chain towards Kamtschatka, where there are three of great violence. Japan has sight; and the island of Formosa has several. The volcanic belt now becomes immensely wide, and embraces the Philippine islands, the Marian or Ladrones, the Moluccas, Java, Sumatra, the isles of Queen Charlotte, the New Hebrides, and, in short, all that vast Archipelago which forms the fifth part of the globe. These volcanoes will be particularly noticed when we describe in detail those islands in which they are found.†

The other volcanic chains are far from being of so great extent. There is, perhaps, one in the Indian Sea. The islands of Saint Paul and Amsterdam, the formidable volcano in the island of Bourbon, and the jets of hot water in the island of Madagascar, are the only known links of this chain.

The gulf of Arabia flows at the base of the volcano of Gebel-Tar. The neighbourhood of the Dead Sea, and the whole chain of mountains which runs through Syria, have been the theatre of volcanic eruptions. We may be allowed to connect these two facts.

A vast volcanic zone surrounds Greece, Italy, Germany, and France. The celebrated revolutions of the Grecian Archipelago, and those new islands produced by submarine explosions are well known. The summits of Mount Etna are next described; this mountain has burnt for 3300 years,§ and it is surrounded by extinguished volcanoes which appear much more ancient. The islands of Lipari seem to owe their origin to the volcanoes which they contain. Vesuvius has not always been the only ignomious mountain in the kingdom of Naples, another still larger, but extinguished, has been discovered near Rocca Fina.|| The Solfataras is ranked under the same class. The Ponza islands, or island of Ponza, are of volcanic origin; the catacombs of Rome are excavations from the lava. Tuscany abounds in hot and sulphureous springs, and other indications of volcanoes. Arduini observed in the environs of Padua, Verona, and Vicenza, a great number of extinguished volcanoes. Dalmatia has several. It was long suspected that a district in Hungary nourished subterraneous fires in its bosom; the eruption of a volcano has recently evinced the truth of the conjecture. Germany contains a great number of extinguished volcanoes; the best known of which are those of Kamberg in Bohemia, Transberg, near Gottingen, and those near Bonn and Andernach, upon the borders of the Rhine. The southern part of France is full of extinguished volcanoes, amongst which Mount Cantal, the Puy-de-Dome, and Mount diOr in Auvergne, are the most conspicuous.¶

The Western is not like the Great Ocean, encircled by a chain of ignivomous mountains, but it contains in its bosom several groups. If the principality of Wales, the island of Staffa, and some parts of Scotland and Ireland, exhibit only equivocal proofs of the existence of extinguished volcanoes, Iceland presents to our view its Hecla, its Klotoguia, and several other volcanoes, which rise from the midst of perpetual snow. This volcanic focus is one of the most active in the globe; the very bottom of the ocean is, in these regions, agitated, and the waves often heave up whole fields of pumice stone, or with convulsive throes give birth to permanently new islands. Several circumstances lead us to suppose, that there are some volcanoes in the interior of Greenland. That frozen country experiences the shocks of earthquakes.

† Gmelin, Description de la Russie, i. 258.
§ Guénaù, see the French part of the Collect. Academ. vol. vi. p. 489.
¶ Scipione Breislack, Topographia Campania; and le Journal de Physique l'an viii.
¶ Beroldingen, Volcans Anciens et Modernes, considérés physiquement, &c, Manheim, 1791. 2 vols. (in German.)
The middle of the Atlantic Ocean conceals another volcanic focus, of which the Azores and Canary islands have felt the effects. The Peak of Teneriffe, which is 11,400 feet, is the most elevated volcano in the old world. It is very probable that Lisbon has, in its vicinity, a submarine volcano.

The Antilles probably contain a whole system of volcanoes, parts of which are recognised in Jamaica, Guadaloupe, and Grenada.

Scattered volcanoes. We may also mention some volcanoes, which are detached, or which belong to groups little known. Such are Mount Elburtz in Persia, the extinguished volcanoes of Daourie, discovered by Patrin; perhaps some volcanoes to the north of China. That which is seen in Fuego, one of the Cape de Verd islands, and those which the Portuguese authors point out in Guinea, Congo, and Monomotapa.

General results. It follows from the general survey of volcanoes, that they are most numerous in the neighbourhood of the sea, and in islands. Nevertheless, there are many, however, which do not appear to have any communication with the sea. Another general fact is, that the craters of volcanoes burst forth in all kinds of granitic, schistous, argillaceous, primitive or secondary rocks; but there is nothing to throw light upon another question much more interesting, in what species of rock or earth the focus of these immense and awful fires is placed? The solution of this question involves that of the origin of volcanic fire, which has been so long and so keenly agitated.

Origin of volcanic fire. Rouelle, Desmaretz, and other philosophers, attribute the origin of volcanic fire exclusively to the inflammation of bitumen, pitch, coal, fossil wood, and turf, or peat. An explanation more generally received has been proposed by Lernery, who ascribed the volcanic phenomena to the spontaneous inflammation of pyrites, and who, by a striking experiment, has rendered this hypothesis highly probable. He formed a mixture of 50 pounds of iron filings and sulphur, which, after moistening it, he buried in the ground at a certain depth; the mixture became gradually heated, and at last took fire with a great explosion.*

Most naturalists combine these two opinions, considering pyrites as the foundation and cause of volcanic fire, while the vast masses of bituminous and carbonaceous schists which are often met with stratified in the same rocks, serve as fuel to the subterranean fire, which becomes extinguished when it can find no more nourishment.†

Difficulties, however, still remain. Fragments of granite, which the volcanoes project, and which seem to indicate the place of their focus under primitive rock itself; the long period of the activity of certain volcanoes; the impossibility that the neighbouring earth could furnish such copious ejections without becoming excavated, and sinking down; the inconceivable force with which heavy masses of matter are projected to immense heights; and, besides the astonishing force, and the sudden explosion, the peculiar nature of volcanic fusion, which rarely produces vitrification, and which appears oftener to digest and concoct than to burn; these are circumstances which have led not a few naturalists, well versed in such observations, to suppose that the reservoirs of volcanoes exist at a very great depth, and that their activity is owing to more general causes, such as electricity, or the elastic gases inclosed within the bosom of the globe.‡

Deluc thinks that the focus of volcanoes is in a certain residue of the primitive fluid, in which, according to him, the earth was formed, and that the volcanic fire is of a chemical nature very different from that of all known fires.§

Earthquakes. We come to a dreadful phenomenon intimately connected with volcanic eruptions—earthquakes, those convulsive movements which shake the surface of

* Memoire de l'Acad. 1700. This experiment has been repeated in Holland. Journal de Physique, 1794, 5me cahier.
§ Deluc, Lettres à Bluenebach, &c.
the earth, whether in a horizontal direction, with undulations similar to those of the sea, or vertically, when a part of the ground is raised up, and the other part sinks down as into a gulf, or circularly, when ponderous masses of rocks and earth revolve as it were on a pivot. These are the three kinds of motion distinguished by Italian writers who are well acquainted with these phenomena.*

Earthquakes produce the most calamitous effects: they often change the surface of a country in such a manner that it is difficult to recognize it. Enormous gaps appear to discover to the eyes of the living the empire of the shades. These fissures emit bluish flames, and deadly vapours; in the course of ages they form new valleys. In other places mountains are swallowed up or overthrown; often detached from one another, they glide along upon the lower ground, and as the force with which they are impelled redoubles at every moment, these ambulatory rocks bound over both valleys and hills. Here the vineyard descends from its height and settles in the midst of fields of corn; there, farms with their gardens, lifted without separating, become attached to distant villages. In one quarter, new lakes are formed in the midst of the earth, in another, rocks hitherto invisible, suddenly rear their wet summits from the bosom of the foaming sea. Springs are stopped, rivers disappear and lose themselves under ground; others, choked up by fragments of rocks, spread out into vast marshes. New springs gush out from the shattered sides of the mountain, incipient rivers struggle with youthful impetuosity, and endeavour to hollow out a channel for themselves amid the ruins of towns, palaces, and temples.

What makes earthquakes still more dreadful is, that there are no signs which unequivocally indicate either their approach or their termination. They happen at all seasons, and under every constitution of the atmosphere. A subterranean noise indeed is their invariable forerunner; but it is scarcely heard before the earth gives way. Animals, particularly horses, dogs, and fowls, show by their terror a presentiment of its coming. The barometer falls extremely low.

Earthquakes act with astonishing rapidity. It was one single shock which, on the 5th February, 1783, overthrow Calabria, and destroyed Messina in less than two minutes. But these agitations are sometimes repeated for the space of months and whole years, as in 1755.

The direction of earthquakes is one of the most remarkable facts in physical geography. Sometimes we remark a central point where the shocks are most violent, and this centre sometimes changes its place, as if the subterranean force rebounded from one point to another, sometimes we can distinguish a certain line along which this force seems to move. The sphere of such a revolution seems often to embrace a fourth part of the terrestrial globe. The earthquake which caused such devastations at Lisbon was felt in Greenland, in the East Indies, in Norway, and in Africa. That of 1601 shook all Europe and a part of Asia. In 1803 the shock was felt almost simultaneously at Algiers, in Greece, at Constantinople, Bukarest, Kiow, and Moscow.

No part of the globe appears to be exempted from these terrible effects. The Alps contain no trace of a volcanic agency, and yet they are often shaken by earthquakes.† The silver mine at Konisberg in Norway was first opened up to view by a shock in 1603; the frozen zone also is ever subject to earthquakes. Greenland feels frequent shocks; and in 1756 Lapland experienced violent commotion.

The sea often, but not always, shares in the convulsions of the earth. In 1755, the waters of the Tagus rose suddenly to 30 feet above their ordinary level, and retired immediately with such force, that the middle of the river was observed to be dry. Four minutes afterwards the same phenomenon recurred, and it was three times repeated.

Similar motions occurred the same day at Madeira, at Guadalupe, and at Mar-

† Seneca, Judit. nat. vi. 1, 29.
‡ Collect. Acad. vol. vi. Delamétherie, Theory de la Terre, § 1057.
tinique. In the earthquake which proved destructive to Lima in 1746, the ocean had a movement of the same nature; but, proportionate to the mass of water which was thrown into agitation, it rushed forwards upon the land for a space of several leagues. All the large vessels which were in the port of Callao were swallowed up: all the small craft were driven beyond the town. Navigators assure us, that ships are very often dreadfully tossed by a sudden and convulsive motion in the sea, very similar to those which shake the land. These agitations of the sea, perhaps take place, though there is no corresponding shaking of the earth. At other times they are the effect of submarine shocks in the very bottom of the ocean.

Causes of earthquakes. The causes of these catastrophes are not well ascertained. It appears that there are several concurring causes, of a very different nature. Some slight shocks arise, without doubt, from fallings in of the ground, and subterraneous sinkings, which take place after great droughts. At other times the shocks may be produced by the terrestrial and atmospherical electricity, which seeks to recover its equilibrium. These phenomena, the reality of which can scarcely be contested, depend upon the temporary constitution of the seasons. The most generally received opinion attributes earthquakes to elastic vapours enclosed in subterraneous cavities, whether they arise from the abundance of rain collected in the craters of volcanoes, or are disengaged from the inflammable substances with which the subterraneous rivers or waters of the sea may come in contact; or, finally, are extricated by the fermentation of that subterraneous fluid, which Deluc supposes to be the residue of the salt waters of the globe. These vapours become diluted by heat, and in seeking an outlet they raise up or shake the earth.*

If this last hypothesis be true, as many circumstances lead us to suppose, the Japanese have not been wrong in saying that it is a great submarine dragon which raises up the earth by its breathing. A similar tradition prevails in the mythology of the Scandinavians. It is probably in allusion to this, that Homer has given to Neptune the epithet of *Eimonegaioi, that is, he who shakes the earth.

The raising up of the earth. We have not attempted to diminish the terror which earthquakes invariably inspire, but we must however contradict the framers of systems, who have exaggerated the effects with the view of exhibiting in them the sole cause of the revolutions which have happened on the surface of the globe. There is no example in the records of authentic history, of any land, or considerable island having been formed by a volcanic eruption, or by an earthquake; the most considerable heaving up, which is known, is that of the volcanic ground of Jorullo, in Mexico, which took place in 1759. For the space of half a square league, flames were observed issuing from the plain; fragments of burning rocks were thrown up to a prodigious height; and through a thick cloud of cinders, streaked with volcanic fires, the spectators thought that they saw the softened crust of the earth swelling up. In the midst of the heaved up earth, which is about 500 feet in elevation, several thousands of little volcanic cones arise, sending forth their smoke, and occasioning a subterraneous noise. Amongst these small volcanoes six great ones rear their heads, to the height of about 1500 feet above the ancient level of the plain.

Strabo speaks of a piece of ground being raised up near Methone, in Greece, to the height of seven stadia, which, taking the stadium at 1111 to the degree, must have been more than 2200 feet. We are informed of a volcano of considerable elevation in the island of Timor, which sunk entirely down, leaving in its place nothing but a muddy marsh.† It follows from these and similar examples, that the ground which has been either elevated or swallowed up by the volcanic force, consists only of those masses of burning or scorified rocks, which form the chimneys of the volcano, and which, when projected from its mouth, almost immediately fall back around the orifice.‡

Even the phenomena of Jorullo accord with this theory. The thousands of little volcanic chimneys, which were forming at the same moment, presenting the appearance of a heaving up of the ground.

† Humboldt, Essai sur la Mexique, 249—258. Beroldingen, Volcans anciens et modernes. 1.
‡ Deluc, Traité élémentaire de géologie, §§ 210—214.
All that has been said as to islands having been created or swallowed up by volcanoes, is reduced then to the simple fact of the existence of submarine volcanoes, which sometimes elevate, and sometimes destroy the edges of their crater.

We shall elsewhere develop this general observation, when we come to trace the history of the island of Santoria, the best known example that there is of these kinds of revolution. We may safely conclude, that the islands actually created or destroyed by volcanoes can be only of very limited extent, and that the pretended catastrophes of Atlantis and Friesland, of which we have given the true explanation in another part of this work, cannot be ascribed to volcanic eruptions by men accustomed to examination before they believe.

Nearly allied to volcanic convulsions, are eruptions of mud, a phenomenon which, from time to time, takes place in volcanoes, but which occurs also independently of them, and as the effect of causes peculiar to itself. Macaluba, in Sicily, is the most celebrated amongst the terrivomous mountains, to call them so. In its ordinary state, mud, half fluid, is observed to boil up in the craters, or funnels, which terminate each of the small protuberances raised up on this mountain, or rather upon this clayey hill. The mud rises in half globes, and falls down, after having emitted a bubble of air; but there are epochs when, after a great rain, all these small craters disappear, the whole mass of the mountain ferments, subterraneous thunders are heard, and a quantity of mud and stones spouts forth to the height of 200 feet. Not far from Boulogne, several quagmires, called the Sales, situated in rising grounds, composed of saline and alkaline earths, exhibit, on a small scale, similar phenomena, emitting occasionally smoke and flames.‡ The town and port of Tamar, in the Crimea, upon the border of the Black Sea, contains several hills, whence issue muddy eruptions. One of them has been seen to dart forth flames. In the Crimea also, and opposite the town of Temrak, an island was raised in the middle of the sea in 1799, which, after having cast forth mud, flames, and smoke, disappeared under the waves. Upon a tongue of land, opposite Taman, there was a hill, called in Tartar Koub-Obo, which in 1794 experienced a terrible explosion. A column, of a pale red fire, shot up from it, to nearly 300 feet in height, and mud, mixed with bitumen, was projected to the distance of a quarter of a league.‡ The whole projected mass was corroborated to amount to 100,000 cubic feet; according to Pallas it consisted of a Muish clay.

The Growing, or Increasing Mountains, which are met with at the foot of Caucasus, near Bakow, and near the mouth of the river Kur, belong to the same class. They are produced by springs, which throw out a salt claggy mud; and in this manner hills above 400 feet high are formed.§ Volcanoes themselves throw out, though with greater violence, substances dissolved in water. Those which crown the chain of the Andes, near the city of Quito, emit only a small portion of scorie, but an enormous quantity of water and clay, combined with carbon and sulphur.|| These examples may suffice to show, that the eruption of earthy substances in watery solution, far from being an insulated and unimportant phenomenon, forms even to this day one of the most remarkable sources of the changes which have taken place on the surface of the globe; and that in former ages it probably had a very great influence in the formation of our mountains. We think we may ascribe, if not to the same, at least to a similar cause, the origin of the coagulated rocks known under the name of Basalt.

It is thus that all the elements of nature are armed for mutual destruction. What are those revolutions that we behold, in comparison of those which must have operated together in the creation of the world, and which, perhaps, are one day destined to accomplish its final destruction. May not those stars, those suns without number which guide the mariner in the midst of the pathless deep, be

* See in a subsequent volume, the Description of Turkey in Europe.
‡ Lerch, Voyages cités par Georgi, Description de la Russie, L 114.
† Humboldt, Tableau des régions équatoriales, 130.

Vol. I. — E e
in a moment extinguished? May not this arch of the globe which supports us, give way beneath our feet? Is not the equilibrium of the seas liable to be subverted, and will not the foaming billows one day roll over these continents which are at present covered with the monuments of human industry? May not the earth approach too near to the sun, and be swallowed up by it like a drop in the ocean? May it not wander into those remote and dreary regions of space, where the solar heat is too feeble to support the principle of life? How frightful would it be to exist in the midst of these pernicious elements, in the bosom of this perishable universe, without the consoling thought of a supreme intelligence, that both checks and wields at will the formidable and blind powers of nature? It is only the belief in an order of things superior to matter, in a moral world, that can fortify us against the terrors by which our physical existence is everywhere assailed.

BOOK XIX.

In the course of this work, we have seen that the physical geographer cannot refrain from connecting together certain facts, which frequently recur, and deducing from them general conclusions. He is even forced sometimes to present facts in an hypothetical manner, because observers have furnished him with their remarks under that form. But physical geography affirms nothing which is not established by experience. Systems of geology, on the contrary, have for their profession object to trace the progress of unknown revolutions, by the assistance of monuments which are often equivocal.

The authors of such systems, in the absence of positive facts, do not scruple to call in the aid of analogy, and thus, by hypothesis after hypothesis, they analyze and recompose the vast globe of the earth, as if it were a piece of metal, which the chemist could fuse in his crucible.

We shall endeavour to prove, that this pretended science, or speculative geology, promises no certain results, since it oversteps the evidence of facts, that is, since, it deviates from the sure and beaten paths of physical geography.

In the first place, the portion of the globe which is known to us, does not constitute, at the very utmost, the thousandth part of its entire mass. Our excavations do little more than scratch the surface of the earth; our geologists have surveyed with attention scarcely the half of Europe, or the tenth part of America and Asia; the observations which have been made are extremely few; and yet unbounded scope has been given to speculation. We do not know whether the interior of the globe is composed of substances analogous to those occurring on its surface, or consists solely of a mass of sand; whether it contains within a central fire which continually burns, or a vast reservoir of primitive waters; or whether, finally, the globe is only a hollow sphere, filled with air and vapours. As to these matters, we know nothing whatever, and can by no arguments, astronomical or physical, prove either the truth or the falsity of any of these opinions. In the vast and unexplored recesses of the globe, it is possible that there may lie concealed, agents so active and so powerful, that to them the various revolutions which the earth has undergone, may have been the work only of so many moments.

As long as the interior of the globe remains unknown to us, the conclusion which we may draw from facts observed on the surface, can be no more than probable in reference to these facts; but whenever we attempt to combine the conclusions in order to form a general system, their uncertainty will clearly appear; for, opposite to a finite sum of probabilities, however strong we may suppose them, there shall arise
an infinite sum of unknown terms, of which one alone may perhaps be sufficient to
counterbalance all our probabilities.

It is vain to compare geological hypotheses with those made use of in
astronomy, natural philosophy, and chemistry. The theory of attraction,
for example, is purely and simply a mode of stating a fact furnished by observa-
tion; it is a formula for computing the known effects of certain unknown forces, as to
the nature of which no opinion is expressed. But the authors of those philosophical
poems, improperly called theories of the earth, will not confine themselves to the sta-
ting of facts; they have recourse to mere suppositions. But, what is more, even facts
in geology, however completely they have been established, cannot be expressed in
mathematical terms; they are incapable of being subjected to calculation. We
therefore apprehend that chemistry and physics, far from furnishing arms
to extend the empire of geology, must, on the contrary, disavow the
premature and too general application that has been made of some theoretical prin-
ciples, of which philosophers and chemists have availed themselves only in questions
of doubtful speculation. Philosophy may admit, without complete proof, the exis-
tence of a gravitating, a caloric, an electrical, a magnetic, and a galvanic fluid, when
it distinctly perceives their effects in a number of carefully conducted experiments;
but does it follow from this, that speculative geology, in the absence of such per-
ceived effects, may lay hold of these principles which are still hypothetical, and
make use of them as if they were agents perfectly known, and entirely subjected to
its power? And if geologists have the candour to own that they know nothing what-
ever of the part which the different ethereal or atmospherical fluids may have acted
in the primitive formation of the earth, is not this the same as owning the absolute
impossibility of their being able to form a primitive history of the globe? The
theory of chemical affinities, or of atomic attractions, has furnished us with some
just ideas concerning the primitive formation of solid detached bodies: but as long
as the law according to which these attractions decrease, remains unknown, and
whilst we neither know the agents nor the processes which nature employs in the
greater number of cases, the chemist can impart to us no positive and precise in-
formation as to one single operation of the unknown power which has produced, or
which sustains, the universe. Still less can we trace the immense chain of its op-
erations, the last link of which is attached to the throne of the Almighty.

The strongest argument against the possibility of a theory of the earth,
appears to be suggested by a consideration of that admirable system of
celestial mechanics whose unalterable laws maintain the globes in their
respective positions and their mutual dependence. In this system of the universe,
so completely established by astronomy, it is difficult to conceive a derangement of
any part, which does not sensibly affect the whole. But speculative geology per-
ceives nothing but derangements and convulsions. The changes in the situations
of the poles, the augmentation and diminution of the magnitude of the earth, the
immense volume of water which held all terrestrial substances in a state of solution,
the processes of desiccation and refrigeration, and many other great revolutions
which must be assumed in constructing a theory of the earth, could scarcely have
taken place without altering the equilibrium established by universal gravitation.
Besides, as all the globes of our solar system are evidently-bodies subjected to uni-
form laws, theories of the earth must inevitably degenerate into cosmogonies. Every
time that men of genius have engaged in speculations upon the history of our globe,
they have found themselves forced to extend their hypotheses, so as to embrace the
whole solar system; they have been gradually led on to the discussion of questions
alleged beyond the limits of our faculties, such as those concerning the eternity of
the world, and the essential properties of matter.

Such are the reasons which seem to us, a priori, to prove the impossibility of
establishing any general theory regarding the primitive formation of the globe. Let
us see whether a review of the various systems hitherto proposed by geologists, will
lead us to a different conclusion.

Almost all geological opinions may be reduced to two great classes, the
opinions held by the Vulcanists, and those entertained by the Nop-
tunist.
The Volcanists tell us, that the earth at first was in a state of fusion; that it then gradually cooled, and was covered with water at a subsequent period. Air and caloric, or fire, were powers which gave to existing shape. The land was heaved up by an internal force; the irregular which diversify its surface are the effects of volcanic eruptions; and the transitory soils have been formed by the disintegration of the higher grounds.

According to the Neptunists, the earth was originally in a state of aqueous and cold solution, at least to a certain depth. Solid bodies have been formed by desiccation, precipitation, crystallization, &c. The primitive ocean, which either retired, or rather has disappeared, in consequence of the land giving way and sinking down from its own weight; the tertiary soils have been formed in the bosom of the waters.

These ideas, more or less extended, varied, and combined, constitute the basis of almost all the theories of the earth which the industry of Delamethéreics has been able to collect.

The Egyptians appear to have adopted the Neptunian system. According to them, the waters had covered the whole earth, but were concealed in the vast cavities which were supposed to exist in the interior of the globe, and from which they were one day destined to issue forth. They maintain that a great island or continent, called Atlantis, had sunk in the bosom of the sea.

It is to Plato that we are indebted for these fragments of the Egyptian system.

It appears that the Hebrews and the Chaldeans held the same opinions as the Egyptians, except that the Chaldeans believed in the existence of a central fluid similar to the atmosphere, and considered the globe as having been thrice covered with water—first by the chaotic waters, and then by an universal deluge. This deluge, according to the Chaldeans, was the effect of a change in the axis of the globe, occasioned by an irregular attraction of superior planets.

The Hebrews represent it as the work of omnipotent power.

The most ancient writings of the Hebrews, attributed to their legislator Moses, have also preserved a most interesting tradition, the elements of which are plainly to be traced amongst many other nations, namely, the six geogonical epochs, or a successive formation of the globe. If the Hebrews speak of six days, and the Etruscans of six thousand years; if the Indians have extended these epochs to millions of years, this makes no real difference. These expressions, however contradictory they may seem, being only the varied phraseology in which the ancient poets and prophets so frequently indulge.

Deluge, whose faith in Christianity cannot be suspected, has never been able to explain the geogonical system of Moses, otherwise than by taking the word days in a figurative sense, for some indefinite period of time. Every theologian knows that to explain the Hebrew prophets, and particularly Daniel, recourse must be had to a similar method of interpretation.

It is obvious, that these Neptunian systems have had their origin in new countries, which have been formed by the slow or sudden retreat of the sea, such as Egypt, Chaldea, and the borders of the Gulf of Arabia. As to the universal deluges which happened after the first drying of the globe, it is remarkable that they are generally represented as sudden, and of short duration. We cannot see how such revolutions could have taken place, without adopting the idea that the globe of the earth is internally hollow, and that the dry land sunk into it. Accordingly, the formation of the mountains, by the sinking in of the land, necessarily forms a part of all the geogonical systems which proceed upon the humid plan.

The volcanic system equally appears to have originated with some Oriental

* Delamethére, Théorie de la Terre, tome v. p. 280 533.
\[\text{2}\] Compare Delue, Lettres à Blumenbach, 1798. Id. A Treatise on Geology, 1802. Geogy, in 2 vols. (in German) by Silberschlag, Berlin, 1780, contains a very good explanation of the Mosaic system, regarded in an historical point of view. The celebrated Orientalist, Eichhoren, at Göttingen, has explained it poetically. See his Repertory of Biblical and Oriental Literature, vol. iv.
ions; for the Greeks, who embraced it, derived their information from the east. To this system belongs the hypothesis of the raising up of the mountains, to which some Hebrew prophets, posterior to Moses, appear to allude.

Belus, the Assyrian lawgiver, appears to have admitted that the earth exists periodically in a state of universal combustion, and in that of general inundation.* According to a passage of Trogus Pompeius,† the two systems which attribute the origin of the world to fire and to water, divide the opinion of the philosophers of the east. Those who adopted the former, thought that the earth had slowly and successively cooled, from the poles to the equator; their antagonists maintained, that the sea had gradually retired.

The ideas of the Orientalists furnish the Greeks with the foundation on which they have reared all their fanciful geogonic superstructures. Thales imported from Egypt the Neptunian system, which was probably that of all the ancient Greek poets and mythologists. Homer seems to adopt it.‡

From Aristotle and Plutarch we learn, that these ancient Neptunists founded their system on one single principle, humidity; because, from humidity, animals, plants, and even fire, appear to derive their origin.§ Were not these ancient philosophers as far advanced in knowledge as our own modern geologists, who say, that a watery solution has alone been able to hold, in a dissolved state, all the solid, liquid, and fluid bodies, whose union composes the globe and its atmosphere?

The description which Lucretius, Virgil, and Ovid, give us, of the first formation of the terrestrial globe, contain all the principal ideas of the modern Neptunian theories; solution in a vast fluid, or in chaos, chemical precipitation by attraction or affinity, mechanical precipitation and deposition, and, at last, coagulation and consolidation.¶

The number of Grecian philosophers who attribute the origin of the earth exclusively to elementary fire, does not seem to have been considerable; for we cannot affirm that such was the opinion of Pythagoras, although he looked upon the soul of all beings as a particle of divine fire. The obscure Heraclitus was the first who said, that "fire had formed all things, and could destroy all."|| The stoics, according to Cicero, should have been of this opinion, but Seneca declares, on the contrary, that they regarded water as the principle of the world. Besides, when Heraclitus said, "that the earth was the thickest sediment of fire, that water was earth dissolved by fire, and that water in the state of vapour formed air," it is evident that he did not think of the system of the Vulcanists; he intended only to found a general system of corporeal philosophy.

The same remark holds with respect to those who ascribed the creation of the earth and the universe to the concourse of particles or atoms scattered in the immensity of space. In the atoms of Democritus and Epicurus, which adhered to one another by means of some small inequalities of shapes, which served as a kind of crotchetts or hooks, in the corpuscles which prefer and attract each other, in virtue of their similar nature,** we recognize the fundamental principles of our theory of chemical affinities, and, consequently, of our most modern and most celebrated systems of geology. The union of atoms is evidently the same thing as the simple attraction of particles: and whether we say these corpuscles choose to unite, because they are of a similar nature, or these particles tend to unite by an elective attraction, all the difference consists only in the greater or less precision of the expressions.

The idea of Franklin, who makes every thing to originate from air, had been broached by Anaximenes of Miletus, whose opinions are without doubt misrepresented by the contracted minds of those who accuse him of

* Berossus, ap Seneca, Quast. Nat. iii. c. 29.
‡ Ilid. xiv. 246.
§ Aristotle, Metaphys. lib. i. cap. 3. Comp. id. Meteorol. i. 14. Plut. De placitis Philosophorum, b. i. c. 3.
** Plut. de Placit. Philosoph. i.
¶¶ Paresque cum paribus jungi res, &c. Lucre.
atheism.* The Greeks did not rest satisfied with these general systems; they formed hypotheses of a more definite character, founded upon facts supplied by the physical geography of the countries then known. The flowing out of the lakes or marshy pools which covered Thessaly before the formation, or rather before the enlargement, of the valley of Tempe,† suggested the idea, that all the inland seas, and especially the Pontus-Euxinus, or Black Sea, had been originally enclosed lakes, to which some violent revolution had opened an outlet. Xanthus and Strato having observed that the soil of Upper Asia contained sea shells, justly concluded that these countries had been covered with sea-water;‡ but when Strato attempts to explain this phenomenon, which is common to all the globe, by supposing a local cause, by the existence of an ancient inland sea, formed by the union of the Pontus-Euxinus with the Caspian, he falls into one of those paradoxes which appear to be almost hereditary in the pretended science of geology. We shall prove, in the proper place, that such an inland sea has not existed since the commencement of historical times. The general revolutions which may have been caused by the breaking up of the great lakes and interior seas, must have taken place long before the existence of the human race; and the deluges that have been occasioned by a derangement of the sea, belong to an age far beyond the reach of history. This is completely proved by the occurrence of animal remains.§ But the soil of Greece, from its very nature, must have frequently given way and sunk down, and consequently the country must have frequently experienced local inundations. The deluge of Deucalion desolated Thessaly, especially the mountainous canton named Hellen;|| that of Ogyges overwhelmed Boeotia.|| Popular tradition naturally referred to those disasters which had ravaged whole provinces, every ancient inundation, the remembrance of which was preserved in any district. Thus a single opening, of inconceivable extent, was shown in Attica as the funnel by which all the waters of Deucalion's flood were drained away.** Twelve or fifteen centuries after the epoch assigned to these events, historians began to collect these scattered traditions, and to compose from them highly finished descriptions of pretended universal deluges, unknown to more ancient authors.†† Other Greek writers, dissatisfied with these sudden revolutions, these eruptions and deluges, invented the hypothesis of the gradual drying up of the sea. Aristotle charged them with drawing a false conclusion from authentic facts. "It is true," said that great naturalist, "that several countries, formerly covered with water, are now requisite to the mainland, but the contrary also happens; the sea has made several eruptions.‡‡ The hypothesis of alluvial additions to the land was also proposed. Polybius imagined that the Pontus-Euxinus, or Black Sea, would be filled up by the mud which the rivers conveyed into it;§§ but two thousand years have been insufficient to fulfil this geological prediction. The waters of the river Pyramus, in Cilicia, have made no addition to the opposite shores of Cyprus, as the oracle had foretold. Lastly, some of the Greek philosophers attributed to volcanic eruptions effects much more considerable than those for which we have any historical evidence. Strabo imagined that they could raise and swallow up whole countries; and he mentions, as a proof, two towns in the Peloponnesus that were overwhelmed by an earthquake.|||| Thus do we discover, among the ancient Greeks, the germ of all the theories of modern geology, and the same disposition to confound facts belonging to different epochs, to exaggerate phenomena, and to deduce general conclusions from local facts. amongst the moderns, Palissy was the first to unfold correct ideas respecting fossil shells; he protested against the misconceptions of those who were for considering them only as the sportive productions of nature; he even

ventured to maintain, that these fossil remains of marine animals were too abundant to have been carried into the places where they are found, by a sudden catastrophe resembling the deluge described by Moses.* Stenon demonstrated anew these truths, which were of too bold a character for the age of Palissy. Proceeding still farther, he acknowledged that the strata of the earth must have been formed as deposits in a fluid, and that mountains owe their origin to the subsiding and rupture of strata originally horizontal.†

Burnet, a man of great talents, but who had not carefully observed phenomena, constructed the first complete theory. Before the deluge, says he,‡ the surface of the earth was a level plain, with neither mountains nor valleys. All substances were disposed around the centre of the globe, according to their specific gravity, the water every where occupying the surface. The oily substances, however, being lighter than water, formed by degrees an upper layer, which enveloped the waters and the whole of the globe. Upon this extremely fertile crust, the antediluvian generations lived in perpetual spring. The deluge made every thing change its appearance; the crust became dry, and the accumulated waters struggled against this light covering; it burst and sunk into the abyss of waters. This changed the axis of the globe, and consequently the temperature of its climates. The edges of the crust, set up again in several places, formed our present mountains. It is unnecessary to show, that this system, founded solely upon the observation of floating islands, is altogether insufficient to explain the origin of those hard and heavy rocks of which our mountains are composed. Descartes§ and Leibnitz|| take a still bolder flight, imagining that the earth is a small sun, covered with an opaque crust, which, by sinking down, gave birth to the mountains. Leibnitz considered the whole mass of the globe as having been vitrified; an idea quite untenable, although Buffon has been carried away with it.

Another arbitrary theory was proposed by Whiston.‖ This astronomer considers the earth as a comet, which has forsaken its original tract, from a cause which he does not specify, to revolve in the orbit of a planet. Being no longer subject to the extremities of heat and of cold, the chaotic matter of this comet was precipitated according to the laws of specific gravity. A part of the primitive heat of the comet was preserved in its centre; this centre was surrounded by water, the exterior crust of the globe was of uncommon fertility, and the inhabitants lived for centuries. But the excessive warmth had the effect of inflaming their blood; they became so impious, that the Creator was compelled to destroy them with a flood. For this purpose he caused another comet to approach, which enveloped the earth in its immense tail; and as the tail of a comet is composed of vapours and water, (who dares to doubt it?) the temperature of the earth was considerably diminished. Besides, the attraction of the comet disturbed the equilibrium of the waters in the interior, and thus occasioned a violent flux and reflux in their mass. The exterior crust of the earth being violently shaken, sunk down in one place, and cracked in another. In this way, an universal deluge took place. The comet, after executing the will of the Creator, receded; the waters, recovering their equilibrium, entered again into the subterraneous cavities, which had been sufficiently enlarged to receive the waters of the comet. The coldness, and other bad qualities of these waters, have reduced the earth to that degree of barrenness and exhaustion which we now so much deplore. This hypothesis of Whiston has often been revived in whole or in part. Dolomieu has borrowed from it his principal ideas.

Woodward, a countryman of Whiston’s, and an indefatigable and scrupulous observer, invented a much more modest theory.** He admits, that all terrestrial substances have been in a state of aqueous fluidity, and supposes

* Encyclopédie Méthod. Géographie-Physique, i. art. Palissy.
† Stenon, Dissert. de Solido, intra solidum.
‡ Theoria telluris sacri, &c. London, 1681.
§ Principes de Philosophie, Part iv. No. 2.
‖ Protagre, in act. erud. 1683.
¶ A New Theory of the Earth. Lond. 1708.
** Woodward’s Essay on the Natural History of the Earth, 1723.
that the whole interior of the globe contains an abyss of water which must have been sufficient for the purpose. The deluge of Moses consisted in a falling down of the crust of the globe into this great abyss, the waters of which, according to Woodward, possessed a peculiar dissolving power, which did not act upon shells and other remains of the animal kingdom. It is evident that the acuteness of Woodward led him to perceive the impossibility of explaining the position of so many beds of shells in the midst of stony masses by the occurrence of a single short-lived inundation. But his dissolving power is, according to his own admission, an occult and miraculous property. An intelligent German, Camerarius, in attacking Woodward, conjectures, what has since been demonstrated, that banks of shells neither have nor could have been transported by any deluge; and that, on the contrary, the animals to which the shells belong have lived and died in the same place. In replying to Camerarius, who states his opinion in a manner far from distinct, Woodward asserts the fact that volcanic eruptions have given origin to no considerable mountain, far less to islands and entire countries.†

We shall say nothing of the vegetation of stones, the dream of the celebrated Tournefort, nor of some detached propositions of Scheuchzer, whose genius was fettered by the prejudices which attributed all the changes of the globe to a single deluge. The ingenious Fonteselle was the first who had the merit to assert that more revolutions than one must have contributed to model the surface of the globe, and to heap up those vast ruins which surround us on all sides.

The volcanic system found at this same period several warm and able defenders, to whom it would be very wrong to pass over in silence. Ray imagined, that at the very moment of the creation, at the time of the separation of the humid and solid substances, there were earthquakes which heated up the mountains. The earth gradually emerged from the waters of the sea, which gave marine animals time to retire into the bosom of the ocean.‡

Hook, 1705. Hook, while he supposed that strata were originally formed like sediment in a fluid, admitted the occurrence of volcanic eruptions sufficiently powerful to raise up extensive tracts of ground, and even to melt and calcine them.§

Lazzaro Moro, 1740. Lazzaro Moro, observing that there are some mountains which contain neither the remains of sea animals, nor any marks of stratification,|| attributed a volcanic origin to all the secondary mountains; these are, in his opinion, flowings of lava which have had their origin under the waters. By modifying and combining these different ideas, Raspé composed his volcanic theory of the formation of new islands, a theory which many distinguished volcanists have inaccurately copied.¶

These different systems were completely eclipsed by that which was created by Buffon, and which his splendid genius adorned with all the charms of poetry. According to him, the suns and comets were formed as we see them, and projected with an impetus sufficient to carry them forward in their orbits. But about 96,000 years ago a comet fell obliquely into the sun, and detached from it the 550th part. This entire mass, hurled into the immensity of space, separated into fragments, which formed several planets of our solar system, and which, from their rotatory motion, acquired a spherical shape. Our globe was in a state of incandescence, but its surface by degrees cooled and consolidated, retaining however many immense cavities. Part of the vapours, which were elevated in the atmosphere, condensed and formed the seas. These waters, acting upon the solid part of the globe, decomposed a portion of it, and in this way formed the land and stones. The waters of the ocean, attracted towards the equator by the tides, brought with

* Camerarius, in Dissert. Taurinens, p. 226, Tubing, 1712.
† Natural History of the Earth, Enlarged and Defended, &c. p. 115. sqq. Lond. 1726.
‡ Ray, Three physico-theological Discourses, p. 164, Lond. 1692. 2d edit.
|| Lazz. Moro, de l’Orig. des coquillages fossiles, ch. 12, 13, 1740.
¶ Raspé, Specimen historii naturalis globi terraquei precipue de novis è mari natis insulis. Leipzig, 1763.
them a vast quantity of dissolved substances, "and then," says Buffon, "gave rise to those great chains of mountains which extend from east to west." Unfortunately these chains do not exist; the great range of mountains which surrounds the globe has another direction;* so that Buffon is to blame for explaining, by a supposition improbable in itself, a fact which is quite imaginary. But let us proceed with the statement of his theory. The primitive waters of the globe withdrew into the cavities of which we have already spoken, then the continents appeared. The earth, in the space of 43,000 years, grew so much cooled that its surface could admit of the existence of vegetables and animals, which started first into being about the pole, and gradually spread themselves towards the equatorial regions. The secondary strata were formed from the decomposition of vitrified substances, mixed with marine sediment; accessory causes, such as winds, currents of water, volcanic eruptions, and earthquakes, afterwards modelled the mountains and the valleys. The ocean slowly changes its shores by its general motion acting against the eastern coast, which it imperceptibly destroys, and in this manner may have several times completed the tour of the globe.†

The system of Buffon, refuted in its principal points by the observations of naturalists, is no longer supported even by those who consider fire to have been the chief agent in the formation of the globe. All hypotheses which pretend to explain the first origin of our globe, and the manner in which it was projected into space, are now regarded as chimerical. Geology attempts only to ascend by the examination of physical monuments from one epoch to another, until it arrives at a state of things anterior to all these monuments.‡ At the same time, the rapid accumulation of facts has led the most enlightened men of all parties not to exclude any particular cause,§ —a principle which has, in part, produced a blending of different systems, and a mutual tolerance for moderate opinions.

The theory which is now most keenly supported, is that of Deluc. This philosopher supposes that the earth, and all the celestial bodies, were masses of confused elements, in which the divine will, by communicating to them a certain quantity of light, produced chemical precipitations, whence was formed the crust of those solid rocks whose fragments we see around us. This consolidated crust sunk down several times; the remaining edges, supported upon the partitions of subterranean caverns, formed the mountains. The waters which at first covered the whole globe, filtered down into the central parts, where the ancient chaos always subsisted; then appeared the first continents, of greater extent than ours, but suspended above immense caverns; and, before they were enlightened by the sun, producing vegetables of a nature different from ours; the remains of which form our coal mines. The present continents, concealed under the sea, were covered with deposits of shells; volcanic eruptions spread their beds of lava. By a general and final subsiding, the primitive continents sunk into the recesses of the subterranean cavities. The sea was precipitated upon the land, and engulfed the whole race of the inhabitants. This catastrophe was the universal deluge, explained by Moses, the traces of which are to be found amongst almost all nations. It was then that our present continents, formed beneath the ocean, suddenly arose into view. In the light lands of these continents were found, buried in promiscuous heaps, the remains of quadrupeds once the inhabitants of islands which had sunk down before the universal deluge, and the skeletons of cetaceous animals which had peopled the sea. The preservation of these remains, which are still met with almost entirely in cold countries, and the inconsiderable thickness of the beds of the vegetable mould formed above our continents, unite to prove that their antiquity, or rather their appearance above the waters, is not to be dated many ages beyond our own.||

* See Book vii.
† Buffon, Theory of the Earth, in the 1st vol. of his Natural History.
‡ Deluc, Elements de Géologie, § 10, p. 11.
§ Delamétherie, Théorie de la Terre, § 1700.
∥ Deluc, Lettres sur l'Histoire de la Terre, adressées à M. Blumenbach, id. Elémens de Géologie.

Vol. I.—F f
Such is the theory of the celebrated naturalist of Geneva. The principal feature of this system, viz. the repeated subsidings supposed to have taken place in the surface of the globe, and some of its subordinate details, particularly those regarding the origin of animal remains, have obtained for it a very favourable reception among philosophers. There is some difficulty in conceiving the existence of the vast cavities in which the antediluvian world was engulfed; it would seem that this idea, borrowed from Woodward, has been introduced into the theory, solely from a desire of accounting for the deluge.

Some naturalists, who admit, with Deluc, that the earth was formed in a state of aqueous fluidity, differ concerning the rank they assign to the agents which have produced the revolutions and ruptures of the crust of the globe. Saussure sometimes expresses himself, as if he admitted heaving up of the earth by volcanic fire, "or by other elastic fluids," in order to explain how beds of granite, which serve as a base to all the others, have, in certain places, been so elevated as to form the summits of mountains. But the idea which he has uniformly maintained, is, that of very violent currents, which, by agitating the ancient sea, drew along with them, to a great distance, the fragments of primitive rocks, particularly of granite, which are found scattered on the surface of ground of secondary, and even of tertiary formation.† It is difficult to conceive currents possessed of a force capable of rolling to a distance, entire portions of mountains, even though we should suppose the valleys filled up, and forming an inclined plane. It is more natural to attribute the phenomenon in question to marine ice, which may have carried these fragments of mountains across the ancient sea.

The celebrated Werner, while he attributes a great influence to the subsidings, thinks, however, that various facts, and amongst others, the position of basalt, are explained only by supposing a periodical increase and diminution of the mass of fluid elements.

When Pallas explains the occurrence of the remains of elephants in Siberia, by imagining a general overflow of the waters of the Indian Ocean, which, according to him, would have covered and traversed the upland plain of Central Asia, as they rolled from south-east to north-west, he has recourse to earthquakes and volcanic eruptions, to produce so extraordinary and inconceivable a movement.†

The ingenious Delametherie has composed a theory very circumstantial in its details, and supported by many facts, in which he endeavours to reduce the revolutions of the globe to chemical laws, without, however, excluding the agency of mechanical causes. This chemist represents both the mountains and the valleys as having been formed by crystallization in an immense fluid, which he gets rid of by means of evaporation, because he is determined to consider the central mass of the globe as a solid crystal.

The opinion of Deluc, as to the comparatively recent date of our continents, has been adopted by a distinguished naturalist, who, without constructing any general system, has thrown out some detached views, which, however, are very fruitful in results. Dolomieu, it would appear, scarcely aimed at any thing more than to disencumber Whiston's theory of some of its hypotheses. All the geological agents of this philosopher; the solution of all terrestrial substances in a solvent which has been destroyed; the coagulation of these substances, which after the destruction of the primitive solvent were precipitated and crystallized, so as to form a crust; the exterior cause, whatever it might be, which breaks and pulverises this crust, and the idea of eighteen hundred toises in elevation, which set in motion the whole mass of waters, swept the bottom of the seas, raised and transported banks of shells, hollowed out the valleys, and modelled all the secondary ground; all these agents, we say, exist already in the theory of Whiston. It is even difficult to imagine the possibility of all these violent and sudden revolutions, without the concurrence of some celestial body; but as every thing proves the stability of the planetary

* Saussure, Voyage dans les Alpes, § 919.
† Id. Ibid. §§ 587, 1396, &c.
† Pallas, Observations upon the Origin of Mountains, p. 74. French Transl.
system, it is only to the comets that we can have recourse. But how is it to be proved that these comets are bodies sufficiently dense to exercise such force of attraction upon the terrestrial globe? Tycho, Galileo, Kepler, Lahire, and Herschel, have regarded the comets as ethereal meteors. Thus theories of the earth invariably terminate in questions which admit of no solution; and all that we learn from studying them, is to distrust them.

"To distrust them:" some Scotsmen will exclaim, as they read these lines: "No; there is no more room for doubt, since Hutton and Playfair have discovered the true constitution of our globe. Do you not know that the present continents are wasting away by the action of the air, of gravitation and of flowing waters; that their materials, conveyed to the coasts, are thence scattered by the different movements of the ocean over the whole extent of its bottom; that a great internal heat, hardens these materials, whence is formed a mass like that of the mineral beds of which our continents are composod; that when this slow disintegration has destroyed our continents, the internal heat raises entire the beds formed at the bottom of the sea, in consequence of which its waters are spread over the wasted and demolished continents, and new continents are produced, to be subjected in their turn to similar disintegration? This great process of the alternate production and dissolution of continents, has already been frequently repeated, and no limit can possibly be fixed to its future duration."

Our readers will of themselves perceive how very contrary this new system is to the evidence of facts. We shall only beg of them to observe, that the idea of the formation of mineral beds, by a subterraneous process similar to that which Sir James Hall has exemplified in his celebrated experiments, deserves to be thoroughly investigated, independently of its connection with the Huttonian system.

Whilst the philosophers of Europe were discussing the claims of these theories, the new world produced, or rather revived a system completely different from all of them. Franklin, like Anaximenes of old, supposed that not only all terrestrial substances, but even all matter, had existed as an elastic aethyriform gas, irregularly diffused throughout the celestial spaces. Gravitation began to be felt; the gaseous particles were attracted towards various centres, and formed globes of air. This being supposed, it is easy to form a conception of the whole of Franklin's system. All substances are capable of being reduced to the aethyriform state, therefore, concluded Franklin, they may all have been produced from the condensation of air, and thus must have been formed the exterior crust of the globe, which in this system is merely a thin solid covering around a vast elastic fluid. The movements of this central air occasion earthquakes. This system, in short, is not a mere satire upon the theories of the earth, as some have supposed, it is an hypothesis quite as national and ingenious as those of the geologists.

After having traced geology to the ethereal regions, what have we further to do? Shall we augment the number of systems, by endeavouring to show that the earth was once surrounded by a ring like Saturn, and that the falling in of this celestial vault gave rise to that chain of mountains† which occupies the ridges of the great continents, and thus forms, as it were, a belt to the globe?

† See Book vii. p. 83, of this work.
BOOK XX.

Continuation of the Theory of Geography. Of the Earth, considered as the residence of organic beings.

SECTION I.

OF THE GEOGRAPHICAL DISTRIBUTION OF VEGETABLES.

We have decomposed the terrestrial globe into its solid, liquid, and aeriform parts. Let us now proceed to the consideration of those innumerable beings which exhibit the spectacle of life upon every point of the globe; which embellish its surface, which feed upon its inexhaustible stores of nutritious juices, and which, by one common destiny, find in it a thousand different graves. These productions, and these inhabitants of the earth, are not scattered over it by the hand of blind chance; general laws have assigned to each class of these organic beings its cradle and its grave; and these laws it becomes us to study before we commence the description of the different parts of the world.

Vegetables, from the abundance in which they are produced, and from their intimate connection with the soil, claim the first rank. It is for the botanist to examine in detail the treasures of the vegetable kingdom; the business of the physical geographer is only to mark its general arrangements; and here we find abundant reason to admire that wisdom which presides over the constitution of the globe.*

The temperature of the air appears to form the only physical limits to the extension of vegetable nature. The scale of atmospheric heat serves accordingly as the ordinary scale for the progress of vegetation. Hence, under the burning climate of the torrid zone, we have only to ascend the mountains to enjoy the fruits and flowers of the temperate regions. Tournefort found, at the base of Mount Ararat, the common vegetables of Armenia; half way up, those of Italy and France; and, upon the summit, those of Scandinavia. Forster saw several alpine plants upon the mountains of Terra del Fuego.† If the valleys of the Andes are adorned with bananas and palm trees, the more elevated regions of that chain support oaks, firs, barberries, and a number of kinds common to the north of Europe.‡ Man, availing himself of this circumstance, has transported and disseminated almost over the whole surface of the globe, those herbaceous plants which supply him with his principal nourishment. Some useful plants have been rendered common to every climate by nature herself. Antiscorbutic vegetables, so salutary for the mariner, when languishing from the long use of salt provisions, are met with wherever there is a vestige of life. Cresses, succory, and wild sorrel, are found upon the ever-frozen banks of Hudson's Bay, and in Siberia, as well as in those blissful islands which are scattered in the midst of the Pacific ocean.§ The shrubs which produce berries, and small fruits agreeable to the taste, thrive in the more inhabited countries. Even in Greenland, the currant bushes bear very good fruit. Lapland possesses a considerable resource in its shrubs, such as the barberry, the dwarf mulberry tree, the wild wood vine, (vitis idaea) and others. Neither external cold, nor the absence of the light, entirely extinguishes vegetable life. Caverns and mines give birth to a certain number of plants, parti-

‡ Bemerkungen, p. 154. (in German.)
§ Humboldt, Essai sur la Géog. des Plantes, p. 54.
Anderson, Cook's Third Voyage, passim.
cularly to those of the cryptogamous class.* Several of the saxifrages and ranunculus, the dwarf willows, as well as all the lichens, like the cold. The snow, far from impeding the vital functions of these vegetables, secures them against the effect of frosts, and furnishes them in abundance with the oxygen which it contains, and which, by increasing the vigour, accelerates the germination of the seeds.† Ramond has proved, that plants covered by the snow for several years, have yet continued to live beneath it.‡ The organization of alpine or polar plants, admits of a growth and development so rapid, that a few warm days are sufficient to fructify them.§ Perhaps even perpetual snow may be the abode of a species of vegetation; at least Saussure has discovered in it a kind of reddish dust, very probably of a vegetable nature. Patrin and Sokolof saw, in Daouria, ground covered with vegetables, though entirely surrounded by perpetual snow.|| Extreme heat checks still less the productive energies of nature in the vegetable kingdom, provided that it be attended with humidity. We see plants grow not only upon the borders of hot springs, but even in the bosom of those waters which seem likely to destroy them. Examples of this kind are to be found from Iceland to the Cape of Good Hope, and from Kamtschatka to the island of Ambroyna.¶ The sulphurous exhalations, and the foul air of volcanic caverns, seem to exert upon vegetation only a slow and limited influence, while to animals they prove instantly fatal.**

The most formidable obstacles to vegetation is the absence of humidity. Look to those sandy deserts under the equator, as well as towards the Pole, condemned to perpetual sterility. Not a drop of rain can settle on such a loose soil, always moving with the winds: Not a seed can strike root into it. It is unquestionably to causes very similar that we must ascribe the nakedness of several mountains; precipitous sides, or flat summits, afford no shelter to the vegetable colonies which the winds transport to them, whilst on other mountains under a colder temperature several plants are still supported. For example, the shivering mountain in Derbyshire produces no herbs, because its sides are daily decomposed in their schistosus plates, which are constantly gliding down to the bottom.†† The pressure of the atmosphere exercises a striking influence upon the configuration and life of plants. In vegetables the functions essential to life are performed chiefly at the surface; hence their great dependence on the medium by which they are surrounded. Animals are affected rather by internal excitement, and acquire of themselves the temperature which suits them. Respiration by the epidermis is the most important vital function of plants; and this function, in so far as it is subservient to the evaporation and secretion of fluids, depends on the pressure of the atmosphere; on this account the Alpine plants are so aromatic, so downy, and so plentifully furnished with secretory vessels. On the contrary, these plants grow with difficulty in the plains, where their respiration by the epidermis is impeded by the increased pressure of the air.†††

The chemical nature of the soil manifests its influence upon vegetables, rather by modifying their juices, their fruits, and the staleness of their appearance, than by setting limits to their cultivation. Common salt, however, dissolved and scattered over the soil in considerable quantities, almost entirely prevents the growth of vegetables.§§ The fusion which lava undergoes, is probably the only cause which, for some centuries, has retarded the progress of vegetation on its

* Scopoli, Diss. ad Scient. Natur. part i. p. 84—120. Humboldt, Flore Priberg. subterr. &c.
‡ Ramond, Observat. p. 51.
§ Martens, Voyage to Spitzbergen, p. 54. (in German.) Linnæi, Flor. Lapp. praef. pl. xx.
|| Patrin, Voyage, p. 19.
†† Kuttner, Beyträge, &c. that is, Mém. sur l'Angleterre, cah. vii. p. 20.
surface, whilst the volcanic cinders raise most abundant crops.* In general, the soil serves only as a support and shelter to plants; they derive their nourishment from the water and the oily fluids which are collected together in the earth, and imbibed by their roots. A very small quantity of earth, dissolved in these fluids, is absorbed by the plant. Other causes also contribute to the support of vegetable life. Plants respire through their air-vessels the different fluids of the atmosphere; the presence of light especially is indispensable to the chemical operation, by which the pabulum or food of the plant is assimilated into its substance. The elementary earths obtained from plants by chemical analysis, appear rather to be the product and remains of the digestion by which the vegetable assimilates its food, than particles immediately derived from the surrounding soil.† The experiments of M. Schrader have shown, that the plants which vegetate in sublimed sulphur, give when analysed, the same earth as those which grow in the ordinary way.‡ These observations, furnished by vegetable physiology, may explain why the siliceous earth forms so large a portion of the substance of plants, although the calcareous soils are generally covered with a more vigorous and more abundant vegetation than the granitic soils. The calcareous earth attracts humidity, diffuses warmth, and supplies the plants with fixed air; but it is the silice which predominates in the best vegetable earth.§ The siliceous matter abounds also in grasses, and in several varieties of rushes. There have been found in the ashes of rye straw no less than 70 parts of silic in 100 of straw. The joints of the bamboo contain crystallizations of pure silic.|| There are, however, other plants which are as much impregnated with calcareous earth, such as the Charcolgaerts, the Hymnus crista castrensis, the Neckera dendroides, and several cryptogamic plants. W Other plants, such as the Salsola kahli, the salicornia, the mesemery-anthemum, float almost in a solution of alkali. All the substances which chemistry procures from vegetables are reducible into four elements, namely, oxygen, hydrogen, azote, and carbon. The alkali which is extracted from several vegetables, probably owes its origin to the azote. Tannin, the principle of stringency which is found in the bark, the roots, and the leaves of some trees, seems to be carbon in a particular state. Vegetable physiology is full of uncertainty, and can furnish the geography of plants only with a very limited number of principles.

Extent of vegetation. The empire of vegetation embraces the globe from pole to pole, and from the summit of the Andes, where the lichen creeps over the hardest rocks, to the bosom of the ocean, from which floating fields of algae and 'fiu' rise unseen. Cold and heat, light and shade, fertile lands and pathless deserts, every place and every temperature has its own kind of vegetation, which thrives and prospers there.** Plants of the cryptogamic class even ramify upon the dark vaults of mines, and upon the walls of the deepest caverns. The course which vegetation pursues in its conquests over inorganic matter, presents remarkable gradations. "Let a volcano," says M. Humboldt, "raise up from the bottom of the sea, all at once above the boiling waves, a rock covered with scoria; or, to refer to a less dreadful phenomenon, suppose the nereides, with united industry, continue to elevate their cellular abodes for thousands of years, till, finding themselves above the level of the sea, they die, after having in this way formed a flattened isle of coral; organic force is instantly ready to produce vegetation upon this rock: yet who can have brought there so suddenly the seeds of plants? Is it the birds, or the winds, or the waves of the sea? It is the great distance from the coasts which renders it difficult to decide this question. But scarcely has the air come in contact with the naked rock, when in the northern climates there is formed upon its surface

a net-work of tufted threads, which appear to the unassisted eye like coloured spots. Some of them are bordered by lines bending outwards, sometimes single, sometimes double; others are cut by furrows which cross each other. As they grow older, their bright colour darkens; the yellow, which shone even to a great distance, changes into brown, and the bluish grey of the lepraria insensibly acquires a tint of a dusty black. The extremities of the older coverings approach and mingle together; and upon this dark ground are formed new lichens of a circular form, and of a dazzling whiteness. It is thus that an organic work-is wrought in successive layers. Where the majestic oak now raises its aerial head, slender lichens once covered the bare rock. Moss, grasses, herbaceous and shrubby plants, fill up this long interval, the duration of which cannot be calculated: In the torrid zone, the portulaca, the gomphrena, and other low plants inhabiting the shores, supply the place, and produce the effects of the lichens and mosses in the northern climates."

This interesting observation tends to establish certain epochs in the history of the successive propagation of the plants which now cover the earth: Without doubt, where vegetation had already thrown her verdant mantle over the primary and secondary mountains, the tertiary lands might still be seen scarcely dried, covered with muddy slime, and sown with some languishing plants, rushes, mosses, and thick bushes of osier and willows. The Greeks alleged, that men, animals, and plants, inhabited the mountains long before they spread themselves over the plains, and along the coasts.*

Tacitus describes Germany as full of inaccessible marshes, which are now in a great measure dried up. Rudbeck himself admits, that according to the tradition of the country, the low parts of Scandinavia presented the same aspect.† Thus, history appears to confirm the hypothesis so ingeniously developed by Lacépede and Ramond;‡ according to which, we ought to look upon the great chains of mountains as so many centres, whence vegetable, as well as animal population, was scattered over the rest of the globe.

In truth, the chains of the Alps of Mount Atlas and Mount Taurus, the central upland plain of Asia, that of southern Africa, the Andes, the Allegheny mountains, seem to be the native land of the vegetables which cover the countries lying at their base. To those grand centres of the vegetable kingdom, the progress of discovery will, ere long, add the upland plains or chains of mountains which are supposed to occupy the interior of New Holland and the north-west parts of America.

It would, we conceive, be extremely unwarrantable to reduce these centres of vegetable and animal life to one single centre, as has been attempted by several philosophers, led away by an undue regard to mythological traditions, or to their own interpretation of the sacred records. Could the organic energy by which matter was animated, have acted originally only upon one point of the globe? Would not nature, upon the banks of Senegal, have exercised the same power as upon the shores of the Ganges? Why should corn have sprung up in Tartary before it grew in Europe? Why have not Spain and Italy produced wild olives, when Persia, which is much colder, is covered with them? The pretended migrations of plants are very much exaggerated. We are willing to suppose, for example, that Europe has received wheat and barley from Tartary, the walnut tree from Persia, the olive from Syria, the vine from the borders of the Caspian Sea: in short, we accumulate historical proofs, to show that all our useful plants come from Asia;§ but all these observations of the ancients relate only to the cultivation of a plant, and not to its origin. Lucullus, without doubt, was the first who brought from Cerasus, in Pontus, the cherry trees since cultivated in Italy; but, in relating this fact, Pliny tells us that

‡ Memoires de l’Institut et Annales du Museum.
the cherries of Lusitania were the most esteemed in Belgic Gaul, and that Macedonia produced a particular kind.* Would he have spoken in this manner, had the cherry trees of Macedonia and Lusitania been propagated from those of Pontus? The same author, however, seems to allow that the vine was indigenous to Gaul.† Ancient traditions concur in ascribing the cultivation of wheat to Sicily or to Attica, a cultivation contemporary with the first attempts at legislation.‡ A kind of rye, known under the Celtic name of Arinca, from which the term used in Dauphiny, "Riguet," is derived, was a native of Gaul.§

These examples, which it were easy to multiply, prove that the farinaceous plants, and in general the vegetables of Europe, may dispense with the honour of a foreign origin. On the other hand, we cannot deny that the migrations of man have a singular influence upon the geographical extension of plants. Not only has man intentionally carried the coffee-tree from Arabia to the West Indies, and the potato from America to the shores of Europe, but even the accidental introduction of a foreign grain into a bale of merchandise, has propagated many plants from the Brazil to the environs of Lisbon, and some of these, in their turn, from Portugal to the coasts in the neighbourhood of Falmouth and Plymouth, in England.

Sociable plants. | There are in the dissemination of plants several singularities difficult to account for and even to define. Some plants appear to live in society, and occupy exclusively large tracts of ground, from which they banish all other vegetables. We can trace through Jutland, Holstein, Hanover, Westphalia, and Holland, a long chain of hills, entirely covered with common heath, and the Erica tetralix. The farmers have opposed for centuries, but with little success, the inroads of these vegetable hosts.||

It is singular that the genus called Erica, is found only upon one side of our planet. Of the 137 species of heathes at present known,‖ there is not even one to be met with in the new continent, from Pennsylvania, and the coast of Labrador, to Noothka and Alascaka. They appear even very rare in Asia. We see, at other times, very singular leaps or intervals in the distribution of plants. Most of the forest trees of Europe, and even those which are the hardiest, disappear towards the Uralsian mountains, and particularly towards the banks of the Tobol and the Irtych; they do not grow in Siberia, although under the same climate. The oak, the nut tree, and the wild apple, are subject to this common law. In vain should we search for one plant of them from the Tobol to the Daouria. The two first of these trees, however, reappear suddenly upon the banks of the Argoun and the Amur; the last occurs anew in the Aleutian Islands.**

These remarks will have shown how difficult it is to mark with exactness the regions of botanical geography, a subject which, besides, appears to belong to that part of our work which contains a particular description of the different countries. We must here confine ourselves to a brief sketch of the general appearance and the advantages of vegetation in the different zones of the globe.

Vegetation of the frozen zone. | The frozen zone contains few species, but, as in the short career of the Polar summer, vegetation is very rapid, these species comprehend a greater number of individuals than is commonly imagined. The verdure of the Polar summer is confined to the hills which have a southern exposure; though extremely short-lived, it is sometimes very brilliant. Besides mosses and lichens, we perceive ferns, creeping plants, and bushes with berries, such as the currant, the Rubus chamaemorus, the Rubus arcticus, and the different sorts of Vaccinium, the resources and the luxuries of Siberia and Lapland. No where else are these fruits more abundant, or possessed of a finer flavour. The frozen zone also admits of some trees, particularly the birch and willow; but they remain always dwarfs, never growing higher than one or two feet. Such, however, is the privilege of the climate of Europe, that Lapland, which is almost entirely situated in the frozen zone, pro-

‖ Humboldt, Tableaux de la Nature, l. 47.
¶ There are upwards of four hundred sorts or varieties. T.
* Géorgi, Description de la Russie, ii. tom. 4e partie, p. 1015, et 5e partie, p. 1201, 1205.
duces rye and leguminous plants, and would, according to De Hervelin, have supported fine forests, if an unwise economy had not procured their destruction. As the mosses and lichens of Iceland and Greenland are found upon the Alps and Pyrenees, it may be said that the frozen zone possesses no species peculiar to itself.

The northern temperate zone may, with relation to the vegetable kingdom be divided into two parts; but the limit of these semi-zones varies according to local climate from the 50th to the 40th parallel of latitude.

Upon the boundary of the temperate and frozen zone begins the perpetual verdure of the pine and the fir, trees alike distinguished for the almost crystallized regularity of their form, and for retaining their vital warmth amidst the chilling rigours of winter; resembling in this latter circumstance the natives of the soil, whose moral resources have surmounted all the disadvantages of their ungenial climate. Several fruit trees, the apple, the pear, the cherry, and the plum, and certain vegetables, such as cabbage, peaose, and radishes, grow better, or are more cultivated in the northern half of the temperate zone. Flax and hemp are indigenous to it. The verdure is more brilliant there, particularly in the regions adjacent to the sea. As we advance, the oak, the maple, the elm, and the lime, gain the superiority over the pine and the fir. The more delicate fruits, such as the olive, the lemon, the orange, and the fig, and amongst the wild trees, the cedar, the cypress, the cork, more especially belong to the most southern part of the same zone. There is even a perceptible difference in the cultivation of vegetables beyond and within the 45th degree. Beans, lentils, and artichokes, appear indigenous to the south of this line; the onions there have less pungency. Truffles and many other delicate or aromatic vegetables, do not come to the same perfection to the north of this parallel.

The vine and the mulberry occupy the space between the 30th and 50th parallels; we may even say, that if the vine has followed civilisation to the 50th degree and beyond it, it is only in France, in Germany, and in Hungary, a part of the globe too small to be considered otherwise than as an exception. The true country of the vine is to the southward of the 45th degree. The people who live to the north of this parallel exert on the soil, by the application of labour and of skill, what nature lavishes away with spontaneous profusion on the ignorance of the vine-dressers of Italy, and the indolence of those of Spain. Peaches, apricots, almonds, quinces, chestnuts, and nuts, are equally injured in their growth as they approach the neighbourhood either of the tropic or of the polar circle.

Oats and barley are the kinds of corn which best bear the cold; barley, in particular, seems to lengthen or shorten the period of its vegetable life according to the duration of summer. In Lapland, and at Okskaminsk in Siberia, it ripens in seven or eight weeks; notwithstanding this astonishingly rapid growth, it is sometimes overtaken by the frost of the Siberian winter.*

Between the 60th and 40th degrees, the more fortunate husbandman fills his granaries with rye, wheat, millet, and buck-wheat; rich in these treasures, he envies not the more southern climates their rice, their maize, and other grain of a similar kind. Grain of this description, less favourable to the health and vigour of man, can, however, be raised in the latitude of 50°; but a wise system of rural economy prefers the culture of less uncertain crops.

The European born to the north of the Alps, is ready to form a false idea of the character of the zone lying between the 40th and the 25th degrees of latitude. Leaving our majestic forests of oaks, and our delightful orchards, where his feet have been accustomed to tread upon a verdant turf, he crosses the Alps, the Cevennes, the Pyrenees, and, struck with the naked and scorched appearance of Provence, of Italy, or of Spain, he instantly figures to himself beyond the Mediterranean vast seas of sand in Africa, and is tempted to imagine that all this zone is naturally destitute of trees. In this opinion he is wrong. It is true that in all the countries adjacent to the Mediterranean, and where secondary calcareous earth predominates, a part of the surface of the soil is composed only of barren rocks. The beautiful picturesque appearance of Italy is chiefly produced by

* Georgi, Description de la Russie, iii. 716.
the agreeable contrast which is presented by the naked rock, and the lively vegetation scattered here and there over the surface: but wherever this rock, from being less cracked and chinky, retains the water at the surface of the ground, as is the case upon the borders of the enchanted lake of Albano, Italy has its forests of oaks as branchy and as green as those which we admire in the north of Europe.* The great deserts, or seas of sands in Africa, present merely a local phenomenon, and one which is not peculiar to the zones, since similar deserts occur in Persia and Tartary, under a much less elevated latitude. If we admit the theory of M. Deluc, they formed the bottom of the ancient sea of the globe.

It must, however, be allowed that the warm temperate zone, or that from the 40th to the 25th parallel, presents in general less constant humidity, and a less beautiful vegetation than the cold temperate zone. The only exceptions occur in the United States and in China, regions where, in consequence of their peculiar geographical situation,† the climate of the cold temperate zone and that of the torrid zone run so much and so frequently into each other as to produce a most agreeable mixture of the northern with the equatorial vegetation.

The torrid zone possesses vegetable wealth, which we should in vain expect to realize in the other regions of the globe. It is in that zone that the most juicy fruits, and the most pungent aromatics arrive at perfect maturity, and vegetation of every kind is distinguished for stateliness, variety and splendour. There the glowing beams of the sun raise the plant into a shrub, and the shrub into a tree. The simple sap, which in other regions merely flows in the veins of vegetables, there ripens and exudes through the stem under the form of balms, gums, and juices, which either form powerful remedies against the attacks of disease, or gratify the fastidious and stimulate the blunted taste of the voluptuous European. What a paradise! if we could but transport thither civilization and morality. It is there that the ground produces the sugar-cane, the coffee-tree, the palm, the bread-tree, the pisang, the immense baobab, the date, the cocoa, the vanilla, the cinnamon, the nutmeg, the pepper, the camphor-tree, &c. &c. There are also various sorts of dye-wood, and particular kinds of corn, such as the dura, the holcus, the cambu, the kebru, which almost exclusively belong to the torrid zone; while this zone is not destitute of any species which grows under a less warm sun. The plant which in Siberia vegetates in the plain is found at the highest summits of the mountains under the line, and the sides of these same mountains correspond to the climate of the temperate zone.

The appearance of vegetation under the equator enchants the imagination; it is there that plants display the most majestic forms. As in the frosty regions of the north the bark of the trees is covered with lichens and moss, so between the tropics the cymbidium, and the fragrant vanilla adorn the trunk of the anacardium, and of the gigantic fig-tree. The fresh verdure of the leaves of the pothos forms a contrast to the flowers of the orchis, variegated by a thousand different colours. The bauhinia, the climbing passion-flowers, and the banisteria, with its flowers of gold, twine around the trunks of the forest trees. Delicate flowers spring from the roots of the theobroma, as well as from the thick, hard, and blackened rind of the gourd and of the gustavia. In the midst of this exuberant vegetation, and this confusion of climbing plants, it often costs the naturalist trouble to ascertain to what stem the leaves and flowers belong. One single tree, adorned with the paullinia, the bigonia, and the dendrobium, forms a group of plants which, separated from one another, would cover a considerable space.† In the torrid zone, the plants which are the most abundant in juices, present a brighter verdure, and larger and more magnificent leaves than in the northern climates. The vegetables which live in groups, and which render the countries of Europe so monotonous an aspect, are very seldom to be met with in the equatorial regions. Trees twice as high as our oaks are decked with flowers as large and as beautiful as

* Humboldt, Tableaux de la Nature, i. 20.
† Compare Book xvii. p. 191.
‡ Humboldt, Tableaux de la Nature, ii. 60.
our lilies. Upon the shady banks of the Madalena, in South America, grows a climbing aristolochia, the flowers of which are four feet in circumference. Children amuse themselves by covering their heads with them. We may add to this description, the gigantic forms of the baobabs, whose circumference sometimes extends to 80 feet, and the elegantly bold shape of the eucalyptus, and of the gummy palm trees, which, rising to the height of from 150 to 180 feet, form aerial porticoes above the forests.

The extraordinary elevation to which whole tracts of country rise, under the tropics, and the cold temperature of that elevation, present to the inhabitants of the torrid zone an extremely singular prospect. Besides the groups of palm and banana trees, they see also around them the vegetable forms, which appear to belong only to the regions of the north. Cypress, firs, and oaks, and berries and alder trees nearly resembling ours, cover the mountainous districts of the south of Mexico as well as the chain of the Andes under the equator.

The southern temperate zone should now terminate the phytographi-
cal description of the globe, could we venture to assert, that, with refer-
ence to vegetation, such a zone does not exist. It appears that the three extremities of America, of Africa, and of New Holland, included in this zone, contain only vegetable colonies, which taking their origin from the torrid zone of each of these regions, have spread themselves towards the south. It is therefore probable that the vegetation of these three continental extremities, even were it better known than it is at present, would present to us a few detached local scenes rather than any general picture.

BOOK XXI.

Continuation of the Theory of Geography. Of the Earth, considered as the residence of Organic Beings.

SECTION II.

OF THE GEOGRAPHICAL DISTRIBUTION OF ANIMALS.

The unknown power which first put in motion the springs of animal life, and which continues to keep them in play, was certainly not confined to one particular region of the globe. Matter, every where, must have acquired animation at the sound of the Creator's voice; the elementary particles, while attracting each other, and ranging themselves in fibres, muscles, and bones, must have every where presented the spectacle of that spontaneous generation, which is probably, at all times, ushering into existence millions of aquatic and other animalcules, some of them so minute as to appear to the most powerful microscope, merely as a small point or globe, destitute of organs. It is difficult to conceive that there exists in this original tendency of matter towards organization, differences founded upon the geographical situation of places.

Zoophytes are so imperfectly known, and so difficult to class, that we cannot say whether each maritime region possesses any species peculiar to itself. Coral, externally an animal and internally a rock, madreporae, and millepores, which, on the contrary, have a stony covering, seem to exist only in the regions adjoining the tropics, in the seas warmed by the rays of a vertical sun. There

* Compare Cuvier, Tableau Elémentaire des Animaux, p. 663.
are three or four great seas of coral upon the globe: first, that part of the great ocean where flat islands appear, such as those called the Friendly Islands, New Caledonia, the Solomon Isles, or Isles of Danger, and in general those tracts of sea lying between the different parts of the Oceanic division of the world. It is there that the mariner is in continual danger of striking against some rock of coral, shooting perpendicularly up from an immense depth. The second region extends from the coast of Malabar to that of Madagascar and Zanguebar. Our Mediterranean forms the third region; but the valuable coral which it furnishes, and which is in great request from Africa to Japan, essentially differs from the coarse substances of which the islands in the southern sea are composed. The Gulfs of Arabia and of Persia, if we credit the ancients, are peopled with subterraneous forests of zoo-phytes. The sea of the Antilles, and the Gulf of Mexico, ought to contain a great many madrepores. But who is sufficiently acquainted with the different holothuriae, star-stones, medusae, and other fugitive embryos of aquatic beings, to assign to them their native region? The indefatigable voyagers, Peron and Lesueur, who so carefully observed the changeable and delicate forms of the zoo-phytes, found the abode of the species pyrosoma confined to one particular region of the Atlantic Ocean; and they imagine that each description of zoo-phyte has its place of residence determined by the temperature necessary to support its existence.

Polypi. — The ocean also contains monsters, which it is dangerous to observe too near. When shall we come to distinguish the different kinds of polypi or hydras, with exactness sufficient to determine the boundaries of the tracts which they respectively occupy at the bottom of the ocean? We think it probable that the size of the polypi varies with the depth of the seas where they live. If we certainly know that the Straits of Messina, and the English Channel, contain some which have arms ten feet long, why should we treat as fabulous those very circumstantial accounts, both of the ancients and the moderns, which speak of polypi taken in the Mediterranean, in the Atlantic, and in the Indian seas, whose arms, when accurately measured, were found to be from 30 to 40 feet in length! Would it not be consistent with the rules of sound criticism, to suspend our judgment respecting the monstruous-krakens of Norway, said to be half a league in length, the existence of which several respectable naturalists have conceived to be established by recent observations?

Zoophytes exhibit the first actions of creative power; they may be considered as confused masses of beings, animated with an incipient principle of life, but not yet existing separately. The molluscae, whether naked or testaceous, have acquired a real individual existence. Accordingly, their different species belong to different countries: the shells of Timor are met with upon the coasts of New Holland only as far as to the south-west point; and the shells of Van Dieman's land, such as the Halioth gigantea and the Phasinella, diminish in size as they follow the coasts of New Holland, to king George's Straits, and entirely disappear beyond them. The pinna marina, whose glossy filaments outshine silks, thrives only in the Indian seas, and in the Mediterranean. The pearl oyster attains perfection nowhere except in the equatorial seas. But the natural arrangement is often subverted; the ships to which the shells adhere, transport them from the one pole to the other. It is in this way that the waters of Holland have been peopled by that teredo navalis which is so destructive to vessels.

The calcareous secretion of the Zoophytes is rock or stone the very moment that the animal dies. The calcareous secretion of testaceous molluscae or shells, forms rock only when decomposing. The structure of corals and madrepores is grained,
that of shells is lamellated or stratified. These animals, from their being destitute of sensibility, seem closely allied to the mineral kingdom.

We now advance to another order, which may be viewed as belonging to the vegetable kingdom,—the order of insects, in which worms occupy the bottom of the scale. Insects which, as they pass through the states of larva and chrysalis, remind us of the successive development of roots, stalks, and flowers; insects, which may be termed winged and animated flowers, indicate already, in their complicated organization, some obscure traces of sensibility, although irritability still predominates. It is in the midst of the most exuberant vegetation—it is in the torrid zone—that the strongest and most splendid insects are to be seen; such as the butterflies of Africa, of the East Indies, and of America, whose brilliant colours rival the lustre of metals. There also, and particularly in South America, the forests, peopled by millions of glow-worms, present to the eye of the benighted traveller the scene of an immense conflagration. The terms of Africa, named also the White Ant, builds solid hillocks; and the spider of Guyana attacks even birds with success. The *limulus gigas*, the largest of all aquatic insects,* is also an inhabitant of the equator, as its vulgar name, the Crab of the Moluscas, indicates. Certain kinds, such as gnats, bees, and flies, appear to be equally distributed over the whole of the globe. The short polar summer hatches a multitude as innumerable as the heats of the torrid zone: the mosquito, which torments the travellers on the banks of the Oronooko, resembles that which buzzes in Lapland. Wherever man has not drained the marshes, and cleared the forests, insects reign with resistless sway. History has recorded several examples of towns and countries rendered uninhabitable by the multitude of bees, wasps, or gnats.† Armies and whole tribes have been compelled to fly before these feeble insects, rendered invincible by their numbers.

The secretions of insects do not resemble substances of the mineral kingdom, like those of the zoophytes and mollusces; they have the character of vegetable juices. But these secretions, as well as those of the polypus coral, appear to be the effect of blind instinct, rather than of sensations similar to those of the more perfect animals. The admirable industry of the bee is not to be ascribed to the acting of a free and separate will.

The orders of zoophytes, mollusces, and insects advancing gradually in perfection, comprehend animals with white blood, and no vertebrae, and which, having few or no organs of sensibility, appear to constitute in the animal kingdom a sort of hemisphere diametrically opposite to that of animals with vertebrae and red blood.

This second series of the animal kingdom commences, like the first, in the bosom of the ocean, that cradle of all primitive organizations.

Fishes, although occupying the lowest degree of the scale, are completely distinguished from inorganic nature; they display the commencement of an internal ossification, mixed indeed with some traces of those external secretions, those solid coverings, which belong to animals destitute of vertebrae. Fishes, having neither the blind instinct of insects, nor a high degree of the voluntary instinct of the mammiferous tribes, appear inferior even to several white blooded animals, although they form part of an order superior to that to which these animals belong. The animal kingdom does not present to our view one unbroken progressive series, but two great series, each composed of several progressive orders; so that the gradations in improvement of organization are not continued from genus to genus regularly through the scale, but only from the whole of one order to the whole of another.

The want of activity which we have just remarked in fishes, renders it probable that every basin of the ocean has its particular tribes, which are born and die there: we know the stations of some species of fishes. Thus the cod which are distributed over all the northern seas, between Europe and America, congregate chiefly upon the great banks of sand to the south-east of Newfoundland.

* Cuvier, Tableau Elémentaire, 452.
Pursued by twenty thousand fishermen, the cod propagates with astonishing fecundity; it has been calculated that each female carries in its ovary more than nine millions of eggs. *

The coryphene and the chasesons are met with only in the torrid zone. There are various species of these kinds, which, on account of their brilliant colours, have received the name of gilheads. These are the most active enemies of the flying fish, which, like them, are found only between the tropics, or, at farthest, towards the 40th parallel of latitude. These species are observed both in the eastern ocean, and in the Atlantic; but probably of different species. We should imagine that the electric fishes are confined to the torrid zone; the electric gymnotus, indeed, belongs exclusively to America; and the "trembler," or the silurus electricus, to the rivers of Africa; but the torped, or cramp fish, is dispersed over all the seas. Our knowledge of the productions and the temperature of the ocean, must, from its vast extent, and its unfathomed depth, be extremely imperfect. On many coasts no fisheries exist, and from those which have been established, on others, little accurate information can be gained. No analysis, even of the magnificent works of Lacepede, would enable us to unfold a correct general view of the subject; and the description of each particular sea is reserved for other volumes of this work.

Migration of fishes.

The migration of fishes is occasioned by their being impelled to seek for shallow water, in order to deposite their spawn. Thus the herring, coming from the bottom of the frozen sea, proceed every year to the coasts of Ireland, Scotland, Norway, Sweden, Denmark, Holland, and the United States,† as well as to those of Kamtschatka, and the neighbouring islands. †t It seems to be proved that immense shoals of these fishes mechanically follow the direction of the chains of submarine banks and rocks which they meet with in their progress. The variations, both real and pretended, which these migrations experience, seem therefore to depend upon local causes, which we shall point out in another place. Tunases migrate regularly every year from the Atlantic ocean to the Mediterranean; a fact before observed by the ancients.§ Besides these annual migrations, which, to a certain extent, are completely ascertained, the currents of the ocean must occasion others which we have not the means of observing. Fishes, in general, appear to suffer severely from a sudden change of temperature,|| which leads us to infer that the species which live near the surface of the sea must be confined each within a particular region. On the other hand, the observations of Biot and Laroche, by demonstrating the admirable property of the organs of respiration in fishes, by which they can inhale the more oxygen the lower they descend, seem to remove all limits to the migrations of species which live in the lower parts of the sea.||

Fresh water fishes.

The fishes of lakes and rivers are still less susceptible of a geographical classification. The kinds cyprinus and perca, of which carp and perch are the representatives, people almost all the rivers of the temperate zones. The sturgeon is found in the smaller inland seas, such as the Baltic, the Caspian, the Black sea. The large species, ** common in the Volga and the Danube, are in their turn surpassed in size by the silurus glanis, the giant of river fishes. The voracious pike, and some other species, often inhabit subterraneous seas, which communicate with the atmosphere only by small openings. A circumstance more worthy of occupying a place in a general description, is the presence of some sea fishes, such as the c十足ian, a species of cod fish, in Lake Winnipes, in the interior of North America. ††

Fish in singular situations.

There are some fishes which occasionally forsake their native elements: eels traverse the meadows; and upon the coast of Coromandel,

* Cuvier, Tableau Elémentaire, p. 337.
† Gilpin upon the Migration of Herrings, in the Transactions of the American Society at Philadelphia, ii. 786.
‡ Krachenmikow, Descript. de Kamtschatka.
§ Oppian, Haliutic. III. v. 633, 497.
† Provençal et Humboldt, Mémoires de la Société d' Arceuil, ii. 398.
¶ Biot, ibid. p. 487.
‖ Acipenser Huso.
†† Goldson, Remarques sur le Voyage de Fuente, dans Sprengel, Choix de Voyages, &c. iv. 16. (In German.)
a kind of perch, *Perea scandens*, climbs up the palm trees.* Sonnerat observed fishes which live in warm springs of a very elevated temperature. Natural history will pardon us for not distinguishing from fishes those equivocal beings which, with the warm blood of mammiferous tribe, possess a combination of those forms which are equally characteristic of the fish and the quadruped.

The whale, the narval, or sea unicorn, the cachalot, or spermaciti whale, the dolphin, the sea-horse, the phoca, or sea-calf, inhabitants of both the land and the water, form, in the progressive improvement of their organization, the link which connects two different orders. Whales are in very few respects distinguished from fishes, and there are phocæ that have been mistaken for otters. The more complete the ossification, and the more the organs are detached, the greater is the sensibility. Phocæ and lamentins manifest some traces of social affection.

As both the cetaceous and the mammiferous amphibious kinds of fishes require frequently to breathe atmospheric air, it is highly probable that they are confined to certain climates. The phocæ of the South Seas are of different kinds from those which inhabit the waters of the north.† The sea-lion met with in the neighbourhood of Kamtschatka differs essentially from that which swims in the Greenland Seas.‡ The phocæ vitulina, which are alleged to exist in the Caspian Sea, in the lakes' of Aral, Baikal, and Ladoga, appear to be a species allied to the otter, and different from the marine phoece. And thus are we relieved from the necessity of admitting those physical revolutions by which it is asserted that they were brought into those inland waters, as if nature could not produce phocæ every where. The great whale of the Northern Seas, though it formerly entered the Mediterranean,§ has scarcely been able to approach the equator: the whales of the Southern Ocean are probably of a different race. The large-headed cachalot, which inhabits the equatorial regions, particularly the Indian Ocean, and from which we procure the ambergris, differs materially from the great cachalot of the frozen seas.

Amongst terrestrial animals, reptiles occupy the lowest rank. Their organs are indistinct and imperfectly developed, and some organs they want entirely; a thick shield or a scaly skin envelopes their body; their bones are soft; the vital force, distributed through all their members, has no centre of energy; finally, the animal, when cut into pieces, is immediately reproduced. All these characteristic marks indicate a first attempt of nature, an imperfect disengagement from inert matter. Reptiles, accordingly, appear to increase and multiply in mud, warmed by the vertical rays of the sun: The crocodile of Africa, the Gavial of the Ganges, and the different caymans of America, are the giants of the lizard kind. It is in the warmest regions of America, and the oceanic countries, that the serpents roll themselves up in immense coils, or conceal a deadly poison under their fangs. The tortoises, which feed upon the sea-weed at the bottom of the ocean, cover the sands only of equatorial countries with their numerous eggs.

In creating birds, nature has reproduced the order of insects, but with more simplicity of structure, and greater power and liberty of locomotion. Their bones, more hard and more numerous than those of fishes and reptiles, mark a more perfect organization. The wings with which they are provided seem to assign to them the whole atmosphere as their domain; but the plumage in which they are clad, and which, like vegetation itself, varies according to climate and temperature, proves to us, that these animals, apparently so free, are still subject to certain geographical laws. Even those whose robust constitution would allow them to disperse themselves far and wide, seem to be attached, both by taste and affection, to the districts where they were born. Thus, the condor, and the king of vul-tures, which soars above the summit of Chimborazo itself, never forsakes the chain of the Cordilleras of Peru and of Mexico: the vulture, and the great eagle, never

* Daldorf, Transact. of the Linnæan Society, iii. 62.
† Péron, Annals du Museum, xv. 300.
§ Flín. ix. 3.
remove from the ridges of the Alps. The sea eagle, or ospray, is perhaps distributed over the whole of the globe. In the natural order of Passeres, travellers often err, by confounding the foreign species with those of Europe—thus, the Calao of Africa and India differ from our ravens, and the Manakins of America are not our tom-tits, though possessing some traits of resemblance. The torrid zone, also, exclusively contains the various species of Parrots, common in America,—of Cockatoos, found only in the East Indies,—of Loris, most beautiful in the islands to the south-west of Asia,—and of Aras, which last are all from America. The celebrated Bird of Paradise is never met with beyond the limits of a very narrow region of the torrid zone, that is, New Guinea, and the neighbouring islands. Of the birds which cannot fly, every equatorial region, insulated by the sea, has produced its particular kinds: The Ostrich of Africa and Arabia, the casuari of Java, of the neighbouring islands, and of New Holland, and the Touyon or Ostrich of Brazil, exhibit, in very distinct species, the same general features of organization. The smaller birds in the tropical countries are adorned with the most splendid colours, their plumage vies with the metallic brilliancy of the insects in the same zone.

The temperate zone of birds reaches in our hemisphere from the 30th to the 60th parallel. Within these boundaries the various kinds, and even some species, are no longer confined to regions distinctly marked, and have no particular fixed countries. Besides, man has either transplanted, or drawn in his train with him, as he wandered; several species previously to be found in one particular country. The most remarkable geographical phenomenon is the annual migration of swallows, of storks and cranes, which, at the approach of winter, abandon the northern countries of Europe to visit Italy and Spain, and even Africa. Some species of swallows plunge themselves into lakes and marshes, where they remain in a dormant state during the winter.*

The frozen zone has few species peculiarly belonging to it; amongst these is the Anas mollissima, whose nests furnish the eider down. But we should consider this aquatic bird rather as frequenting the shores of the frozen seas. The Strix lapponicus, and the Tetrao lagopus, live upon mountains covered with perpetual snow.

Sea birds. Each grand marine division of the globe has its peculiar birds. The Albatros flies along upon the waves as soon as we approach the 40th parallel of latitude. The sea swallows, and the tropical birds, never forsake the torrid zone; their species probably differ from the one ocean to the other. The Penguin of the Northern Pole differs from the Manchot of the South Seas. These birds without wings, may be considered as the last and lowest of the order to which they belong. Quadrupeds. We now come to an order of animals much more perfectly organized than any of those which we have hitherto considered. It is particularly interesting to observe the geographical distribution of the various kinds of quadrupeds in the different zones, and on the two continents. This inquiry has already thrown great light upon the history of the earth, and is connected also with the history of man.†

Their migration. In the migration of animals, we have not so much to attend to their active power, or the energy of their organs, as to what may be termed their passive power, or their capacity of resisting changes of temperature. Frequently, out of a whole genus, one species only is endowed with this capacity. Another species of animals again owes its extensive distribution solely to the care of man, who knew how to master it, and who carried it along with him to the very extremities of the globe. The external organs of animals undergo great changes, merely in consequence of their domestication—difference of climate produces others not less remarkable. As to the wild animals, they are directed in their migration, by the abundance or the scarcity of food. The carnivorous ones find almost everywhere their natural food, and when it fails them, they have recourse to vegetables; for

this reason they must have spread themselves to a great extent. Those which cannot support great cold, have been unable to cross from the old to the new continent, because the only direct mode of communication between these two continents, is that furnished by the arctic ice. There are many different species of animals, whose residence, history proves to have anciently been in much colder climates than those which they now inhabit: Sometimes the continual inroads of man, have either destroyed them or driven them away: Sometimes the progress of agriculture, by clearing the forests, has bereft them at once of their range for food, and their place of shelter.

Several quadrupeds, by their almost general distribution, baffle every attempt at geographical classification. These quadrupeds are either in a state of domestication, such as the dog, the cow, the sheep, the goat, the horse, the ass, the pig, and the cat; or in a wild state, as the fox, the bear, the hare, the rabbit, thestag, the deer, the squirrel, the rat, the mouse, and the ermine. Amongst these animals, however, there are some which do not live in the frozen zone.

The Dog, the faithful companion of man, has followed him into every climate; in many countries he is the only domestic animal, and supplies the place of the horse and the ox. Towards the equator, as well as towards the pole, he loses his voice; his barking degenerates into a growling noise. This species is distributed as far as New Holland.*

The Ox lives as far as the 64th degree, and in Lapland even under the 71st. This animal appears to be a native of the warmest part of the temperate zone of the old continent; it is there that he attains the greatest degree of strength and courage. But in the more humid and cold climates, as Gallicia, Holstein, and Iceland, the ox grows much larger, and the cows give more milk. In Iceland, it is in the valleys lying to the north, and under the 65th degree of latitude, that the cattle thrive best. The cows there have no horns, but yield abundance of milk. The ancient Icelandic colony in Greenland, exported butter, salt-beef, and hides.† The benevolence of Providence, by rendering this most useful species capable of supporting almost every climate, has thus enabled it to follow man to the remotest boundaries of animated nature.

The Sheep and the Goat equally support the polar cold and the heat of the torrid zone. Goats are very numerous in Norway and in Iceland. The original race of sheep, the Argali, or the Mouton, still exist, if we may credit Zimmermann, in all the great mountains of the two continents. The Capricorn, and the Iber, or Wild Goat, which are the ancestors of the common goat, inhabit the highest summits of the two continents.

The Horse, which did not exist in the new continent before the arrival of Europeans, is spread in Europe, and in Iceland, as far as beyond the polar circle. In Asia, the horse is scarcely found beyond the 64th parallel; in America, the race has spread to the country of Patagonia, the climate of which, under the 50th degree of south latitude, answers to the climates of the northern hemisphere lying under the 60th parallel.

It appears to us, that there were in the old continent at least three original races of horses. The first, and the best proportioned, was originally spread between the 40th and 55th parallels, and probably came from Great Bucharis, from Persia, or even from Asia Minor.‡ The Tartar steeds, Persian race, and those of Poland and Hungary, seem to have preserved the original form of the breed. In countries that are moderately damp and cold, and where there is rich pasturage, this race has become larger and stronger. The forms which best developed have acquired that symmetry, and that noble warlike gait which mark the Danish, Norman, and English horses. These, however, have been mixed with the Arabian race. The third variety of the first race is a degenerate breed, produced by the deteriorating influence of a climate excessively damp; we may even trace the different degrees of this degeneracy. The horses of the country of Bremen have

* Collin's Account, &c. p. 567.
† Speculum regale, 188, 191, 200. See the account of ancient Greenland in our first volume.
‡ See the passages collected together by Bochart. Hierozoicon, b. ii. ch. 9.

Vol. I.—II.
The second race is small, and sometimes almost dwarfish; its characteristics are a compact square form, endowed with great strength, and surprising agility. It appears to derive its origin from the northern upland plains of Asia, from the steppes of Kirghises, although Pallas looks upon the wild horses of these countries as having come from the Studs.* This race, according to some accounts, appears to be spread in the north of India,† in China, and in the islands of Japan. It is more certain that the breed is common in Russia and in Scandinavia. The Norwegians introduced it into Iceland and Scotland. It exists in the Danish island of Zealand.

The third race of horses is possessed of the most showy properties, being extremely swift, supple, vigorous, and mottlesome. We mean the Arab race, which undoubtedly has a common origin with that of Barbary, if it has not given birth to it. The Andalusian horses are its lineal descendants. The English say that their race horses are directly sprung from crossing the Arab with the Barb. History proves, that the Romans, the Saxons, the Danes, and the Normans, by introducing into Britain the various races of their respective countries, laid the foundation of the English breed. Private persons afterwards, from time to time, imported Arabian and Barbary stallions.

The ass. | The Ass, though far from being reckoned a very delicate animal, does not support cold so well as the horse. In Europe, it is rarely seen beyond the 52d parallel; and we do not believe that it can propagate at 60 degrees of latitude. The climates most favourable to the ass are those between the 20th and 40th parallels. There he grows large and handsome, is lively and docile, and is treated with kindness.‡ The wild ass is now found only in Tartary, where it never goes beyond the 48th degree of latitude.

The hog, its connection with the history of man. | The history of the Hog throws great light upon that of man. This foul animal is to be met with throughout the whole of the ancient continent, beginning at the 64th parallel of northern latitude. The wild boar is not found beyond the 60th degree. In the New World there were none of these animals, previously to its discovery by Columbus; they have been brought into it, and they live there from the 50th northern parallel to Patagonia. The hog is distributed over almost all the islands of the Great Ocean, where it is the chief domestic animal. Is it not evident from this single fact, that the islands of the Pacific Ocean have received their inhabitants from the south-east of Asia? We may, with equal justice, conclude, that had there been formerly a communication between America and the people of the ancient continent, this must have taken place, either at a period when man did not reckon the hog in the number of domestic animals, or under latitudes more northerly than those in which this animal can exist.

The cat. | The Cat, now distributed over the whole globe, was not met with as a native of America. As this animal must have always accompanied navigators, its original absence in America greatly invalidates the pretended accounts of the Carthaginians, and especially the opinion that the Japanese maintained frequent commercial intercourse with the north west of America. The cat, however, existed upon several islands of the Pacific Ocean before the arrival of the Europeans. The species of wild animals spread over all the climates of the two continents are very few; it is even doubtful whether there are any, except those which have been introduced into the new world by man.

The fox. | Of all wild animals, the Fox is perhaps the most extensively distributed, and most easily assimilates to every climate. Vast troops of foxes inhabit Nova Zembla, and the shores of the Frozen Sea; and they are not less numerous in Bengal, in Egypt, and upon the coast of Guinea. The New Continent, says Zimmermann, is filled with them, from the northern parts of Greenland, under the 78th

* Pallas, Voyages, i. p. 376, in 8vo.
† Pennant, Outlines of the Globe, ii. 239.
‡ De Grandpré, Voyage au Bengale, ii. 239.
degree, as far as to Mexico, and from Mexico along the Cordilleras to the shores of Magellan. But travellers have applied this name at random; we have no satisfactory proof that there are any real foxes in South America.

Animals similar to the *Hare*, are found equally in Siberia and on the banks of the Senegal, upon the coasts of Baffin's Bay, and all over the New Continent. But Buffon has expressed his doubts as to the identity of the American hares with those of the ancient continent; it does not at least appear that any real hares have been seen in South America. It is said that those of Greenland differ from ours only with respect to their skin, which remains always white.* The hares of that arctic country appear, however, to be of the species *Lepus variabilis*, which is known only in Siberia.†

The *Squirrel*, according to Zimmermann, inhabits every part of Europe and Asia, from the extremities of Siberia to the kingdom of Siam, and is to be met with in Africa and the two Americas. But it appears that in every region of the world the species are different.

The *Rabbit*, being unable to live in the open air of the climate of Sweden, could not have emigrated into the New Continent by the countries in the neighbourhood of the pole. All the rabbits that are seen in the New Continent, have been brought thither by colonists, and have afterwards passed from the domestic to the wild state.

The *Stag* appears to be indigenous to both continents. It inhabits Europe as far as the 64th degree, and Asia to the 55th, and in some places even to the 60th degree. It is therefore difficult to conceive how it could have passed into America, as Zimmermann supposes. The stag of Canada, having horns without antlers, should, we apprehend, be considered as a distinct species.‡ Zimmermann also endeavours to prove, by numerous testimonies, that the stag is to be met with in the islands of Java, Sumatra, and Ceylon, as well as in Abyssinia, Guinea, and Barbary. But, in the first place, the stags in the islands to the south west of Asia, in general imperfectly described, now appear to belong to the species of *Cervus axis*, and some of them perhaps to the *Antelopes aryxi*.§ And as to the existence of stags in Africa, since it is altogether denied by the ancients,|| and insufficiently established by modern authorities,¶ it is probably confined to a few herds which had strayed from Asia, or perhaps broke loose from some royal or prospective park.

Shall we place the *Common Bear* in the number of animals which are spread over the whole of our globe? Zimmermann finds it in all latitudes, from the polar circle to the equator, and beyond it; but in the accounts which he quotes, we cannot always distinctly ascertain what variety is referred to.

The *Black Bear*, which is the largest, appears to be met with in both continents. Its existence in North Africa has been clearly proved:** but the animals in America to which this name has been given, are not accurately described. As to the *Brown Bear* of the Alps, we shall assert nothing. It exists, without doubt, in Siberia, but it is not met with in the Aleutian Islands, and is rarely seen upon the coasts of the Frozen Sea, the abode of white or sea bears. As to the small bear, which the Norwegians name *myre-biorn*, or marsh bear, it seems to be a peculiar variety, confined within very narrow limits.

We have still to consider the geographical distribution of some small animals, concerning which we are extremely liable to err.

The *Ermine*, or weasel, with a black muzzle, according to Zimmermann, is a na-

§ Valentijn, quoted in the 2d volume, article Celebes.
tive of every climate, being found in the Molucca Islands, in Guyana, and in Africa, as well as in Siberia, Lapland, Newfoundland, and Canada.

Rats and Mice, those troublesome parasites, embark on board our ships, and cross with impunity the equator, as well as the polar circles. It is to navigation that we must ascribe the extensive distribution of these two kinds of animals. On land, however, neither rats nor mice can support the cold of the frigid zone; there are none of them in Greenland, nor in the most northern part of Lapland; and in Siberia they are never observed beyond the 61st parallel.

From the preceding observations, we may draw the conclusion, that it is not yet certainly demonstrated that any species of animals, perfectly identical, has been distributed by nature over all the regions of the globe. In similar climates the organizations have assumed characters which nearly approximate, but never exactly coincide.

There are some quadrupeds, which, from their capacity of supporting a very great degree of cold, are distributed in both continents without having ever passed the tropics; they belong to the cold part of the northern temperate zone.

The rein deer. The Rein Deer, of all known terrestrial animals, has its range nearest the pole. In Scandinavia, it can scarcely exist to the south of the 65th parallel; in Russia, from the greater coldness of the climate, it is found under the 63d; in Asia, it descends still lower, and roves into Chinese Tartary, among the Tunguses, beyond the 50th degree. This oblique line, drawn from Lapland to the land of Yesso, is very remarkable, because it nearly designates the physical frozen zone of the ancient continent.* The rein deer finds within this line only a species of moss,† on which it lives. As the new continent is, if not colder, at least more uncultivated than Siberia, the rein deer, or the karibou of Canada, which is the same animal, descends as low as the 45th parallel. The animal which has been termed the Greenland stag, is only a rein deer.

The white or polar bear. The White or Polar Bear, an animal totally different from the common bear, and much more formidable, inhabits all the coasts of the frozen seas, and can cross from one country to another upon the floating ice. This mode of conveyance would be still more common to smaller animals. Hence the migrations of the different kinds of polar animals does not prove that the continents were formerly contiguous. A bridge of ice, such as Cook found, is sufficient to account for these migrations.

The Isatis, or Polar Fox, an animal different from the common fox, appears to like the cold more than the rein deer, or even the white bear; for the bear retires, or conceals himself at the approach of the polar night; and it is only then that the isatis makes its appearance. This animal is not confined to the immediate vicinity of the pole, it advances as far as the Aleutian Islands and Kamtchatka on one side, and on the other to Iceland and Lapland.

Some other species, which could swim, may have passed over by the Aleutian Oter. | Islands, or by Behring's Straits. Amongst these the river Otter should be named, which is found upon the old continent, from the 70th degree to about the 20th, in the kingdom of Siam; but in the European countries on the shores of the Mediterranean, it is scarcely ever seen, having been probably expelled in consequence of the cultivation of the soil. In the new world, its principal range is between the 50th and 40th parallels. The Marsh Otter is confined to a still narrower range in the ancient continent, viz. the space between the 63d and 50th parallels of northern latitude. The Marine Otter seems to prefer the coasts of Kamtchatka, and the north-west of America, from the 65th to the 40th degree.‡ Beaver. | The industrious and peaceful Beaver was once, perhaps, a native of all the countries of the globe, or at least of the whole of the northern temperate zone, for their habitations existed in Italy, in Persia, and in Egypt. This half civilized race of animals has been exterminated by man. In the new world, we still find

* Georgi, Description de la Russie, iii. 1610.
† Lichen Kangiurinus, L.
small communities of beavers, from the 60th to the 50th northern parallel. But even in the deserts of Canada, they have withdrawn to a great distance from the residence from man.

To the Marten is assigned about two-thirds of the northern temperate zone, beginning at the 67th degree in Europe, the 64th in Asia, and the 60th in America. Zimmermann alleges that it is to be met with in Madagascar, in the kingdom of Anizko, and in Guyana; but the only circumstance which has been proved is, that the marten, properly so called, as well as the valuable Sable Marten, is dispersed over the Aleutian Islands, where the Siberian marten is never to be found.

The distribution of some other kinds of animals is uncertain. The Lynx, that tiger of cold climates, lives to the south of the polar circle; in the ancient continent, he appears as far north as the Pyrenees, and in Mongolia. We are but imperfectly acquainted with those animals of the new world, particularly of Carolina and of North Mexico, to which the name of lynx has been given.

The Elk, an animal which is every day becoming more rare, seems to endure the extreme cold, since in Europe it very seldom passes to the north of the 64th parallel; on the other hand, it is never found to the south of the 52d degree. In Asia, the farther we advance towards the east, the more does it range to the south. The American elk, though not much different, appears to belong to a particular race, as the genuine elk of Asia does not pass Kamchatka and the Kurile islands. The region of the elk in America begins under the parallel at which it terminates in Europe, that is, to the south of Hudson’s bay, and extends to New England, or perhaps in the interior as far as the Ohio.

The Flying Squirrel never ventures farther either north or south, than the limits of the fir forests in which it makes its abode. The Mountain Squirrel, mountain rat, &c. follows in Europe the chain of the Alps and the Carpathian mountains. It does not exist in Scandinavia, but is to be seen in Poland, and the Ukraine. It is found at the mouth of the Don, and probably in Caucasus; it inhabits the Ural mountains near the river Kama, and from thence the race has been propagated as far as Daouria. In the new world, this animal is found from Canada to Virginia, and even upon the Bahamas islands. The Badger and some other small animals inhabit equally the northern half of the temperate zone; but the identity of these species is neither established nor disproved in a manner quite satisfactory.

The quadrupeds which exclusively belong to the one or the other of the two continents, are in general such as are unable to support the cold which prevails beyond the 60th parallel. The Lemming, however, a species of mouse, which often migrates, in vast numbers, from one country to another, inhabits the whole of the frozen zone of the ancient continent, but has not been discovered in America. The animal named the Musk, resides in the mountains of Asia, from Cachemire and the Altai, to the mouths of the river Amur; it is not spread over any part of the new world. There are still some exceptions less remarkable.

Certain animals appear to be attached to the confines of what may be called the torrid part of the temperate zone.

The Camel seems to have originally come from Bactriana, or Great Bussaria. It lives in European Turkey, in the Crimea, and amongst the Kirguises and Bashkirs, under the 55th degree of latitude, and in a very rigorous climate. We find it even throughout the whole of Sougaria, in Mongolia, and in the country of the Manceaux Tartars, where the winter begins in September and ends in May. The camel does not advance farther than the 28th degree, in China and India. It cannot exist in the peninsula of Hindostan; but in Arabia it has been induced to live nearer the torrid zone.

The Dromedary or camel with one hump, well known for its fleetness, appears to have come from Arabia, or Africa. It has been brought as far as the

* Georgi, Description da la Russie, iii. 1533, sqq. † Id. ibid, 1607.
§ Pallas, Voyages en Russie, ii. 302, sqq. iii. 20. sqq. ‡ Bochart, i. c.
far as South China; but it thrives best in Africa, where it is to be met with in Egypt, in Barbary, on the banks of the Senegal and the Gambia, in Nigritia, and even in Guinea and Abyssinia. We had conjectured that it was an inhabitant even of the centre of Africa,† the English journals announce, that it was lately observed to the north of the country of the Boushouanas, under the tropic of Capricorn; but the account which they give requires confirmation.

Both kinds of camels appear to be chiefly attached to that long tract of mountainous country, and naked elevated plains, which traverse the whole of the old continent, and on which they find saline plants, such as the salvia, the statice, the artemisia, the cherry of the steppes, and the Cytinus hirsutus, which serve for their ordinary food.

The nimble Chamois loves the mountains of the temperate zone, the tops of the Pyrenees, the Alpe, the Apennines, the Carpathian mountains, Caucasus, and the country of Siberia, to the banks of the Iachim.

The gazelle, gazella, etc., The Antelope saiga, and the antelope with the goitre, inhabit the upland plains of Tartary; the former is found as far as the 55th parallel. The Gazella, with its mild and brilliant eyes, prefers the more southern countries; a native of Caucasus, along with the chamois, the gazelle extends its range as far as Arabia, and across the whole of Africa to Senegambia. It is to be met with in the southern temperate zone, and in Caffraria, together with a great number of other species of antelope. The race of antelopes follows, like the camels, the great upland plains of the old continent. There are species however, which appear to be peculiar to the cold temperate zone.

Jackal. The Jackal lives, according to Zimmermann, in Turkey, in Barbary, in Bengal, and in general in the countries of Asia and Africa, between the 43d and 8th degrees of northern latitude. But an animal which lives so near the line may certainly pass it; the supposed wolves of Congo and of Caffraria appear to us to be jackals.

Buffalo. The Buffalo, commonly regarded as originally coming from the torrid zone, has been domesticated, and carried as far north as the 46th degree, both in Europe and Africa. It is probable that the boscaus described by Aristotele, and which Guntung ox. lived wild in the mountains of Psenia, a district of Thracia, was a species of buffalo.† There are two other species which occupy each a separate tract of country.

The Guntung Ox, or Yak, inhabits the upland plains of Mongolia or Thibet.

The Buffalo of Caffraria, appears to be spread over all Africa; for why should we not refer to this species all the ancient accounts of bulls of a monstrous size, carnivorous, and objects of terror both to men and animals, which were alleged to have been seen in Upper Ethiopia, that is, in Sennar and Abyssinia, and to which Philostorgus gives the name of bull-elephants? These accounts have been confirmed by the evidence of modern times. The species with moveable horns, indistinctly noticed by the ancients, appears to have been rediscovered upon the Mozambique coast. It is possible that we shall yet meet with the oxen and buffaloes of the Garamantes, whose horns pointing towards the earth, forced them to move backwards as they fed.

A numerous family of Apes gambol in the forests between the tropics, and show rather a dislike to the temperate climates, at least in their wild state. The apes that live out upon the rocks of Gibraltar, have propagated in that situation, but they have degenerated.

Apes. As the word apes has been taken in a very generic acceptation, it is said that this animal, though confined to the torrid zone, is equally to be met with in the two continents; but, if we carefully distinguish the various species, we shall perceive that there are none of them common to both.

* Géographie de toutes les parties du Monde, publiée par Mentelle et Malte-Brun, i. 518.
There is a very distinct line of demarcation between the country occupied by the Monkey, the Baboon, the Mandrill, the Jocko, and the other apes of Africa, and that inhabited by the real Orang-outang, the Gibbon, and the Wompoo, animals which most nearly resemble the human figure, and which, as they are met with in the islands of Borneo and Java, may have come at first from New Holland or New Guinea. Even in the tribe of Makis, there are limits marked to each species: the Loris belong to the East Indies; the Galleagos to Senegambia; and the Makis, properly so called, to Madagascar.

The Giraffe, or the camel leopard, so remarkable for its height, its swan-like neck, and its gentle manners, seems to belong only to one region of Africa, namely that which extends in length from Cape Guardafui to the Cape of Good Hope, and to which should be joined the mountainous plains, which probably occupy all the interior of southern Africa, between the sources of the Nile and those of the river of Congo, Benguela, and Monomotapa.

This region, which is almost unknown, with the exception of the maritime parts, seems to be very prolific in different kinds of animals. Here, two sorts of asses, the Zebra and the Quagga, are to be met with, and the wild boar in his greatest strength; and here also we shall probably find many of our domestic animals in a wild state, as well as on the central plains of Asia. As this region of Africa enjoys but a moderate degree of warmth, the camel leopard appears to be confined to it, less by the climate than by its own extreme timidity. It is seen as far as the twenty-eighth degree south, but only on the eastern coast.

The two varieties of the Rhinoceros have, each of them, its own country. That with two horns inhabits only South Africa, beginning at Congo and Abyssinia. The other, with one horn, is found in the East Indies, and in China; in this latter country the rhinoceros lives to the thirtieth degree north. They have on the latter side of the line spread as far as the islands of Sunda. Some accounts would persuade us that the rhinoceros with one horn exists in Monomotapa; but this is probably a distinct species.

The Hippopotamus is now confined to Africa; it lives in all the great rivers of that quarter of the world, and is seen in great numbers near the Cape of Good Hope.

The Elephants of Africa and of Asia are of two different races, which have probably not intermixed; for the Asiatic elephant inhabits only India, China, as far as thirty degrees, and some islands to the south east of Asia, to which he has been transported by man. In Persia and in Arabia, we find no elephants but those which have been brought from other countries; and we know that the animal never propagates in the domestic state. The African elephants do not advance farther north than the 20th degree; from thence to the Cape of Good Hope they are everywhere met with in great numbers.

The Lion, the powerful and formidable king of quadrupeds, has been the stript of a great portion of his dominions; for, in the age of Homer, and even in that of Aristotle, the inhabitants both of Greece and of Asia Minor, were accustomed to fly from his approach. From profane and sacred history, we know that there were lions in Armenia, in Syria, in Palestine and in Egypt. In none of these countries does the lion now appear. This dreadful animal has been taught to dread the arms of man; he has retired into those countries where there are fewest inhabitants; he roams in the deserts of Arabia, from whence he extends his ravages to the environs of Bagdad. The lion is to be met with, according to Zimmermann, in the mountains of Hindostan, and upon the coasts of Malabar, upon the Gaults of India, and even in the islands of Sunda, and the kingdom of Siam. This appears to be extremely improbable. Africa always was, and still is, the country most celebrated for an abundant breed of lions, notwithstanding the numbers carried away by the Romans for their sanguinary sports. The lions which roam in the elevated but

*Cuvier, Tableau Element. p. 94. sqq.
†Thomann's Voyage and Biography, in German p. 118.
burning plains, beyond Mount Atlas, are the most distinguished for strength and courage.

The tiger. The Tiger, less extensively distributed than the lion, approaches nearer the pole, if it be true that Tournesfort saw some of the species upon Mount Ararat. The Russian writers allege, that a stray tiger is occasionally observed roaming as far as Mongolia, and on the banks of the Ishchym, in Siberia.* They are found also in eastern Persia, and in China; but the climates in which they attain the greatest size, and display most ferocity, are those of Bengal, the Deccan, Malabar, Siam, Pegu, Ceylon, and Sumatra. It is in these countries that the royal tiger, a fit favourite of oriental despots, gets glutted with the blood of the slaves who are consigned to his fury.

Africa contains no genuine tigers; but, by way of compensation, it has Panthers and Leopards, two species that are sensibly distinguished only by their spots, these being more beautiful and more perfectly rounded in the leopard, which chiefly inhabits Guinea and Senegambia.

The ounce. The Ounce, which differs from the panther in the grey colour of its hide, and the superior mildness of its nature, is more widely distributed, as it is found throughout the whole of Barbary, in Arabia, in Tartary, and China, and sometimes makes its appearance near Kutzesk in Siberia.

From this sketch of the geographical distribution of animals peculiar to the ancient continent, the following general inference appears deducible, viz. that the interior of Asia, and that of Africa, have been each of them the native region of a certain number of species of animals. The tiger, the Indian elephant, the camel with two humps, the wild sheep, the Koulan, or wild ass, the Dchiggetat or horse ass, the grunting ox, the elk, and the musk, are the animals peculiar to the central upland plains of Asia. Those which are characteristic of the upland eastern plains of Africa, are the lion, the African elephant, the dromedary, the buffalo of Cazfaria, the zebra, the quagga, and monkeys. We cannot help thinking, although on evidence which we admit to be weaker, that the northern upland-plain of Africa, or Mount Atlas, the western upland plains of Asia, or Taurus, and the centre of Europe, or the Alps, have equally had their indigenous races of animals. If the two great masses of the old continent have produced each of them its own races of animals, why should not the new world have also races of its own? Why should the majestic chain of the Cordilleras of Mexico and of Peru, have been more excluded from the general action of vital energy than the central upland plains of Asia and Africa?

Nothing can be more natural than to suppose that the vast and isolated continent of America had also its peculiar creation. The very few animals which were able to pass from the one continent to the other by the north, could scarcely have traversed the very hot climates in the interior of America. South America at least, then, would have remained wholly desert, had not nature, which leaves no spot unpeopled, furnished the new continent with species of animals entirely unknown to the ancient world.

Amongst the animals which peculiarly belong to North America, we think, may be reckoned the great elk, named the Moose-deer, as well as the great stag of those countries; species which, to the eye of a mere naturalist, would appear only as varieties of families found in the ancient continent, but which physical geography pronounces to be originally different, by showing the extreme improbability of their supposed passage from Asia to the north-west coasts of America. The bears, the lynxes, the ounces of the United States, are probably as different from the animals of the same name in the old continent, as the squirrels and hares are upon which they feed.

The Bisons, or humped bulls, are the largest quadrupeds in the new world: They roam in great herds from Hudson's bay through the whole of Canada, to the western territory of the United States, to Louisiana, to New Mexico, and as far as the shores of the Gulf of California; that is, from the 52° to the 33° of north

* Georgii, Description de la Russie, iii. 1519.
latitude. They differ from the zebus of India, and from the urus of Europe; but the thick wool which clothes their back and neck, as well as the beard that covers their chin, remind us, it must be confessed, of the bison, described by the ancients as an animal inhabiting Scythia.*

Mention is made of a Musk ox, which inhabits the extremities of America, between the Welcome, Baffin’s bay, and the Copper River. According to other accounts, it wanders as far as towards the Pacific Ocean.† It is alleged to be a species of buffalo, but the accounts are still very vague as to this point. The Mexican stag is to be met with in both Americas, so that we cannot ascertain its native country; but the animal resembling a large sheep, which has been observed to the north of California, appears to be different from the analogous species which browse in Peru.

The Yaguar, the tiger of the new world, resembles the ounce in strength, and the panther in skin. Zimmermann proves, from the narratives of modern travellers, that there are of the species of yagours some which equal the tiger in size.—The Puma, or the Couguar, which has been called the American lion, has a body more nearly resembling the wolf, and a head like that of the leopard of Guinea. These are two kinds quite unknown to the old world. The yaguars supposed to have been seen in Mexico, were probably either oounces or lynxes. It is equally doubtful whether this animal has advanced as far as the cold country of Patagonia. The couguar is not distributed farther than the 45° of south latitude.

The Lama or Guanaco, which has been improperly named the camel, of the new world; and the Paco, which in its domestic state is called vicuna, or vigonia, or Peruvian sheep, inhabit Chili or Peru, to the 10° south latitude; they are distributed neither in the plains of Tucuman, nor in those of Paraguay.‡

The Tapir is the largest quadruped of South America, although it is only the height of a cow; the armadillo, the tajassou, the idle aì, or sloth, the Four-miller, or ant-eater, the Tamarind, the different Agoutis and Coatis, species, all of which acknowledge South America as the place of their nativity, do not in general spread beyond the tropic. The tajassow, however, according to some accounts, is found in Chili. The small long-tailed apes, the Sapoajas or Marmosets, the Tamarins, the sagouins, and other similar species, are very numerous, very various, and very pretty over all the torrid zone of America; they essentially differ from the Apes of Africa and Asia.

On the confines of the temperate zone, we observe stages of different kinds, the beaver of Chili, various Caviae, similar to hares, and, according to Molina, the horse with cloven feet. The species which exclusively belong to the New Continent, are, as we have seen, very numerous; but they are of a much smaller size than the analogous species which live under the same latitudes in the ancient world. Physical geography informs us of the causes of this peculiarity. Do we not know the peculiar configuration of the American continent? Mountains cold, and partly barren, are immediately succeeded by marshy forests, and plains continually inundated. The torrid zone in America affords but a small extent of land; the temperate zone of the North is encroached on by cold marshes; in that of the South, the continent tapers almost into a point. Thus, throughout the whole of this continent, the larger species of animals are either strangers to the climate, or have not room for the full development of their energies. On the other hand, imported animals which agree with the climate of America, lose nothing of their size, their beauty, or their strength. The horse and the ox have not in the least degenerated in the extensive pastures of Paraguay. If the human race appears to have undergone deterioration in America, this should be ascribed rather to political than to physical causes.

If reptiles and insects abound in America, if they there attain a larger size than anywhere else, it is only when considered relatively to the known regions of Africa.

* "Villoso tergo bisontis." Sen. Hippol. v. 64.
† P. Marco de Niza, quoted by Zimmermann, Almanach de Voyages, 1806, p. 73.
‡ Helms, Voyage de Buenos-Ayres à Lima. Azara, Quadrupeds de Paraguay.

Vol. I.—I
These regions, peopled from time immemorial, have seen their primitive animals fly before the face of man; but who knows whether the unexplored interior of that continent does not contain extensive marshes, as thickly peopled with reptiles and insects as the coast of Guiana? Does not, moreover, the Delta of the Ganges swarm with serpents of enormous size?

The distinctive character of South American zoology consists, principally, in the difference of species, a difference which proves how little intercourse this great peninsula has had with the rest of the world; it has not received any species even from North America, while the latter country has beheld the number of its animals augmented by accessions from those of South America.

We have still to consider another province of the animal kingdom, a province hitherto imperfectly explored, but certainly very distinct from those which we have already examined. The islands to the South East of Asia, as well as the great island of New Holland, occupy a position very similar to that of South America. In them, therefore, should be the cradles of races of animals very different from those of the two Continents. These races, however, are far from being plentifully distributed in the remainder of that vast archipelago, which is placed in the centre of the great ocean. We do not find there the Ornithorhynques, nor the Wombat, nor the Opossum, nor the Kangaroo, animals peculiar to New Holland. We must, however, remark that these species resemble the didelphes which are common in the neighbouring islands of Asia, that opossums are met with in the Moluccas, that in Java, there are Kangaroo-philander, and that, if the flying phalanger resides in New Holland, the white phalanger inhabits the island of Amboyna. Labilliere found the lizard of Amboyna in the Friendly Islands. We may add, that the Costivary belongs equally to the Molucca islands, to Java, and New Holland; and, without waiting till it be discovered whether there exist in that great island, the Babiroussa, or stag hog, the Cerco aris, the Ourang-outang, and other mammiferi of Borneo, the Philippines, and the Moluccas, we may consider the fifth part of the globe, or the Oceanic countries to the south east of the Chinese sea, as the native region of an assemblage of animal tribes, of which future discoveries shall increase the number and unfold the relations.

These general views of the geographical distribution of animals, however imperfect they may be, may assist our readers in classifying the numerous details of our subsequent and particular descriptions of regions and countries.

BOOK XXII.

Continuation of the Theory of Geography. Of the Earth, considered as the abode of Organic Beings.

SECTION III.

OF MAN, PHYSICALLY CONSIDERED.

The physical organization of man, while it subjects him to those laws of generation, growth and dissolution, which extend to all orders of living nature, bears at the same time, in each of its parts, and as a whole, a character so peculiar, so extraordinary, and so sublime, that it is impossible to suppose even the most distant relationship between the brutes, which do nothing but feed and pro-
pagate on the surface of the earth, and him who is born to exercise dominion over them. That upright and elevated port, which indicates both dignity and courage; those hands, the trusty instruments of our will; the dexterous performers of the most magnificent, as well as the most useful works; those eyes, uplifted from the dust, whose intelligent glance can survey the immensity of the heavens; those organs, which enable us to express thought by articulate sounds of endless variety; the admirable union of strength and suppleness in all our members; finally, the harmony and perfectibility of all our senses, assign to us the first rank amongst living beings, and give us both the right to claim and the power to hold the empire of the earth.

Anatomy and physiology have placed these truths beyond the reach of dispute.* Those naturalists who have pretended to confound the human species with that of monkeys, notwithstanding the essential difference in the feet, in the organs of speech, and the notes of the voice, appear to recognize no fixed principle whatever in their classification of the species of animals.

Even the apparent disadvantages of our organization powerfully accelerate the improvement and the happiness of human existence. Endowed with the strength of the lion, mailed like the elephant, or clothed with a skin impenetrable to cold and humidity, we should perhaps have remained benumbed in stupid indolence, and ignorant of all the arts of life. The extreme feebleness of the human frame at the moment of its birth, the slowness of its growth, the multiplicity of its wants, all those infirmities, all those ills which nature has appointed as our attendants in the journey of life, serve as so many spurs to quicken our dormant faculties, and as so many bonds by which man is knit together with man. Hence the origin of civil society. From the long lasting helplessness of infancy, arises the enduring relation of parents and children; from this relation springs the permanent nature of the conjugal union. The union of men in families is followed by the formation of tribes and nations. It is by uniting with his fellows, and living together under one common law, that man has, as it were, created man; it is by forming a correct estimate of his weakness, and by inventing instruments to assist it, that he has obtained the mastery and the management of the powers of nature; he has felt his penury, and the stimulus of this uneasy feeling has procured for him his true wealth.

This animal, so distinguished from all others, forms in the scale of being an insulated order, which contains no more than one genus and one species; for we understand by species, a certain number of organic beings which propagate each other, and which differ only in qualities that are variable and distinct from the characters marking the species. Now, all the nations and tribes of human beings of which we have any knowledge, produce, by sexual intercourse, individuals that are prolific, or capable of producing other human beings in their turn. And, on the other hand, the differences observable in these tribes are confined to qualities which we still see every day varying, according to the nature of the food which is eaten, and from the influence of climate and disease.†

The first of these assertions does not require illustration. The numerous classes of mongrels and melastóes produced by the union of the different human tribes, are sufficiently known. As to the second point, we observe that the differences by which the varieties or tribes of the species are distinguished, relate to the stature, or the physiognomy, or the colour of the skin, or the nature of the hair; or, lastly, to the form of the skull or cranium.

Every person knows that a simple mode of life, abundance of nutritious food, and a salubrious atmosphere, give to all organic beings large and graceful forms. The example of the Laplanders and Hungarians, whose language indicates their common origin, and who differ extremely in stature and physiognomy, sufficiently proves that the beauty of the same race varies with the climate and the qualities of the country. The Germans of Tacitus, those Patagonians of

* See Cuvier, Leçons d'Anatomie comparée, etc.
† Blumenbach, De Varietate nativa generis humani.
Europe, are no longer found in civilized and cultivated Germany, whilst the Hollander, in the interior of the colony of the Cape, has become almost a giant.* How many contrasts do we not meet with in a single nation, and at inconceivable distances? The female peasants of Westphalia are uncommonly pretty, and those of Dalecarlia are in general ugly, although both provinces occupy the centre of the real country of the Goths.† Violent passions, the yoke of superstition, dull or cheerful occupations, habits of activity or indolence, stamp a permanent character on the physiognomy of whole nations.

Several differences of physiognomy are, partly at least, the effect of art. Numerous eye-witnesses concur in assuring us, that the Negroes,‡ the inhabitants of Brazil and the Caribbees,§ the people of Sumatra, and those of the Society Islands,‖ depress and flatten, with great care, the nose of new-born infants, a practice which indeed could not have given rise to such a hereditary configuration, but which contributes to render the exceptions extremely rare.

Variety of colour seems equally to depend upon external circumstances. In the same nation we often observe individuals of extremely different complexions. While the Moorish ladies, shut up in their houses, and scarcely ever exposed to the sun, have complexions of a dazzling whiteness, the women of the lower ranks, even in their youth, acquire a colour approaching to that of soot.¶ The Abyssinian mountaineers are as fair as the Spaniards or the Neapolitans, whilst the inhabitants of the plains are almost black.** Amongst the Creoles, or Europeans born in India, the women are distinguished from their sisters born in Europe, by the sprightliness of their look, and the ebony colour of their locks.†† The cause of colour exists in the mucous and reticular texture, [rete mucosum] which is immediately under the epidermis. If, from the influence of extreme heat, or from some other local cause, there is an excess of carbon in the animal economy, it is thrown out along with the hydrogen, by the action of the blood-vessels of the cuticle; but having been precipitated by the contact of the atmospheric air, it becomes fixed in the reticulum. The application of these principles, which we owe to modern chemistry, enables us to explain why the skin of white men blackens in certain maladies, whilst negroes, in the same circumstances, grow white, or rather yellow.

Both phenomena indicate a derangement in the secretions. But we will not conceal the only difficulty with which this explanation is attended. If the negroes descend from a race originally white, millions of years must have elapsed before the repeated action of the climate could have rendered their black colour hereditary. But, geological monuments seem to show that the antiquity of the human species falls greatly short of such a period. “Either then,” will some philosophers say, “either allow, for the action of the causes which have formed the various races of men, an immense series of ages, or admit that these races, if they have existed only for 5000 or 6000 years, must have sprung from different pairs that were originally stamped with all the characters of their descendants.” It is by a course of observations upon the negroes transported from Nova Scotia, and other countries, that our remote posterity shall be enabled to solve this difficulty.

The numerous varieties of hair equally depend upon the secretions of the elementary substances, of which the body is composed. But here the facts appear contradictory. Among the civilized nations of Europe, the hair invariably becomes of a lighter colour, as we advance towards the north. Amongst the barbarous nations of Africa, Asia, and America, the same colour of hair is found in climates completely different. While the dark-haired Italian, and the Scandinavian with his flaxen locks, although belonging to the same variety of the human species, exhibit the effects of the action of climate, the Laplanders and the Samoides

* Harrow’s Travels in Africa. Sparrmann, Thunberg, &c.
† Arendt, Voyage en Suède. Thunberg, i. 234, &c.
§ Lery, Voyage au Brésil, p. m. 98. 365. Delaborde, Relation des Caraïbes, Paris, 1764, p. 129.
‖ Marsden’s History of Sumatra, p. 38. Forster, Bemerkungen, &c. p. 433, and 516.
¶ Pointet, Voyage en Barbazie, i. 31.
** Bruns, Afrika, ii. 119.
†† Hawkesworth’s Collection of Voyages, iii. p. 374.
have hair as black and as rough as the inhabitants of Mongul, Thibet, and China, a
race with which, for other reasons, we must assign them a common origin. All the
negro tribes have woolly hair, even the Jalops, who have theirs a little longer and
less curled.*

It does not appear that the hair of the Americans presents any shades of difference compared to those which we observe in European nations. We might attempt to explain this fact, by supposing that the nations of the European race, having separated at an early period, occupied countries extremely diversified in regard to climate, and pursued very different modes of living, whilst the Mongul or negro tribes must have multiplied at first in a physical region, whence they spread themselves, perfectly formed, into the countries which they now inhabit. But this explanation, not admitting of being applied to the Americans, cannot entirely solve the difficulty. The nature of the hair still remains one of the most specious arguments in favour of the system which supposes a plurality of species of men.

We observe, however, that in the European race, the colour of the hair appears to change with the civilization, or rather with the degeneracy of nations. The fair-haired race; which, in the age of Homer, furnished Greece with kings and heroes, still existed in the days of Tacitus in Belgic Gaul and in Germany; but now it appears to have become extinct in the cities of the north. Is it the fact that spicy food, beverage abounding in alcohol, luxury, and voluptuousness, gradually change the physical constitution of these nations? The varieties in the form of the cranium or skull, seem to be of more importance than all those we have examined; at the same time, since the researches of Mr. Gall† have demonstrated, that the external configuration of the cranium depends upon the form of the brain, we can scarcely consider diversities in a substance which is soft, and susceptible of every form, as presenting a character unequivocally marking a diversity of species.

The form of the cranium appears to us to depend as much as the physiognomy upon the moral character of the individuals. Though it is impossible to assign to every passion, and to every faculty, a separate organ in the brain, it is certain that men of great talents, and of strong passions, have the head more varied with bumps and protuberances than the multitude. Another fact is, that in those nations, the individuals of which most nearly resemble each other in character, and which have been least mixed with other tribes, the skulls appear to have been cast in one common national mould. When we see the head of one Hindoo, we see the heads of the whole nation: on the contrary, in Europe, where the characters of individuals vary extremely, we find skulls of every form, even the most remote from what we reckon the regular shape.

Independently of this general cause, to which should be added the effects of food and climate, the form of the head is frequently modified by artificial means. A pressure continually applied for a great number of years, much more frequently imparts to the smooth bones of the head a peculiar configuration, which becomes even national at last. This effect may be produced by the manner in which some nations place their children in the cradle, or by manual compression, long and carefully applied. Vesale relates, that in his time almost all the Germans had the head flattened behind, and enlarged at the sides, because they were always laid on their backs whilst in the cradle.‡ The Belgians, on the contrary, who were accustomed in infancy to sleep on their sides, were remarked for the length of their head. The American savages, from South Carolina to New Mexico, have all of them the skull depressed, because they lay their children in the cradle in such a position that the crown of the head, which is placed upon a bag filled with sand, supports almost the whole weight of the body.||

* Bruns. Afrika, v. 69.
† Gall and Spurzheim. Anatomie du cerveaux, &c. &c. avec fig. Chez, Schoell.
‡ Comp. the fine work, "Les Hindous," par M. Solvyns.
§ Vesale, quoted by blumenbach, § 53.
A practice prevalent in ancient as well as modern times, in our climates, and in the most distant countries, is to bring the head of the new-born infant to a national form by means of bandages, different sorts of instruments, or even the simple pressure of the hands. This custom obtained formerly, and still continues, among the inhabitants of several parts of Germany;* among the Belgians;† the French;‡ in several districts of Italy; among the Islanders of the Grecian Archipelago;§ the Turks; the ancient Sigymi, and the Macrosephali of the Euxine Sea;‖ it prevails to this day among the inhabitants of Sumatra and Nicobar;¶ and particularly amongst the different nations of America, such as the people of Nootka Sound;** the Chactas; the native inhabitants of Georgia; the Waksaws of Carolina; the Caribbees; the Peruvians;‖‖ the Omagnas;‖‖ together with the negroes of the Antilles. §§ This practice was forbidden in Spanish America, by the decree of a national council. |||| We are in possession of the most exact descriptions of the means which these savages employ to give the heads of their children, by an uniform pressure, the configuration they desire.¶¶ This fact being established by so many unexceptionable witnesses, all which remains now is to ascertain whether the forms of the cranium, obtained by these means, become, after a long series of generations, natural and hereditary. Hippocrates, in his treatise on air, waters, and situations, mentions particularly the Macrocephali, a nation in the vicinity of the Pontus Euxinus. According to him, no other people had the head shaped like theirs: and this conformation originally resulted from a particular practice. The Macrocephali regarded a long head as the index and symbol of courage; in conformity with this opinion, they moulded the heads of their infants at birth, and endeavoured, by various contrivances, to give them length at the expense of breadth. The form at last became natural, and no care was required to produce it. There are also in the form of the human body, other diversities which appear peculiar to nations, and perhaps to different varieties of the human species. It is alleged that several savage tribes have moveable ears; but it has been probably under the impulse of a satirical spirit, that some authors have assured us, that the ancient Batavians had ears singularly deformed, and that, amongst the inhabitants of Biscay, these organs are of an unusual length. The pendent breasts of the negroes are occasioned by the practice of suckling their infants suspended from their backs. The fullness of this part seems to be the effect of a warm and humid climate.

We shall notice elsewhere the deformity of the Boschman women in South Africa. Amongst the tribes of the South Sea, or Great Eastern Ocean, the chief's owe their swollen legs to their indolence and manner of sitting. Perhaps also the elephantiase, a malady frequent in Africa, Arabia, and Indostan,*** extends over the Oceanic countries. The crooked legs of the negroes, which had been observed by the ancients,††† appear equally common amongst the Mongol nations. This deformity has been attributed, either to their being prematurely accustomed to the saddle, or to the posture in which they are placed, during the period of lactation, fastened to the back of the mother, and clinging to her forcibly with their knees. There are more important varieties in the shape and proportion of the lower limbs, and which are peculiar to the nation or the tribe. The...
sages of New Holland have legs extremely long and slender.* It is not true that this peculiarity occurs amongst the Hindoos, as we are told by an observer unworthy of credit.† But it appears certain that the Mongols and Americans have their legs and thighs too short in proportion to the rest of the body. Some nations have small hands and feet. The Hindoo sabres, frequently brought into England, are too small in the hilt to be wielded by most Europeans.‡ We might refer also to the Chinese, the Kamchadaleas, the Esquimaux, the Peruvians, the Hottentots, and the inhabitants of New Holland.§

Nations differ very much in the degree of strength with which they are endowed. The interesting experiments of Peron and Regnier, among savages, have proved that savage, or half civilized nations, yield to the Europeans in all kinds of active force; but we have no doubt that they possess, in a more eminent degree, that passive force which resists the inolemency of the seasons.

After summimg up all the observations made by travellers, the celebrated Blumenbach reduces all the varieties of the human species to five principal types or modes, on which a deliberate and minute examination has enabled us to make only a few slight modifications.

The first variety occupies the central parts of the old continent, namely, Western Asia, Eastern and Northern Africa, Hindostan, and Europe. Its characters are, the colour of the skin more or less white or brown; the cheeks tinged with red; long hair, either brown or fair; the head almost spherical, the face oval and narrow; the features moderately marked; the forehead smooth; the nose slightly arched; the mouth small; the front teeth perpendicularly placed in the two jaws; the lips, particularly the lower one, slightly pouting; the chin full and round. The regularity of the features of such a countenance, which is that of the European, causes it to be generally considered as the most handsome and agreeable. The features of the Hindoo, the Abyssinian, and the Breber, or inhabitant of Mount Atlas, do not essentially differ from those of the European, except in the colour of the skin, which is darkened from the effects of the climate, and which, moreover, amongst the Hindoos, and even the Abyssinians, acquires a very fair tint in the mountainous provinces. Blumenbach designates this race the Caucausian; but by bestowing this name he invades the province of civil history, which assigns us no reason for believing the people of Caucasus to be more ancient than those of Mount Atlas or the Alps. Neither physiology, nor physical geography, furnish the least proof, that this variety of the human species has had a common origin; it has formed itself wherever there existed the physical causes on which it depends.

The second variety is that which was at first erroneously designated under the appellation of Tartar, though the Tartars, properly so called, do not belong to it. We shall call it the Eastern Race, or Variety of the Ancient Continent. The following is its character; yellow colour; hair black, stiff, straight, and not very thick; the head almost quadrangular; the face large, flat, and depressed; the features indistinctly marked, and, as it were, blended together; the space between the eyebrows large and smooth; the nose small and flat; the cheeks round and prominent; the opening of the eyelids narrow and linear; the chin pointed.

This variety comprises all the Asiatics to the east of the Ganges, and of Mount Belour, except the Malays of the extremity of the peninsula beyond the Ganges. In Europe this variety is found, according to Blumenbach, amongst the Laplanders and the Finns; and in America, amongst the Esquimaux, from Behring's Straits to Greenland. But we are convinced that the Finlanders, descendants of the ancient Scythians of Europe, should be classed with the first variety, of which they form a very ancient subdivision, having mixed with the Celts and the Basques, as will be shown in the description of Europe.

* Péron, Voyages aux terres Australes, Atlas, pl. xx.
‡ Hodgson's Travels in India, p. 3.
The Eastern race of the old continent, bounded by the limits that we have just now traced, presents a remarkable identity of tint, physiognomy, form of the skull, and even of language, as we shall see in the sequel.

The American variety resembles, in several points, that which we have been describing. Its principal characters are, the copper colour; hair black, straight, stiff, and thin; forehead short; eyes sunk in; the nose almost flattened, and yet somewhat projecting; the cheek bones in general prominent; the face large, without being flat or depressed. The features, viewed in profile, appear very marked, and of a bold outline. The form of the forehead, and the crown, is often the effect of art.

This variety comprehends all America, except the northern extremities, inhabited by the Esquimaux. It appears to be composed of several branches, which differ considerably; the complexion, which is white or fair amongst the Kristinaux, becomes almost black among the Brazilians; the features and the skull are sometimes flattened, and sometimes lengthened. All these tribes have a beard,* but it is weak; there are some who, like the Mongul and Malay nations, pluck it out by the root. The opinion that the American tribes were destitute of beards, owes its origin to De Paw. Robertson the historian, an author still more worthy of credit, has said, that all the Americans have the same cast of countenance: to such a degree have the truths of physical geography been overlooked or disregarded by those who have undertaken to write the history of man.

We shall now return to the East, in order to consider the fourth variety of the human species, that of the Oceanic countries, or fifth part of the world, designated by Blumenbach under the too arbitrary name of the Malay race. The following are its still very uncertain characters,—a tawny colour; the hair black, soft, thick, abundant, and curled; the head slightly shrunk in; the forehead a little bulging out; the nose thick, wide, and flattened; the mouth large; the upper jaw a little projecting; the features viewed in profile, appear marked and distinct.

This variety comprehends the islanders of the Pacific Ocean, the inhabitants of the Marian, Phillipine, Molucca, Sunda Islands, and the indigenous tribes of the peninsula of Malacca, most of the inhabitants of New Holland, and those of New Zealand, and perhaps even some of the nations of Madagascar. But how difficult is it to determine any thing concerning nations so imperfectly known, and which appear to include tribes of different origins? The immortal Quiros, who first discovered the Society Islands, carefully observed the disparity which exists between their inhabitants. He says that some resemble the Whites, others the Mulattoes, and even the Negroes.† Modern voyagers have compared the reigning cast in the island of Otaheite, to the Europeans of the south, and the people to the Mulattoes.† The very great extent to which the Malay language prevails, and which at first leads us to suppose the identity of these nations, could be the consequence only of ancient migrations and conquests. At the same time, it is proper to state, that the savages of New South Wales, who speak a language different from the Malay, exhibit, notwithstanding, the leading physical characters of the last mentioned variety.

The fifth grand division of the human race, or the Negro variety, is attended by no circumstances of a doubtful nature. The characters are, colour black; hair black and woolly; head narrow, and compressed on each side; forehead very convex and arched; the cheek bones projecting; the eyes even with the forehead; the nose large, and almost confounded with the upper jaw, which is carried forward; the border of the gums narrow and elongated; the upper front teeth, or incisors, obliquely placed; the lips, particularly the upper, very thick; the chin drawn in; the legs in general crooked. This variety, which is spread over all Western and Southern Africa, is found also upon the coasts of Madagascar, probably upon those of the north-west, and of New Holland, in the great islands of Van Dieman’s Land, in New Caledonia, and New Guinea. It is even supposed that it anciently existed

* Blumenbach, Gottingen Magazine, &c. &c.
† Quiros, in Dalrymple’s Collection of Voyages to the Southern Pacific Ocean, vol. i. p. 161.
* Burginville, Voyage autour du Monde, p. 211.
in the Philippine islands, in Borneo, Java, and Sumatra. The Haraforas, who still inhabit the interior of some of these islands, are Negroes; so also are the natives of the islands of Andaman. Thus all the regions of the torrid zone, with the exception of America, have produced Negro tribes;—a manifest proof of the influence of climate upon the varieties of the species. But when we observe the differences between a real Negro, with a complexion of jet, and woolly and crisped hair; a Caffre, with a yellow copper complexion, and long woolly hair; a native of Van Dieman's land; a New Caledonian; a Papous, or New Guinea man, of the colour of soot, with frizzled locks,—we remain uncertain whether these three races, separated besides by seas and mountains, are each of them the original inhabitants of their present abode, or whether they have all descended from a common stock.

The Hottentots form another remarkable exception: the shape of their skull is that of the Malay race; they have the complexion and the thin beards of the Mongol variety, but their woolly hair resembles that of the Negroes.

Such are the principal varieties of the human species, spread over the surface of the globe. The ancients erroneously imagined that the torrid zone, scorched by the rays of a vertical sun, cut off all communication between the inhabitants of the two temperate zones. This opinion, which contracted the boundaries of the universe, has vanished away before the discoveries of Columbus, of Gama, and of Cook. Navigators have found inhabitants in the most sultry climates, and in the neighbourhood of the poles, upon the most inaccessible coasts, and even on islands that a boundless ocean seemed to separate from the rest of the world. The islands of Spitzbergen and of Nova Zelba, to the north; Sandwich Isle, the islands of Falkland, and of Kerguelen, to the south,—are the only countries of considerable extent, which have been found entirely destitute of human inhabitants. Man, therefore, has the whole earth as his abode. He can live in every climate, and his habitations reach to the remotest confines of animated nature. The Esquimaux of Greenland dwell as far north as the 80th degree. In the other hemisphere, the bleak and barren Terra del Fuego supports the wretched Petchers. The New World, then, though in general thinly peopled, is still inhabited from one extremity to the other. In the old continent, the habitations of man form a collected whole, which is broken in upon only by some sandy tracts; and in the midst even of these deserts, man has peopled the Oasis, those verdant islands scattered over an ocean of sand.

The human body supports, upon the banks of the Senegal, a degree of heat which causes spirits of wine to boil. In the north-east of Asia, it resists cold which freezes mercury. The experiments of Fordyce, Boerhaave, and Tillet, prove that man is more capable than most animals of supporting a very great degree of heat. We have no doubt that our body would resist extreme cold equally well, provided that it retained the power of moving. As the intensity of the cold should scarcely increase beyond the 78th or 80th degree, it is probable that man could sail under the poles as well as under the equator, if he were not arrested by the ice.

The power which man possesses of speedily accommodating himself to every climate, appears to spring from the same cause which renders his health less sound and less steady than that of other animals. It is to the superiour affinity of the component particles of their bodies to inert matter, that animals are indebted for those instincts of which we are destitute. Our senses, on the contrary are not so poignant, our body is not so susceptible of impression, the impulse of our passions is not so ungovernable, because the whole of our organization is more subtle, more delicate, and, if we may say so, more intellectual. The instability of health, and the uncertain duration of life, are the natural consequences of this delicate mobility of our organs. It is owing, however, to this same mobility, that our organs obey with ease and promptitude the volitions of the soul. A firm determination not to be overcome by a distemper, but to bear up against it, is, in the opinion of physicians, one of the most potent medicines, whilst an apprehensive and desponding imagination, is sure to aggravate the slightest indisposition. And thus...
it is that our bodily frame, in order to be fortified against the influence of a new climate, only waits for the orders of the mind, to which it serves as an organ. Under every climate, the nerves, the muscles, and the vessels, by stretching or relaxing, by dilating or contracting, soon acquire the state which is habitually suited to the degree of heat or cold that the body experiences.

It is commonly said, that the sum total of men living upon the earth may amount to a milliard, or one thousand millions. But all the calculations which have been made upon this subject are chimerical. It is impossible to state any which shall even approximate to truth. Asia, it has been said, contains five hundred millions of inhabitants; but it has been only by proceeding upon the most exaggerated data for each of the countries which compose this quarter of the world, that this sum total has been arrived at. The truth is, we have no greater reason for giving to Asia 500 millions than for giving it 250. Among the different accounts respecting China, how shall we hit upon the true one? Has that country 27 millions of inhabitants, according to Sonnerat? or 55 millions, according to the extract from the official Gazette of Peking? or 70 millions, according to the Russians? or 100 millions, as De Guignes believed? or 19,662,000, as M. Busching informs us? or 200 millions, agreeably to the statement of the Missionaries? or, finally, 333 millions, as a Chinese mandarin, perfectly veracious no doubt, assured Lord Macartney? This single example may suffice to convince the judicious reader, that all this parade of figures, is founded only upon vague conjectures. We have endeavoured to compute the population of Asia, by collecting the accounts of modern travellers. We affirm nothing: we merely say that it appears to us that we cannot assign to Asia more than from 230 to 340 millions of inhabitants.

The Oceanic division of the earth, or that collection of large and small islands to the south east of Asia, contains vast spaces almost entirely unknown. Carrying partial computations as far as possible, we shall find, from Sumatra to Easter Island, and from Manilla to New Zealand, only about 20 millions of inhabitants.

As to Africa, the uncertainty is so great, that, upon the whole, we do not know whether we should estimate that quarter of the globe at a population of 45, or 90 millions. One third of Africa is so completely unknown, that it is not ascertained whether it contains lakes, or mountains, or sandy deserts. Of the parts which are best known, there is not one concerning which we possess any correct calculations. All that we know is, that the population of Egypt, of the Barbary States, and of the empire of Morocco, has been prodigiously exaggerated. Mention is made of very populous countries on the banks of the Niger; but what traveller deserving of belief has seen those great cities which should have more inhabitants than London? All pretensions to certain calculation would be ridiculous; but, if we take a mean term, 70 millions may be considered as the maximum of the population of Africa.

150 millions of inhabitants have been assigned to America. But there is scarcely one third of this number whose existence can be proved. The Spaniards have scarcely extended their calculations beyond 20 millions of inhabitants of all classes, for the whole population of their colonies; and even this is perhaps a third too much. Brazil has only one million of inhabitants, according to Raynal; but we should now reckon a little more than four millions, including the natives. It would be difficult to discover more than two millions in all the great and little Antilles, deducting those possessed by the Spaniards. The United States have (1831) from ten to eleven millions of inhabitants. English Canada, and Nova Scotia, with their dependencies, can be estimated only at a million and a half. We shall not meet with two millions of individuals in the tribes, or rather the savage families of the interior and north west. It is evident, therefore, that the whole of America does not contain more than 45 or 46 millions of inhabitants.

Let us sum up the whole of these hypothetical results. Europe, the only quarter which is known, may contain 170 millions of inhabitants. Asia has from 320 to 340 millions. All the islands of the Great Ocean, forming the fifth part of the world, may contain 20 millions; we shall leave 70 millions to Africa,
and 45 millions to America. The sum total of the human race then, will amount only to 640 or 650 millions of individuals, instead of a milliard, or 1000 millions.

We have more satisfactory and correct results as to the proportions which subsist between the births and deaths, and the number of marriages and of living individuals of each sex and of every age.*

The natural limit of human life seems to be from 80 to 90 years. Few men survive that period—the greater majority die long before they even approach it. Of all new born infants, one out of four dies the first year.

Two fifths only attain their sixth year; and, before the twenty-second year, one half of the generation is consigned to the grave—the order which death observes in cutting off his victims is one of the most wonderful phenomena in nature—the causes by which it is effected are too numerous and too complicated to be here considered in detail. The unhealthy nature of certain occupations, the impetuosity of the passions, and the corruption of manners, prove no less fatal to life than the original weakness of the human frame. In general, the mean duration of human life is between 30 and 40 years; that is, out of 30 or 40 individuals, one dies every year.

This proportion varies in a singular manner, according to sex, localities, and climates, and even from one province to another. In 1774, there was, according to Sussmilch, one death for every 26 men and women in Prussian Silesia, and 1 for every 36 in the March of Brandenburg. In Sweden, according to Wargentin, they reckon 1 in 33 for the men, and 1 in 35 for the women. In Denmark, the proportion is, according to the statistics of Thaarup, 1 in 37 $\frac{1}{2}$, including Holstein. In Norway, according to the same author, they allow 1 in 48 $\frac{1}{2}$. The German-Russian geographers affect to establish a proportion still more favourable for Russia, viz. 1 in 56 or 59; but there is ground to believe that they proceed on erroneous data. It is certain that in small districts, the proportion which the number of the deaths bears to that of the living inhabitants is sometimes extremely low. In the parish of Woerdal, in Norway, the mortality was only 1 in 74, during ten years. In the government of Worensch in Russia, the mortality was that of 1 in 79 $\frac{1}{2}$; but it is physically impossible that the proportions so favourable can obtain in a country of large extent. In France, it appears that the computation is 1 death in 35; and that is, perhaps the most unexceptionable basis that can be adopted for any country of the same extent.

It is said that the mortality is much greater in towns than in the country. Wargentin calculates that in Stockholm 1 in 17 men dies, and 1 in 21 woman in 21. According to Price, there dies in the large towns of England, every year, 1 out of from 19 to 23; in the small towns, 1 in 28, and in the country, only 1 in 40 or 50.

Aristotle long ago exhorted governments to prevent the accumulation of inhabitants in the cities.† Sussmilch compares cities to a continually raging pestilence. Such a sweeping assertion exaggerates the effects of an evil whose existence cannot be denied. The inhabitants of the country enjoy two great advantages over those

† Arist., de Republ. viii.
of towns, a purer air, and a more sober and regular life. On the other hand, rural
employments expose those who follow them to so many accidents, and subject them
to so many hardships, and to such a miserable mode of living, that it may be doubted
whether the real disadvantages in cities are as great as has been supposed. The
apparent disproportion is probably owing, in a great measure, to the circumstances
of the hospitals being almost always established in towns, and many of the sick being
brought to them from the country. Out of from 20 to 31,000 deaths in Paris, it is
generally found that from 6 to 7000 have taken place in the hospitals alone.

Causes of longevity.

It appears that the air of open and elevated plains, and of mountains
having a free approach, is conducive to longevity. The same thing
may be said of an insular atmosphere, which is always renovated by the breezes
from the sea. Russia, Norway, Sweden, Denmark, Scotland, Ireland, and Switzerland,
are the countries which furnish the most numerous and the most authentic
telegraphs of men and women having had their lives extended beyond the period of
100 years. In these countries, we may reckon one centenarian for every three or
four thousand individuals. But, we know that there are many countries in which
longevity is common, although we do not exactly know to what extent. Pliny
mentions that part of Italy which extends from the Appennines to the Po, and from
Placentia to Bologna, as containing a great number of men, from 100 to 150 years
of age, at the time of the census which was taken under the emperors Claudius and
Vespasian.

Rare examples, however, of extreme longevity, of a life of 150 years and upwards,
seem to be common to all countries without distinction. If England, the salubrity
of which is so highly extolled, has furnished three or four examples of men arriving
at the age of from 160 to 169 years;* Hungary which, generally speaking, is not a
very healthy country, has seen the celebrated Pierre Ozarum prolong his life to the
159th year;§ and John Rovin, at the age of 172 had a wife of 164, and a younger
son of 117. It is in the Bannat of Temeswar, a very marshy district, and subject
to the putrid fever, that these examples of longevity, and many others, have been
observed.|| A mode of life, which is sober, and untroubled by tumultuous passions,
singularly contributes to longevity. According to the author of a very curious little
work,† called the Apology for Youth, 152 hermits, taken in all ages, and
under every climate, produce a sum total of 11,599 years of life, and conse-
quently an average of 76 years and a little more than three months for each; whereas
the same number of Academicians, the one half belonging to the Academy of Sciences,
and the other to that of Belles Lettres, gives only 10,611 years of life, consequently
69 years and a little more than two months for the mortal career of each. It is
therefore not improbable, that in the ages of patriarchal innocence, the period of
150, or even 200 years, was much more commonly attained than it is in our times.
This is what the ancients affirm of the Sires, of the Cypri of India, of the Epians
in Ætolia, and of the inhabitants of Mount Athos and Tmolus.

In the ordinary course of nature, at least amongst civilized nations,
the number of births exceeds the number of deaths. But the proportion
varies with the situation. In the country, there is frequently 1 born yearly for every
22 of the population. In towns, the proportion is less favourable, being often 1 to 40,
more generally 1 to 35. In this respect, climate occasions a remarkable difference.
The most healthy climate is not always that in which there are most children born—
for example, in Denmark, the proportion of births to the existing inhabitants is as 1
to 31; in Norway, as 1 to 34. In France, the proportion is as 1 to 29. There are
reckoned in Sweden 4 children to a marriage—in France 42; consequently the ancient
opinion, which considered the north as the officina genitum, the cradle of na-

* Sussmilch, Ordre divin, &c. § 483.
† Plin. vii. 49.
‡ Robinson, Philosophical Transactions, Nos. 44 and 221. Baddam's Memoir, i. 154. iii. 174
Harleian Miscellanies, vi. art. 8.
| Hanov. Baretès Naturelles, i. 130. (in German) Cramer. Append. ad Medicin. castrens. de
climato Hungarico.
tions, although supported by many philosophers* besides the antiquary Rudbeck, is altogether destitute of foundation.

The manner of life, the nature of the different trades, and the quality of the food commonly used, are circumstances which exert a greater influence than climate upon the propagation of the human race. It has been observed that people who live upon fish, multiply faster than those who subsist on nothing but flesh.† The fecundity of the women of Sologne, a country by no means healthful, is perhaps to be ascribed to the buck-wheat which constitutes the principal article of food to the inhabitants of that canton; for this kind of grain, as is observed in birds, appears to stimulate the organs of generation,‡ whilst rye, on the contrary, is said to occasion infecundity in the fowls that live upon it.§ Among tribes that lead a wandering life, and are not very numerous, there are fewer children born than in those better peopled countries where the individuals of both sexes are brought nearer together, and are more frequently in presence of each other. In populous countries, however, which have attained a high degree of civilization, the number of births diminishes, owing to the dearness of provisions, which makes it more difficult to support a family, and consequently renders marriages less frequent. The period in which a people subsist principally by agriculture, and when the conveniences of life are easily procured, appears to be that in which population most rapidly advances.

It is owing to the physical influence of the air, the food, and the mode of life, that certain seasons of the year are more favourable to fecundity than others. Pliny calls the spring the genial season. Hippocrates had previously observed, that spring was the season most favourable for conception. Aristotle has justly remarked, that the sun and man labour together in the reproduction of man. Observations made in several countries, concur in determining the months of December and January, to be those in which the greatest number of children are born. Local circumstances, depending upon the manner of life peculiar to a nation, may modify or alter this general rule. In Sweden, according to Wargentin, the month in which there are most births is that of September, and the month of January only ranks next to it. This fact is easily explained, when we recollect that amongst all the nations of the north, particularly in the country, the season of Christmas and the new year is devoted to festivity and mirth.

The number of births is directly and materially affected by causes of a moral and political nature. The difficulty of finding subsistence is unfriendly to the increase of marriages, and it is only from marriages that a state can hope to see a numerous race of children arise. Libertinism, a community of wives, polygamy, and divorce, have never had a salutary influence on population. It has been shown by the most authentic calculations, that of two bodies of individuals, equal in number, that which lives in the marriage state produces more children than that which promiscuously indulges in the commerce of the sexes. As to the celebrated institution proposed by Plato, we must refer to that philosopher himself. The community of wives that he thought of, was regulated by severe laws, and had for its object to limit population, by purifying it.|| The polygamy of the East, considering the numerical equality of the two sexes, allows a plurality of wives to one man, only by condemning to celibacy a great proportion of the community. Montesquieu accordingly, has declared it to be very injurious to population;‡ but this philosopher has at the same time defended the facility and frequency of divorce. He has ventured to attribute to this cause the immense number of inhabitants which he assigns to the ancient Roman empire; and he has gone so far as to insinuate that the Christian religion, by inculcating conti-

‡ Mem. de la Société Royale de Medicine, 1776, part ii. p. 70.
|| Lettres Persanes, Let. 110. Esprit des Lois, lib. xvi. chap. 6.; liv. xxiii. chap. 2.
nence, and the indissoluble nature of the marriage union, has diminished the number of the human race. This calumny is easily refuted by the testimonies of the ancients themselves, who all agree in representing the primitive sanctity of marriage as the direct source of the inexhaustible strength of the Roman republic, whilst under the emperors, in the age of corruption, Italy would have remained uncultivated for want of hands, had the soil not been laboured by legions, or rather whole nations of slaves, collected together from all parts of the world. All the evil which has actually arisen from the celibacy of the clergy—a celibacy no where enjoined in the Gospel—cannot countervail the services which Christianity has rendered, merely with regard to the increase and preservation of our species.

The immoderate use of strong liquors tends to enervate the frame, and to exhaust the powers of propagation. An active, sober people, equally moderate in their passions and their pleasures, will always be superior in fecundity to a people debauched by luxury, effeminacy, and voluptuous enjoyments. A proof of this may be obtained by comparing an agricultural country with one which is filled with vineyards. It appears to be proved that a square league laid out in fields, can furnish occupation and food only for 1390 individuals; whereas a space of equal extent, planted with vineyards, supports 3604 persons. Why then are districts abounding in vines, often more thinly peopled than agricultural provinces under the same climate? Why are the vine-dressers so often in miserable circumstances? For no other reason than that drunkenness is more prevalent in such a district, and because the annual produce of the vine is more uncertain than crops of grain.

The period of puberty arrives sooner, it has been said, in warm and southern countries, than in cold climates, as those of the north, and of elevated mountains. This commonly received opinion must be understood with some limitation. It is true, for example, that the Barbary women are generally mothers at 11 years of age, and cease to bear children at 30. Buffon, quoting from Thevenot, says, that in the kingdom of the Deccan, boys are married when 10 years old, and girls when eight, and that there are some who bear children at that age, so that they may be grandparents before they are 20. But if this were purely the effect of climate, as Buffon imagines, a very singular consequence would follow. The climate which the Negroes of Senegal inhabit, is certainly warmer than that of Barbary, and even that of the peninsula of the Deccan. If then it is the influence of climate alone which accelerates the period of puberty amongst the nations of India, and which fixes it at 10 or 11 years of age, the same influence should also fix the period of puberty amongst the Negroes at seven or eight years. But so far is this from being the fact, that all the accounts which we have consulted, seem to prove that the age of puberty amongst the Negroes is not much earlier than amongst the southern nations of Europe. It appears, then, that even in the torrid zone, the physical phenomenon in question, depends rather upon the difference of the race, than upon that of the climate.

There are other facts still more conclusive. All the Russian and Danish travellers who have given us written accounts of Lapland, and the other countries in the neighbourhood of the Frozen Sea, agree in stating that the women of these regions are not only very lascivious, but that they become mariable at an early period. A Frenchman who has seen much, and seen with observation, assures us that the Swedes become sensible to the passion for the sex at the age of 12 years. In Russia, the peasants often marry at the same age. In the

§ Discours sur les Vignes, Dijon, 1756.
¶ Shaw's Travels in Barbary, 4to. p. 241.
* Regstrom, Klingstedt, &c. &c.
* Fortia de Piles, dans le Voyage de deux Français dans le Nord, tome ii. p. 422.
PhySICAL GEOGRAPHY.

Vivarais, a mountainous and cold tract of country, the natives are as soon marriageable as in the other provinces of the south of France. The savages of America, who dwell under the line, arrive as late at puberty as those who live near the pole. With them the men do not marry before they are 30, nor the women before 20.

It appears, then, that we should consider this physical difference rather as inherent in the particular race than as dependent on climate. The cause is often to be found in the extreme corruption of manners. Be this as it may, the phenomenon of which we speak has probably but little influence on the number of births, and none whatever upon the increase of population. In the first place, it is observed, that in every country where women are marriageable at a very early period, they also sooner cease to bear children: in India they become old at 30. In the second place, the children in those countries are more feeble, and subject to greater mortality.

This last observation can even be extended indiscriminately to all nations; we should always beware of inferring an increase of population, solely from the number of the births appearing to be greatly superior to the number of the deaths. When this excess is extremely disproportionate to the number of deaths and marriages, there is reason to suspect some want of exactness in making out the lists, or some extraordinary physical circumstances. The proportion of births to marriages, on an average, and in a country of some extent, can scarcely be more than 8, or less than 3 births to one marriage. The ordinary proportion, in the most civilized countries of the world, is four births to one marriage. The proportion between births and deaths is, one year with another, from 101 to 150 for every 100. This last proportion indeed occurs only in some provinces of small extent, and singularly favoured by nature. Every proportion higher than this, with regard to an extensive country, ought to be viewed with suspicion, unless verified by calculations and registers of undoubtedly correctness and authenticity. To mention only one example: the Russians may be permitted to assert that almost every year, (even in time of war,) there are more than one million of individuals born in the Russian empire, whilst only from 500,000 to 600,000 die. But we also must be allowed to express our doubts as to these marvellous results, and to ascribe, in part, this disproportion between the deaths and the births, to the carelessness of those who keep the registers. Euler has constructed the following table, by means of which we may see, at a glance, in how many years the population of a country may be doubled under certain conditions.†

In a Country of 100,000 inhabitants, the Mortality being 1 in 36.

<table>
<thead>
<tr>
<th>The deaths being to the births, as</th>
<th>The surplus of births will be</th>
<th>This surplus will make of the sum of the living</th>
<th>The doubling of the population will take place in</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 11</td>
<td>277</td>
<td>1/3</td>
<td>250 1/4 years.</td>
</tr>
<tr>
<td>12</td>
<td>555</td>
<td>1/2</td>
<td>125</td>
</tr>
<tr>
<td>13</td>
<td>722</td>
<td>1/3</td>
<td>96</td>
</tr>
<tr>
<td>14</td>
<td>1100</td>
<td>1/4</td>
<td>62 1/2</td>
</tr>
<tr>
<td>15</td>
<td>1388</td>
<td>1/5</td>
<td>50 1/2</td>
</tr>
<tr>
<td>16</td>
<td>1665</td>
<td>1/6</td>
<td>42</td>
</tr>
<tr>
<td>17</td>
<td>1943</td>
<td>1/7</td>
<td>35 1/2</td>
</tr>
<tr>
<td>18</td>
<td>2221</td>
<td>1/8</td>
<td>31 1/2</td>
</tr>
<tr>
<td>19</td>
<td>2499</td>
<td>1/9</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>2777</td>
<td>1/10</td>
<td>25 1/2</td>
</tr>
<tr>
<td>22</td>
<td>3332</td>
<td>1/11</td>
<td>21 1/2</td>
</tr>
<tr>
<td>25</td>
<td>4165</td>
<td>1/12</td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>5554</td>
<td>1/13</td>
<td>12 1/2</td>
</tr>
</tbody>
</table>

† Mémoire de la Société royalé de Médecine, 1780 et 1781, part II. p. 130.
‡ Euler, Tables communicated to Sussmilch, Ordre divin, chap. viii. §§ 153, 156, 162.
The same mathematician, founding on data extremely favourable to the propagation of the species, has constructed a table, the general result of which is, that the human race might be tripled in 24 years, and that at the end of 300 years the population of one couple might amount to 3,993,954 individuals.

Taking the total number of the human race at 700 millions, (which is rather high,) the ratio of the deaths to the living population as 1 to 33, and that of the births to the living as 1 to 29½, we shall have for the whole globe,

<table>
<thead>
<tr>
<th>Births</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>In one year, 23,728,813</td>
<td>21,122,121</td>
</tr>
<tr>
<td>— one day, 65,100</td>
<td>58,120</td>
</tr>
<tr>
<td>— one hour, 2,708</td>
<td>2,421</td>
</tr>
<tr>
<td>— one minute, 45</td>
<td>40</td>
</tr>
<tr>
<td>— one second,</td>
<td></td>
</tr>
</tbody>
</table>

Hence it follows, that the sum total of the human race would, in one year, be augmented by an accession of 3,516,693 individuals, were it not for wars and pestilences. This augmentation would, in 100 years, bring the number of men up to 3,216 millions. The earth might, perhaps, support a still greater number; but all the records of history seem to concur in showing that the increase of the human race has hitherto advanced at a much slower rate.

The proportion between the numbers of the two sexes is a matter of great importance, both in statistics and legislation. In Europe there are always more boys than girls, in the proportion of 21 to 20, or, according to others, of 26 to 25. On the other hand, the mortality also is greater amongst the male children, in the proportion of nearly 27 to 26; in consequence of which, about the 15th year, the numbers of the two sexes are brought almost to an equality: there is, however, still a surplus in favour of the males. But this surplus in the number of the men, even though it were three or four times greater, is carried off by wars, by dangerous voyages, and by emigration, to the casualties of which the female sex are less exposed. Thus, the final result of this is, that in our climates the women are always more numerous than the men. The difference is particularly observable at the conclusion of a long war. According to Wargentin, it amounted in France, after the seven years war, to 890,000 in 24 or 25 millions of souls; and in Sweden, after the Northern war, about 127,000 in a population of two millions and a half.

At the same time the difference of numbers between the two sexes is not in Europe sufficiently great, nor indeed sufficiently steady to warrant any conclusion unfavourable to the system of monogamy, that is, of marriages between one man and one woman. Such marriages only are fitted to insure domestic happiness, and to maintain pure morals; they are besides sanctioned by the soundest maxims of political economy; and none can doubt that the prevalence of polygamy, or the marriage of one man to several wives, would prove fatal to the welfare of Europe.

Are there more girls born in the east?

Some travellers have imagined that in warm climates there are more girls born than boys; and as the male sex is liable to more rapid destruction in such climates than in ours, the surplus of women must become very great; hence Montesquieu concludes that polygamy amongst those people admits of a very plausible excuse; but the position from which he sets out is altogether unfounded. The researches of Father Parnin in China, the lists of baptisms kept by the Danish missionaries of Tranquebar, the various censuses taken by the Dutch at Amboyna and Batavia, and the observations made at Bagdad and Bombay, by the judicious Niebuhr, have demonstrated that the number of children of both sexes is not more disproportionate in the East than in Europe.

It is alleged with more reason, that there are some nations who, being in the habit

* Kempfer, Description du Japon, i. liv. 2, chap. 5. A collection of the Voyages of the East India Company, i. 346. ¶ Lettres édifiantes, xxvi. recueil, p. 8. (Paris, 1743.)
† Susmilch, l'Ordre Divin, &c. § 418.
¶ Niebuhr, Description de l'Arabie, i. 102, sqq.
of selling a number of their women to foreigners, experience a deficiency of them at home, which has obliged them to establish polyandry, or the marriage of one woman to several husbands. Such a practice, if it does exist, is evidently the least favourable to population.

It has been commonly computed that a district, in which there are 10,000 infants born yearly, must contain in all, 295,029 inhabitants of both sexes, of whom 93,003 should be children below 15 years, and 202,019 persons above that age.

Amongst these individuals, there will be at most 23,250 monogamic marriages, (the mean duration of which may be estimated at 21 years,) 5,812 widows, and 4,359 widowers, the rest single.

BOOK XXIII.

Continuation and Conclusion of the general Theory of Geography. Of Man, considered as a Moral and Political being; or, Principles of Political Geography.

We have for a long time considered the earth as a physical body, having relations to other physical bodies which surround it, or which dwell upon its surface. No sooner, however, had man become the subject of our inquiries, than we have seen physical geography gradually give place to political. This branch of our science considers the earth according to its political divisions, and in its relations to the different civilized societies which are established upon it. It is evident that this department of geography has, as well as the others, general principles of its own, which, taken collectively, form a theory, and the knowledge of which ought to precede the study of particular descriptions. Of these principles, however, those which, from their having a foundation in the nature of our being, do not change with the changes of human opinion, are few in number. The other relations vary, if not in different kingdoms, at least in different parts of the world; and this induces us to confine ourselves here, to a rapid view of the former class of principles, reserving for the others their proper place in our particular introductions to the description of each grand division of the globe.

Articulate language, the noble inheritance of human nature, forms the great bond of civil society. Few animals have language which is articulate, or possessed of distinct and uniform sounds, and even these scarcely amount to ten or twelve inflexions of the voice. No animal has a rational language, that is, a language whose different sounds express uniformly and distinctly general ideas. This faculty of expressing our ideas by words, insures of itself the continued exercise of our memory—and without memory where would be the understanding? It is only by means of speech that man is a reasonable being. It is speech which renders the observations, the feelings, the discoveries of the individual, the property of the species; thence arise sciences, arts, civilization, and the unlimited perfection of the human race. Language, considered as a moral and physical faculty, appears then to be innate to man; but the choice of sounds, their modifications and their combinations, must have depended upon the will of man; natural logic has unquestionably had its influence, and, in addition to it, the passions of individuals, their habits, the delicacy of the organs, the nature of the climate, and the state of society, would all of them contribute to produce effects. The primitive tongues, possessing a very scanty stock of words, simple as the manners of those by whom they were spoken, would naturally be lost by becoming confounded with the more perfect dialects which sprung from them, just as the primi-

* Duhalde, Description of China, iv. 461. Strabo (Description of Media,) ix. 798. edit. Almei, Compare Michaelis. Mosaic Right, ii. 199. (in German.)

Vol. i.—L 1
tive nations have disappeared, by merging in those nations celebrated in history, to which they had originally given birth.

But although all attempts to discover the primitive tongue appear now to be completely abandoned, philologists still do not despair of fixing the number of mother tongues, that is, of those which, in the principal words of which they are composed, in the grammatical inflexions which they adopt, and in the syntax which they follow, present to us a character independent of every other tongue. These mother tongues, however, as they suggest the possibility of a common origin, from their exhibiting some distant traces of resemblance, form amongst themselves, families, without any of them being able to claim pre-eminence in point of antiquity.

It may well be asked, By what criterion shall we ascertain the high antiquity of a language? Should it be chiefly composed of vowels, as the Olarayan, the Zend, the Basque or Iberian, the Algonquin, the Caribbee, the Esquimaux? But these tongues, almost entirely consisting of vowels, have no mutual resemblance in any other respect. Is the most ancient tongue monosyllabic, as M. Adelung* would have us to believe? But the Chinese, the Thibetan, the Tongue, and the Siamese, which on this supposition would be the primitive tongues, bear no resemblance in their sounds to the language of the Celts or the Negroes. If we are desirous of examining languages as to their grammatical forms and their syntax, we shall find, on the one hand, some, in which the relations of genders, persons, modes of action, and of time, are expressed by the most ingenious, delicate, and profound combinations, as in the Sanscrit, the Hebrew, and the Greek; and, on the other hand, we shall see others in which all these relations, though indispensably necessary to thought, are attempted to be marked only by clusters of vague, obscure, puerile, and arbitrary words, as in the Chinese, the Celtic, the dialects of the Negroes, and those of New Holland. Some might say that these last mentioned tongues should be the most ancient, as being nearer to nature, in the vulgar acceptance of the word. History, however, clearly proves to us, that the Hebrews, the Indians, and the Greeks, were at least as ancient as the Ethiopians, the Celts, and the Chinese. It is then indifferent where we begin to count the links of a chain which is lost in the darkness of ages. We shall first mention the family of the Indo-Germanic tongues, which extend from the banks of the Ganges to the shores of Iceland. The principal divisions of this family follow in the geographical order which we are about to point out.

The Sanscrit, the Devanagarian, etc., The Sanscrit prevailed anciently throughout all Hindostan. From the Sanscrit descend the Devanagarian, the purest idiom of India, the Tamul, and several other dialects spoken in the Deccan. Besides a certain number of roots or original words, which the Sanscrit has in common with the Greek, the Latin, the Sclavonic, and the German, it displays also, in its numerous declensions, and its extended conjugations, the most striking affinities to these mother tongues of Europe, particularly the Greek and Latin. Persia presents to us three ancient languages: the Zend, which appears to have been the sacred language; the Pelervi, the language of ancient Media; and the Parsi, a dialect of Persia, whence descend in part the modern Persic and the Kurde. In all this group of languages there are a great many German words to be found; the grammar, infinitely less rich, and less regular than the Sanscrit, resembles, in several points, the genius of the German and English languages. The hissing consonants, unknown in the Sanscrit, appear already in the Parsi.

The Greek tongues form one of those kinds of which we know best the different species. The Hellenistic, or Greek proper, had three dialects: the Doric, which is entirely extinct; the Ionic, to which the modern Greek appears to have the greatest resemblance; and the Eolian, which being very early transplanted into Italy, became the parent of the Latin. To the class of Sclavonic tongues, which, in their declensions, and several other circumstances, resemble the Greek, belong the Sclavonic, Illyrian, the Polish, the Bohemian.

* Mithridates, ou Notice générale des langues, par Adelung, 3 vols. 8vo. vol. i. p. 120.
the Russ, and the different remains of the Wende tongue. The language of the Dacians and Getæ was probably an old branch of this class. In the class of Germanic tongues, a very ancient division is perceived: the Frisian, French, Saxon, Anglo-Saxon, and Alemanic tongues, form the Teutonic branch; whilst the Musgo-Gothic, preserved in Ulpila's version of the Gospels, the Icelandic, the modern Scandinavian, in its two principal dialects, the Swedish and the Danish, constitute the Gothic branch; these branches differ like the Greek and Latin.

In the neighbourhood, and even in the midst of this great family, composed of the more perfect mother tongues, we perceive other families also of great antiquity, but which, in their clumsily constructed grammar, nowise resemble either them, or the Indo-Germanic tongues. Such, in the west of Europe, are the Celtic tongues. The principal species of which are the Erse, spoken still in Scotland and Ireland; the Welsh, or Cambrian, preserved in the principality of Wales; and the Celtic, properly so called, of which the Low Briton is a remnant that has undergone much admixture. In the Spanish peninsula, there existed an Iberian or Cantabrian language, of which the Basque presents to us some interesting fragments; and which, while it rivals the Celtic in primitive simplicity of structure, differs totally from it in its vocabulary. In Italy and Greece, the Pelasgian, Thracian, Illyrian, Etruscan, and other languages, disappeared before they were observed by philosophers. Perhaps the Albanian is a remnant of the Illyrian.

From the wrecks of all these ancient tongues, from their mixture with the Latin, and then with the Germanic, Sclavonic, and even Arabic dialects, have sprung mixed languages; such as the Vandal, the Italian, the Provençal, the French, the English, the Spanish, the Portuguese.

To the north-east of Europe, we discover the only scattered remains of the great family of Scythico-Sarmatic languages.

It is the Fins, together with the Esthonian and the Livonian, that we may consider as the most distinct class of all the other languages of the globe, or at least of all those of Europe. The Lapponic, the Permic, with various other dialects spoken along the Uralian Mountains, and the Wolga, and the Hungarian, originally of the same regions, always exhibit a great family likeness. But in the Lithuanian, and its dialects, we see the phenomenon of a tongue differing from the Lithuanian. Indo-Germanic language in its radical words, and which at the same time possesses in its grammar astonishing delicacy of structure, and resources unknown to the other Scythian languages; and, in truth, an undoubted affinity to the Greek.

Caucasus, situated in the centre of the regions in which the Indo-Germanic languages prevail, far from presenting to us the common source whence these languages derived their origin, interrupts the chain of them; and in the Georgian, the Circassian, the Armenian, and some other singularly rude and simple dialects, furnishes us with a distinct family, or rather a distinct group of languages, little known, and unquestionably of great antiquity.

But if we extend our view to Syria, Mesopotamia, Arabia, and Abyssinia, the Aramean languages draw our attention by the renown of their ancient civilization, abundance of guttural sounds, vast store of words, multiplied inflections of the verb, great simplicity, and even poverty in other respects. Such appear to be the common characters of these tongues, amongst which we shall distinguish the ancient and modern Arabic, with its colonies; the Moresque, current over all North Africa; the Gees and Amharic dialects, spoken in Abyssinia; and the different branches of the Arabic, which extend along the eastern coast of Africa; the Hebrew, in its various modifications from the ancient idiom of Moses to the Chaldee, Samaritan, and other dialects now extinct, with the exception of the Rabinica or modern Hebrew; the Phenician, of which the Phoenician. Punic or Carthaginian is the most celebrated branch, and of which the low Arabic Maltese preserves, perhaps, some remains; the Syriac or Aramaean, properly so called; finally, the Chaldean, which differs from the Chaldaic Hebrew.

As the most of the nations that speak these languages descend, so...
of Semitic languages. According to Moses, from Shem, this stock has been distinguished under the general name of the Semitic languages, while the term Japhetic has been given to the Indo-Germanic languages. But, by admitting these denominations, we are subjected to the inconvenience of attributing to the descendants of Ham all the other languages, from the Celtic to the Mexican, and from the Negro to the Chinese, notwithstanding their evident original difference.

The stock or family of the languages of Eastern Asia, or of the Monosyllabic languages, differs entirely from that of the Indo-Germanic languages. It comprehends the Tibetans, the Chinese, the Burmans, composed of the dialects of Pegu, Ava, and others; the Siamese, and the Annamics, in the dialects of Cambodia, Tonquin, and Cochín China. All these languages are more or less deficient in contrivances for marking directly the cases, genders, numbers, moods, and tenses; those who speak them are obliged to supply the absence of grammatical forms and rules of syntax, by intonations, gestures, and a sort of hieroglyphic writing.

The north of Asia contains three or even four kinds of languages, infinitely superior to the monosyllabic tongues. The Turcoman Bucharim, and different Turkish or Tartar languages, spoken by the Tartars, properly so called, from the Crimea and Casan to Tobolsk, and in Chissa by the Ottoman Turks; other tribes are remarkable for the exactness of their grammatical structure, particularly with respect to conjunctions, and for the power of forming compound words with as much facility as the Greek, the Persian, or the German. Several German radical words occur in these. The Mongol language, deficient in grammatical combinations, possesses, however, complete declensions; it abounds in vowels and harmonious sounds. The Manchou language, though full of monosyllabic words, possesses a very complete and very varied grammatical structure; and what is singular, it contains some Greek and German roots. The Koreans, and Japanese appear to be closely related to the Mongol and Chinese. The Tongue is a dialect of the Manchou; the Samoyede differs from it. We are inclined, however, to the opinion, that all the languages of Central and Northern Asia, with which we are most familiar, belong to one family.

The Oceanic countries, from Sumatra to beyond Otaihe, present to us a series of dialects which have all some relation to the Malay,—a language of the eastern peninsula of India. The same kind is found at Madagascar, but in a more perfect form, with a more methodical grammar. There are unquestionably some general Tagalog, Tali- languages scattered over this immense archipelago. The Tagalic and the Bisago of the Philippine Islands are found in the Molucca and Marian Islands; traces of them are discernible in New Zealand. These two languages have some affinity to the Manchou and Mongol. The Tangian is distributed through all the small islands of the Great Ocean. More to the west, the Negro tribes of New Caledonia, New Guinea, of Van Dieman’s Land, and of New Holland, speak dialects which probably form one or more separate stocks.

In the Oceanic countries a singular custom prevails: the princes, on their accession to the throne, change several words of the national language. This custom obtains in Africa. The numerous dialects of the savages should then be, partly at least, composed of cant words, created and adopted by families, insulated and obliged to distrust one another. This hypothesis has much probability. The languages of Africa, which are very little known, have appeared innumerable to some travellers. Others think that this is true only of the idioms of the Negroes, properly so called. Indeed, from the Senegal to Cape Negro, the language spoken varies often from village to village. The languages of the Yalofa, of the Voluahs, of the country of Dahomey, of the kingdoms of Benin and Congo, as well as that of inland Nigritia, present, however, the same combinations of consonants, and some common words. In the north, the language of the Brebers or Kabyles, appear to us as the last remains of tongues formerly spoken along Mount Atlas and the Mediterranean.

The Coptic, a remnant of the ancient Egyptian, is well known. The researches of M. Quatremère will, perhaps, inform us whether this language is connected with those of the original inhabitants of Nubia and Abyssinia. Upon the
eastern side, from Madagascar to the country of the Hottentots, the geographical names show the prevalence of the Caffre language, which, everywhere, the Bantouans, preserves evident traces of a strong mixture with the Arabic. At the southern extremity of this part of the world, the Hottentots speak a particular dialect, full of clickings and shakings of the tongue, which produce sounds similar to the cries of birds. Their tongues are shorter and thicker than ours.

Could the different character and genius of human languages have been the result of a hereditary difference in the organs of speech? If this principle were admitted, very important conclusions might be drawn from it. For example, the Chinese, the Esquimaux, and the Mexicans, cannot pronounce the letter r, they supply its place by l. Are they all then of a common origin? But we must carefully guard against admitting with too much confidence these kinds of analogies, since they might grossly mislead us. For example, it has been observed that the compound consonant sř, which a European can scarcely pronounce at the beginning of a word, was common to the languages of the Negroes and the South Americans. The observation is correct, but we cannot infer from it the common origin of these tribes, since the confounding of s and b occurs in the Æolian dialect off the ancient Greeks, who, undoubtedly, are descended neither from Peruvians nor Negroes.

There are, in Norway, whole families who commence every word by the consonants sg, so common in the dialect of the Negroes of Angola. B is confounded with w by the Greeks, the Gascons, and the Russians. The guttural sounds of the Arabsians are to be found in the German, a language of a different stock. These examples show the great difficulty of ascertaining how much, in such singular anomalies, should be referred to physical and unvarying causes, and how much arises from the influence of mere caprice.

The American languages are scarcely better known than those of Africa. Humboldt thinks that there are in that quarter of the world a very great number of languages independent of one another. What increases their number is the custom adopted by every new dynasty of introducing a new language. Thus, the Touteec, the Huaxtec, and the Aztec languages have been successively current in Mexico. These languages, in which a laborious search has been made for some slight affinities to the Mongolic dialect, are extremely complicated both in their etymology and their syntax.

The Cherokees, Iroquois, and Algonquins, or Huron, appear to be the most widely extended of those that are spoken between Hudson's Bay and the Gulf of Mexico: they are poor and plain. The Esquimaux or Greenland tongue, which is current over all the polar region, presents an odd fantastic structure, from the joining together of many simple words and even parts of discourse in one single word of immoderate length. In South America, the Caribbee or Galibbes, a sonorous language, prevails to the north of the river of the Amazons, as it did formerly in the little Antilles. Several ancient languages, regular in their composition, have disappeared in New Grenada, Quito, and Peru; but the fine language invented by the Yncas, the Quichua, remains in general use even amongst the Spaniards. The Guarana language is so prevalent in Brazil and Paraguay, that the Spaniards and Portuguese, even in several of the towns, speak no other. Different dialects, little known, exist in Chili and in Patagonia. The Pecherais, in Terra del Fuego, have a dialect peculiar to themselves.

These are the principal languages spoken by the human race. How wide the distance in this scale between the dialect of the Negro and the Chinese, who scarcely distinguish the singular from the plural, to the Greek language, in which the most tender and the most profound thoughts can be fully developed, and permanently fixed! There are languages which have no expression for objects which are not perceived by the external senses, such as the soul, or God. There are some which have no term equivalent to the verb to be, or the substantive world. But if meta-

* Lichtenstein, dans les Archives ethnographiques, par Vater et Bertuch, i. 259, sqq.
† English for Bacoora; Mops for Bolo; the Latin Mio, from the Greek, Bas, &c.
physical knowledge appears to be denied to the great majority of the human race, all nations, even the most savage, believe in the existence of some invisible beings possessed of power superior to man. The various manners in which nations manifest this sentiment, constitute so many different religions—the external acts which are the result of such religious belief, form modes of worship.

The name of Polytheism is given to every system of religion which admits the existence of several gods, whatever be the nature and dignity which it assigns to them. Of this there are several kinds. The greatest of all is Fetishism, or the adoration of Fetish. By Fetish,* is understood all sorts of animated or inanimate substances, which the priests of these religions hold out to the savages as beings that are enchanted or endowed with some magical and divine power. These absurd superstitions prevail amongst the ignorant nations of the coast of Guinea, and amongst a great many other savages. They are blended with a variety of other religions. The Ox Apis, the Dog Anubis, were perhaps the Fetishes of the Egyptians.† The black stone worshipped at Mecca before Mahomet, and the god Phallos of the Romans, were undoubtedly of the same number.

Sabeism. Sabeism holds a more elevated rank, that is to say, the worship of the heavenly bodies, the sun, the moon, and the stars either separately, or altogether. This very ancient system, spread over the whole extent of the globe, is blended with all the other systems of superstition. But it no longer exists entirely pure, except amongst some insulated tribes. It has its name from the Sabeans, or Sabians, an ancient people of Arabia.

Panthemism. Three hypotheses have been formed as to the nature of the universe; materialism, or pantheism, which supposes that every thing which exists is penetrated with a divine spirit; dualism, which admits the existence of two eternal beings, God and matter, or the good and bad principle; and the system of the Emanists, which represents all beings, the good and the bad spirits, as having emanated from a supreme God.‡

Panthemism, modified by the institutions of particular nations, and blending itself with Sabeism, became systematic, or mythological Polytheism. Under this name may be classed all those schemes of religious belief, in which the attributes of the Deity are personified as separate divine beings. These systems then are barbarous and irrational. They are, however, well suited for poetry and the fine arts, and have been received amongst the most civilized nations of antiquity. They are of several kinds, very different from each other, but reducible to three classes.

Polytheism. The most gross is the religion of the Egyptians, in which the attributes of the divinity are represented under the figure of animals, which may perhaps account for their hieroglyphic writing. This may be termed zoemorphism. In the religion of the Greeks and Romans, human nature, exalted however, and embellished, served as a model for divers personifications of the Deity. This then, was anthropomorphism, which was varied to infinity. The worship of national heroes modified the polytheism of the Greeks and Romans. Veneration for the dead, a very natural sentiment, mingled with all religions; but of some it appears to have formed the chief part. This was the case with the Celts, whom, for other reasons, we number with the Polytheists. Amongst other nations, such as the Syrians, the Chaldeans, and the Phenicians, the worship of the stars and the physical energies of the earth, appear to have predominated.

Polytheism of the Brahmins, or Theomorphism. In the religion of the Brahmins, the Supreme Being is supposed to be disguised under different forms, divine, human, and animal. We think that this belief might be considered the source of all the others, even of Fetishism; but it might be equally asserted that the religion of the Brahmins is merely ennobled Fetishism. Theomorphism, the religion of the Hindoos, is the best sup-

* A word which comes from the Portuguese word Fetich.
† Debrosses du Culte des Dieux Fetiches, ou parallèle de l’ancienne religion d’Egypte, &c. 1760.
‡ Gudworth, Intelleot. System. chap. i. iii. Dupuis, origine des Cultes.
PORTED OF ALL THE ANCIENT SYSTEMS OF WORSHIP; IT STILL EXISTS. TWO OF ITS BRANCHES PREVAIL IN THE NORTH AND EAST OF ASIA. THE ONE IS SCHAMANISM, THE HEAD OF WHICH IS THE DALAIL LAMA, A PRIEST WHO IS SUPPOSED NEVER TO DIE. THIS RELIGION, MIXED WITH FETICISM, IS SPREAD OVER TARTARY, MONGOLIA, AND SIBERIA; THE OTHER BRANCH IS BUDDHISM OR THE BRAHMINIC SYSTEM REFORMED BY BUDDHA, NAMED BUDDHISM, ALSO SOMONOCODOM: IT IS ESTABLISHED AMONGST THE BRAMINS IN SIAM AND IN CEYLOM. THE ANCIENT RELIGION OF JAPAN IS A KIND OF SCHAMANISM, FROM WHENCE HAS ARISEN THE RELIGION OF FO, WHICH IS THAT OF THE MULTITUDE IN CHINA, AND WHICH IS ONLY A DEGENERATE BRANCH OF THAT OF BUDDHA; THE PRIESTS ARE CALLED BONSES.

THE SYSTEM OF TWO OPPOSITE PRINCIPLES, AND THAT OF EMANATIONS, MUST NATURALLY RUN INTO EACH OTHER, WHENEVER THE DUALISTS CLAIM THE LEAST SUPERIORITY TO ONE OF THEIR PRINCIPLES, OR THE EMANISTS ADMIT THE POSSIBILITY OF A REVOLT AGAINST THE SUPREME BEING. THIS IS THE REASON WHY THE RELIGIONS DERIVED FROM THESE TWO SOURCES ARE ACCURATELY DISTINGUISHED FROM EACH OTHER. THEY BELONG TOGETHER TO MONO-

THE RELIGION OF THE MAGI, OR OF ZOROASTER, DENOMINATED ALSO MITHRAIC WORSHIP. THERE IS A SUPREME BEING, FROM WHOM EMANATED TWO PRINCIPLES, THE ONE GOOD, OROMASTESE, THE OTHER BAD, ARMENIAN—they fight with each other; but the good will finally取得 a complete victory. This belief, which has been disfigured by the Greek historians,* is still preserved amongst the Parsees, or Guebres in Hindostan.

THROUGH SO MANY INGENIOUS ERRORS, OR FANCIFUL AND ABSURD DREAMS, CELESTIAL TRUTH WAS OPENING UP IN SILENCE THE RIGHT PATH. AN OBSCURE AND INCONSIDERABLE NATION ACKNOWLEDGED THE ABSOLUTE UNITY OF THE DIVINITY AS THE BASIS OF THEIR RELIGIOUS FAITH. judaism, SOME OF WHOM RITES AND CEREMONIES RESEMBLE THOSE OF THE judaism. persian Magi, and of the Egyptian Priests, is now divided into two principal sects—namely, that of the KARAFIETS, WHO ACKNOWLEDGE AS DIVINE ONLY THE BOOKS OF THE OLD TESTAMENT; AND THAT OF THE RABBINISTS, WHO ATTRIBUTE AN AUTHORITY ALMOST DIVINE TO THE COLLECTION KNOWN UNDER THE NAME OF THE TALMUD.

THE GREEK OR EASTERN CHURCH, WHICH WAS MOST ORTHODOX IN THE FIFTH [GREEK CHURCH, AND SIXTH CENTURIES, IS TOLERATED IN TURKEY, COUNTENANCED IN HUNGARY, SCLAVONIA, DALMATIA, AND ESTABLISHED BY LAW IN RUSSIA. AMONGST ITS VARIOUS BRANCHES, WE MAY DISTINGUISH THE NESTORIANS IN TURKEY IN ASIA, WHO AT ONE TIME WERE VERY NUMEROUS IN TARTARY, IN MONGOLIA, AND EVEN IN CHINA; AND THE MONOPHYSITES, WHO COMPRISE THE COPTS IN EGYPT, AND THE ARMENIANS AND JACOBITE IN ABYSSINIA.

THE LATIN OR WESTERN CHURCH IS DIVIDED INTO TWO GREAT PARTIES. THE CATHOLIC, APOSTOLIC, OR ROMISH CHURCH, COMPREHENDS WITHIN ITS [LATIN CHURCH. THE CATHOLIC.

* SEE THE ARTICLE PERSIAN. † SEE THE ARTICLE SCANDINAVIA. ‡ BRERWOOD, RECHERCHES SUR LA DIVERSITE DES LANGUES ET DES RELIGIONS, TRADUIE L'ANGLAIS PAR LA MONTAGNE. PARIS, 1840.
pale the greater part of France, Italy, Spain, Portugal, Austria, the extensive Spanish and Portuguese Colonies in America, Africa, and Asia, and three-fourths of the population of Ireland. The Pope is the spiritual head. The Gallician Church is distinguished by privileges peculiar to itself, which oppose an invincible barrier to the usurpations of the Pope. The United Greeks, who forsook the communion of the Oriental Greek Church, form an inconsiderable appendage to the Catholic Church.

Protestantism. The Protestant Churches are divided into three branches: Lutheranism, or the Evangelical Church, is supported by the state in England, Prussia, Saxony, Hanover, Denmark, Norway, Sweden, and Livonia; Calvinism, or the reformed Church, is most prevalent in Switzerland, in some countries of Germany; and in Holland; it is the established religion in Scotland, under the name of the Presbyterian Church. We may identify with the reformed church, the Independents, or Congregationalists, who are so numerous in the United States that they have more than 1000 congregations. The English, or Episcopal Church, is distinguished from the other Protestant denominations merely by its maintaining the order of the episcopal hierarchy. It is the established religion in England; and in Ireland, although the faith of the minority, it is upheld by the strong hand of power. Without advocating any system of intolerance, or wishing to insult men entitled to respect, we shall here give the name of sect to every religious party who have not become in any place sufficiently numerous to have their tenets embraced and patronized by the state. The principal Christian sects are: The Unitarians, Socinians, or Unitrinularians, whose opinions are protected in Transylvania and in Russian Poland; a very great number of Catholics, of Lutherans, and Calvinists, are secretly attached to this system;—the Arminians, or Remonstrants, a party which sprung up in Holland, and who differ from the Calvinists in the opinions which they hold concerning the doctrines commonly called the five points;—the Mennonites, at first known by the name of Anabaptists, and disgraced on account of their fanaticismal excesses, but now the most peaceable of all the sects;—the Baptists, a numerous party in America, where they occupy 868 churches. They resemble the Anabaptists, and may be termed modern Anabaptists;—the United Moravian Brethren, or Hembutters, a sort of monastic institution, who, in other respects adopt the tenets of Lutheranism, and who carry together the blessings of religion and the useful arts into the remotest and most savage tribes;—the Quakers, or Tremblers, benevolent enthusiasts, numerous both in America and England;—the Shakers, the Dunkers, and other associations similar to the Quakers;—the Swedenborgians, or followers of the Baron Swedenborg, a sect of mystics to be met with in Sweden and England;—lastly, the Methodists, who are distinguished by an extreme method or strictness in morals, are very numerous in England, and still more so in the United States. Christianity, besides all the enemies which have sprung from its bosom, has seen Mahometanism. | arise close by its side a rival at first dangerous, and still troublesome, in Mahometanism, or according to the manner in which Mahometans themselves speak of it, Islamism, that is, the Orthodox church. This religion is merely a confused mixture of Judaism with Christianity, with some poetical ornaments. The Mahometan creed prevails in the greater part of Asia and Africa, as well as in Turkey in Europe, and it is tolerated in Russia. Mahometanism comprehends several sects. The Sunnites, although divided with regard to discipline into four parties, agree in reckoning the book of traditions, or the Sunna, in the number of their sacred writings, and in considering Omar and his successors as the legitimate Calif. This party is the most numerous: the Turks belong to it. Schistos. | The name of Schistes means Separatists. The Sunnites give it to all those who differ from them; they reckon six classes, each split into twelve subdivisions, which make 72 heretical sects; for the Turks have thought, like Bossuet, that the multiplicity of heretics furnishes a plausible objection to their doctrines. But in truth, there is only one considerable party amongst the Schistes, that of the followers of Ali, who reject the Sunna: their creed is dominant in Persia.

It is difficult to speak with precision as to the number of followers belonging to each religion actually existing in the world—a misplaced zeal leads the different
Parties to exaggerate their numbers, as if there were no truth in Seneca's observation, that a great majority often indicates a bad cause. Infidel writers in particular, have thought they were rendering an important service to their cause, by ridiculously exaggerating the number of Mahometans and Pagans, not considering that truth will be always truth, whether it be believed by many or by few.

The following numbers may be regarded as nearly approaching the truth:

<table>
<thead>
<tr>
<th>Religion</th>
<th>Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catholicism, in Europe</td>
<td>88 millions.</td>
<td></td>
</tr>
<tr>
<td>out of Europe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>116 millions.</td>
<td></td>
</tr>
<tr>
<td>The Greek Church</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Protestant Churches, &c.</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Total of Christians</td>
<td>228 millions.</td>
<td></td>
</tr>
<tr>
<td>Judaism</td>
<td>4 to 5</td>
<td></td>
</tr>
<tr>
<td>Mahometism</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Brahminism</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Schamanism, or the religion of Dalai Lama</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Buddhism, comprising the religion of Fo, &c.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Paganism, and various other beliefs</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Languages and religious creeds are the ties of moral society, which often survive the fall of civil and political society; but it is the latter which determines the boundaries of states and empires, which it is the province of political geography to describe. We must then take a general view of the varied forms of society.

The ties which unite husband and wife, parents and children, form the family or domestic society. The relation of master and servant had its origin when society was in this state. The weak not being able to assert their rights, or procure the means of subsistence, must have soon resolved to claim the protection of the strong. Those families that happened to live in the same neighborhood, would, after quarreling for a while, at last agree to live in harmony together. Certain rules would be established amongst them, not yet to be considered as laws, but as customs. The union of these families did not form a state, but only a civil society. These small societies must soon have perceived that their customs and observances required to be fixed, and to be invested with the character of laws. Men of superior natural capacity became the unlettered lawgivers of these hamlets or villages. As soon as the various relations in which men stood to each other were fixed by laws, political society commenced.

But this was a society without government, and soon became a prey to the evils of anarchy. Experience of these evils taught men that a physical force is indispensably requisite to support the laws, which of themselves have a force purely moral. A government is thus established under some form or other. The convention which fixes the original laws of civil society, is called the social compact; that which fixes the existence of the form of a government, and adjusts the circumstances connected with it, is called the constitution.

By this last convention, civil society is constituted a state, or, if the term is more agreeable, a republic; for this last word, derived from the Latin, originally signifies every civil society having a government and laws, without reference to the form.

A government is the union of physical force established by the will of civil society to maintain the laws and the constitution. The force of the government, regulated by the established laws, is called the supreme power. The supreme power may be divided into different branches, as, for example, the legislative power, subdivisible into the proposing, the deliberating, and the decreeing power; the executive power subdivisible into the administrative, the judicial, the military, and the power of supreme inspection. These divisions are partly arbitrary. The manner in which the supreme power is organized, subdivided, and concentrated, is called the form of government. The supreme power represents the national sove-

* Argumentum pessimi, turba.
reignty, which is nothing but the supreme power not organized, existing in the hands of a civil society without government.

Forms of government. Forms of government are innumerable; but we shall point out those most generally known, by advancing from the state of the greatest physical dissemination of powers, to that of their greatest concentration. These two extremes approach each other more nearly than is imagined.

Democracy. Pure democracy exists in that state in which the supreme power is immediately exercised by the majority of the nation: this form of government differs from the state of primitive civil society, in which all equally rule. Commissoirial democracy is a state in which the supreme power is exercised by a council immediately chosen from the people, revocable, and responsible. Such functionaries are not then the representatives of the nation, but merely its proxies and commissioners. We term a representative democracy that state in which the supreme power is exercised by magistrates, chosen by the people, who represent them, and who, consequently, taken collectively, are sovereign and not responsible. This form is subdivided into a pure representative democracy, when the people themselves directly choose their representatives—and into a representative electoral democracy, when the people choose electoral bodies, who again elect the representatives.

Aristocracy. Elective aristocracy resembles representative democracy. It is when the people, either mediatel or immediately, choose their magistrates, not differently from among the citizens, but from a certain class determined by law. Elective aristocracy is pure or free, when the people have created the privileged class, or the aristocratic body,—when admission into that body is open to all citizens,—when the members of this body are amenable to the supreme power in the hands of the people. Simple or pure aristocracy is, when the people have chosen once for all, as their plenipotentiary representatives, a body which governs, and which is renewed without the concurrence of the people. Every form of government, compounded of those which we have just named, is called an aristocracy. When the aristocratic party seem predominant, we have a temperate aristocracy, when the democratical, we have a temperate democracy. Rome, after the expulsion of the Tarquins, was an hereditary oligarchical aristocracy, which gradually changed into an aristocratic democracy, composed of all the other kinds. The Patricians were the hereditary aristocratic body; the senate an elective free aristocracy; the assemblies of the people represented the democracy.

Democratic monarchy. A democratic monarchy is a democracy in which the supreme power is partly exercised by an individual and partly by a democratic body. As the supreme power may be variously divided, it is impossible to ascertain the number of the different kinds of democratical monarchies. It may be hereditary, when the nation has chosen a certain family, or elective, when at each vacancy a monarch is chosen. The right of election may be vested in the people, in an electoral body, in a single elector. These variations are common to other kinds of monarchy. The legislative power may be divided between the commissioners of the people and the monarch, or it may belong to the former only. The judicial and military powers may be dependent upon the monarch, or upon the body of the nation. The democratic body itself may be chosen without or with the concurrence of the monarch.

Aristocratical monarchy. Aristocratical monarchy is a state in which the supreme power is jointly shared by the monarch and the aristocracy. This latter body may be a free elective aristocracy, when an assembly of representatives chosen by the people from the council of the monarch; an elective hereditary aristocracy chosen by the people, or by the monarch, or by both conjointly; or lastly, a pure and perpetual aristocracy, independent alike of the people and the sovereign. Such were the nobility in the most European states before the present epoch. The aristocratical monarchy is a government composed of a monarch, of an aristocratic body, and of a democratic body. By a mixed government is generally understood a monarchy of this description. The different combinations of this form are so multiplied that it is impossible to class them.

Absolute Monarchy. A pure or absolute monarchy is a state in which the supreme power is entirely confided to one individual, or, in other words, a state in which
the majority of the nation is represented by a single individual. Absolute monarchy differs from despotism in this, that the monarch holds his power of the nation, either by expressed or by tacit consent; the despot, on the contrary, pretends to hold his power from God, and from his own sword. The dictatorship was a kind of absolute monarchy, elective and temporary, in the Roman republic.

The word anarchy literally means the absence of a government. Taking the word government in its true and literal signification, it is evident that anarchy may arise in two ways: 1st, from the non-existence of any supreme power in civil society; 2d, from the preponderance of unconstitutional power, exercised in an arbitrary manner and without the form of a government. Anarchy may be modified in a thousand ways. The following are the forms of it which appear to be most worthy of being defined.

Ochlocracy, or popular anarchy, takes place when a mob or a multitude unlawfully usurp a supreme power. According to this definition, even the majority, when they are not legally constituted sovereign, can exercise only anarchical power. Oligarchy occurs when a small number of individuals or families exercise the supreme power without having been chosen by the constitutional sovereign. It differs, then, from pure aristocracy. Demagogy is when one or several individuals, without legal appointment, lead and manage the people at their will, actually exercising the power which they seem to leave in the hands of the multitude. The word tyrant signified originally chief or monarch. Virgil employs it more than once in this honourable sense, but it was afterwards limited, to denote him who, in a republic, had usurped the power of an absolute monarch. This is the ordinary sense of the term in the Greek and Roman authors. The moderns use the term to express violent and cruel abuses of authority in all kinds of government.

Despotism has been confounded, sometimes with tyranny, sometimes with absolute monarchy. Despotism is absolute power, which is not derived from a lawful source, and which consequently acknowledges no limits. The despot pretends to be master of his country and of his subjects, just as a private person is proprietor of his estate or his cattle. Despotism is not necessarily tyrannical, or cruel and violent—it is not absolutely incompatible with some administrative forms, and some institutions which properly belong to regular States, or even to Republics.

It would be improper to class with these forms of government, or of anarchy, created by man, the singular state termed theocracy. "It is," say the Theologians, "a government instituted by God himself, and in which the magistrates govern in the name of God." Such was the constitution of the Jewish people—with them theocracy was united first to democracy, and then to monarchy. The popes, in the dark and middle ages, attempted to establish a theocracy upon a great scale.

We have still to notice the federal systems, which are the unions of several independent States, under a superior authority chosen by themselves, and which are invested with powers more or less extensive, to maintain mutual order, and to furnish the means of defence against external enemies. We may term a confederation, of which all the constituent members are on a footing of equality, a democracy of States: Such is that of America. There have been, however, confederations with a chief or presiding power: The late Germanic empire was of this nature. Confederations sometimes have subjects in common: The Swiss had several districts in this manner.

Political geography considers in societies of men, besides the general tie, or the form of government, the particular ties which bind individuals to society, and which result from the station assigned to these individuals, or from their division into classes and orders.

In the most savage state, insulated man procures directly for himself the little which is necessary to supply his wants or to gratify his wishes. As soon as families begin to draw near each other, they unite together for accomplishing their common labours; but when the number of families augments, the society, becoming larger and more powerful, has recourse to the division of labour. The different products of each branch of industry are then reciprocally changed. These exchanges being not without inconvenience, means are sought for to give
them facility and despatch. Some measure, to ascertain the comparative values of the different commodities, is adopted, either some article in general request, as corn or cattle, or some reputed precious substance, such as gold and silver. This token becomes money: the productions become merchandise; and instead of being bartered, they are purchased. Some sagacious observers now perceive that gain is to be got by buying and selling; they become intermediate agents between the consumers of produce and those who raise or work it; and here commence the first rude attempts of commerce. Ere long, the administration of the affairs, and the defence of the territories of the state, become functions too laborious and too complicated to be gratuitously discharged; the functionaries receive a salary, and instead of warriors we have soldiers. At the same time, every inch of ground would receive its master; property of every kind, after having passed from one hand to another—chance favouring some individuals, and address serving others—would at last become fixed. Those who had been unfortunate or unskilful, finding the impossibility of producing anything by their own efforts, would let out their strength or dexterity to others. From society thus at last completely constituted, various classes originate.

The productive class comprehends all those who draw from the earth or some other element, any productions useful to society; cultivators of the soil, fishermen, vine dressers, miners, &c. There are tribes entirely composed of one or more productive classes. Such are the pastoral tribes, or Nomades; the fishermen, or Ichthyophagi. In civilized states, there exists one productive class of a peculiar kind;—the man of science who enlarges the empire of knowledge, and the man of letters, who purifies the taste, or refines the sentiments, or elevates the morals and manners of the age, equally contribute to the production of true national riches of inestimable price and perpetual duration.

The operative class consists of those who, by various processes, convert raw produce into artificial produce. When such processes eminently require genius and taste, they obtain the name of the fine arts. When they chiefly demand corporeal strength and dexterity, they are called the mechanic arts. A manufactory is an establishment where an art is conducted on a large scale. The name of work seems to denote one of those establishments in which extensive and powerful machinery is employed.

The commercial class is composed of merchants properly so termed, who buy and sell, either on a great or small scale, the productions of nature and of art; of different kinds of correspondents or agents, who facilitate the execution of purchases and sales; of bankers and brokers, who confine their operations to the representative signs of merchandise; and, lastly, of mariners and carriers, in so far as these are proprietors of their means of conveyance, and do not fall to be ranked under the class of mercenaries.

We include in one class the public functionaries, and the officers of the sea and land forces. They are equally invested with a greater or less proportion of the force of the state; they are equally the agents of the supreme power.

The last class comprehends the mercenaries of every kind who let out their labour to private persons, or chiefly to the community. It is composed of labourers and domestics. This last class is most numerous in the states where luxury prevails.

The numerical proportion in which these classes are met with in a state, is one of the most interesting questions of statistics. According to this proportion it is that we decide whether we are to denominate a nation agricultural or commercial.

Classes have their foundation in the very nature of society itself, but castes and orders are created by laws and constitutions. By the word caste is understood an hereditary class, exclusively assigned to one species of occupation. This system of division existed in Persia, Arabia Felix, and Egypt, and it still exists in India. It is accounted for in a satisfactory manner, by referring to the original difference of the primitive tribes, whose union formed the nation. The caste of priests and that of warriors, in Egypt, were probably two classes somewhat organized and discri-
plained, which had reduced to a state of subjection several tribes of husbandmen and shepherds. The conqueror disdained to mingle with the vanquished; and the laws afterwards sanctioned and perpetuated a system of separation which accident had originally established.*

The political orders in the states of Europe differ essentially from the castes, in this, that they have no occupation which is exclusively reserved for them, or if they have it, like the clergy, it is not hereditary. In the middle ages, when the armies consisted of cavalry, the order of the nobility partook much of the nature of a caste. The nobles now are merely an order of the state. The citizens, commonality, or third order, and the peasants, form, in some states, orders recognized by the constitution. In Sweden, the order of peasants possesses much influence. The same was the case in the Tyrol before the late events. There are still, however, some countries, particularly Russia, where the husbandmen, subjected to the yoke of personal slavery, form a real caste, condemned to a state of abject and perpetual degradation.

In despotic states, as in Turkey and in China, there are no orders.

Slavery renders all individuals equal. In Europe, it is the "esprit de corps," the corporation or professional spirit of the orders of the state,—it is the equilibrium resulting from the various prerogatives and interests, contending with each other, and with the supreme power, which secures political liberty. It is, therefore, in describing Europe that we shall have to explain the institutions of chivalry, the honorary distinctions, and other institutions, whose object it is, either to mark the degrees in the scale of society, or to render the distance between them less felt and less perceptible.

It would be rather uninteresting to enumerate the various denominations which designate the different states. The use of the terms empire, principality, kingdom, sultanat, khansat, and others, will be learnt in the descriptive part of this work. It would be equally useless to consider in this place, the titles which the heads of states assume, from the modest president of the United States to the vanglorious Emperor of China, who is called the son of heaven, and who is, however, only the silly imitator of the Persian monarchs, who style themselves kings of kings, princes of the stars, and brothers of the sun and moon.† Empty sounds have no influence upon the prosperity or the power of states.‡ Political geography regards, as almost unworthy of notice, the arms and colours by which the different states mark their ensigns, their flags, and their frontier posts.

It is a matter of much greater importance to ascertain the material resources of the state. This is the particular object of an extensive science, termed political arithmetic;§ the results, however, of this science must have a place in political geography.

The first element is the value of land, and of its produce. Here the different productions of the three kingdoms of nature are classed according to their usefulness as articles of life, and their value as articles of merchandise. The government itself knows, only by approximation, the value of what agriculture, the fisheries, and the mines produce, and what is the exact proportion between the commodities which the nation sells, and those which it buys. Governments beside, do not often publish even the imperfect information of this kind which they possess. Political geography, therefore, cannot absolutely warrant the accuracy of the lists of productions, of exports, and imports, which it is obliged to collect with so much trouble. To render these details as useful as possible, it is necessary to know the proportional values in which lists of this kind are made up; the moneys, the weights, and the measures of each country. This subject, which presents a different aspect in every state, will come to be considered in our particular descriptions.

* Compare Herzen, Views of the Politics and Trade of the Ancients. (In German.)
† Ammian, Marcell, xxii. 5. xxii. 6.
‡ Becmanni, Syntagma Dignitatis. Illust. Dissert. iii. cap. 3.
§ See the works of Young, Petty, &c. quoted p. 551, 552. The general Treatises of Statistics, by Ackenwall, Torda and Menzel, (in German,) and the Statistical Account of Scotland by the Parochial Clergy.
In the second rank, amongst the elements of the national resources, should be placed commercial and manufacturing industry. It was this which accumulated on the rock of Tyre, on the barren coasts of Attica, and on the flat sandy shores of Alexandria, the treasures of the ancient world; and it was it which, in modern times, raised Venice and Holland to greatness. Here political geography should consider the situation of the coasts of a country, the number and nature of its ports, and the state of its great roads and canals; circumstances, all of which directly influence the progress and prosperity of national industry. It is likewise necessary to attend to the various commercial institutions, such as the great national banks, which accomplish the rapid exchange of the signs that represent the value of merchandise, and the commercial and trading companies, amongst which there are some that possess in sovereignty vast provinces beyond the boundaries of Europe.

Population. The population of a state forms the third element in its resources. We have seen in a preceding book, that the proportions between the deaths, the births, and the number of living inhabitants, enable us to approximate nearly the population of a country; but it is a census alone which enables us to ascertain it with exactness. Even when we have an authentic census, we should beware of trusting to it with implicit confidence. The same individuals are often counted twice, which happens every time that the inhabitants of the country are numbered in summer, and those of the towns in winter.

The number of inhabitants is the foundation of every good system of finance; the more individuals a country contains, provided they have the means of subsistence, the greater progress will commerce and manufactures make; and consequently the greater the increase of the revenues. The number of inhabitants ought equally to determine the number of the troops. It is computed that the men capable of bearing arms, form about the fourth part of the whole inhabitants. The greatest effort, however, that the most warlike state can make in a case of extreme necessity, is to arm the eighth part of its population. No example even of this has occurred in modern history.

Let us observe also that the more a mass is concentrated, provided that it has free space sufficient to move in, the more energy it will acquire. A small populous country, therefore, is, in proportion, more powerful than a state of vast extent thinly peopled. A country is looked upon as populous, when it contains about 100 inhabitants to the English square mile. England is peopled at the rate of 198 to the square mile; but Ireland and Scotland present a less favourable proportion; the former being 122, and the latter 56; Wales has 80 to the square mile. Holland had, before the troubles of 1788, and the revolutions which followed them, 212 inhabitants for each square mile, which makes 1908 for each square English league. The Island of Malta is probably the most thickly peopled country; it had more than 6000 souls to the square league; but these are to be regarded only as rare local exceptions. And it is common enough to find, in European Russia, governments which have not more than 20, or even 10 inhabitants, to each square mile.*

The attempts which political arithmeticians have made to compute the value of the aggregate revenue of a whole nation, arising from the employment of its capital in the cultivation of the soil, and in the various branches of commerce and the arts, have hitherto produced only proximate results, more or less accurate according to the correctness of the data from which the calculations have been made. Political geography merely exhibits the sum of the revenues at the disposal of the government of each state, and the principal sources whence they flow. In many countries this information is furnished by the annual budget, which is the name given to the table of finances laid before the aristocratic or democratic body, sharing in the exercise of the supreme power. As the budget, however, is sometimes intended to neutralize the unfavourable impression which may have been made by the increase of the public debts of the state, it occa-

* Busching, Introduction a la connaissance des Etats de l'Europe.
sionally exhibits fallacious details; in absolute monarchies this device is superfluous. But the correct estimates often remain buried in the ministerial bureau, until some lucky chance, or the will of an enlightened sovereign, ushers them into useful publicity. As it is only in Europe that there exists a regular system of finance, it is in the description of that part of the world that we shall point out the different species of taxes and customs, and all the ingenious artifices by which civilized governments force money out of the pockets of their subjects; while the chiefs of barbarous nations carry off, in kind, and most frequently in an arbitrary and irregular manner, the articles which they require.

An armed force, naval and military, is unfortunately, but necessarily, an object of the first importance to every government.

Savage tribes, and even some half-civilized nations, are accustomed to march against their enemies all the males fit to carry arms. Nothing prevents them from doing so, as fishing and hunting are occupations which a horde of savages carry along with them. In other circumstances, the women may be sufficient for the employments of agriculture and the tending of cattle; but as soon as labour is multiplied, and, in consequence of this, comes to be divided, that is, as soon as the agricultural, manufacturing, and commercial classes, have each a separate existence and place in society, it is impossible to arm and to bring into the field the entire mass of a nation, without completely suspending the exercise of those trades and occupations on which its subsistence depends. It therefore becomes necessary to form a class exclusively devoted to the trade of war; such was, in the middle ages, the design of the order of nobility and of chivalry; but the invention of gunpowder and artillery, the introduction of a new system of fortification, and the perfection to which tactics have been brought, have converted the formerly simple and almost mechanical art of war into a profound and extensive science, to the study of which many years must be devoted. This consideration, strengthened by motives of ambition and policy, gradually paved the way for the establishment of standing armies. The European powers have had, for more than a century and a half, a certain number of troops in a state of perfect discipline and equipment, ready to march at a moment's notice. In supporting these troops, one-third, and often one half of all the public revenue is consumed. The land force, or the army, is composed of four principal parts, or arms, with their subdivisions; namely, the infantry, or combatants on foot; the cavalry, or combatants on horse-back; the artillery, whose province is to work those engines of destruction, on the skilful management of which the issue of battle frequently depends; and the engineer department, which conducts the defence and attack of fortified places. In the description of a kingdom, not only should we point out the number and situation of the fortresses, the passes and defiles of greatest importance, as well as the number of troops which it maintains; but it is further necessary to mention, whether these are regular troops, or bands without discipline or military science, and also to specify the physical advantages and disadvantages of the frontiers.

In like manner, it is not enough to know the number of ships of war of which the navy of a state consists. We must also ascertain whether it possesses an adequate number of skilful officers and experienced sailors. We must observe whether it comprehends in its dominions extensive coasts furnished with safe and commodious harbours, or touches the sea only in some insulated points. According to circumstances, a state requires a fleet of ships of the line, and frigates to fight upon the open sea, or a flotilla of gun-boats to defend its coasts, its straits, and its ports.

Finally, states have also, besides their own peculiar forces, a force of situation depending upon their external relations; and particularly, on the alliances, whether diplomatic or natural, which render them the friends or enemies of each other. The equilibrium resulting from the alliances of the different European nations, is called the "balance of power." This political equilibrium has frequently been subverted; but it is notwithstanding of importance to examine the principal bases on which it rests, as shall be done in our description of Europe.
Moral state of a nation. The moral state of a nation is the result of all those political and social relations we have been specifying. This state is indicated by various signs, of which the political geographer ought to notice the most striking.

Garments. The mode of dress is more than a simple object of curiosity; the loose flowing habit of the orientals, and the tight clothing of the European, exert an influence on their physical and moral constitution. The nudity of certain nations procures to them corporeal advantages, an agility, a strength, and a robustness of health, unknown to nations whose limbs are encumbered with garments; but this superiority is more than counterbalanced by extreme indolence and feebleness, and torpor of understanding. The custom of painting the body, whether by imprinting, or marking figures upon the skin, or by simply besmearing it with a coat of colouring, marks the infancy of civilization, and the first workings of vanity. Rank and dignity are frequently indicated by the vestments, or by the ornaments with which they are embellished. A particular kind of sash of cotton cloth is the distinguishing badge of royalty in Otaheite. The priests of Siam reserve to themselves the privilege of shaving their eyebrows. A necklace of human teeth supplies the place of the star, in the order of negro nobility.

Habitation. The ordinary habitations of a people, are an almost infallible index of the degree of civilization at which they have arrived. The human race may be divided into four classes, according to the four kinds of habitations which follow, 1st, Caverns in the rocks, and under ground. They who make these their common abodes, are called Troglodytes. 2d, Huts of earth, branches of trees, stones, or some other substance, either in the natural state, or coarsely wrought. 3d, Tents; these moveable dwellings, in the opinion of wandering pastoral tribes, appear preferable to our palaces. 4th, Houses, which may be defined huts brought to a state of perfection; for even the most superb colonnade, is merely a noble imitation of the coarse beams which supported the thatched roof. We find in Europe, houses constructed of unsquared beams—of beams that are squared and lined with wainscoting—of prepared clay and squared timber—of bricks and wood—of bricks alone—of unhewn stone—of hewn stone—and of marble.

Towns, country towns, and villages. The name of a city or town, strictly speaking, is not given to a collection of houses on account either of its extent or its population, but in consequence of certain privileges which the place enjoys. The right of exercising the various arts and trades, and of conducting commerce, serves in most countries chiefly to distinguish cities and towns from villages. Villages are sometimes larger than towns, for example in Silesia; but they have commonly no privilege to distinguish them from hamlets and other assemblages of houses in the country. Burghs are places which enjoy a portion of the rights granted to cities. In other respects, these words admit of different senses, according to the laws and customs of different countries.

Utensils and instruments. Utensils and instruments are objects no less worthy of the attention of a philosophical observer. The bows, the javelins, and the nets of savages, often deserve to be admired for the perseverance and dexterity that were required to produce them.

Food. The European is accustomed to make almost every nutritive substance minister to his support, or to the gratification of his palate. But there are nations that live almost exclusively upon one kind of food. The frugal, carnivorous, and ichthyophagous tribes are distributed over the whole surface of the globe. The taste for horse-flesh appears peculiar to the Mongols, Tartars, Finns, and other descendants of the Scythians, and to the Slavonic and Gothic nations. Both ancient and modern writers place the Acridophagi, or eaters of locusts, in Africa. Some of the American tribes visited by Humboldt, devour a species of clay.

Anthropophagism. Respecting Anthropophagism, or the horrible custom of eating human flesh, it appears to be proved that it does not belong exclusively to any nation; all savage tribes are addicted to it, either from the impulse of a ferocious hatred of their enemies, or by the dictates of an atrocious superstition, or finally, in consequence of extreme want. Not only do modern accounts assert that the practice obtains in the greater part of the nations of Africa, America, and Australasia;
but we discover from several passages in the ancients, that it was at one time prevalent in Europe. The poets ascribe it to the Cyclops and Lestrygons, whom they place in Italy.* Historians bring this charge against the Scythians; the Cimbrians, a tribe of Caledonians, and other nations of the north.

The heroes and gods of Homer, employ expressions borrowed from the rites of Anthropophagism; Jupiter reproaches Juno for desiring to eat, either raw or dressed, King Priam and his children. Human sacrifices were known amongst the Greeks and Romans, as well as the Celts, Scandinavians, and oriental nations. These horrid sacrifices appear to have been often succeeded by a repast still more horrid. The disgusting practice of burying the dead bodies of their relations in their own bowels, is attributed to the Issidones, and the Massagetae; to several tribes of India; to the people of Thibet and the Marian Islands; and to the ancient Irish.

The desire of procuring a momentary elevation of spirits, has caused the invention amongst all nations, of intoxicating liquors. Their different properties, from the generous wine of Europe to the loathsome ava of the Otaheitians, deserve to be pointed out in the geographical descriptions of the respective countries.

From the immense variety of customs, which impart to social life, in every nation, its peculiar features, political geographers select the most striking, namely, those which are most closely connected with morals, and which serve to illustrate the history and filiation of the species. Such is the circumcision practised amongst the African nations which do not profess Islamism; the custom of embalming dead bodies, common alike to the Guanches of the Canary islands, and to the ancient Egyptians; the fashion of letting the bodies of the dead dry and wither away in the air, common to the Otaheitians and the ancient Medes; the custom prevalent among the females of India, and the wives of the Wendes and Scandinavians, of immolating themselves upon the tombs of their husbands; and in general the ceremonies observed at marriages, births, and funerals, present resemblances that are often highly interesting.

Civil laws sometimes present singularities which deserve to be marked in the description of a nation. But it is sufficient to notice regulations which punctiliously prescribe the silly ceremonies of a degrading etiquette; punishments revolting to humanity; graduated scales of murders, mutilations, and tortures; superstitious ordeals, still prevalent amongst different nations, and a thousand other similar observances of ancient barbarism, or the bequeathments of more recent despotism.

The intellectual state of society closes this lengthened view of the various aspects under which nations may be contemplated. Do they possess an accumulated store of the discoveries of genius, and of the observations of wisdom? Do they cherish, in the sublime and beautiful effusions of poetry, the expression of the noblest sentiments of humanity and patriotism? Do men of science and literature occupy the honourable rank to which they are entitled? These are questions which require to be satisfactorily solved before we can determine the progress which a nation has made in civilization and in morals.

The general result, the collected effect of all these aspects and relations, to which our attention has been drawn, constitutes the character of a nation. Nations may be distributed into three general classes. Savages are those who are ignorant of the art of writing, or of fixing their thoughts by means of conventional signs equivalent to writing. Their vague and unsteady ideas are attached only to objects which strike their senses; they delight to adorn their persons in a manner which to us appears ridiculous; they are passionately fond of bodily exercise, and in this respect they infinitely surpass us. Their industry is generally confined to a little gardening, to fishing, and the chase. Some of them, however, produce specimens of beautiful workmanship, and

†† Strabo, xi. 335, edit. Cassaub. Atrob. Herod, i. cap. 216.
† Strabo, iv. 139. †† Hrubuquis, Marce Paul. Mendans, &c.

Vol. I.—N n
have even commodious and elegant habitations. The class of barbarians, or men half civilized, comprehends every nation which, by writing, by written laws, by a religion expressed in ceremonial observances, or by a more regular military system, has evidently emerged from the savage state. But the information which such a people possesses is as yet only an indigested mass of incoherent observations: their arts are exercised as it were by routine—their policy is limited to the defence of their frontier, at the moment of danger, or to offensive operations conducted without a plan. Their progress is in general slow and uncertain, because, even in advancing towards civilization, they have no proper conception of the great objects at which they should aim. A civilized nation is that which has arranged its knowledge in the form of sciences; which has elevated the mechanical to the rank of the fine arts; which, to express the various sentiments of the human heart, has created the "Belles Lettres;" which is possessed of a fixed system of legislation, of policy, and of war, calculated not only for existing circumstances, but for ages to come—a nation in which Christianity, undefiled by superstition or enthusiasm, displays its proper influence in the purification and elevation of the public morals,—a nation, finally, which recognizes the great principles of public law, by acting in time of peace as the friend of every other state, and by respecting, in time of war, the property of defenceless citizens.

Character. The general character of a nation, being the result of all the physical circumstances in which it is placed, and of the political institutions, which modify these circumstances, it is absurd to make it depend upon climate alone. Extreme cold, as well as extreme heat, by enfeebling the constitution, seems to check and restrain that progress in improvement which a people might otherwise make; but institutions and manners struggle successfully against the climate. Egypt, under the tropic, and Scandinavia, under the polar circle, have equally given birth to heroes, men of genius, and philosophers.

Nature of a country; its influence. The mountainous central parts of Greece, formerly the beloved abodes of courage and independence, are still the places that are least accessible to despotism. In Thrace, the Serbes, inhabitants of the mountains, maintained for a long time their independence; in these same mountains, as well as in Macedonia, we find at this day hordes of Turcomans who live in the enjoyment of liberty. The Illyrians bravely resisted the kings of Macedonia, and the Roman Legions. The Argaus, or Albanians wandering upon these same mountains, obey the Turks only when paid by them. The Greeks, in spite of the yoke of tyranny under which they are oppressed, exhibit still in some mountainous cantons, the main character and republican spirit of their ancestors. Without mentioning the Mainotes, so often referred to, let us look to the town of Ambelákia, situated on the declivity of Mount Ossa, above Tempé; its inhabitants, as brave as they are industrious, have twice repulsed the Ottoman troops, and no Turk dare show himself on their rocks. The small town of Parga, whose unhappy and unmerited catastrophe we shall afterwards have occasion to describe, has often presented the spectacle of women taking up arms and fighting for liberty. The Spachioties, who inhabit the white mountains in the Isle of Crete, have been only lately subjugated, rather by intestine discords than by the arms of the Turks. They still preserve several institutions of the ancient Cretans. It is perhaps to the peculiar nature of the soil of Europe, to its being more intersected, more rugged, and more unproductive, than that of Asia or America, that we owe that presence of mind, and that spirit of bold enterprise and perseverance by which the natives are in general so much distinguished. These qualities eminently characterize the inhabitants of the Alps, the Dofrines, and the Cevennes.

Nations that occupy mountainous districts, especially when jealous of their liberty, and living in small separate states, speak generally a number of dialects, which, in

* Herodot. lib. vii. cap. iii.
† Felix Beaulieu, vol. i. p. 325.
‡ Livy, i. cap. 19. Justin, &c.
§ S. Beaulieu, vol. i. p. 272.
¶ Savary, Lettres sur la Grèce, Lett. xxxvi.
process of time, becomes so many languages. In Caucasus, there are twenty-six different dialects spoken.* As a farther proof of this, we may also refer to the numerous dialects of Greece and Scandinavia.

Tribes that inhabit vast plains destitute of large rivers and forests, naturally betake themselves to a wandering life, and the tending of flocks and cattle. The patriarchal government, the parent of despotism, had its origin amongst wandering tribes or Nomades. An insulated mode of life, re- tends the progress of population; and the facility with which food is procured, obstructs the growth of industry and the arts. Such is the cause of the barbarism in which the tribes of central Asia remain. But if these tribes meet with considerable rivers, bordered by meadows affording rich pasture to their herds, they follow their course,† and, descending into fertile valleys, become fishermen and agriculturists. As soon as they have fixed their abode, we see the arts and sciences gradually spring up in the midst of them. The Mongols, descending from their upland plains, have become the founders of numerous towns in China; and an African horde, following the Nile from Meroe and Upper Ethiopia, has been able successfully to create the wonders of Thebes and Memphis.

Forests must have been the primitive abodes of the European tribes, when they lived upon acorns. Even now the palm forests afford shelter to the nations of Africa. The hunting of animals was the natural occupation of these people; but at the dawn of civilization, the tribes of hunters, having both the body and the mind formed by violent exercise, by dangers, and incessant toil, must have made more rapid progress in improvement than the pastoral tribes, and must have built houses and towns at a much earlier period. The forests would furnish them with the materials and the model of their architecture. Trunks of trees supporting a verdant roof, suggested the first idea of Grecian and Indian colonnades, whilst Chinese architecture consists only of tents imitated in wood and stone; and in the Gothic architecture, we recognise the image of gloomy caverns and steep rocks.‡

Mountains, rivers, and forests, having directed the first tribes in their emigrations, and having influenced their physical and moral character, have also given rise to the first geographical divisions and denominations,§ as we shall often have occasion to show in our particular descriptions. But what has most accelerated the extension of the human species, and the progress of civilization, is the invention of navigation.

What lively and strange emotions must the first men have felt, when, descending from their paternal mountains, after having wandered in the thick forests which covered them, they saw, all at once, their further advance impeded by an immense plain of water, which, in the distance, appeared to be lost in the sky, and to mingle with the clouds! The hunters, accustomed as they were to danger, would feel a degree of repugnance to commit themselves to the waves. But no sooner was the first skiff launched upon the ocean, than the whole physical and moral state of that tribe, which, in consequence of its situation, was enabled to profit by this great discovery, would be changed. A small territory, abounding in fisheries, is enabled to accumulate a numerous population. Civillized islands are asymu™ inaccessible to the attacks of savages. These small corners of the earth, insulated by nature itself, gave rise to the first ideas of country and of national independence. Even the inclemency of the maritime air must have had some influence upon the progress of civilization. In the interior of the country, a tent or hut of verdant turf afforded a sufficient shelter from the rain and the wind. Near the sea, the dampness of the atmosphere rendered it necessary to build habitations of firmer materials and a closer construction. Great towns arose upon the banks of a river, or upon the shores of the sea.

* Strabo, xi. Reineggs, Voyage, &c. † CompareDeguingue, Histoire des Huns, ii. p. 5. ‡ Hodges’s Travels in India, part i. § Haddbeck, Atlant. i. 33—37. Ecard, Orig. German, p. 86. Torfsi, Hist. Norweg. i. 130—150.
The character of insular nations is always distinguished by originality. Attached to their native soil, and unjust towards a foreign one; faithful to national remembrances, but strongly biassed by superstitions and prejudices, they generally exhibit more energetic virtues and vices than the inhabitants of continents.

In the history of the human species, the progress of navigation will always hold the first place after that of agriculture. The civilization which agriculture gives rise to, is purely local; it stops as soon as the supply of the wants of the nation is secured; agricultural societies, generally composed of only two classes, masters and slaves, insulate themselves from the rest of the world more by their laws and customs, than by the lofty walls they have sometimes raised to defend themselves against foreign aggression. But navigation disturbs this Chinese felicity, and interrupts a repose so opposed to the destinies of human nature. A vessel unites the most distant regions of the world; cities, nay even whole nations, are transported to other climates; the tumult and the hum of civilization is heard amongst indolent savages; an universal movement pervades all classes; and man is unconsciously drawn on to the conquest of the globe.

The fate of the great human families has been decided by the direction which they took in their emigration, by the nature of the soil which they occupied, but, above all, by the positions of the great seas of the globe, and the advantages which men were able to derive from them. Is not the perpetual infancy of the Chinese chiefly owing to their ignorance of the art of navigation? On the contrary, if the Japanese and the Malays exhibit a character, manly, enterprising, and different from that of the other Asiatics, it was formed at the epoch when their squadrons traversed the great eastern Ocean, which is at present filled with their colonies. The people of Africa are, as it were, buried in the midst of a great continent, destitute of gulfs and arms of the sea. This circumstance, by hindering navigation from carrying industry thither, has powerfully contributed to brutify the nations of that continent. The Europeans alone were called by Providence to extend their empire over the globe. The nations who have peopled Europe had to cross the mountains of Caucasus and of the Alps, the Black Sea, the Baltic, the Archipelago, the Adriatic, and the Mediterranean. Obstacles so formidable, retarded them at first in their progress; but, at the same time, they served to develop and to fortify that character of activity and courage which is common to the European nations. The descendants of Canaan, the Phoenicians, soon lost the empire of the sea; Athens rivalled Tyre; a Grecian city ruled over conquered Egypt; Carthage submitted to Rome; Europe seized the sceptre of the world. At this first epoch, all civilization was collected around the Mediterranean; it was almost the only sea upon which there was any navigation. A second epoch commenced, and the march of civilization was still intimately connected with the progress of navigation. The compass and Columbus appeared. A new world saw our vessels land on its shores. A new Europe has arisen, and continues to advance with giant steps in the career of improvement. The Atlantic ocean has become what the Mediterranean was before, the great highway and thoroughfare of civilized nations.

But the march of civilization is far from being terminated; the wonders we have witnessed may still be surpassed. The Europeans have not confined themselves to the shores of that Atlantic ocean which, immense as it appeared to the Phoenician and the Greek navigators, is only an arm of the sea, compared to that great ocean which, under the names of the Indian, the Pacific, and the Eastern, extends from pole to pole. The American navigators have already crossed the whole of this aquatic hemisphere—already British colonists have begun to settle the innumerable islands which form, to the south-east of Asia, a fifth part of the world; and Australasia, the most delightful country of the globe, will probably, ere many ages pass away, have reached the highest pinnacle of civilization. Let another Columbus carry thither that torch of science which enlightens Europe! Let colonists, fraught with our learning, found a new Greece in Otaheite, or the Pelew Islands, then those rising grounds, which now produce only aromatic herbs, will be covered...
ASIA IN GENERAL.

with towns and palaces; bays now shaded by a forest of palms, will display a forest of masts; gold and marble will be extracted from the bowels of mountains as yet untouched by the miner; coral and pearls will be dragged from the bottom of the sea to adorn the new capitals; and one day, perhaps, Europe, Asia, Africa, and America, will find dangerous and successful rivals in countries, whose existence, at this moment, scarcely occupies their attention.

Thus, in the history of the human race, the past, the present, and the future, are connected with the position of the great seas of the globe, and with the progress of navigation.

BOOK XXIV.

GENERAL DESCRIPTION OF ASIA.

It was in Asia, according to the most authentic accounts, that arts and civilization had their origin; and it is with this division of the globe that we shall begin our series of descriptions, which will in some measure resemble a voyage round the globe.

There is no evidence to prove that the ancient nations of Asia recognized those grand divisions of the globe to which they have given the name of quarters, or that they distinguished the division in which they lived by the name of Asia. The conjecture of the learned Bochart, who derives this name from a Hebrew or Punician word, signifying the middle, has therefore no foundation in history. Equally little confidence is due to the speculations of some etymologists, upon an obscure relation of the name Asia to the word Asia, a general term for a divinity among many European nations.† To confine ourselves, then, to admitted facts, the name of Asia was applied by Homer, Herodotus, and Euripides,† to a district of Lydia watered by the Cayster, and in which the geographers of a later age distinguished a tribe called Asiones, and a city called Asia. It appears probable, that the Greeks, in proportion as their knowledge was enlarged, extended this name by little and little, from the district to which it was first applied, till it embraced the whole of Asia Minor, and ultimately the other extensive regions of the east. It was thus that the French extended the name of the duchy of Allemagne to the whole of Germany; and that the ancient canton of Italie, in a remote corner of Calabria, imposed its name on the great peninsula of which it forms so inconsiderable a portion.

The limits of Asia are partly natural and permanent, and partly defined by arrangements which admit of difference of opinion. On the south-west the straits of Babemandel and the Arabian gulf separate it from Africa, with which it unites at the isthmus of Suez. Towards the west, the Mediterranean Sea, the Archipelago, the straits of the Dardanelles and of Constantinople, the Black Sea, and the straits of Caffa, divide it from Europe; but from the straits of Caffa to those of Waigatz, near Nova Zembla, the boundary is uncertain. The opinion most generally followed, is that of many of the ancients, who regarded the Tanais, now the Don, as the natural limit of these two divisions of the world; but the tortuous course of this river, of which the ancients had very vague ideas, has led geographers into a labyrinth of contradictions; by some, a line is traced from the mouth of the Don to that of the Dwna, in the White Sea; by others to the mouth of the Obi; but both methods are entirely arbitrary. The academicians of St. Petersburg, however, have at last satisfactorily shown, that the chain of the Uralian mountains constitutes the natural boundary of Europe and Northern Asia. To reconcile this limit, now generally adopted, with the ancient claims of the Tanais, Pallas has proposed to trace a line of

* Bochart, Phaleg. IV. c. 33.
+ Eurip. Bacch., v. 64.
† Comp. Bayer, Comment. Petropolit. V. 334.
§ See the maps of Sanson, Delisle, Homann, &c.
demarcation; following the exterior margin of those vast salt plains which bound the Caspian Sea on the north, leaving in Asia the Russian governments of Orenbourg and Astrakan, crossing the Wolga at Zarizin, and thence following the course of the Don.* This arrangement of Pallas has the disadvantage of dividing the course of a large river into two parts, belonging to separate quarters of the world, and of being founded on circumstances which, though natural, are not marked with sufficient distinctness for the purposes of geography. It is better to follow the opinion of Herodotus, Plato, Erastosthenes, and other ancients, and abandon almost entirely the course of the Don, and fix the frontier of Asia, by a line which naturally terminates at the isthmus of Caucasus. This line is marked by the course of the rivers of Manitch and Kooma. It is by the beds of these two currents that the Pahus Meeotia and the Caspian Sea would mix their waters, if their level were about 220 feet higher. The Manitch falls into the Don, which thus preserves for some leagues its ancient prerogative of separating Europe from Asia. Upon mature reflection, we prefer this boundary to that which follows the course of the Kooban and the Tereeck. From the mouth of the Kooma, the Caspian Sea will mark out the frontier of Europe to the mouth of the great river of Jaik, to which Catherine II. gave the more geographical name of Ural. This river, in conducting us to the mountains of the same name, will complete the natural limits towards the west.

From the straits of Waigats, the Frozen Sea forms the boundary of Asia. It is uncertain whether the lands discovered to the north of Siberia, are islands, like Nova Zembla, or the extremities of West Greenland; whether the Frozen Sea itself is wide enough to be called a sea, or is only a long channel confined by lands and islands: it is certain, however, that it bounds northern Asia on all sides, and that this part of the world is also completely separated from North America by Behring’s Straits. Commencing by these straits, the Great or Pacific Ocean forms the eastern limit of Asia. The Aleutian islands, and those which are in their vicinity, thus belong to America, being only a prolongation of the peninsula of Alaska.

But what frontier can be assigned to Asia towards the south-east? Must we say, that the Marian or Ladrones islands, the Philipines, the Moluccas, the Celebes, Borneo, and Java, make part of Asia, whilst New Guinea and New Britain do not belong to it? All natural limits cease as soon as we enter into that immense archipelago which extends between the great ocean and the Indian seas. Yet we cannot avoid considering the straits of Malacca, and the passage between the Philippine islands and Formose, as the most natural frontier of Asia on this side. All the islands to the east of this line, as far as New Zealand and the Society Islands, should evidently form a fifth division of the world, of which New Holland is the continent or principal land. A sight of a modern chart of the South Sea will be sufficient to convince every well informed person of the advantages which will arise from the adoption of this arrangement in the methodical distribution of geographical descriptions.

To the south, the Indian sea separates Asia from Africa; so that the Maldivian islands belong to Asia; the Isle of France, Bourbon, and Mahé to Africa, though, in the idiom of commerce and navigation, these last islands are sometimes spoken of as if they belonged to the East Indies. The island of Socors, which incontestibly belongs to Africa, is, however, in a great many works, described as in Asia.†

Circumscribed within the boundaries now pointed out, Asia presents a surface that may be estimated at 154,000,000 English square miles. The greatest length of this continent, taken obliquely from the isthmus of Suez to Behring’s Straits, is about 7370 English miles; taken under the 30th parallel, from

* Commentarii Petropol. 1. Plan of a description of Russia. Pallas, Observ. sur les montagnes, etc.
† Perhaps it would be still better to restrict the names of the great divisions to continents, and to take the islands in arbitrary groups, or speak of them as belonging to the respective divisions when they lie contiguous, without attaching any permanent importance to this part of geographical nomenclature.—Tn.
Suez to Nanking, its length is less than 6000 miles; under the 40th parallel, from the Dardanelles to Cova, it is 6000 miles; and under the polar circle 3528 miles; the breadth from the north to the south, from Cape Comorin in India, to Cape Taimura in Siberia, about 4230 miles. We find the principal mass of the continent of Asia situated in the northern temperate zone. That part which belongs to the torrid zone is about one-seventh of the whole. Only one-seventeenth lies within the polar circle; but other physical circumstances extend the influence of the polar cold over nearly one-half of this continent. In order to form a correct idea of the great contrast of temperature which prevails in Asia, we must first make some observations on the five great physical regions, or zones, into which nature has divided that part of the world.

Our attention is first called to that immense plateau, or elevated plain, which rises between the 30th and 50th parallels, and which extends from the Caspian Sea to the Lake of Baikal, and from the sources of the Indus to the wall of China. It is known by the incorrect name of the plateau of Tartary; but may be more properly called Central Asia. It is an assemblage of naked mountains, enormous rocks, and very elevated plains: in these high regions two masses of mountains shoot up, and form the nucleus of all the great chains which traverse Asia. The one is formed by the mountains of Thibet, in whose valleys eternal snows are found, though within thirty degrees of the equator; they probably have an elevation of more than 20,000 feet. It is from hence that the chains of mountains commence, which, under the names of Kentsese, Himalaya, and others, extend towards Hindostan, and in that peninsula join the chain of mountains called Ghauls, which terminates at Cape Comorin. The Mustag, which is the Mount Imaus of the ancients, extends on one side into Tartary, and is connected by the mountains of Persia with Mount Ararat, Mount Taurus, and Caucasus, the nucleus of western Asia. On the other side, numerous chains descend into the peninsula beyond the Ganges, which they divide into long parallel valleys; one of them prolongs itself into the peninsula of Malacca, and then appears to pass into that immense archipelago, which we consider as a fifth division of the world. Mountains as high, but nearer to each other, fill the northern and western provinces of China, and terminate in rapid declivities. To the north of these chains of mountains, there is an elevated plain, perhaps the highest region of the globe. — It is the vast desert of Kobi or Shamoo. Here we find only salt lakes and small rivers, which are lost in a mass of sand and gravel; some few tracts of pasture, or stunted shrubs are the only signs of vegetation. The length of this plateau, from the source of the Indus and the Ganges, beyond that of the Amoor or Segalien, comprises from twenty-three to twenty-four degrees of longitude, and a breadth varying from three to ten degrees of latitude. The plateau is terminated to the north by another range of mountains, whose highest summit, according to Pallas, is named Bogdo. From thence, as from a common centre, branch out two chains of mountains, one considerably larger than the other. That which goes to the south, under the name of Mossart, appears only a sort of girdle connecting the plateau of Mongol Tartary with that of Thibet; a similar secondary branch, under the name of Alak, bends towards the west, traverses independent Tartary, particularly Bucharie, and approaches the Uralian Mountains towards lake Aral; whilst on the other side it is connected with the Beloor Mountains, which separate the two Bucharias, and which unite the mountains of eastern Persia and the north of India. Thus, towards the west the two principal masses are connected in every direction; and we may consider them as two summits of one and the same plateau. But let us return to the great branches of the Bogdo, one of which extends towards the east, under the name of Zangai, occupies Mongol and Chinese Tartary, and terminates towards the seas of Corea and Japan. It is rather a long plateau than a chain properly so called. Another branch, the Altai, is prolonged into Eastern Siberia. This is interrupted by deep defiles through which the rivers of Obi and Yenisco descend towards the plains of Siberia. A similar
branch forms, to the east of Lake Baikal, the Mountains of Dacoria, or of Ner-shinsk, which extend towards Kamtschatka and Behring's Straits.

Such is the great Asiatic chain; it is the most extensive system of mountains that has hitherto been discovered on the globe. Perhaps the Cordilleras alone rival it in elevation; while the central mountains of Africa may equal it in extent. The numerous and great rivers which issue from the central plateau of Asia on all sides, the sterility of the soil, and the intensity of the cold which exists there in all seasons, even in the plains and valleys, are better evidences of its immense height than the vague mensuration of Mr. Crawford.

II. Southern region. Two great regions of Asia are attached to the central plateau on the northern and southern side. Southern Asia, or India, is protected from the cold blasts of the north by the mountains of Thibet, and declines greatly towards the equator. Watered by numerous and large rivers, its rich soil always receives the heat of the sun, and is impregnated with the exhalations of a sea which the winter never influences. What a contrast between those fertile countries and the gloomy solitudes of Northern Asia, that vast Siberia, which extends towards the pole and the frozen sea, and never feels the soft breezes of the tropic, nor the modifying gales which come from a fluid ocean.

Nature has bestowed on each of these regions, a physical character which human industry can never change, or even modify in any sensible degree. As long as the present equilibrium of the globe lasts, the ice will always be collected at the mouths of the Obi and the Lena; the winds will always blow in the deserts of Shamo; and Thibet will never see the snows of its Alps disappear before the rays of the sun, which at no great distance, scorch the tropical regions. On this account, the Tartar as naturally pursues an agricultural and pastoral life as the Siberian that of a hunter. The Indian, in appearance, and perhaps in appearance only, more happy, owes in a great measure to his climate that effeminacy and indolence which brings upon him the scourge of domestic tyranny and the ravage of foreign adventurers.

III. Northern region. Two great regions now remain to be considered, those of Eastern and Western Asia. The first, which is insensibly confounded with the central plateau, presents three distinct divisions. A large chain of mountains covered in part with eternal snow, extends from the plateau of Mongol Tartary to Corea; to the north of these mountains, the Amoor flows at first towards the south-east, but very soon towards the north-east, where the land is very elevated, and the climate the coldest in the northern temperate zone. Those countries generally known under the name of Chinese Tartary, resemble Northern Asia, although they are situated under the latitudes of France. The mass of cold which, if we may so express it, overhangs Tartary, and on the other side, the uniform temperature of the Great Ocean, joined to an aspect directly east, give to China Proper a colder climate than that of southern Asia. This vast country, although it passes the tropic, and does not extend beyond the 40th degree of northern latitude, comprehends every European climate.

The third part of the eastern region of Asia, is formed by that prodigious chain of islands, and volcanic peninsulas, which rises at a little distance from the continent, and presents as it were, an immense barrier, to the fury of the ocean. This maritime region, though almost surrounded by the ocean, cannot be considered separate from the continent of Asia. It possesses all the variety of temperature to which its peculiar situation exposes it.

IV. Eastern region. The fifth grand region of Asia is more detached from the mass of the continent than any of the others. The Caspian sea, the Black sea, the Mediterranean, and the Persian and Arabian gulf, give to Western Asia some resemblance to a great peninsula. We may with some degree of truth assert that this region is as much opposed to the eastern region, as that of the south is to the north. Eastern Asia is in general damp, Western Asia is a dry, and in some places quite an arid region; the one has a stormy, and very often a cloudy sky, and the other enjoys constant breezes, and a great serenity of atmosphere; the one has chains of steep mountains separated by marshy plains, the other is composed of plateaus, in a great measure sandy, and very little inferior in elevation to the mountains which rise out
of them. In eastern Asia, we see very long rivers running near each other, whilst, in western Asia, there are only two or three of any considerable size; but, as a sort of compensation, there are numerous lakes without any outlet. Lastly, the proximity of the immense burning sands of Africa communicates to a great part of western Asia a temperature much warmer than that which even southern Asia enjoys.

In order to give greater precision to these general sketches of the physical regions of Asia, it will be proper to class the rivers of this continent according to the basins or seas into which they respectively flow, which we have done in the following table, in which the length of the course of each river is also pointed out. Those rivers which are printed in an inner line are such as flow into that which precedes.

Basin of the Frozen Sea; Northern Declivity of the Plateau of Mongol Tartary

<table>
<thead>
<tr>
<th>River</th>
<th>Length (km)</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irysh</td>
<td>210</td>
<td>1302</td>
</tr>
<tr>
<td>Tobol</td>
<td>80</td>
<td>496</td>
</tr>
<tr>
<td>Yenissei</td>
<td>2108</td>
<td></td>
</tr>
<tr>
<td>Tunguska upper</td>
<td>132</td>
<td>818</td>
</tr>
<tr>
<td>Tunguska lower</td>
<td>137</td>
<td>849</td>
</tr>
<tr>
<td>Piasiga</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Khatonga</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Olenek</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Lena</td>
<td>2071</td>
<td></td>
</tr>
<tr>
<td>Vilui</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>Aldan</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Jana</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>Indighirka</td>
<td>669</td>
<td></td>
</tr>
<tr>
<td>Kovyma</td>
<td>744</td>
<td></td>
</tr>
</tbody>
</table>

Northern Basin of the Great Ocean; Eastern Declivity of Siberia, and of the Plateau of Mongol Tartary

<table>
<thead>
<tr>
<th>River</th>
<th>Length (km)</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anadyr</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Kambischata</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>Amoor or Seqalien (including the Szilka)</td>
<td>1833</td>
<td></td>
</tr>
<tr>
<td>Songari-Ula</td>
<td>620</td>
<td></td>
</tr>
</tbody>
</table>

Basin of the Sea of China, making a part of the Basin of the Great Ocean; Eastern Declivity of the Plateau of Tibet.

<table>
<thead>
<tr>
<th>River</th>
<th>Length (km)</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoang-Ho (the Yellow River)</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>Yang-Tse-Kiang (the Blue River)</td>
<td>2251</td>
<td></td>
</tr>
<tr>
<td>Hon-Kian</td>
<td>744</td>
<td></td>
</tr>
</tbody>
</table>

Southern Declivity of the Plateau of Tibet.

(a) Basin of the Sea of China, and of the Gulf of Siam.

<table>
<thead>
<tr>
<th>River</th>
<th>Length (km)</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me-Kong, or Cambodja</td>
<td>1860</td>
<td></td>
</tr>
<tr>
<td>Me-Nan</td>
<td>1550</td>
<td></td>
</tr>
</tbody>
</table>

(b) Basin of the India Sea.

<table>
<thead>
<tr>
<th>River</th>
<th>Length (km)</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrabaddy of River of Pegu</td>
<td>1798</td>
<td></td>
</tr>
<tr>
<td>Kon-Duen</td>
<td>930</td>
<td></td>
</tr>
<tr>
<td>Trampo of Booramputer</td>
<td>1240</td>
<td></td>
</tr>
</tbody>
</table>

Vol. I.—O o
BOOK TWENTY-FOURTH.

Declivities and Basins of the Interior of Asia.

(a) Basin of Lake Aral: Western declivity of the great central plateau.

<table>
<thead>
<tr>
<th>River</th>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syr Daria</td>
<td>110</td>
<td>1682</td>
</tr>
<tr>
<td>Amu Daria or Gihon</td>
<td>145</td>
<td>899</td>
</tr>
</tbody>
</table>

(b) In the Little Bucharia, towards the Kobi desert.

<table>
<thead>
<tr>
<th>River</th>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yerkend or Mheoscha</td>
<td>100</td>
<td>620</td>
</tr>
</tbody>
</table>

(c) Basin of the Lake of Baikal.

<table>
<thead>
<tr>
<th>River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selinga</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>471</td>
</tr>
</tbody>
</table>

Declivities of Western Asia, or of Caucasus—of Ararat—and of Taurus.

(a) Towards the Caspian Sea.

<table>
<thead>
<tr>
<th>River</th>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kur or Cyrus</td>
<td>46</td>
<td>285</td>
</tr>
<tr>
<td>Araxes</td>
<td>42</td>
<td>260</td>
</tr>
</tbody>
</table>

(b) Towards the Persian Gulf.

<table>
<thead>
<tr>
<th>River</th>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphrates (up to the gulf)</td>
<td>185</td>
<td>1147</td>
</tr>
<tr>
<td>Tigris</td>
<td>100</td>
<td>620</td>
</tr>
</tbody>
</table>

(c) Towards the Arabian Gulf, or Red Sea.

No river, and few rivulets.

(d) Towards the Mediterranean and Archipelago.

<table>
<thead>
<tr>
<th>River</th>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orontes</td>
<td>28</td>
<td>173</td>
</tr>
<tr>
<td>Meander</td>
<td>40</td>
<td>248</td>
</tr>
</tbody>
</table>

(e) Towards the Black Sea.

<table>
<thead>
<tr>
<th>River</th>
<th>Myriametres</th>
<th>English Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangarius (Sakaria)</td>
<td>40</td>
<td>248</td>
</tr>
<tr>
<td>Halys (Kizil-Irmak)</td>
<td>54</td>
<td>335</td>
</tr>
<tr>
<td>Phasis or Rione</td>
<td>21</td>
<td>130</td>
</tr>
</tbody>
</table>

Proportion of these rivers. In giving an account of all the rivers laid down in the maps of Asia, we have formed the following estimate of the proportional volumes, or, to speak more exactly, of the surfaces of the running waters of that part of the world.

1.00

The total taken as unity

The rivers of Siberia { flowing to the north, are as

0.31

The rivers of China and Chinese Tartary

0.15

of all India

0.27

of the centre of Asia

0.06
The rivers of the Turkey in Asia

. of Persia (with Armenia)

. of Arabia

In order to form a conclusion from these data, in regard to the dryness of one country compared to another, we must consider their respective surfaces. Arabia, for example, is certainly much drier than Persia or Turkey, but India and China are not less copiously watered than Siberia. It is the smaller extent of surface of land in proportion to that of the streams, in any natural division, that indicates their comparative dryness.

The continent of Asia, forming a considerable body of land, and but little intersected by seas, ought naturally to contain in its interior great accumulations of water. It contains, in fact, the largest lake known, viz. The Caspian Sea. In general, the lakes of Asia are distinguished by the saline, brackish, or sulphureous nature of their water: many of them have no outlet. Asia Minor affords us in this respect a sample of the great continent, of which it makes a part. The interior of Anatolia and Caramania contains a series of salt lakes without any outlet; that of Tasta is very considerable.

Following the most elevated parts of Western Asia, we see the lakes of Van and Urnas, whose brackish waters extend over an immense space. In Syria, several lakes of this nature succeed each other along the chain of Libanus and Anti-Libanus. The most celebrated is the lake Asphaltites, or the Dead Sea, in Palestine, the waters of which are bituminous, and cover from 450 to 500 square miles. All the lakes of Arabia are formed by the confluence of rain waters and springs, which are either lost or absorbed in the sand. But these waters are of very limited extent. The deserts of Persia, similar in other respects to those of Arabia, present the same description of lakes, but larger. That of Zeré covers an extent of 1074 square miles, and receives a river whose course is 400 miles long, besides several small ones.

The western side of the plateau of Tartary is covered with salt lakes, without any outlet. The Caspian Sea covers an extent of 120,000 square miles. It is the largest salt lake known. The lake, or Sea of Aral, contains 9600 square miles. The Salt Lake, between the Aral and the Caspian Sea, those of Askal and Telegul, that of Balkashi, or Palcati, and a number of smaller lakes, either salt or brackish, distinguish this region, which declines by successive terraces from the centre of Asia towards the Caspian Sea, and which is opposed to another region entirely covered with plains, inclining from the centre of European Russia towards the same sea. These two basins appear to be both impregnated with salt. It has been concluded from thence, that the Caspian Sea formerly covered all these countries. This is possible with respect to the plains of Astracan, which are not much elevated above it. But it is not probable with respect to the countries situated to the east and north east of that sea; for the land rises considerably even between lake Aral and the Caspian, and still more between the former and the other salt lakes. Besides, there are some of these salt lakes far beyond the limits which the Caspian Sea in its greatest extent could have reached. The northern declivity of the plateau of Tartary contains numerous lakes, such as the Ebelain, the Janysh, the Karasuzkie, and others. The lake Czany, which has no outlet, is also brackish, which is indeed the case with all stagnant waters on a soil impregnated with saline substances. These masses of stagnant water are again found at a much more elevated level upon the vast plateaus of Mongol Tartary and Thibet. The high plains, surrounded by mountains, which form the country of the Calmucks, enclose a great many lakes without any outlet, which are fed by small streams or rivers. The Kirkir-nor, a lake which is found upon the mountains, from whence the Irysh and the Obi rise, receives a river whose course is from 70 to 80 leagues. The elevated plain between the mountains of Mongolia and those of Thibet, the two summits of Asia, is filled with very considerable rivers, which disappear in the sand, or feed lakes which have no outlet. Such is the Yerkend, which runs into the lake of Lop.
Thibet, or the southern and most elevated plateau of Asia, is singularly rich in lakes, a great number of which have no outlet. The Terkiri contains 2300 square miles. If we draw lines from Terkiri, one to the north of 220 miles, the other to the west of 470 miles, we shall find 23 other lakes, which have no outlet, or which flow one into the other. We remark amongst others, to the north east of Thibet, the Hoho-nor, or Koko-nor, of 1840 square miles, in a very elevated situation, which has no outlet.

Other lakes. | Lakes without outlets are therefore common to all the western and central parts of Asia, but not to the north of Siberia, nor to China, or India. The low parts of Siberia are covered with immense marshes, almost contiguous to each other. The large lakes of China are found in the middle of the low and marshy countries, and, in a geographical point of view, are only remarkable from their contiguity. They seem to confirm the tradition of the Chinese, that a part of this country has been recently left by the sea, or rather by two long gulfs formed by the rivers Ho-ang-ho and Yang-tse-kiang. The two peninsulas of India have no remarkable lakes nor any without outlets. This is a proof that the land throughout has a continued declivity.

Plains of Asia. | From this view of the hydrography of Asia it appears that this continent is entirely different from America, and contains but very few of those low plains which the ocean formerly covered. Asia presents, without doubt, some plains of this kind, particularly an immense one along the frozen sea, a much smaller one in China, one at the opening of the Ganges, Tehama in Arabia, Mesopotamia, the plain of the Meander, and some others; but the immense majority of the plains of Asia are like vast platforms on the tops of mountains. Sometimes they are raised at certain distances, like terraces, beyond which are other mountains with their valleys; sometimes they are of considerable extent, preserving the same level, though slightly interrupted by local declivities. Hence the lakes without an outlet, and rivers which rise and disappear in the same desert; hence also those sudden changes from intense cold to insupportable heat, which we find on descending from Thibet into India, or from the interior of Persia towards the coasts. The sudden change of the level produces this effect, although the latitude may not have sensibly varied. The change of temperature which we feel in going from Switzerland into Lombardy gives us a faint idea of it. It is to the same conformation of the country that we must attribute those periodical and constant winds which blow even in the interior of Asia. I do not allude to the monsoons of India, which depend on the annual motion of the sun, but to that long duration of the same wind which we observe in countries at a distance from the tropics. This effect is probably owing to the absence of gulfs and seas, whose exhalation and currents might alter the nature of the wind, or change its direction. The chilling winds of Siberia ascend even to the summits of the centre; and if sufficiently elevated to pass the first chains, they may extend to the heights of Thibet. The wind from the east, charged with fogs, covers at once all the lower parts of China; but as we get farther into the temperate zone, all regularity in the united action of the sea and the atmosphere gradually cease. Thus, at Japan, cold and heat, storms and calms, succeed each other almost as rapidly as in Great Britain. China is liable to these variations in a less sensible manner than Holland, either on account of the greater humidity of the sea breezes, or the dryness of those which have passed over the land. In short, if we penetrate the temperate oriental countries, the seasons always become more constant, but colder in proportion as we approach the centre. Nearly the same changes are perceptible in going from the west to the east of Europe.

In northern Asia, there is another feature which strikes us as very remarkable, in comparing that region with the parts of Europe situated under the same latitudes. The cold of northern Asia always increases as we proceed towards the east. This augmentation is so great, that, upon the coasts of Tartary, situated under the same latitudes as France, the winter commences in the month of September. Several causes combine, without doubt, to produce this phenomenon. In the first place, there rise between Corea and the
countries upon the river Amoor, vast mountains covered with glaciers; a second, and still greater mass of mountains separates the Amoor from the Lena: all the coasts of the north-east are also extremely steep; and, we may add, that the seas which surround these frozen countries are almost always covered with thick and cold fogs, which intercept the rays of the sun. A third cause may be found in the absolute want of inhabitants, and consequently of cultivation. In eastern Siberia, according to the official reports, there is scarcely one individual to seven square miles. Nevertheless, these causes would not, perhaps, be sufficient, if we could apply a general rule which we have pointed out in treating of the theory of climates. We must consider the mass of air superincumbent on a continent as a whole, the general modification of which depends on all the partial modifications. If a continent extend far into the torrid zone, the mass of warm air re-acts upon the temperate mass, and communicates to it a part of its caloric, and, by dilating, forces it towards the north, and thus confines the limits of the cold. So that the countries toward the poles do not simply become cold, in the direct ratio of their latitudes. This increase of cold also observes an inverse ratio, to the extent of heated land contiguous to them on the south. Such is the reason why the neighbourhood of the immense mass of heated surface in Africa renders the temperature of Arabia, of Syria, and of Mesopotamia, hotter than it should otherwise be. In the winter season, the cold of North America is very piercing in the environs of the tropic. That part of this continent which extends to the south of the tropic of Cancer, is nothing in comparison with the remainder. Hence, there is no mass of warm air to re-act on the temperate and cold, so that the action of the cold mass receives no counterbalance. If we examine the map of Asia, we shall see the form of that continent contracting in breadth from China to Behring’s Straits, at which part the climate is no longer warm. The air in these countries, naturally cold, is rendered still more so by the influence of the frozen sea: the great Pacific Ocean is not adequate to counterbalance its effects, being itself cooled by a great number of icebergs which enter it through Behring’s Strait. These icebergs are often stopped between the Alentian Islands and Andrinow, and occasion the cold fogs with which this part of the sea is covered. They are afterwards carried by the general current of the ocean from east to west, that is, from America to Asia, where they accumulate in the gulf.

This unchangeableness of physical circumstances—these climates which no industry can sensibly ameliorate—these regular returns of the seasons—that certain repetition of the same mode of cultivation, and consequently of the same mode of living, must have an influence on the moral character of the Asiatics, as well in uniformly modifying their nervous and muscular system, as in exciting their imagination by the return of the same sensations. It contributes to render the wandering Tartar as invariable in his inclination for pastoral life as the Indian is in his servile indolence, and the Chinese in his indefatigable industry. Still we must not attribute to that cause alone the inmutability of character which we observe amongst the Asiatic nations. Hippocrates, who had but a partial view of the physical facts, is cautious of attributing to them an exclusive influence.

“If the people of Asia,”† says he, “are without courage, without energy, of a milder and less warlike character than the Europeans, it is in a great measure owing to the equality of the climate. The difference of heat and cold is not known there, the two temperatures unite one with another. The mind does not feel those sudden shocks, nor the body those quick changes, which give vigour, and even impetuosity to the character. But,” adds he, “another reason of the inactivity of the Asiatics is the nature of their political laws; they are for the most part governed by absolute monarchs, and whenever a man is not master of his own person, and does not participate in the legislative power, but is subjected to the sway of despots, he does not wish to pass for a brave man, because he knows that it would expose him to the greatest dangers. The subjects are obliged

* Page 191, of this volume.
† Hippocr. de Aerib. aquis, et locis, § 85—88, edition of M. Coray.
to go to war, to support all the inconveniences of it, and to shed their blood even far from their children, wives, and friends. All their exploits only tend to augment the power of their despot; dangers and death are the only rewards they obtain for their bravery. Besides which, they are compelled to see their property converted into deserts, either by the devastation of war, or the want of cultivation, so that, if there are found among them some courageous minds, they are prevented from the use of their energies by the nature of their political institutions. A proof of what I advance is, that those amongst the Asiatics who enjoy some political liberty, and who consequently labour for themselves, are comparatively warlike."

Errors of the
conquerors of Hippo-
crates. If Hippocrates thought himself obliged to make some exception in regard to the few Asiatic countries and nations that were known in his time, and amongst whom, the Sarmates, in the plains to the north of Caucasus, were the most northerly, as the Indians of the Penjab were the most easterly, what would he do now, when our geographical knowledge is so much more extensive? It would require all the enthusiasm of a physician or of a Hellenist, ignorant of the state of physical geography, to believe that Hippocrates has foretold the moral influence of the climate of Siberia, of Thibet, or China, of the very existence of which he was totally ignorant. How could Hippocrates have asserted, that the innumerable tribes of Tartars and Mongola, were less warlike than the Europeans!

True meaning of the word East, and Asia in Hip-
crates. In fact, the countries which this great writer includes under the name of Asia differ almost entirely from those which now form that part of the world; he comprises in Europe the Sarmates, although they dwell beyond the Tanais; he expressly places the Egyptians and Libyans in Asia.† It is then evident, that he understands by Asia, the southern and eastern parts of the world then known, and applies the name of Europe to the other half, i.e. the western and northern. Hippocrates, like Homer and many other ancients, distinguishes only two parts of the world; and he opposes the one as constantly to the other, as heat to cold, or dryness to moisture. Considering the matter in this point of view, we understand Hippocrates without difficulty, and we see the meaning of his assertion, that Asia in general enjoys a milder climate than Europe, and that all its productions are finer and larger.‡ We at once also perceive how vague and arbitrary the applications must have been which physiologists have made of a work of which they misconceived the most essential terms subservient to medical topography.

Courage of some Asiatics. We must not, therefore, assert that the Asiatics, without discrimination, are an effeminate and voluptuous people; but that such is the character of some nations of southern Asia; and from that number we must exclude the wandering Arab, the frugal Drusian, the energetic Birman, the ferocious Malay, and the unsubdued tribes of Mahrattas.

Real influence of physical geography. We shall allow, however, that the people of Asia owe to geographical circumstances some political and moral features very different from those which exist in Europe. A wandering and patriarchal life is clearly pointed out by nature to many Asiatic nations. The unlimited power of the father of a family becomes necessarily a pattern for monarchical authority. The want of great towns peopled by an industrious class of citizens prevents these nations from possessing any idea of a social compact or political liberty; in some other parts of Asia, the uniform fertility of the soil, and the constant mildness of the climate, in recompensing too rapidly the most trifling labour, have stifled almost in its birth the energy of the human mind, which requires to be stimulated by want and obstacles. Both these modes of living are productive of a mental and bodily inactivity, which becomes hereditary, and appears to stamp the Asiatic race with a general inferiority in energy and courage. This mental torpor subsisting in combination with some vices,

Religion. pus, mild, and hospitable feelings, keeps alive also the empire of religious superstition, under the yoke of which we find all the eastern and central parts of Asia languishing; whilst the Christianity of the Greek church slowly penetrates by the north, and Mahometanism still flourishes in the western regions. Polygamy, supported by the same spirit of routine throughout Asia, with the single exception

* De Acr. aquis, et locis. § 89. † Ibid, § 76. ‡ Ibid, § 72, 73.
of Japan, debases family connections, and deprives life of its endearments, by taking from the female all consideration and influence; at the same time, being adverse to the laws of nature, it diminishes population, and deteriorates the human race.

This immobility of character is not a phenomenon peculiar to Asia. Whenever nature is more powerful than industry, whether for good or for bad, man receives from the climate an invariable and irresistible impulse. Have the shepherd of the Alps, the fisherman of the Archipelago, the wandering Laplander, and the cultivator of Sicily, changed their character? The only difference is that in Asia, where the nations are exhibited on a larger scale, the phenomena of civilization and barbarism strike us with greater force.

The very same circumstance assists in explaining why great and extensive empires are more common in Asia than in Europe. It is not enough to say that the great plains with which Asia abounds, give the conquerors an easier access. This only holds good in the central parts; but how many inaccessible mountains, how many large rivers, and immense deserts form the natural bulwarks, and eternal barriers of other Asiatic nations! When once an Asiatic nation profits by its local circumstances, it is as difficult to be conquered as an European people. The Druses, the Kurds, and the Maharrattas, are not the only examples; we can quote one still more illustrious. The chain of mountains of Assyria to the north-east of Babylon, which Alexander had no difficulty in passing, became a bulwark for the empire of the Parthians, before which the legions of Trajan himself were routed. The great conquests in Asia have arisen from another cause, and that is, the great extension of the same nations. The capitals of Hindostan, of China, or of Persia being given up to one conqueror, the immense multitude of tribes connected by speaking the same language, mechanically submit to the same yoke. These great empires once established, the succession of one to another becomes almost perpetual, from reasons purely moral and political. The nations of Asia, too numerous and too disseminated, do not feel the ardour and energy of true patriotism; they furnish their chief with troops, but without zeal or energy, and they change their masters without regret, or much struggle. The Asiatic sovereigns, shut up in their seraglio, oppose only a vain show of resistance to the audacity of the conquerors, while the latter are scarcely seated on the throne before they give way to the same effeminacy which procured the downfall of their predecessors. The organization of the armies, which are composed chiefly of cavalry, and the want of strong places, open the road to sudden and rapid invasions. Every thing combines to facilitate the total and frequent subjugation of those vast empires of the east.

But this state of things is so little founded upon the physical geography of Asia, that we now see India divided into more than 100 sovereignties; Persia in part dismembered, and Turkey in Asia ready to fall in pieces. Ancient history informs us that all the regions of Asia were originally divided into numerous small kingdoms, in which the will of the monarch found limits in the rights of the nation. Asia has seen several republics. The resistance which Tyre and Jerusalem opposed to the conquerors of the world, was not owing, as Montesquieu† says, "to the heroism of servitude." The Persians of Cyrus were not slaves. The Scythians spoke the language of independent men to the conqueror of Darius.

The astonishing rapidity of political revolutions in Asia arises, however, out of one fact which is really dependent on its physical geography.

"In that part of the world," says Montesquieu,† "weak nations are opposed to strong; people warlike, brave, and active, border upon those who are effeminate, idle, and timid; the one must necessarily be conquerors, and the others conquered. Here we have the principal reason of the liberty of Europe, and the slavery of Asia." It is necessary to combine this just remark with another truth, proved by physical geography, namely, that Asia has no temperate zone, no intermediate region between very cold and very hot climates. The slaves inhabit the hot, and the conquerors the * Compare p. 261 and 264, in this volume. † Spirit of Laws. † Spirit of Laws. Book xvii. chap. 3.
elevated and cold regions. The latter are the Tartars, the Afghans, the Mongols, the Manthous, and others, comprised under the name of Tartars by the moderns, and Scythians of Asia by the ancients. Here we find a totally different physical and moral nature; courage animates their strong and powerful bodies, good natural sense is attached to their grosser fibres; they have no sciences, no fine arts, no luxury; their savage virtues are unpolished, morality is deeply engraven in the heart; hospitality to strangers, honour to an enemy, and a fidelity wholly inviolable, to their own nation and friends. To counterbalance these good qualities, they are addicted to war, or rather to pillage, and a wandering life, and live almost in a state of anarchy. Such were the Scythians; such are the Tartars. They defy the power of Darius; they gave a great and sublime lesson to Alexander the Great; they heard from a distance the victorious arms of Rome, but they did not feel their pressure. More than twenty times they conquered Asia, and Eastern Europe; they founded states in Persia, in India, in China, and in Russia. The empires of Tamerlane, and of Gengis-kan, embraced the half of the ancient continent. That vast nursery of nations appears to be now exhausted; few of the Tartars remain nominally independent; but they are still the masters of China, and rather the allies and vassals, than the subjects of Russia.

Limits of the cold and hot zones. | We must now notice the limits of the two zones into which Asia is divided in regard to their climate and productions. If we draw a line from Mingrelia, along Caucasus, round the Caspian sea, along the mountains which form part of the limit of Persia, towards Cashemire, across Thibet, then turning to the north-east through the northern parts, pass on to the north of Corea, we shall have nearly traced the limit between the hot and cold climates of Asia. Of course, the frontiers of each of the zones will sometimes be confounded; and upon the frontiers also, there will be climates similar to those of Europe, particularly in western Asia. Generally speaking, however, this line will point out the rapid transition from the hot to the cold.

Diversity of food. | Rice and maize are the food of the southern nations; millet and barley of the inhabitants of the cold zone; and on the borders of each we find countries of corn. Nature produces in the southern regions delicious fruits, and in some parts the strongest and most pungent aromatics; but the northern countries are deprived even of the productions of the orchards of northern Europe. The region inhabited by the rein-deer marks, in the north and north-east, the vast space which is, and which will long be inaccessible to all cultivation. The Tartars, the Mongols, and half the Persians, owe their taste for riding, robbery, and war, to the great number of animals they possess. In all the west, the camel is made use of for commercial and social communication; the elephant is useful in agriculture, in ancient times he was formidable in war, and had great influence on the ancient civilization of India. China, deprived in a great measure of the assistance of these different animals, has supplied the deficiency by the quantity of boats with which its rivers are covered.

Differences of dwellings. | The want of wood for building has obliged the inhabitants of the central plateau, and of the north of Asia, to lodge in tents covered with skins or stuffs, both of which are the produce of their herds. A similar necessity has produced the same result in Arabia. On the contrary, in India, and other countries, rich in wood, but particularly in the palm, small and slight houses were suitable to the indolence of the natives, as well as to the mildness of the climate. As both these kinds of habitations offer nothing firm and solid, the towns of Asia disappear like the empires of which they are the momentary centres. This general character of the Asiatic houses, necessarily excludes the taste for valuable furniture, pictures, and statues, so that the fine arts can never make any progress. On the other hand, the uniform influence of a climate, which imperiously determines the sorts of cultivation and food for each region, and the irresistible influence of religious superstitions, despotic laws, and servile morals, banishes from the soul of the Asiatic those animated and free emotions which in Europe inspire the breast that possesses a relish for literature and the sciences: thus the different regions of Asia afford, in

* See Book xxi. Zoological geography.
almost every part, some remains of a civilization upon which the physical advantages and disadvantages impress an irrevocable character; but in every part also, this civilization is only in a very inferior degree, in comparison with that which the people of modern Europe have attained.

We shall now describe, in the order of its great natural divisions, that vast portion of the world of which we have given a general outline.

NATURAL DIVISIONS OF ASIA.

I. Region of Caucasus

II. Region of Asia Minor

III. Region of the Euphrates and Tigris

IV. Region of Mount Libanus

V. Region of Arabia

VI. Region of Persia

VII. Region of the Oxus and of Lake Aral

VIII. Region of the great central Plain

IX. Region of the Obi, and Yenissei

X. Region of the North East

XI. Region of the River Amoor

XII. Insular region of the East

XIII. Region of the Blue River and of the Yellow River

XIV. Region of the sources of the Ganges

XV. Region of the Ganges

XVI. Region of the Indus

XVII. Region of the Decean

XVIII. Region of Chinese India

[Government of Caucasus;
Abassia; Circassia;
Georgia, &c. Daghestan;
Shirwan.
Anatolia; Caramania;
Sivas; Trebisond;
Islands of Cyprus, Rhodes, &c.
Armenia;
Kurdistan;
Mesopotamia, or Al-Djesira;
Babylonia, or Irac-Araby.
Syria with Palestine.
Arabia.
Persia.
Great Bucharia;
West Turkestan;
The Steppe of Kirguis;
Turcomania, or the country of Truchmenes.
Kalmuk Tartary;
Mongol Tartary; Little Bucharia.
Western Siberia.
Eastern Siberia, with Kamptchatka.
Chinese Tartary, with Corea.
Kurile Islands, Tchoka and Jesse.
Islands of Japan. Loo-Choo, Formosa.
China Proper.
Thibet.
Eastern Hindostan.
Western Hindostan.
Peninsula of India, on the west of the Ganges, with Ceylon and the Maldivian Islands.
Peninsula of India beyond the Ganges;
Irman empire; Siam; Cochin China;
Malacca.]

In this plan of division we have sought the most luminous and agreeable method of studying the topography of Asia, and connecting the particular descriptions. This is the reason why we have not been very scientifically strict, and have often classed in one group countries which have little interest, or are little known.

Vol. I.—P p
CAUCASIAN COUNTRIES.

Georgia, Abassia, Circassia, Plains of Kuben, Daghestan, and Shirwan.

The regions bounded by the Caspian Sea on the east, on the south by the rivers Kur and Bione, or Phasis, on the west by the Black Sea and the Palus Moetis, or sea of Azof, and on the north by the rivers Manitsch and Bonna, form a kind of isthmus which connects Europe with Western Asia, and across which Mount Caucasus extends like an immense wall.

The breadth of this isthmus, according to the best Russian authorities, is about 400 miles, between the mouths of the Don and the Kooma; about 756 between the straits of Caffa and the peninsula of Absheron; and about 350 between the mouths of the Phasis and the city of Derbend.

The etymology of the name of Caucasus, so celebrated in history and poetry, is not agreed upon; the most probable opinion is, that it is a compound of a Persian word Cas, signifying "a mountain," and a Scythian word Caspi, that is "a white mountain." This opinion is supported by a passage of Erasthenes, where he informs us that the natives of Caucasus called it Caspio; but Pliny says that the native name was Graucus, which may be considered as Gothic. The Caucasian nations seem at present to have no general denomination.

The ancients compared Caucasus to the Alps in point of elevation. They have, indeed, some just resemblance, for the middle of the chain is covered with glaciers, or white with eternal snows. Reineggs considers the Elboors, which is the highest summit of Caucasus, as only 5900 feet above the level of the Black Sea.

On the south, Caucasus joins the numerous chains of Mount Taurus, which extend through Western Asia; to the north, it borders almost upon the vast plains where the Sarmates once wandered, and where the Cossacks and Kalmucks now roam; towards the east, its rugged precipices bound the narrow plain which separates it from the Caspian Sea; on the west, the high chain terminates abruptly towards Mingrelia by rugged mountains, called the Montes Ceraunius by the ancients. The inferior chains then stretch along the coast of the Black Sea, and form the low mountains which separate the Circassians from the Abassians, and which the ancients call Montes Coraxici. Amongst the summits of Caucasus we distinguish the Elboors, or rather Albordj, in the country of the Ossetes and the Bishbarnak, or Five-fingered Mountain, in Lesghistan. There is a promontory which runs into the country of the Circassians, so rich in fine horses, which was called among the ancients Montes Hippici. Its name among the moderns is Besh Tau.

The two principal passages of Mount Caucasus are mentioned by the ancients under the name of the Caucasian and Albanian gates. The first is the defile which leads from Mosdok to Tiflis. It is the narrow valley of four days journey, where, according to Strabo, the river Aragon, now called Arakul, flows. It is, as Pliny calls it, an enormous work of nature, who has cut out a long

† Rommel, Caucas Strabonianis Descripto, p. 62. † Pliny, VI. 17.
¶ Gmelin, Travels, III. 34, 35.
** From Bordj, or Borg, a Persian word signifying a mountain. (Wahl)
†† Strabo, XI. 765.
CAUCASIAN COUNTRIES.

opening among the rocks, which an iron gate would be almost sufficient to close.* It is by this passage, according to Piscus, that the barbarians of the north threatened both the Roman and the Persian empire.† The ancients gave different names to the strong castle which commands this passage. It is now called Dariel. The Albanian passes of the ancients were, according to common opinion, the pass of Derbend, along the Caspian Sea. But, if we compare with care all the records which the ancients have left us; if we reflect that in no descriptions of this pass is the Caspian Sea mentioned; if we remember that Ptolemy expressly placed the gates on the entrances of Albania, near the sources of the river Karius, which, according to the whole tenor of his geography, must be the modern Kois; that the same geographer makes the Didari neighbours to the Tusci, near the Sarmatian passes, and that these two tribes, under the names of Didos and Tushes, still dwell near a defile passing through the territory of Ooma-Khan, along the frontier of Daghestan, and then traversing the district of Kagmasharie,‡ we shall conclude that to be the place where we must look for the Albanian or Sarmatian passes, which have hitherto been misunderstood. The name of the Caspian pass belonging properly to a defile near Teheran, in ancient Media, is vaguely applied by Tacitus and some other ancient writers, to different passes of Mount Caucasus. But we must distinguish from all these passes which traverse the chain from south to north, the Iberian passes, or the defile of Parapaux, now called Shaoorapo, by which they pass from Imeritia into Kartalinia, a defile in which, according to Strabo, there were precipices and deep abysses, but which, in the 4th century, the Persians rendered practicable for armies.§

A tradition very generally prevalent among the natives of these countries is, that a great wall had in former times protected Caucasus from the invasions of the barbarians. This great work is sometimes attributed to Alexander, and sometimes to Nonchyrvan; the remains of a wall may be seen, but it is very uncertain whether these belonged to a wall which traversed all the isthmus, or rather made a part of some local fortifications.||

Both the ancients and moderns agree that the Caucasian countries possess mines of gold, silver, and iron. Several rivers carry down gold dust mixed with the sand, which, being stopped by sheep skins placed on purpose, furnishes an explanation of the fable of the golden fleece.¶

The summits of Caucasus are formed of granite. On each side the granite has schistous mountains joining it, and these are followed by calcareous. The chain is said to present a great regularity, and its direction in a straight line renders the assertion probable. But the calcareous mountains appear to occupy more space on the southern side, whereas the chain is extended by a greater number of branches. On the northern side, the base both of the calcareous and schistous mountains is covered by vast sandy downs or plains which disappear by degrees in the barren plain called the Steppe of Kooma.

Caucasus is one of the most interesting regions of the globe, both for its natural and its civil history. We find here every climate of Europe, and every kind of soil. In the centre, we have eternal ice and barren rocks, inhabited by bears and wolves, also by jackals,** chaus, (an animal of the genus Felis,**††) the wild goat of the Caucasus, (Capra Caucasia,**‡‡) which delights in the rugged summits of the schistous mountains; the chamois, which, on the contrary, prefers the lower calcareous mountains; hares, weasels, polecats, ermines, argalis, and an infinite number of birds of prey, and of passage. To the north are hills fertile in corn,∗ vegetables.

and rich pastures where the fine Circassian horses are bred. Farther on are sandy plains, covered with large plants, but mixed with low ground of a more clayey soil. To the south you find magnificent valleys and plains, under a more salubrious climate, displaying all the luxuriance of an Asiatic vegetation. Wherever the declivity inclines towards the west, the east, or the south, cedars, cypressess, savin, red junipers, beech trees, and oaks, clothe the sides of the mountains. The almond, the peach, and the fig, grow in abundance in the warmer valleys, sheltered by the rocks. The quince, the wild apricot, the willow-leaved pear tree, and the vine, abound in the thickets and woods, and on the borders of the forests. The date-tree, the jujuba, and Christ's thorn, are indigenous in this country, and prove the mildness of the temperature. The low marshy grounds are adorned with very fine plants, such as the *rhododendron ponticum,* and the *azalea pontica.* The cultivated and wild olive trees, the oriental plane, together with the male and female laurels, embellish the coasts of the Caspian sea. The high valleys are perfumed by the syringa, the jessamine, several species of lilies, and the Caucasian rose.

The Caucasian isthmus contains an extraordinary number of small nations. Some are the remains of Asiatic hordes which, in the great migrations, passed and repassed these mountains; but the greater number are composed of indigenous and primitive tribes. Each of these tribes preserves its particular language, the idioms of which might probably be traced back to the very earliest period. The Caucasian physiognomy combines the characteristic features of the principal races of Europe, and of Western Asia. The domestic animals, and cultivated plants of these two parts of the world are found in Caucasus, or in its environs. The writings of Moses, the allegory of Prometheus among the Greeks, the famous expedition of the Argonauts, and several traditions of the Scandinavians, all combine to make us consider this country as one of the points from whence the human race extended itself over a great part of the globe. But these questions are beyond the limits of this work. We shall class the Caucasian nations under seven great divisions, corresponding to the seven principal languages which they speak, namely,

- *Georgians,* properly so called.
- *Imeritians.*
- *Gurians.*
- *Mingrelians.*
- *Suanes.*

II. The Abassians, subdivided into several tribes.

III. The Tcherkesses, or Circassians. († *Circassians of Kuban.*
- *Circassians of Kaberdia.*

IV. The Ossetes, divided into different tribes.

V. The Kistes, or Tchetchenzes, with the Ingoochies and other tribes.

VI. The Losghians, divided according to their eight dialects.

VII. The remains of the Tartars, Mongols, Huns, and other foreign colonies scattered over this country.

Georgia. | Georgia, properly so called, demands our first attention, being situated in the centre of the isthmus. The Russians call this country Gruasia, and the Persians Gurgistan; but the native writers† comprehend the four kingdoms of Kartuel, Imeritia, Mingrelia, and Guria, under the general name of Iberia or Iervia. It appears that their classical denomination is unknown to the greater part of the inhabitants. According to some modern authors, the name of Georgians comes from that of the great river Kur, (Kor, Kyros, or Cyrus,) which waters this fine country, and they ought rather to be named Korgians, or Kurgians.

Principal divisions. | The divisions which took place in the middle age between the princes of Iberia gave rise to three kingdoms, that of Imeritia, from which Min-

* Guldenstetd, i. 435, &c.
† Eugene, archimandrite, description of Georgia, in the Annales des Voyages, xii. 74.
CAUCASIAN COUNTRIES.

Grelia and Guria were afterwards separated, and those of Kartalinia, or Kartuel, and of Kachetia.

Imeria has sometimes been known under the name of Turkish Georgia, and the remainder has been called Persian Georgia. It is to this latter portion that recent authors, particularly the Russians, confine the name of Georgia. This country is subdivided into five provinces, namely, upper Karduel, middle Karduel, lower Karduel, Kacheti and Somachet. Heracles, a valiant prince, formed about 30 years ago, an independent state, which now, under the name of Grusia, is incorporated with the Russian empire.

The Kur, which waters the great valley of Georgia, is increased by | Kern. the Aragui, the Iora, probably the Iberis of the ancients, and the Alasen, which is their Alazo. When it reaches the plains of Shirvan, its waters are mixed with those of the Aras, or Araxes; the two rivers form several branches, sometimes united, and sometimes separated, so that it appears uncertain, as it was in the time of Strabo and Ptolemy, whether their mouths were to be considered as separate, or if the Kur was supposed to receive the Aras.

Georgia enjoys a very mild temperature, and in general is very healthy. It presents an agreeable variety of mountains, forests, and plains. All the common | Productions. productions of the Caucasian countries abound in it; but the inhabitants are not numerous, and neglect the gifts of nature. In the dry season, which generally commences in the month of May and ends in November, the people of Georgia are occupied in watering a soil which yields them, without much labour, the most delightful fruits.

They cultivate wheat, corn, or Holcus bicolor, and millet. Peaches, apricots, almonds, quinces, cherries; figs, and pomegranates, flourish with very little care. The vines are abundant, and of a good quality, and the wine that is made from them is sent to Persia. That of Kacheti does not keep well, because it is badly made, but it is strong, and sparkles in the glass. Apples, madder, and cotton are cultivated with care; they boast of their management of bees; their horses and horned cattle equal the best European breeds in size and beauty; and the sheep with long tails afford excellent wool.* The finest oaks and firs are suffered to rot without being applied to any use.†

The Georgians, or rather the Iberians, a native people of Caucasus, speak a language radically different from all other known languages, and in which, in the twelfth century, a great many historical and poetical works were composed.‡ They imagine, however, that they are descended from a common stock with the Armenians. They are in general handsome, well made, and active; nor are they deficient in natural understanding, but selfish, and addicted to drinking. They have adopted in some degree the Persian costume, because their nobles were often brought up at the Persian court, and the people served as guards to the sovereigns of that country. The Georgians are rarely without their arms; even in the fields they carry by their sides guns and daggers, to be in readiness against the robbers of the neighbouring mountains.

The wretched state to which wars and revolutions have reduced this fine country has prevented the natives, notwithstanding their taste for commerce and travelling, from having any very considerable trade. The Armenians act as their agents. Their women, whose beauty is not less celebrated than that of the Circassians, although their skin is not so white nor their figure so graceful, have imbued a spirit of licentiousness and of corruption from their frequent intercourse with strangers. The girls sold as slaves become victims of their beauty. A great many †Dwellings. Georgians inhabit huts that are half sunk in the earth. In Kacheti, a province whose civilization has made more progress, we find a kind of house formed of a slight wooden frame, walls made of bundles of osiers covered over with a mixture of clay and cow-dung, and surmounted by a roof of rush. † A room thirty feet long and twenty broad, where the light comes in at the door; a floor upon which they dry madder

* Guldenstedt, I. 343, 361, 369, &c. Reineggs, II. 109, 120.
† Reineggs, II. 45, &c.
‡ Eugene, Annales des Voyages, XII. p. 86, 90.
and cotton; a little hole in the middle of the apartment, where the fire is placed,
and above it a copper cauldron attached to a chain, and enveloped with a thick
smoke, which escapes either by the ceiling or the door: This is the general structure
of these houses. We find in almost all the villages, towers which, at the approach
of the hordes of Lesghians, serve as an asylum to the women and children.

Towns. | Tbilisi, or Tibilis, the capital of all the country, generally reckons
about 20,000 inhabitants; there are twenty Georgian churches, fifteen Armenian,
one Catholic, and a Persian mosque. They are very little engaged in manufactures,
and those of the most simple kind. At Mcheti, the ancient residence of the Kings,
there is a very handsome cathedral, founded about nine centuries ago. The town
of Tbilisvel is peopled with Jews; that of Gori with Armenians.

The population of Georgia may be computed at 300,000 individuals, two thirds
of whom are indigenous, and attached to the Grecian ritual. The Armenians and Jews
are very numerous.

Constitution
and civil state. | Before the royal family, whom some writers assert to be descended
from a Jew called Bagrat, and others from a Persian nobleman named
Pharnabazes, had yielded up its rights to Russia, Georgia was a feudal monarchy,
which several excellent princes in vain endeavoured to consolidate and improve.
The princes and the nobles formed two distinct classes. The first paid no contribu-
tions, but during war they were obliged to follow the king with their vassals. The
law suits which were carried on between them were judged by the king. The nobles
paid certain taxes to the king and to the princes. Although they dwelt in thatched
cottages, their pride was equal to their poverty and their ignorance.* The people
lived in the most abject slavery; they were sold, given, and put in pawn, like do-
menial animals.† All who were capable of bearing arms were soldiers; each noble-
man commanded his respective vassals; but the king named the commander in chief.
The revenues of the sovereigns consisted in the fifth part of all the productions of
the vineyards, fields and gardens; also the duties upon all exports and imports, as
well as the produce of the mines, which were but slightly worked.‡ This country
is now a province of Russia.

The Imer-
tians. | The Imeritians, whose name is derived from that of the Iberians,
join the Georgians on the north-west, and speak the Georgian dialect.

Their dress consists of little caps, peculiar to them; long hair; a shaved chin,
mustachios very much drawn up; clothes scarcely reaching the knees, and forming
a great many folds upon the haunches; ribands rolled round the calves of their legs;
and large girdles. From twenty to twenty-five thousand families live under the
authority of a hereditary czar, who has often acknowledged himself the vassal of
Russia. The Imeritians live along the sides of rivers and in woods. On account
of its elevated situation, the country remains for a long time covered with snow.

Productions
of Imeria. | The valleys are marshy. The care of cattle, of bees, and of silk-
worms, is here carried to a greater degree of perfection than in all the
other countries of Caucasus. A single vine supplies a whole family with wine.§
The indolence of the inhabitants allows the rich gifts of the soil and climate to
perish in a most useless manner. It was here that in old times, the Rione or Phasis
had 120 bridges over it, and where there was a continual transfer of merchandise,
that united in some measure this river to the Cyrus, and consequently the Caspian to
the Black Sea; it is now crossed only in small boats of the hollowed trunks of trees.

Towns. | We still see the ruins of Sarapana, now called Schoriban, and the town
of Cotatis, or Kutaia, probably the ancient Cytaea, near which the czar resides in a
kind of camp. The thriving commerce of the Imeritians is generally confined to
two places, situated upon the Rione at Oni, and at Choni; grain, horses, and copper
utensils, are exchanged for clothes and stuffs. At Zadia, towards the eastern
side, the hematites is found from whence iron is extracted, of which different uten-
sils are made.

Towards the north, is situated Radsha, the principal district, which can raise

* Reinegg, II. 53, 123.
† Guldenstede, I. 351, 354.
‡ Ibid. I. 351, 356.
§ Reinegg, II. 47, 50. Guldenstede, p.s.s.iiu.
about 5000 soldiers. The villages of the plain are of great extent; in those of the mountaineers the houses are built close on one another. Those of the first people are made of hurdles of osiers, those of others are of boards.

The Gurians inhabit the country situated on the borders of the Black Sea, to the south of the Phasis. Ruined by the neighbouring pashas, they pay no attention to navigation or fishing; and do not profit by any of the numerous advantages which are offered them by nature. Guria enjoys a healthy temperature, a soil suitable to agriculture and to the breeding of cattle, and a climate in which lemons, olives, and oranges flourish. Of all the environs of Caucasus, it is only here that these fruits ripen. This people, as well as their language, have received mixtures from other nations; and besides the Turks, whom their prince, called the Guriel, is obliged to respect, there are also to be met with Tartars, Armenians, and Jews.

On the coast of the Black Sea, below the Gurians, are the Lazians, which signifies in the Turkish language, people belonging to the sea; it is probable that these are the remainder of the ancient Last, who, in the time of the Byzantines, were established in Colchis.

The Mingrelians dwell beyond the Gurians, and by the side of the Imeritians, in the same country which the Colchians once possessed, and afterwards the ancient Lazians. Ancient cities in ruins, Turkish or Russian fortresses upon the border of the sea, vessels loaded with slaves which sail for Turkey, princes and nobles who pillage wherever they go, women who betray their husbands, contests between all the villages, and frequent risings of foreign armies—now form the picture of Mingrelia. The costume of these people consists of a cap of felt, their feet either bare or enveloped in skins, which afford poor protection against the mud of this damp country, with their shirts and clothes extremely dirty: Such is the appearance of the men, surrounded by women who lead a life of debauchery, often eat with their fingers, and bring up their children to lying, pillage, and marauding. The following is the manner in which a Mingrelian nobleman procures slaves. During a sudden attack, or a precipitate retreat, he watches one of the enemy whom he can dismount, and whom he can in this manner make his prisoner, and with a cord attached to his girdle, he binds the prisoner as soon as he has got him off his horse. The sale of slaves also takes place during peace; for in Mingrelia the master sells his servant, the father his son, the brother his sister.

Besides slaves, the Turks go to Mingrelia to purchase silk, calico, furs, and particularly the skins of the beavers; and also red and white honey. They give in exchange sabres, bows and arrow, ornaments for the horses, clothes, coverlids, and even copper and iron; for the ancient possessors of the golden fleece do not at present work any mine. Near Iskuriah, or Isgaour, the ancient Dioscurias, on the north side of the country, and towards the frontiers of the province of Odishé, is the principal mart for trade. Turkish money passes there. The port of Anarghia, situated lower, and where Mingrelia properly so called commences, is also the resort of great commerce.*

Mingrelia is still as damp, hot, and subject to fevers as when Hippocrates described it under the name of Colchis. In summer there are pestilential diseases, which are destructive both to men and animals. Vegetation is very rapid, and all the fruits are produced without the care of grafting; but it must be allowed that their flavour is not always the finest. Chestnut and fig-trees are in abundance.† The wine alone can be praised, which is wholesome and full of spirit. There is also rice, millet, and gom. The Mingrelians do not now cultivate flax,‡ which, in the time of Herodotus and of Strabo, furnished the Colchians with the means of an important manufacture, of which Chardin observed some remains. The only object to which they appear to give any attention is the management of

* Friebe, Trade of Russia, I. 128 sqq. (in German)
† Reinecke, II. 29, sqq. Guldenstedt, I. 400, 408.
‡ Ibid. II. 59.
bees. The honey of some cantons, where the *Azalea pontica* abounds, is bitter,* as was observed by Strabo. It was beyond the Phasis, in Guria, that Xenophon found a kind of honey which caused a species of delirium in those who eat of it, an effect which Pliny attributes to the rhododendron, a shrub which abounds in the forests where the bees swarm.†

The Mingrelians are very superstitious: the missionaries of the 17th century were unable to suppress a *fete* which was celebrated in honour of an ox, and which reminds us of the worship of Apis. The prince of Mingrelia assumes the title of *Dadian*, or master of the sea, though he possesses not even a fishing boat: he generally moves about with his suite from place to place, and his camp is the scene of licentiousness as well as poverty.‡ The nobleman of Mingrelia are addicted to the chase, and they are acquainted with the art of training birds of prey, which they make use of to kill the game. According to a Mingrelian proverb, a good horse, a good dog, and a good falcon, are three indispensable things for human happiness. The chase furnishes the Mingrelian with abundance of venison. In their repasts, they also eat pheasants, with which the country near the Phasis abounds. The Mahometans are in great numbers in Mingrelia; they regard with great indignation the quantity of wine and pork which are produced, while they are unable to procure good bread. From the east of Odeshe and Mingrelia, is situated the small Mingrelian province of Loshkum, where the inhabitants live in huts of stone.

Suanes. A large ravine, which extends from south to north, separates the last mentioned country from that of the **Suanes**, a people who live near the Elboors, the last summit of the Caucasus. The Suanes, whose name is derived from a word signifying in their language the inhabitants of the high mountains,§ are at present free, and have no connection with the Georgians except in their dialect. Nothing can equal their want of cleanliness, their capacity, and their skill in making weapons. The women cover their heads with a linen red head-dress which is made of such a manner, that only one of the eyes can be seen.|| This is probably the origin of the geographic fable of a nation of one-eyed people, or Monommati. We may also consider the *Phthiropaghi*, or the eaters of vermin, and who, according to Strabo, inhabit this country, as the progenitors of the Suanes. The almost inaccessible mountains of slate which separate Mingrelia from the countries of the Abassies and Basians, and which are extended to the confines of this last province, place the Suanes out of all danger. They consist of about 5000 families, who live there without a chief and without a prince. Dreaded formerly by the Byzantine empire, they are still renowned for their savage valour; a tall and commanding figure contributes to make them appear formidable. They know the use of the musket; they can make powder, and all kinds of weapons, for which their mines furnish them with materials. We find among them not only lead and copper, but vases, and chains of gold and silver.

The Abassies. The **Abassies**, or Abasgians, dwell above the Suanes and Mingrelians, in a country situated at the foot of the Caucasus, at the north-west extremity, partly upon the borders of the Black Sea, where there are several ports and strong places belonging to the Turks; and partly towards the source of the river Kuban, where the mountain Elboors rises, which overlooks the six tribes of Abassians, called by the Tartars *Altikese*. The first part is great Abassia, a very fertile country, although mountainous; the second is little Abassia, where the inhabitants, oppressed by their neighbours the Circassians, are obliged to seek an asylum in the defiles of the mountains, where they are gradually lost.

The Abassians, who give themselves the name of *Abane*, are very well made, hardy, and active: their national physiognomy is very remarkable, they have an oval face, a head very much compressed on each side, a short chin, a large nose, and hair of a deep chestnut colour. The Greeks formerly knew them as cunning and for-

midable pirates, by the name of Asach. Under the name of Asagi they were described amongst the Byzantines as infamous for their traffic in slaves. The Circassians one day invited the Abassian princes to an assembly, and after having won them over, they murdered the chiefs of this free people.

Since that period, the Abassians, abandoned to civil wars, have lost the little civilization which they had received from Constantinople. We find, however, in the celebration of Sunday, a slight trace of Christianity which they formerly imbibed. Some of them wander peaceably through their forests of oaks and alders, which cover the country, while others support themselves by a little agriculture; all, however, are more or less inclined to robbery, and sell each other to the slave merchants. The language and customs of the Abassians very much resemble those of the Circassians; while Pallas affirms that their language appears to have no relation with any known one. It is supposed that there are mines in those parts, but they are not worked. The situation of the inhabitants is adapted to navigation and fishing, but they do not take advantage of it.

The chief trade of the Abassians consists in mantles of cloth and felt. Commerce, in skins of foxes and pole cats, in honey, in wax, and box-wood, of which the Turks make considerable purchases. The Turkish and Armenian merchants, who bring them salt and stuffs, are obliged to be constantly on their guard against the attacks of these perilous savages, who, whenever they are strong enough in numbers, rob friends and enemies without distinction.

Abassia is, in general, covered with forests, where the heat and moisture keep up an abundant vegetation as in those of America; and the convolvuli stifle the trees under their twining branches. It is not true that Spotuchkak is the only good port which that long coast possesses. Ghelindijk also affords a vast and deep harbour. But Rizounds, the ancient Pityus, formerly flourished by its commerce. Mamai appears to be of the first importance amongst the towns or villages of the country. The tribes of the Abassians are in great numbers. We particularly knew the Besibilis, the Shapsiches, and the Natschehas. The first inhabit a mountainous and inaccessible country near little Abassia; the Shapsiches dwell further towards the west, among whom the greatest magnificence is generally their chief prince. They make incursions as far as the town of Anapa, where they harass the Turks. The Natschehas, the strongest and the most considerable of the tribes, dwell nearer to the coast. Springs of naphtha are found similar to those which are seen in the southern part of Caucasus.

To the north of the country of the Abassians we meet with the mouths of the Kuban, which, flowing from the central part of Caucasus, receives in its course all the water of the western branch of that chain of mountains. The sandy plains which extend to the north of this river furnish it with more. Its two mouths embrace the island of Taman, which is flat and marshy but fertile, and in which the town of Panagoria, the ancient Phanagoria, attracts a little trade. It belongs to the Russians, as well as the whole plain to the north of the Kuban, and the south-west of the sea of Azof. These countries, in which there are beds of salt and sand alternating, with calcareous stones and shells, have hardly any vegetation except on the borders of the rivers. These deserts, the uniformity of which is only interrupted by the clumps of willows, hedge plants, and osiers, or by a few elms and asp and trees, now bear the name of the country of the Tchermor, Cossacks of the Black Sea. These warlike tribes are the remains of the celebrated Zaporogian Cossacks, of whom we shall give an account in our description of Russia.

The middle and eastern part of that sandy plain which separates the sea of Azof from the Caspian Sea exactly resembles that which we

† Guldenstedt, I. 464, 467.
‡ Pallas, Voyage dans la Russie méridionale, I. 372.
§ Peyssonel, Traité du Commerce. II.
¶ Guldenstedt, Journal de Pétersbourg, 1. 1776, May, p. 16.
** See the plan in the Annales des Voyages, V. 210.
*** Georgi, Description statique de la Russie, II. 911. Pallas, Guldenstedt, &c.

Vol. I. — Q q
have just described. It is particularly along the rivers Manitsh and Koimes, that we find plains entirely dry, or slightly moistened with brackish water, containing a great number of shells, and a soil very little elevated above the level of the two neighbouring seas. It is by following the beds of these two rivers that we may discover the traces of that ancient strait, which several learned men have imagined united the Caspian Sea to the Palus-Mesotis; because, farther north, some hills rise which separate the Dvob from the Wolga; and more to the south, in approaching the sources of the Kuban and of the Terek, we find the soil gently rise, black earth covering the beds of sand, and the common vegetation of these climates replacing the same plants. We shall confine ourselves to this indication of facts, and of the possibility which may arise from them; a discussion upon the actual existence of this strait would be here out of place. Deficient in historical proofs, we readily submit to geologists and poets the consideration of ages anterior to history. This plain was known to the ancients in the same state as it appears at present. The different statements as to its breadth, are, like many other contradictions of the ancients, owing to measurements having been taken carelessly, and without instruments. And, lastly, the passage from whence it is so hastily inferred that, in the fourth century, the isthmus was covered with marshes, relates only to one marshy lake, called Bolokche, which is still in existence.

Government of Caucasia. All those low countries which extend to the east of the country of the Tchernomorskoit Cossacks, and to the north of the Kuban and the Terek, form the government, not long ago the province of Caucasia, which forms part of the Russian Empire. It is inhabited by different races of Caucasia and of Nogai Tartars. These last, being obliged to wander from pasture to pasture, live in hordes under the protection of the Russians. They cultivate the produce of their cattle, a little millet, or by some acts of plunder which opportunity offers. When caught, they have been sometimes punished by the immediate loss of an arm, or of a foot, separated on the spot, which savage treatment spread universal terror among these wretched wanderers. Many very often have given a most affecting account of the manner in which their relations were these mutilated individuals: they hasten to stop the blood, by bathing them in milk, and then conducting them into their huts, where they take every care of them. Cossacks. The Cossacks form the ruling people, of which the principal tribe bears the surname of Grebenki. A chain of fortresses protects the Russian empire against the invasions of the formidable nations of Mount Caucasus and Asia, those places, Kaliar upon the Terek, where there is a considerable town, reckons nearly 12,000 inhabitants; Mosok and Geogriskev are at present deserted places, and are daily improving in importance and civilization. Productions. Rice, fig-trees, and cotton, are much cultivated among the rigours of the winter, the quantity of snow, and still more the want of sunlight, render the existence of vegetables, even of the more hardy species, very painful. There are, however, in the vicinity of the Terek, a great many orchards and yards.

After passing the Kuban or the Terek, we find on the northern sides of the Caucasus the celebrated nation of the Circassians, whose real name is Tcherkess. They may be divided into two classes, the Circassians of Kuban, and the Circassians of Kabardia, sometimes called Kabardians. Name and origin. The Circassians of Strabo, the Ziges, or Zeches, or Zekkes of the Byzantine authors, were a Circassian tribe, since Zyg, in Circassian, signifies a man. The Osetes still call them Kassachi, which reminds us of the Kaschach, established, according to the Byzantine authors, and the annals of Nestor, in the tenth century.

* Dureau de la Malle, Géographie physique de la mer Noire.
† Georgi, Descrip. stat. II. 377.
‡ Prise, de Legat, apud Stritter, Memorie Popul. I. 513, in contradistinction with Pallas's first Travels, III. 374.
§ Georgi, I. c. 932, sqq. Guldenstedt, I. 152, 156; and Busching, Magasin Geograph. VI. 466.
1 Sa Sütter, Memorie popul. art. Zechchie.
2 Rommel Caucasus, p. 12.
in the environs of Caucasus. A similarity in the sound of Kerkeles in Strabo to Tcherkes, has determined both Pallas and Reineggs to consider that ancient tribe as the true stock of the ancient Circassians. What appears most in favour of this opinion is, that the Circassians are the original inhabitants of these countries.

The most remarkable of the Circassian tribes of Kuban is, without doubt, that of the Temrogol; they inhabit more than forty fortified villages, and can levy a force of 2000 men. To the east of the Temrogol the Beslenes live, a horde who lead a life of ease. Their neighbours are the Muscooks, who are good agriculturists, and breed cattle: they also profit by the fisheries, which their numerous rivers afford them. Tho Shagaski, below the Turkish fortress of Anapa, have a prince, who formerly possessed some ships on the Black Sea. The Circassians of Kabardia are but a half civilized nation. They inhabit a fertile country, situated on the northern side of that chain, bounded on the north by the river Terek, and on the east by the country of Kistes-Tchetetchenzes. It is divided into Great and Little Kabardia.

The Circassians of Kabardia are distinguished from all the people of Caucasus by their beauty and elegance. The men have a Heruclean figure, a small foot and strong wrist, and they manage the sabre with wonderful dexterity. The women are delicate, and possess a pleasing and graceful form: their skin is white, with brown or black hair; their features are regular and agreeable, and they pay that attention to cleanliness which heightens the attractions of beauty. This is what renders the Circassian women so much admired, even among Europeans. Some travellers assert that it is the colour of their hair, which has a slight tinge of red, that makes them so superior in beauty. The Circassian, prince or noble, that is to say, whoever is not a bondman, and who possesses a horse, is always armed with a poignard and a brace of pistols; and he rarely goes out without his sabre and his bow. The belt of the sabre is fastened round his body, and a helmet and cuisses cover his head and chest. This is, in fact, a faithful representation of a knight of the 10th or 11th century. The whole of Kabardia can fit out 1500 of these, cavalry, called Usias, and 10,000 peasants, or bondmen, equipped for battles, but the former, in consequence of continual hostilities among themselves, are very much weakened.

The soil of Kabardia is excellent, and well adapted to agriculture. The winters are nevertheless severe, and the heat is not of long duration. The inhabitants neglect the gifts of nature, and they derive no advantage from the fine forests of oaks, elms, and alders, which cover their hills; but they are said to possess mines of more valuable metals than iron and brass, which they make use of for their arms.

The Circassians build their houses with a slight wooden frame work, and hurdles painted white, and convey the water from the nearest rivulets with considerable skill by means of a canal. The inns exhibit a laudable degree of cleanliness. The peasants, or bondmen, and the prisoners of war, are charged with the care of farming, and looking after the cattle. They make use of large ploughs, to which are harnessed six or eight oxen. Hemp is one of the natural products of the soil. A great number of goats, sheep, oxen, and horses, form the principal riches of the Circassians. They also traffic in wool and wax. The horses are distinguished for their beauty, vigour, strength, and their agility. Each prince, or nobleman, marks his colts with a hot iron; if they are thorough bred; and whoever profanes that mark, or puts it upon a common horse, is punished with death.

Their feudal system is also remarkable. The feudal, who belongs to the noble as his own property, although not sold to him, is obliged to do all kinds of personal services, but he pays no contribution. The nobles maintain order among the people, and render military service to the prince: the latter keeps an open table, to the expense of which every person who possesses lands contributes. Marriages are contracted according to the riches and birth of the parties. A plain nobleman who runs away with a princess, incurs the punishment of death. Whenever a prince or princess is born, a nobleman is selected who is to take charge of the child’s education. The father and mother banish it from their
presence until the period when the son is fit for battle, and the daughter of an age to be married. Under the guidance of his tutor, the youth familiarizes himself with the chase, war, and pillage, and in recompense he divides his booty with him. It was thus that the centaur Chiron brought up the young Achilles. The simple and light diet which a girl of distinction lives on tends to preserve that graceful and slender form so suitable to a princess. She is taught to embroider, to sew, to plait straw, and to make small baskets with it. Newly married persons see each other in private for the space of a year. The woman receives her husband in the dead of the night, and makes him enter by the window. They do not show themselves to their relations until there is an existing pledge of their union. This similarity between the Circassian women and the Amazons is connected with the ancient tradition of the Circassians, of the intercourse they had with a nation, named Eumelch (a name from which the Greeks may have made Amazon.) Hence their ingenious hypothesis by which the Circassians are identified with the Semtians, decended from a mixture of Scythians and Amazons.*

Language. | The Circassian princes and nobles speak a language peculiar to themselves, and unintelligible to the people. Is this only a political institution, or is it the proof of a different origin? There exists amongst the Circassians a right to hospitality. Happy is the stranger who obtains it! his host recommends him to all his relatives; and were he charged with the greatest crime, he is still in safety, because his host answers for him. The Circassians denounce dreadful vengeance on those who kill their relations; the whole family of the criminal shares his punishment, and if the vengeance of blood be not paid to the criminal, a pecuniary indemnity is transmitted even by marriage.†

Religion. | These people were formerly Christians, with scarcely any religious worship. They are now Mahometans, but wholly devoid of zeal. The mamo-leums of the Circassians are constructed of hewn stone, and surrounded with colonades.

Economy. | The Basians, who dwell below the Circassians, and by the side of the Suans, are the ancient inhabitants of Kabardia. Pursued by the Circassian nobles, they were compelled to seek an asylum in the high barren mountains which are, covered with snow, and they live there to the present time, still tributary to their ancient persecutors. They are, according to their own account, a mixture of a variety of nations: namely, Bulgarians, Greeks, Kalmucks, Kumucks, and principally Nogais, who are Mongols or Huns.

Tribes. | The Basians comprehend three tribes, the Tzhegens, the Tzhegais, and the Karatsbas.

Worship. | Traces of Christianity are to be found amongst them, and we are assured that in their country a church is to be seen, which, though ancient, is still in good preservation. A road opened through the rocks, and furnished with a magnet, of iron on both sides, conducts to the church by a serpentine path; and the gospel and the rituals are in the Greek language.

Production, and qualities of the country. | The Basians have very considerable herds of oxen. Their meat is much praised; they cultivate millet and oats; and they extract lead from the mines of Kargetchin Tau, that is to say, the leaden mountain: they possess a fine petre, and sell gumpowder. M. Reineggs, has observed in Basania a great many interesting objects of natural history; several of the valleys are filled with singular exhalations, and thunderbolts fall more frequently here than anywhere else. Near the river Jetchick, which flows into the Cuban, there are hot springs so corroding, that they cause swelling in the mouths of those who drink of them.† In the environs of Mount Elborors there is an elevation, composed entirely of a golden-coloured micaeous gravel or yellow mica, which is so loose that men and horses sink in it as in water. Colonnades of basalt, in prisms of three, four, eight, and nine sides, are found in the high mountains towards the source of the

* Reineggs, Topographie du Caucase, t. 238. Pallas, i. 390.
† This was the system in England previous to, and even during the reign of Alfred.—Tr.
‡ Reineggs, Topographie du Caucase, i. 291.
Terek; but it may be doubted whether M. Reineggs, who has drawn them,* knew how to distinguish the enigmatical rock in a correct manner.

The Ossæs dwell to the east of the Basians. They are called some times Ossi, Oasis, Ossites, or Ossitiannes. In this, as in numerous other instances, we adopt the radical part of the name by which a nation is designated either by the people belonging to it or by their neighbours, while the terminating syllables are in some measure arbitrary, till such time as the celebrity or familiarity of the people among those who write about them establishes some unchanging designation. On seeing the clothing, the light chesnut hair, and the red beards of these people, we should say that they were peasants from the north of Russia.† They give themselves the name of Ossetes. Their language has some connection with the German, Sclovonian, and still more with the Persian. The country of the Ossetes commands the communication with Georgia. It extends from the sources of the Terek to the northern branch of the Kex. In these rugged mountains, all the rivers flow with an astonishing rapidity. The manners of the Ossetes are of a characteristic simplicity; their method of saluting consists in touching the chest for men, and the bosom for women. In their funerals there is a noisy ostentation of grief: the women beat their breasts, and threaten to precipitate themselves from the top of a rock. They afterwards eat and drink in honor of the dead for three days.‡ The houses of the Ossetes resemble so many castles in miniature, and although rassals of Khesma, they live in a state of wild independence.

It is alleged that there is met with in that part of Caucasus, a large bird, very beautiful variegated plumage, resembling a peacock; the Ossetes call it Sym. A sort of friendly alliance is said to subsist between it and the wild goats, the partners of its solitude. At the approach of the hunter it sends forth a shrill whistle, which serves to warn the quadrupeds of the impending danger. There used to be seen in this country thousands of caverns hollowed out of the rugged rock, upon almost inaccessible mountains, and generally of the height of sixty feet. They are now abandoned, but we may still trace the vestiges of ancient inhabitants.† The Russian fort of Darin is situated on the eastern frontiers of Ossetia. A few slight fortifications, and a small garrison, would render this pass impracticable. At this place, the road now used leads for a considerable way through a subterraneous passage cut in the solid rock.

The most considerable tribe of the Ossetenes is that of the Dugores. They are said to be tributary to the Badilles, a sort of knights or freemen, living in the highest mountains, and separated by a small river from another equally unknown tribe, that of the Nitiures, a name apparently of Hunnic origin. The Telipheneses have words which they esteem sacred, and which are divided into sections, according to the number of their families. They celebrate annual festivals, which last eight days, and resemble that of tabernacle among the Jews. Travellers are hospitably invited to partake, and one of the families is charged with the care of entertaining them. The Dimsars, a republican sect, are incessantly at war with the Dugores. We find in their country the canon of St. Nicholas, a relic of their ancient faith. This Russian Saint is supposed to appear there under the form of an eagle, to receive the food which is offered to him; of course, there will be no lack of birds of prey exactly to personate the Saint in this particular.—Some missionaries have recently taken a very wise advantage of this people's former profession of Christianity to endeavor to re-instruct them in the principles of religion and civilization, and these efforts were accepted by the late General Kasibek, one of their chiefs, and by those who acknowledged his authority. This is accompanied with a tendency to a good understanding with the Russian government, and an acquiescence in the plans of general amelioration happily begun in these countries. The advantage of this change begins to be felt by those travellers who cross the Caucasus

* Reineggs, ibid. i. 286. tab. iii. Compara Georgi, ii. 370.
† Reineggs, i. 218.
along the chain of Russian posts from Moscoc to Tiflis, up the precipitous banks of the Terek, and down those of the Amur. A strong Russian escort is necessary for security, but a distant approximation to co-operation on the part of the natives is agreeable and encouraging. Sir Robert Ker Porter was hospitably entertained at the house of General Kasibek's family, near the mountain called Kasibek. He and his party were struck with the contrast between the dutiful civilities paid by the servants to their master's guests and the assaian-like expression of their countenances and equipments, indicating the powerful influence left by their former habits, and intimating the prudence of observing precautions against those tendencies which might be still suspected of retaining a degree of activity.

The mountainous tract which extends from the eastern limits of Ossetia towards Kistia, the north, between the rivers Funsha and Almasi is called Ossetia or Kistia by the Russian travellers and geographers. It is like Kabardia, a country of forests and pastures, with districts adapted to agriculture.† The different tribal tribes of Kistia that live there are known under various general names; the Cossacks call them Ustiosi; the Tartars, Mzunbegis; their principal tribe assume the name of Ingooses or Intiosches. We distinguish also the Tschetchentzi or Tzetzentsce, the Karabulakas, and the Tsules. They all speak a particular language, which appears to be very ancient. In war, they carry a buckler, and this ancient custom distinguishes them from all the other inhabitants of Caucasus.

Ingooses, their wars. Amongst the Ingooses, we observe vestiges of the true religion. An anchoret called the Zambist, living in celibacy, and residing by the side of an ancient church, performs the functions of priest; before the assembly he immolates on an altar of stone a number of white sheep, which the richest and most distinguished families provide. This church, situated on the territory of the Ingooses, bears a Gothic inscription, and contains some bas-reliefs, ornamented with blue, black, and gilt characters; these books are revered as relics. Thirty little dwellings for hermits are erected in the vicinity of this ancient edifice, which has been always held as an inviolable sanctuary in the midst of the wars in which these barbarians are continually engaged.

The Ingooses have a very characteristic physiognomy, and a pronunciation so extremely harsh that a stranger would think they were rolling pebbles in their mouths. Karabulaks. They can muster 5000 men capable of bearing arms.† The Karabulaks deserve to be noticed on account of their dialect, which appears to be that of the celebrated Alan; for the town of Theodosia, in Persia, was called by the Arabian name Treuda, signifying seven gods; now this word retains the same signification amongst the Karabulaks.

Tzetentzi. The Tschetchentzi or Tzetentsce inhabit seven large valleys; they sometimes extend their depredations beyond the Russian frontier, and then retire to their native mountains, where they can bid defiance to the pursuit of the Cossacks. They are considered as the most formidable of all the tribes which inhabit the innumerable rocky valleys of the eastern part of this chain. They are not only dread to their immediate neighbours, tribes similar to themselves, but they keep up disciplined Russians continually on the alert. They are unrivalled in their arts for prey, quick as lightning in attack or escape, unsparing in plunder, and without mercy those whom they rob, excepting Christians, from whom they exact additional plunder in the form of ransom. They initiate their youth, at a very early age, in their marauding expeditions, and the more bold and sagacious they show themselves, the higher they stand in the estimation of their tribe. Who most frequently surpasses the rest in the execution of desperate and cruel enterprises, commonly becomes the leader of his brethren, and the chief of many families. They have one supreme chief, whose dignity is hereditary. He alone commands them on any enterprise of general interest, but he possesses no civil authority or jurisdiction. They have a sort of common law universally understood, which maintains an

* Sir R. K. Porter's Travels in Georgia, Persia, &c. vol. i. p. 77.
† Georgi, Russe, iv. 971.
intense regularity. When this is violated, a tribunal of their elders takes cognizance of the case, and the offender is instantly put to death, his dwelling erased, and his property given to the party injured. They were once a sort of Christians, and they still observe Easter. They now consider themselves as Musulmans; but the establishment of a few domestic regulations is the only symptom of their connection with the Arabian prophet.

On the south-east we find the Tushes, that is to say, the dreamers, a | Tushes |
name which they owe to their superstition. They are the Tusci of Ptolemy. They entertain a great veneration for cats. It is said that among them the father gives to his son, at the age of six or seven years, a young adult girl for a wife, and exercises himself the privilege of a master until the boy arrives at puberty. The children which are the fruit of this union are brought up as part of the family. This strange custom existed till lately in European Russia. A small but very strong species of mule is found here, said to be the offspring of the jackass and the ass.

The eastern part of Caucasus, or ancient Albania, is divided into innumerable cantons, but which modern geography comprehends under two denominations, Dagestan, which includes all the declivities of Caucasus towards the Caspian Sea, and Leashtistan, containing the most elevated valleys towards Georgia, and the country of the Kaites. Leashtistan is a district able to great variation of extent: its limits enlarge or diminish according to the results of the war, which the robbers called Leashties constantly wage with the other Caucasian nations.

The Leashties, who appear to be the Legaa of the ancients, have become formidable by their invertebrate habits of plunder; they seize upon men and herds, and whatever else they can find in the neighboring districts. They carry off their booty on swift horses, and break down behind them the bridges of ice and snow which cover the precipices of Caucasus. Accustomed to endure hunger and thirst, they carry with them only a slender stock of provisions, either in leather bottles or in goat's skins. But, when reduced to the last extremity, they draw lots among themselves, and he whose lot is selected is found with his comrades. Their manner of living, and the pure air which they breathe upon their mountains, contribute to their extreme longevity. Just before death, the old Leashtien who has survived the perils of the field of battle, sends for his relations and his friends, and points out to them where his gold, his silver, and his jewels, are deposited, and their dice contested. This nation possesses some mines.

In Dagestan we see the Leashties peaceably driving their herds to a distance from the mountains, and paying a contribution for their pasturage. Their women, celebrated for their beauty, are no less distinguished for their courage. Several of the Leashtian tribes profess Mahometanism; some traces of the Christian faith may also be observed among them, but the less civilized still worship the sun, the moon, trees, and rivers.

Their language has some affinity to that of the inhabitants of Fin-land, but the diversity of the Leashtian dialects is very great. An attempt has been made to reduce them to the number of eight. 1. The Awarites, and the fourteen tribes resembling them, which occupy the northern part of Leashtistan speaks the first dialect. The district of Awar, or Ares, the remainder of the Avarites, and the parent tribe of the celebrated Avar, bear also the name of Chuvas, which signifies the empire of the Chama or Huns. About 1500 Mahometan families live here very peaceably, under the government of a khan, who is reckoned one of the most powerful princes of Caucasus, and whose abode is distinguished from the rest by having glass windows. 2. The tribes of Dido and of Ussu speak the second dialect: they dwell in the mountains above the district of the Chuvas; pasture their sheep in the Kazbegi, and live in a state of happy indolence. 3. The third dialect is that of the Kabutches, who are supposed to dwell near the Didos, towards the east. 4. The fourth is in use among the Tushes, who, according to Guldenzedt, inhabit a country bordered by a branch of the river Koiss. 5. The Tushes, the Koosheres, and the Zudacars,
three tribes whose dwellings extend along the frontier of Daghestan, and even within
that province, speak the fifth dialect. The Kooveshes or Kubashees, are
the most deserving of notice. They enjoy a considerable degree of inde-
pendence, and are industrious, sober, honest, and loyal. It is said that they
call themselves Franks, and claim a European origin. It might have been supposed
that they are the descendants of some Venetians or Genoese, who in the 16th century
visited the coast of the Black Sea, had not more accurate researches proved that
their language resembles that of the Leaghians. The Kubashees act as brokers in
the trade which is carried on between Persia and Russia. They bring to Kistian
considerable quantities of cotton." At home they are employed in the
manufacture of iron, gold, and silver—in forging armories—and in
making fine handkerchiefs, mantles of felt, and carpets. Their women are active,
ingenuous, and even well-informed, and occupy themselves with embroidery. The
Kubashees banish from their country all idle persons and beggars. Their integrity is
so generally known that the Leaghian princes deposit with them the treasures
which they have accumulated, and the neighbouring tribes submit all controversies to their
arbitration. They are Mahometans, but confine themselves to one wife. Twelve
of their deans are entrusted with the keeping of a capital stock, which is the pro-
duct of their common labour. 6. The Kasikumukhs, shepherds, and marau-
ders, who live upon the banks of a branch of the river Koisu, speak the sixth Leaghian
Kastian dialect. 7. The seventh current among the Kaidaiks, and the Kasik-
dakhs, who inhabit the districts lying between the towns of Tarku and Derbend. These
people are remarkably swift, and uncommonly dextrous in handling the musket and
the saber. The fertile valleys of the Kaidaiks contain many beautiful villages. The
prince of the Kaidaiks is called the Uzney; his son, it is alleged, is
tsucked by all the women of the country, for the purpose no doubt of
strengthening their attachment to their future sovereign. 8. The Kasaikhs, who
possess some villages near Tabaseween, a flourishing district, governed
by a prince of its own, speak the eighth Leaghian dialect, which is believed to be
also common to the inhabitants of the district.

Orient- Caucasus contains also two Tartar nations. The Kumaks
reside to the north of Daghestan, upon the borders of the Caspian Sea.
About twelve hundred families, under the government of Beys, dwell here in casbahs
made of hurdles of osiers. The Truchmeces are spread over all the eastern side
of Caucasus, but principally by the south of Daghestan, in the whole of the pro-
vince of Shirwan. These wanderers speak the Turkish dialect of the Tartar lan-
guage. They are governed by their hereditary khans, the most powerful of whom
reside at Koobs, at Shamachia, and at Sallian.

From the state of warfare and anarchy in which these tribes live, their political
topography can never be fixed. The vague word Leaghistan, or country of the
Leaghians, enlarges and contracts, with the invasions of that diverse peo-
ple: the same Daghestan signifies a country of mountains. Its appli-
cation is as undetermined as that of Goraki, or inhabitants of the mountains, given
by the Russians to the majority of the petty Cascoman hordes. The uncertain ex-
tent of these terms too affects the limits to be assigned to Shirwan, which customs
or circumstances have represented as commencing sometimes at Derbend, and some-
times at Bakou.† Leaving these points undecided, we shall briefly notice the most
remarkable places as we pass from north to south.

The country of the Kumuk extends from the banks of the Terek to those of the
Koisus. It comprehends the gulf and the peninsula of Agrachanskoj.

The most remarkable place is Endery, the market from which the Leaghians
sell their plunder. To the south of the Koisus is the territory of a Tartar chief, who
assumes the title of Shamkal, and who resides in Tarku, a town containing 10,000

* Guldenstedt, Voyage, &c. i. 101. Heinegg, i. 60—113. Forster, Voyage du Bengale, &c. ii.
† Compare Busching, Géographie, ii. Par 2. Georgi, Russie, ii. 975. Wahl, Asie Occidentale,
: 459—482.
inhabitants, upon the shores of the Caspian Sea.* Ascending the Koisu, we arrive at the dominions of Oumma-Khan, or Khan of the Awarees, of whom we have before spoken. The town of Chumsag contains about 600 houses. Upon the eastern back of the mountains, we find the interesting town of Kubasha, with its industrious population of about 6000 souls. The territory of the prince, or Uzmev, reaches to Derbend; he resides at Barshli. The town of Derbend, shut up between the mountains and the sea, reckons from 6 to 700 houses; its thick and lofty walls astonish the traveller, but oppose no barrier to the advance of armies; its insecure port has but little trade. We here begin to feel the influence of a milder climate. The territories of Derbend, Kouara, and Kouba, must be reckoned amongst the most delightful of countries. It is here that, according to Strabo, the inhabitants reaped a harvest of fifty fold, and saw these rich crops spring up twice or thrice every year. Even in our days the soil is in some places so rich and strong that six or eight oxen must be yoked to the plough. A great quantity of wheat, barley, saffron, cotton, and various fruits, is exported.† The territory of Kouba has been called by the Persians the Paradise of Roses. There are places where from each clump of the rock a vine may be seen shooting out.‡ But these fine regions are subjected to excessive humidity; and are in several places infected with reptiles and perilous insects. The towns of Tabassaran, Acouti, and others, are the chief residences of the petty sovereigns in the mountains. The khan of Kouara extends his dominion to the sea, where the river Samour, probably the Albeus of the ancients, discharges its abundant waters through ten or twelve mouths. Kouba, the abode of the most powerful khan of that country, contains only about 400 or 500 houses. Below Kouba is the town of Shabran, which was built by Hebrews under the name of Samaria. Some Jews still live there, who are distinguished by their handsome persons, and their easy manners. These towns, situated upon the eastern part of Caucasus, look towards the Caspian Sea. As we pass the mountains, we see, extending to the south-west and south, the territories of Dehecki, Shamsachia, Khanar, and Salian. The two first are bounded by the Kur, the other two occupy the insular plain encompassed by that river and the Aras. New Shamschia, a trading town of 5000 inhabitants, is considered as the capital of Shirwan.

The Kur, after being augmented by the junction of one of its branches with the Aras, becomes navigable. The seagoing fisheries at its mouth, near Sullian, bring in 20,000 rubles (or £2000) to the khan of Kouba, who lets it out to the Russians.¶ To the east of Shamschia Caucasus decreases in height. An extensive neck of land shoots into the Caspian sea, called the Peninsula of Apaheron, or of Okoresa, whose saline and clayey soil is covered with a languishing vegetation, but whose celebrated springs of naphtha form a source of inexhaustible wealth to the petty sovereign of the town of Bakou. The principal springs are at Bakou, one of them furnishes 500 pounds a-day. Not far from these is the field of fire, about a square verst in extent, and continually emitting an inflammable gas. The Ghebris, or worshippers of fire, have built several small temples there. In one of these, near an altar, a large hollow pipe is fixed in the earth, from the upper end a blue flame issues more subtle than that from spirits of wine: a similar flame escapes from a horizontal opening made in the rock. A hill near Bakou furnishes white naphtha, but in very limited quantities. The Russians make use of it both as a medicinal drug and as a cordial; they apply it also externally. Not far from these are two springs of hot water, which bubble up like the naphtha; the water is impregnated with a bluish clay, which renders it thick, but it becomes clear by standing, the clay falling to the bottom. Bathing in it braces the system, and improves the appetite. The khan of Bakou derives

* Bieberstein, Description des Pays entre le Terek et le Kur, in the Annales des Voyages, xi. p. 180.
† Gimelin's Travels, iii. 68. Bieberstein, Description of the Countries between the Terek and the Kur, p. 31, (in German.)
‡ Reinegu, i. p. 107.
¶ Georgi. ii. 977. Compare Bieberstein, Sec.
from the naphtha a revenue of 14,000 rubles, (or $2100.) The town of Bakou, which has a road for ships by no means safe, though the best upon the coast, exports to Russia, besides naphtha, some cotton, rice, and a small quantity of wine and opium. Its territory also supplies salt, which is obtained from several lakes or salt marshes.

Such are the principal nations, countries, and towns, of the Caucasian region; in surveying which we have unavoidably been somewhat prolix, from the number and the minuteness of the objects to be described.

Table of the Geographical Positions of the Caucasian Region.

<table>
<thead>
<tr>
<th>Names of places</th>
<th>Long. E. from London</th>
<th>Latitude</th>
<th>Authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derbend</td>
<td>47 39 15</td>
<td>42 5 45</td>
<td>Rus. Atlas in 100 sheets.</td>
</tr>
<tr>
<td>Kislar</td>
<td>46 14 15</td>
<td>43 51 15</td>
<td>Idem.</td>
</tr>
<tr>
<td>Mosdok</td>
<td>43 50 15</td>
<td>43 48 46</td>
<td>Calendar of Petersburgh.</td>
</tr>
<tr>
<td>Taman</td>
<td>36 35 0</td>
<td>45 12 16</td>
<td>Russian Atlas.</td>
</tr>
<tr>
<td>Tiflis</td>
<td>44 20 16</td>
<td>41 28 30</td>
<td>Idem. Archive of Lichten-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stern.</td>
</tr>
</tbody>
</table>

Note. The Table annexed to the Russian Atlas is founded on Astronomical observations, chiefly recent.

Synopsis Table of the Political Divisions of the Caucasian Countries.

<table>
<thead>
<tr>
<th>Great Divisions</th>
<th>Subdivisions</th>
<th>Capitals</th>
<th>Sovereigns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasia, (gov-</td>
<td>1. Circle of</td>
<td>Gregorievsk, or</td>
<td>Russia.</td>
</tr>
<tr>
<td>ernment of,)</td>
<td>2. — of Alex-</td>
<td>Yegorievsk...</td>
<td></td>
</tr>
<tr>
<td>Countries of the</td>
<td>3. — of Kiz-</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Cossacks of the</td>
<td>4. — of Stau-</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Black Sea.</td>
<td>5. — of Mosdok.</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Circassia.</td>
<td>Make a part of the</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>government of Tauris.</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2. Great Kabarda.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Little Kabarda.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different cantons.</td>
<td>None.</td>
<td>Under the protection of Turkey.</td>
</tr>
<tr>
<td>Western Geor-</td>
<td>1. Mingrelia.</td>
<td>Isgnour.</td>
<td>A czar, a vassal of Russia.</td>
</tr>
<tr>
<td>gia, formerly</td>
<td>Olicchi, canton.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gia.</td>
<td>Kadsha, canton.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guria.</td>
<td>Titizigha(?)</td>
<td>Dependent on the Turks.</td>
</tr>
<tr>
<td>gia formerly,</td>
<td>2. — of Gori.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gia.</td>
<td>4. — of Telia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. — of Sihnah.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. — of Adjakala.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once divided into Kanduli and Kakhuri.

Continuation of the Synoptic Table of the Political Divisions of the Caucasian Countries.

<table>
<thead>
<tr>
<th>Great Division</th>
<th>Subdivisions</th>
<th>Capitals</th>
<th>Sovereigns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gorsi, or people of</td>
<td>1. Suanetia</td>
<td>None</td>
<td>Princes or elders, most of them</td>
</tr>
<tr>
<td>the mountains.</td>
<td>2. Basiania</td>
<td></td>
<td>dependents on Russia.</td>
</tr>
<tr>
<td></td>
<td>3. Ossetia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Kisia, or Ingoochia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Tchetchentzia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Khanat of Awar</td>
<td>Chunsag, or</td>
<td>Independent khan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Awar, (according to some</td>
<td>Various chiefs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kabudana.)</td>
<td></td>
</tr>
<tr>
<td>Lesghistan</td>
<td>2. Lordships of Kazikumiks</td>
<td>Kasamiah, Kumuk</td>
<td>Khan dependent on Russia.</td>
</tr>
<tr>
<td></td>
<td>3. The cantons of Tchari, Tushes, &c.</td>
<td></td>
<td>Various chiefs.</td>
</tr>
<tr>
<td></td>
<td>2. Khanat of Tarku</td>
<td>Tarku</td>
<td>Khan dependent on Russia (Shamkal.)</td>
</tr>
<tr>
<td>Daghestan</td>
<td>3. — of Kaidak</td>
<td>Kaidak, Barbari</td>
<td>Idem (the Uz-mey.)</td>
</tr>
<tr>
<td></td>
<td>4. District of Kubascha</td>
<td>Kubasha</td>
<td>Dependent on the khan of Kaidak.</td>
</tr>
<tr>
<td></td>
<td>5. — of Akusha</td>
<td>Akusha</td>
<td>Idem.</td>
</tr>
<tr>
<td></td>
<td>6. — of Derbend</td>
<td>Derbend</td>
<td>Russia (1809.)</td>
</tr>
<tr>
<td></td>
<td>7. — of Koura</td>
<td>Koura</td>
<td>Dependent on the Russians but formerly on the Persians.</td>
</tr>
<tr>
<td></td>
<td>8. — of Koubi</td>
<td>Koutk or Kuba</td>
<td>Idem.</td>
</tr>
<tr>
<td></td>
<td>2. — of Shamachia</td>
<td>Shamachia</td>
<td>Idem.</td>
</tr>
<tr>
<td></td>
<td>3. — of Dschiki or Kaballa</td>
<td>Nuchi</td>
<td>Idem.</td>
</tr>
<tr>
<td></td>
<td>4. Lordship of Sallian</td>
<td>Sallian</td>
<td>Khan of Kuba.</td>
</tr>
</tbody>
</table>

Note: The extent and population are uncertain.

BOOK XXVI.

TURKEY IN ASIA.

PART I.

Asia Minor, with the Coasts of the Black Sea.

We are now to tread upon a soil rich in interesting and splendid recollections, with an existing population completely debased by ignorance and slavery.
The glory of twenty different nations which once flourished in Western Asia has been extinguished; flocks wander over the tomb of Achilles and of Hector: and the thrones of Mithridates and the Antiochuses have disappeared, as well as the palaces of Priam and Croesus. The merchants of Smyrna do not inquire whether Homer was born within their walls; the fine sky of Ionia no longer inspires either painters or poets; the same obscurity covers with its shades the banks of the Jordan and the Euphrates; the republic of Moses is not to be found; the harps of David and Isaiah are now silent for ever:—the wandering Arabian comes, indifferent and unmoved, to rest the poles of his tent against the shattered columns of Palmyra; Babylon also has fallen beneath the stroke of an avenging destiny, and that city which reigned supreme over oppressed Asia has scarcely left behind it a trace that can show where the ramparts of Semiramis were raised. "I have seen on the spot," says a traveller, "the accomplishment of that prophecy: 'Tyre, the queen of the nations, shall be made like the top of a rock, where the fishermen shall spread their nets.'"

If, however, European arts and civilization were, by some new arrangement of Providence, to revisit this ancient cradle of the human race, we should still find there the charming coast of Ionia, with its picturesque islands; the fertile shores of the Pontus Euxinus, shaded by inexhaustible forests; and in the distance the numerous chains of Mount Taurus, crowned with upland plains, representing on a small scale the vast plateaus of central Asia. We should still see the Euphrates and the Tigris bearing the ice of Armenia towards the burning plains of Mesopotamia; and, seated under the shade of the cedars of Lebanon, our eyes could wander over the orchards and meadows of Damascus. The population only has undergone a change; nature remains essentially the same. In describing these countries we must therefore be permitted, from the ignorance of the inhabitants, and the imperfect accounts of travellers, to avail ourselves of the precious records that have been left by the ancients. We have already, on the authority of Strabo, exhibited a very complete view of the ancient geography of these regions. Strabo will still serve as our guide while we bring together the detached elements of which their modern geography is composed. But, to enable our readers the better to enjoy a view so complex and extensive, we shall separate it into its principal groups, and shall in the present book confine our attention to the peninsula of Asia Minor, along with the coast of the Euxine Sea.

Mount Taurus in general.

The mountains of Taurus, according to all the descriptions of the ancients, extended from the frontiers of India to the Egean Sea. Their principal chain, as it shot out from Mount Imaus towards the sources of the Indus, winded, like an immense serpent, between the Caspian Sea and the Pontus Euxinus on one side, and the sources of the Euphrates on the other.† Caucasus seems to have formed part of this line according to Pliny; but Strabo, who was better informed, traces the principal chain of Taurus between the basins of the Euphrates and the Auraxes, observing that, a detached chain of Caucasus, that of the Moschim mountains, runs in a southern direction, and joins the Taurus.† Modern accounts represent this junction as not very marked.§ Strabo, who was born on the spot, and who had travelled as far as Armenia, considers the entire centre of Asia Minor, together with all Armenia, Media, and Gordyène, or Koordistan, as a very elevated country, crowned with several chains of mountains, all of which are so closely joined together, that they may be regarded as one. "Armenia and Media," says he, "are situated upon Taurus." This plateau seems also to comprehend Koordistan, and the branches which it sends out extend into Persia, as far as the great desert of Kerman on one side, and towards the sources of the Ghab and the Indus on the other. By thus considering the vast Taurus of the ancients as an upland plain, and not as a chain, the testimonies of Strabo and Pliny may be reconciled with the accounts of modern travellers.

Two chains of mountains are detached from the plateau of Armenia to enter the peninsula of Asia; the one first confines and then crosses

* Ezekiel xxvi. 4, 5. † Pliny, Lib. v. cap. 27. ‡ Strabo, xi. 345, edit. Atrebati. 1887.
the channel of the Euphrates near Samsota; the other borders the Pontus Euxinus, leaving only narrow plains between it and that sea.* These two chains, one of which is in part the Anti-Taurus, and the other the Paryades of the ancients, or the mountain Tcheldir or Kekdir of the moderns, are united to the west of the Euphrates, between the towns of Siwas, Tocat, and Kaisaria, by means of the chain of the Argeus, now named Argis-Dag, whose summit is covered with perpetual snows,† a circumstance which, under so low a latitude, shows an elevation of from 9 to 10,000 feet. The centre of Asia resembles a terrace supported on all sides by chains of mountains. Mere water, salt marshes, and rivers which have no outlets. It contains a number of small plateaus, one of which Strabo has described under the name of the plain of Bagaudané. "The cold there," says he, "prevents the fruit trees from thriving, whilst olive-trees grow near Sinope, which is 8000 stadia more to the north."‡ Modern travellers have also found very extensive elevated plains throughout the interior of Asia Minor, either in the south, towards Kosheh,§ or in the north, towards Angora.|| But all the borders of this plateau constitute so many chains of mountains, sometimes encircled the plateau, and sometimes extend across the lower plains.

The chain which, breaking off at once from Mount Argeus and from Anti-Taurus, bounds the ancient Cilicia to the north, is more particularly known by the name of Taurus, a name which in several languages apparently have one common root, and simply signifies mountain. The elevation of this chain must be considerable, since Cicero affirms that it was impassable to armies before the month of June on account of the snow.¶ Diodorus details the frightful storms and precipices which it is necessary to cross in going from Cilicia into Cappadocia.** Modern travellers who have crossed more to the west of this chain, now called Ale-Dagh, represent it as similar to that of the Apennines and Mount Hermon.††. It sends off to the west several branches, some of which terminate on the shores of the Mediterranean, as the Cragus, and the Manicystes of the ancients, in Lycia; the others, greatly inferior in elevation, extend to the coasts of the Archipelago, opposite the islands of Cos and Rhodes. To the east, Mount Amatus, now the Almadagh, a detached branch of the Taurus, separates Cilicia from Syria, leaving only two narrow passes, the one towards the Euphrates, the other close by the sea;‡‡ the first answers to the Amanians defiles (Djak Amanse) of the ancients, the other to the defiles of Syria. The latter, with perpendicular and peaked rocks, are the only ones that have been visited by modern travellers.

Two other chains of mountains are sent off from the western part of the central plateau. The one is the Baba-Dagh of the moderns, which formed the Tuches, the Mesogia, and the Sippus of the ancients, and which terminates towards the islands of Samos and Chios; the other, extending in a north-west direction, presents more elevated summits, among which are the celebrated Ida and Olympus (of Myrina.) Lastly, the northern side of the plateau is protected towards the Black Sea, and gives rise to the chain of the Olgans, now Elkes-Dagh, a range which fills with its branches all the space between the Sanganari and the Halys. The summits retain their snow until August.§§ Throughout the ranges of mountains which we have just described, Limestone rocks appear to predominate. These anciently covered the marbles of Asia Minor, but from the Sanganari to the Halys we meet with nothing but granite rocks. Earth-| Xerophon, quakes have often ravaged this fine peninsula; thirteen towns were destroyed in one

* Strabo, xii. p. 372. M. Pourade, Consul General at Sinope, MS. notes.
† Strabo, xii. Paul Lucas, deuxième voyage, i. 137. Hadji-Khalifah, Turkish Geography, MS. translation, (French,) p. 1762.
‡ Strabo, ii. p. 50. Olivier, Voyage dans l'Empire Ottoman, vi. 388.
§ Tournefort, Lettre xxi. Paul Lucas, deuxième voyage, i. c. 21.
|| Paul Lucas, deuxième voyage, i. 35, troisième voyage, i. p. 184.
‡‡ Xenophon, Cyri. Exped. i. 4. Arrian, &c. &c. Otter, Travelis, i. p. 82, (in German.)
Pococks, ii. p. 357, (Idem.)
§§ M. Pourade, manuscript notes.
day in the reign of Tiberius. The ancients distinguished one district as remarkably
abounding in traces of volcanic eruptions; the district called Kateke-
kauménté, that is, the burnt country, "where very often the earth emits
flames, and where the vine grows on a soil entirely composed of ashes." This
focus of the volcanic shocks which Anatolia so frequently experiences, ought to be
to the east of Thyatira. Modern travellers have not visited it.

River. The peninsula of Asia Minor contains only rivers of inconceivable
size, though very celebrated. Those which run south towards the Mediterranean
are the shortest and the most rapid. The Pyramus in Cilicia, now named the Sei-
houn, as it flows beyond Taurus, passes through a narrow defile, the angles on the
opposite sides of which so exactly correspond, as to resemble a production of art. The
Osean Sea receives more considerable rivers; among these may be mention
The Meander, which often undermines its banks. This in former times gave rise to a singular
custom; the proprietors who suffered from these ravages, instituted a process against
the river, and received indemnity from the toll established along its course. We
must also notice the Pactolus and the Hermus, which rolled down masses of gold,
but which even in the time of Strabo were neglected; lastly, the Imlios and the
Seamander, immortalized by the author of the Iliad. The larger rivers of Asia
Minor flow into the Black Sea; the Sakara or the Aisala of the Turks is the
Sangerius of the Ancients; the Bartin or Parthenius still flows as in the days of Strabo,
The Haly, between flowery meadows and smiling slopes. The Haly, now the
Kisil-Irak, the southern branch of which Pliny alone has distinctly pointed out,
when he represents it as taking its rise from the base of Taurus in Cilicia, and de-
recting its course from south to north, appeared to Tournesfort, who saw it near its
mouth, to be as wide as the Seine at Paris. It has only one mouth, although
modern maps give it several. The Jekil-Irak or the Iris, is the next in size to the
Haly; but the other rivers that fall into the Euxine Sea are remarkable only for the
rapidity of their course.

Lake. Asia Minor contains a great many lakes which are destitute of out-
lets, and the waters of which are more or less impregnated with salt. Ancient geo-
graphy has partially informed us of their existence, and modern accounts do not lead
us to believe that the information is beyond the truth.

The lake Tazila, which is about thirty miles in length, presents a vast plain covered
with crystals of salt. That of Akabelin is upon the same plateau. In passing the
most elevated ridge of Taurus, another plateau, near Beysherli, contains two exten-
sive lakes, the waters of which are bitter and insipid.***

Canals. Both the ancients and moderns are loud in praise of the climate
of Asia Minor; it enjoys a mildness of temperature which is not experienced on the
European side of the Archipelago. The heat of summer is greatly moderated by the
numerous chains of high mountains; and the vicissitudes of these seas diminishes
the intensity of the colder season. It is unquestionably to this happy region, that
what Hippocrates†† has said of Asia in general peculiarly applies: "There is scarcely
any variation of heat and cold known here, the two temperatures are so delightfully
blended together." The southern coasts, however, are liable to oppressive heats, whilst
the shores of the Black Sea experience occasionally an excess of moisture.

Fruits. The ancients were better acquainted with the wealth of Asia Minor
than we are.†† The moderns, however, give a very brilliant, though incomplete de-
scription of it. The coasts of this peninsula furnish nearly the same productions
as Southern Greece; olives, orange, myrtle, laurel, turpentine, mastic,
and tamarind trees adorn the sinuous banks of the Meander, and the
delightful shores of Scio and of Rhodes; whilst the wild vine climbs to the summits

* Strabo, iii. 809. Almal.
† Nicetas Chronistas, p. 125. (Corpus Bys.) Tit. Liv. xxxviii. 13.
‡ Pliny, vi. 2. § Tournesfort, Let. 21. ¶ M. Fournade, note MSS.
‖ Tavereur, vol. i. b. i. ch. 7. Pococke, iii. 134.
†† Hippoc. de Acre, aqua, et locis. ‡‡ Strabo, b. xii. xiii. xiv.
of the trees, hazaging in graceful festoons, and forming a thousand little verdant grottos. The plane spreads with greater majesty its vast shade over a soil bestrewed with odoriferous flowers. Even the cold heights of Taurus are crowned with cypresses, juniper, and savin trees. The *querca infectoria*, the oak, which produces the gall nuts used for dyeing is met with every where from the Bosporous to Syria, and to the frontiers of Persia.*

There are vast plains in the interior, which produce only saline plants, | The interior. or wormwood and sage.† Often by the side of dreary salt marshes there are other plains less moist, which derive their verdure entirely from two kinds of broom, the *arvensis papyracea* and the *spinacea*; asses and sheep feed now, as formerly, in these barren regions.‡ Some of the mountainous districts towards the east contain subterraneous fires, whilst the neighbouring soil is inundated with cold and stagnant water. Upon the banks of the river Euphrates, olives and all kinds of fruit trees again make their appearance. The burning coasts of Caramania par- | Caramania. take of the vegetation of maritime Syria. Rich gums exude from the trees, among which is the styrex which yields the isabulum. The ancients procured from hence their wood for ship building. Other fruits and other plants cover the shores of the Black Sea; there oaks and fir predominate. This coast is the orchard of Constantinople and Chesaee. There are 'entire woods of walnut trees, apricot, plum, and, still more abundantly, cherry trees.—This last owes its name to the town Cerasus. The plains which border the Halya, the Sangarius, and the Meander, afford very rich pasture.

We know very little of the animal kingdom in Asia Minor: some | Animals. authors allege that it is now inferior to that of Europe. The beef is scarce and indifferent; the mutton somewhat better. Kid's flesh is esteemed a delicate food. The horses, which are very strong and fleet, seem to be descended from the ancient Cappadocian breed. The goats of Angora are distinguished for the length and fineness of their hair, as are also the cats of that district. The antelopes of Syria sometimes stray beyond Mount Taurus, and may then meet the Ibex which comes from the heights of Caucasus. Their great enemies are the jackals, wolves, hyenas, and bears; but it is very doubtful whether the lion is still to be seen in Asia Minor. Swans continue to frequent the banks of the Ca'yster. Red partridges cover the coasts of the Hellespont; all kinds of game abound in this half cultivated country; upon Mount Taurus there are wild sheep.§

The copper mines of Tocat, that of Koureth, near Kastamouni, and | Minerals. that of Gumush-Khans, not far from Trebizond, are still celebrated. All the chains in the neighbourhood of the Black Sea exhibit indications of excellent copper. But they no longer work the cinnabar of Mount Olgyass, the gold of Lydia, the rock crystal of Pontus, nor the valuable sablest and the coral marble of the central provinces. We know less than the ancients of the mineralogy of this wide country. It is in Strabo that we must look for the description of the Coryssan caverns, a romantic grotto of Cilicia, the spot near Hesperiston in Lycia, whence issued an inflammable gas; the petrifying springs of Hierapolis, and many other natural curiosities. We have noticed these in our analysis of the geography of this writer; for, in the absence of all information from travellers, how could we affirm that all these remarkable objects still exist in the same state? It is, however, probable that they do. Chandler confirms the accounts of Strabo concerning the hot springs of Hierapolis or Pambouk; he found a mass of rock formed by the tufa or soft sand-stone which these waters deposit; it resembles an immense cascade which has been suddenly frozen or converted into stone. Near the same place is the celebrated cave whose pernicious exhalations were remarked by the ancients.

We shall now describe the principal places of this tract of country, of | Topography.

* Olivier, t. p. 253.
† Strabo, b. xii, passim. Pliny, n. t. c. 57, xii. c. i. &c.
‡ Hadel-Khalil, p. 1763 1773, &c.
§ See the volume containing the history of Geography.
¶ Chandler's Travels in Asia Minor.
which we have been giving a general sketch. We shall set out from the banks of the rapid and violent Tcharruk, or Batoum, which is the Akampis of Arrian, and the Absarus of Ptolemy. It forms the boundary of the pashalick of Tarabosan or Trebisonde. The first Turkish town on this side which is worthy of notice, is Rizë. It exports a great quantity of linen, manufactured copper, and fruits. Of and Surmeneh enjoy a share of this commerce. Then comes the celebrated city of Trebisonde, which the Turks name Tarabosan. It is the ancient Trapezus, built by a colony of the Greeks from Sinoe. It is mentioned by Xenophon, in his retreat of the ten thousand. It acquired importance under Trajan, and still more under Justinian. It was afterwards the capital of an empire founded by a branch of the Comnenes of Constantinople, who were dispossessed of it in 1452 by Mahomet II. Although it has lost its ancient splendour, it is still considerable, and contains from 20 to 30,000 inhabitants; but the Greeks are now emigrating from it. The articles of exportation are copper from the mines of Gunushkhor, wax, leather, fruits, and a little wine. Two bays on the coast present to us successively Traboli and Korasounite, which carry on the same commerce as Trebisonde. Their territories produce a little silk. The inhabitants of Unieh, the ancient Uesse, occupying a barren territory, which, however, produces the fine rock alum of Khassar, carry on a coasting trade either with the Russian ports, or with those of the Abassians. The ancient Amias, one of the residences of Mithridates, dates the Great, is now a small town, named Samsoun. It has a haven for ships, whence are exported the copper of Tochat, silk and fruits, the linen of Amasias, and even the cottons of Adana, which are carried into the Crimea. Going up the river, now named Jekil-Irmak, and anciently the Iris, we meet with Amasia, Amias, a town interesting to the geographer, being the birth-place of Strabo. It is situated among steep rocks, but the environs produce excellent fruit and good wine. More to the south, in a deep valley, is the town of Tochat, containing 40,000 inhabitants, and surrounded with orchards and vineyards. The buildings are two stories high, and each house has its fountain; the streets are well paved, a very rare thing in that country. There is a manufacture of blue morocco; but the trade is principally in silk, of which a great many stuffs are made, copper utensils, and printed calicchos, which are brought from Basora by the caravans. Tochat is the ancient Coriana Pontica: it is dependent upon the pashalick of Sivas. The town of Zile, anciently Zela, like some others in Pontus, is situated upon an artificial hill.

The mountains which extend from Tochat towards Trebisonde, where they separate the basin of the Euxine sea from that of the Euphrates, support in their verdant valleys, shaded with forests of chestnut trees, several tribes of wandering Kurds, whose pastoral life reminds us of those ancient colonies which Xenophon and Strabo place in these countries, and of which they are probably the remains.

The name of the ancients, Thian or Tzand, is preserved in that of the canton of Dahanik. The mountains in the interior of this canton have, on their summits, rings of iron, to which the inhabitants say the cables of vessels were attached at the time when the Black Sea, from the want of an outlet, stood at that high level.

The ingenuity of the ancient Chalybes or Chaldae, in working metals, continues to distinguish the natives of the mountainous region, which still retains the name of Tcheldir, or Kelebi.

Passing the river Halys, we enter the district, or moufleissat, of Kastamouni, which corresponds to the ancient mariius Paphlagonia. The city of Kastamouni or Kastambol, though inhabited by Turks, has several manufactures

‡ M. Fourcade, notes taxmimétriques. Compare Peysson and Tournesfort.
§ M. Fourcade, notes taxmimétriques.
¶ Jackson in Sprengel, Library of Travels, (in German,) viii. p. 144.
** Tavernier, i. c. 7, p. 102.
†† Tournefort, Voyage, Lett. xii. p. 175.
‡‡ Hadji-Khalaf, p. 1789.
flourishing within its walls, particularly that of copper utensils. The population amounts to about 50,000 souls. The ancient Pompeipolos, for a long time the capital of this country, has lately been discovered in the present town of Tasch-Kouprou. The coast from the Halys to the Bosphorus has long been incorrectly delineated on the maps. The observations of M. Beauchamp, have at last nearly determined its true bearings. The supposed gulf of Samsoun has disappeared, and the coast in general extends an entire degree farther to the north than the charts of d'Arville represent.

Before we arrive at Cape Karampê, the most northern point of Asia Minor, we find the celebrated town of Sinopé, situated upon an isthmus, sheltered from the north by a peninsula: on the east there is an excellent road for ships, with timber yards for the imperial Turkish navy. This town, which the emigrations of the Greeks have reduced to a population of 5000 souls, exports rice, fruits, skins, and planks: the trade in fish, at one time immense, is now very inconsiderable. Incuboli is the seaport of Kastamonu: it exports building timber, copper, and hemp. Amastros, the ancient Amastris, and Erekit, or Heraclea, have preserved nothing but an illustrious name.

The Bosphorus opens before us like a majestic river, having its banks adorned with villages, castles, and country-seats. At the termination of this strait stands Scutari, which, with a population of 30,000 inhabitants, would be considered a large and fine city, were it not situated opposite to Constantinople. Upon the first gulf of the Propontis, we find the port belonging to the town of Isnik, that is, the ancient Nicomedias in Bithynia, where the Emperor Constantine died; it is still a considerable place. This is more than can be said of Byzantium. Isnik, the ancient Nicea, celebrated as the meeting place of the first general council; but now reduced to two or three hundred houses, inhabited solely by Jews, who manufacture earthen ware or sell silk. The Propontis is surrounded with celebrated ruins, amongst which those of Cyzicus still bear testimony to the grandeur and magnificence of one of the first commercial cities in ancient times. Here the heights of Mount Olympus, covered with snow till the middle of summer, naturally arrest our attention. At the foot of this natural pyramid stands Boera, the city of Boresa, Brusa, or Prusa, which owes its origin to Hannibal's and which was the capital of the Ottoman Empire, previously to the taking of Constantinople. It is still one of the most beautiful cities in the empire, situated in a fertile and finely wooded plain, enclosed within the immense ridges of Olympus. The most skilful artisans of the Turks reside here, and the safas and tapestry of this town are highly valued. The fine silk, which is obtained there in large quantities, is still insufficient to supply the manufactures established in the town: the deficiency is supplied from Persia. The city of Bursa, properly so called, occupies an eminence which commands a fertile plain, abounding in fruitful springs. This city, inhabited by about 50,000 souls, contains 140 mosques, two of which are magnificent, and it is supplied with a prodigious number of fountains. Bursa has for its sea-port Montagnia, commonly called Moudania, from whence it exports a great quantity of saltpetre, white wine, and fruits, and a variety of manufactured goods.

We come now to the central parts of Asia Minor, which have been long infested by troops of Turkomans. Of late, however, a kind of order, or at least of calm, has arisen from anarchy itself; two great feudal families, that of Kara-Osman Oglo, and that of Topkan-Oglo, after having successively acquired vast dominions in Asia Minor, have re-established tranquillity by substituting their own authority in the room of that of the Porte, whose supremacy they recognise no farther than their own interests happen to require. The states of Kara-Osman, or the Prince of the Vahéys, comprehend ancient Myussa, Lydia, and a part of Bithynia; they extend from the Sangarius to the Meander. The dominion

† In Turkish, Daireh-Beg, according to Seetzen.

Vol. I. — S 8
of Tchapan-Oglou comprises Galatia and Paphlagonia, or the country between the Sangarius and the Iris. The pasha, or beglerbeg of Anatolia, residing at Kutiah, reigns over nearly the whole of ancient Phrygia.

Kutiah. | The route from Broosa through Kutiah, and Konieh in Caramania traverses chiefly the plateau of salt lakes destitute of outlet, of which we have already spoken. Kutiah, the ancient Cotyæum, is a considerable town, embellished with mosques, caravanseras, and baths, and surrounded with gardens, vineyards, and walks. It contains more than 10,000 houses, and probably more than 50,000 inhabitants. The town is built on the site of a hill; the houses are handsome, and the castle, occupying the position of Cotyæum, appears to have been a place of great strength. Its fertile territory produces excellent fruit, and abundance of gali nuts.†

Kara Hisar. | Kara Hisar, famous for its trade in opium, and its manufacture of black felt, is a subject of dispute amongst geographers; one of the most learned of them has lately asserted that it was the ancient Celente.‡ Aksheer, a considerable town, answers, according to d'Anville, to the ancient Antiochus ad Pisidian; and according to Mannert, to Tyrzæum; the neighbouring mountain being to the west, whilst the plains, fertile in corn and fruits, lies to the east. The opinion of Konieh, the German author, appears to merit the preference. Konieh, the ancient Iconium, is now the residence of a pasha, who commands the northern part of Caramania, a province in which are comprehended ancient Pamphilis, Pisidia, Lycaonia, the greater part of Cappadocia, and Cilicia. This town, important when it was the residence of the sultans of Rome, now reckons only from 15,000, to 20,000 inhabitants. Here a number of antique remains are formed into modern edifices. A small river loses itself among the gardens which surround the town. To the east of Ramsar are extensive marshes. The town of Ramsar, which has given its name to the province, is not far from the source of the southern branch of the Halys. It is a mean looking place, but still covers an extensive area, and contains 3000 families occupied in the cotton manufacture.

Towns upon the upper Halys. In descending this branch of the Halys, in order to approach Angora, we should examine whether Akseer is the ancient Anchelais; whether Kirseh in, upon the confines of the Erkursi, corresponds to Naxandras, surnamed Dio-Caesarea; whether the river Chaux, upon which is now situate the town of Nikide, is the Cappadoce of Pinyi: but this route being little frequented, these questions will probably remain long undetermined.

A road which is better known will conduct us from Broosa, or from Nicea, to Toca, through the following states of Tchapan-Oglou, which begin at Belezara, a town situated upon the river Sangarius. As we advance to the least, we discover, in Angora, a very elevated plain, Angora. It is to the fluorescence of the hire of its goats that this city is indebted for its fame and its wealth. It is supposed to contain a population of 80,000 souls. Dr. Porro and made them 90,000; Mr. Kinnear only 20,000. The inhabitants are milder, and are better governed than in any other town of Anatolia. They are chiefly Armenians. The streets are wide, and paved with blocks of granite. Some fine remains of antiquity are to be seen, amongst others, the celebrated temple in honour of the Emperor Augustus, from whose reign the greatness of the town may be dated. Half way between Angora and Toca lies the town Leczatt, the residence of Tchapan Oglou, which, though lately in ruins, is seen daily assuming a finer and more populous appearance.

Ascending the eastern branch of the Kedirkuma, the branch which answers to Sis. | The Halys, between Lalias and Strabo, we arrive at Sivas, the ancient Sebastia, (in Pontus,) now the residence of a pasha, whose dominions extend, if not de facto, at least de jure, over all the countries between the Euphrates and Mount

* Kinnear’s Travels, or Murray’s Historical Account of Travels in Asia, vol. iii. p. 178.
† Olivier, Voyage dans l’Empire Ottoman, vi. p. 408, (in 8vo.)
§ Olivier, vi. 396.
¶ Itinéraires Manuscriptos de Mesara. Trezel, Pavier, &c.
Argeus, as far north as the banks of the Iris. Some modern travellers* assert that Siwas contains 1000 houses, others 4000; how then can geographical writers be expected to agree? It is a dirty ill-built place. The pashalikk of Siwas has, by a caprice of fortune, retained the sounding name of Room, or the country of the ancient inhabitants of the town.†

The basin of the eastern Halys touches on the south side that in which flows the Karasou, that is, the Black River, the Melas of the ancients. At the head of this valley may be seen Naisargn, the ancient Cesarea, the capital of Capadocia, a large town situated at the base of Mount Ardeis. A traveller, who has been undeservedly decried, found in the environs of this town all the mountains perforated with grottos, which have probably served as sumptuous residences to the ancient inhabitants of the country.‡ Such abodes were common to many nations. It is more difficult to implicitly admit the statement of this traveller concerning the 200,000 little hermits, each having doors and windows, which he assures us are to be seen not far from Cesarea near Yerkup. But must we always reject whatever exhibits the appearance of the marvellous? It contains 25,000 inhabitants, and has a considerable trade in cotton, which is produced abundantly in its neighbourhood.

The country along the banks of the Melas furnishes the wandering horses of the Turcomans with scanty pastureage. The villages appear like little towns in the desert. But as we approach the Euphrates, the eye delights to repose on the gardens, the orchards, and the groves of poplars, which surround Malatia, the ancient Malatia, Melitene, a town containing from 12,000 to 15,000 houses. It was the principal town of the Lesser Armenia; a country through which, in the middle ages, the great commercial road from Europe to India passed, and which, in modern times, has been traversed from east to north by not more than two travellers. It may therefore be reckoned almost a terra incognita. We know that in going from Malatia to Ayas, the ancient mensis, we pass through a small province, named the Turks Dagardir Il.; and governed by a pasha, who resides at Menasche; but whilst d'Antville places that town to the south-west of Mount Amans, wishing to identify it with the ancient Germanica, an eye-witness represents it as situated to the north-east of that chain and within view of the Euphrates. The coast of Armenia, is scarcely better known. The testimonies of Strabo and Otter prove that the most of the rivers along this coast take their rise to the north of the chain of Taurus, which they pass through narrow gorges. The plateau in which these rivers have their source, between Taurus and Anti-Taurus, represents, in part, the ancient Cataonia. It is in these mountains that the wandering Carmaillans, and even the inhabitants of the towns, seek for shelter from the summer heat, which prevails in great severity in the flat maritime regions. Those heights are crowned with cedars, while the shores of the sea are covered with entire forests of laurels and myrtles.** Adana, the residence of a pasha, and a city, where the kings of the Lesser Armenia long held their court, are places of rising importance. Tarsus, the ancient capital of Cilicia, and the seat of the literary rival of Athens and Alexandria, is now only a town containing 30,000 inhabitants, and enjoying a pretty extensive foreign trade; but the cool waters of the Cydrus, so dangerous to Alexander, still flow through those fertile plains where Sardanapalus erected a statue of himself with the inscription: "Enjoy the pleasures of life; all else is nothing." Others, called Trachon, or the rugged, now forms the district of Itchil, subject to the Moussim or governor of Cyprus. The pasha of Batach reigns over the Cekieh, or the coasts of the ancient Pamphylia and Lycia. Satalia, situated upon a dangerous rock, below a forest of lemon and orange trees, has a flourishing trade, and reckons more than 30,000 inhab-

† Paul Lucas, second voyage. 18.
‡ M. Trezel, Rer. Manusc. Comp. Stabo, etc.
§ Pegoletti.
† Schelling, loc. cit.
** P. Belon, Observations, etc. c. vii. and cix.
bitants. Upon the picturesque shores of Lycia, the magnificent ruins of Myre. Now Cacam, attest the opulence of the age of Adrian and of Trajan, the Necropolis, or place of interment, has of itself the appearance of a city.† I the interior, which answers to ancient Pisidia, accident has preserved to a tow.

‡ Inhabited by Turks, the name of Sparta or Ispart; it is the remains of the ancient Sagalesus, which boasted of a Lacedemonian origin, and the imposing ruins of which are found in the neighbourhood.‡ This country, which is seldom visited, is an upland plain, with one or more lakes, the waters of which are carried off by the river Duden, which often disappears in a subterranean cavern.‡

Western coast. The western coasts of Asia, which are more frequently visited, would of themselves furnish matter for an interesting volume. It was here that the arts and letters embellished the cities of Doris, of Ionia, and Eolis; it is here that the melancholy ruins of Hydaspessus, Miletus, and Ephesus, arrest the footsteps of the classic traveller. But it is here that Ephesus are found. The site of the celebrated temple of Diana is not yet determined. Neither the learning of Chandler, nor the ingenuity of Choiseul has been able to decide this question. It is probable that they should have sought for the remains of the north of Ephesus, before the buildings of Lysimachus, in the marshy plains watered by the Cayster.† Double also are entertained as to the situation of ancient Miletus. Spon, the traveller, having found at Palatasha certain inscriptions bearing the name of the Milesians, imagined that he had discovered the ruins of the ancient city.‡‡ Chandler, setting out upon such data, sought in vain for the Latimian Gulf, with the cities of Myus, Heraclea, and others situated upon its shores. He supposed that this gulf was represented by the lake Ufà-Bass, and that the low grounds which separate that lake from the sea, owed their formation to the accumulated deposits of the Meander.†† This hypothesis, which is not very intelligibly stated by its author, has found a formidable opponent in an ingenious German, who considers the ruins of Palatasha as those of Myus, a small town incorporated with Miletus, the inhabitants of which, on that account, were called Milesians. This learned man thinks that Ufà-Bass is the lake which, according to Pausanias, was formed by the sinking down of the soil near Myus.†† The ruins of Miletus and the Latimian gulf should be sought for more to the south and the west. But the modifications which a skilful French geographer has recently introduced into the plans of Chandler, and the very accurate maps of M. de Choiseul-Gouffier, seem to establish the fact that alluvial additions have been made to the land, posterior to those mentioned by Strabo and Pausanias. The lake of Ufà-Bass appears, from decided marks, to be the ancient Latimian Gulf; the ruins of Miletus, however, must lie farther to the west than Palatasha. This interesting question does not seem to us to have yet received an exact and perfect solution.

Modern towns. The modern towns of these fine regions have but little importance. Molasso contains many ruins which belong to the ancient Molossia. Aquis-Hissar, the ancient Magnesia ad Maeandrum, has still a considerable commerce. But in ascending the picturesque valley of the Meander, the traveller discovers the ruins of the rich and magnificent city of Laodicea, now the seat of a great and flourishing commerce. Tircis possesses valuable manufactories. The cataracts of Scala Nova is much frequented, and this town which, in some measure, supplies the place of the city of Ephesus, displays, in a kind of amphitheatre, its markets intermingled with beautiful cypresses.

† Robert Ainslie, Views in the Ottoman Empire, &c. London, 1803.
‡ Paul Lucas, Deuxième Voyage, t. i. c. 34. Troisième Voyage, t. i. p. 181. plate viii.
§ Chandler's Travels in Asia Minor.
| Hadji-Khalil, Géographie Turque, p. 1835—1846.
| Poiemi, Dissertation sur le temple de Diane, dans les Mémoires de l'Académie de Cortone, etc. de M. de M. Millin, vol. iv. p. 74, and his notes upon Chandler.
Smyrna, the queen of the cities of Anatolia, and extolled by the ancients under the title of "the lovely, the crown of Ionia, the ornament of Asia," braves the reiterated efforts of confiscations and earthquakes. Ten times destroyed, she has ten times risen from her ruins with new splendour. According to a very common Grecian system, the principal buildings were erected on the face of a hill fronting the sea. The hill supplied marble, while its slope afforded a place for the seats rising gradually above each other in the stadium, or great theatre for the exhibition of games. Almost every trace of the ancient city, however, has been obliterated during the contests between the Greek empire and the Ottomans, and afterwards by the ravages of Time, in 1444. The foundation of the stadium remains, but the area is sown with grass. There are only a few vestiges of the theatre; and the castle which crowns the hill is chiefly a patch work executed by John Comnenus on the ruins of the old one, the walls of which, of immense strength and thickness, may still be discovered. Smyrna, in the course of its revolutions, has slid down, as it were, from the hill to the sea. It has, under the Turks, completely regained its populousness. Its mosques and other buildings are very handsome, being built chiefly from the marble of the ancient structures. The central situation of Smyrna, and the excellence of its port, attract a concourse of merchants of all nations, by sea, and in caravans by land. The exports from this city are silk, goats and camel's hair, cottons, embroidered muslins, morocco skins, coloured camlets, wool, wax, palm-nuts, currants, amber, lapis lazuli, and a variety of drugs, as musk, galbanum, rhubarb, and various gums. We find there, also, a variety of carpets, besides pearls, diamonds, emeralds, rubies, and other precious stones. Smyrna, in short, is the great emporium of the Levant. This city contains 120,000 inhabitants, though frequently and severely visited by the plague.

From the Meander to the Propontis, order, tranquillity, and increasing opulence bear witness to the excellent administration of the family of Kara-Osman, who, for sixty years have reigned with almost absolute authority. The husbandmen sow their seed, and gather in their harvests in peace. The Greeks have, in the ancient Eolia, schools where Homer and Thucydides are read.* The Turkomans, whose abodes are near the sources of the Hermus, now called the Sarabat, are employed in agriculture. If the residence of Croesus can no longer be recognized in the village of Sart, other places preserve some vestiges of their ancient grandeur. Magnissis and Philadelpis, called by the Turks Alla-Shehr, are flourishing in consequence of their extensive commerce. Immense crops of the finest cotton of Asia enriech Khisissar, the ancient Thyatira, and Kirk-Agatch, a newly-built town. Bergama, the ancient Pergamus, presents to our view magnificent ruins. Phoka, or Pserit still possesses its ancient harbour. The little peninsula which forms the ancient kingdom of Friam has been minutely explored by various learned travellers; but they have not agreed in fixing the localities of the individual places| Site of Troy celebrated in the immortal work of Homer. Cheyalier, and others, have supposed that Troy must have occupied the site of a village called Soomanbashi, and there he thought he found the sources of the Scamander. Dr. Clarke found in that place not two springs merely, one hot and one cold, as had been said, but numerous fountains all warm, raising the thermometer to 62° of Fahrenheit. They do not form the source of the Scamander, which lies forty miles in the interior. Dr. Clarke found, on entering the plain of Troy, first the Meander, which rises in the same and every other circumstance clearly fixed as the Scamander. He found also the Thymbriaus, under the modern appellation of Thymbreok, though other inquirers conceive it to be the Saimos. This last he thought he recognized in the Caliphat Osmak, which runs into the Scamander by a sluggish stream across an extensive plain, and the plain thus becomes that of Samois, on which were fought the great battles recorded in the Iliad. The Ilus of the age of Strabo, we know, was situated near the sea, and he says that it was four miles in a certain direction from the original city. In this distance and direction, Dr. Clarke discovered two spots marked by ruins, which, from different circumstances, seem very likely to have been old and new Troy.† The

grandeur of the scenery, viewed from this plain, is almost indescribable; Samothrace, on one side, rearing behind Imbrus its snow-clad summit, shining bright, and generally on a cloudless sky; while, on the other side, Garganus, the highest of the chain of Ida, rises to an equal elevation. These scenes are well fitted to impart the most feeling interest to the descriptions of Homer, when read or remembered on the spot. Whatever difficulty may exist as to the matters, all the prominent features of Homer's picture are incontestably visible. The Hellespont, the island of Troezen, the plain, the river, still inundating its banks, and the mountain whence it issues. A fertile plain, and a mountain abruptly rising from it, are two features which are usually combined in the sites of ancient cities. From the one, the citizens drew part of their subsistence, while the other became the citadel to which they retired on the approach of danger. The ruins of Abydos, on the shore of the Hellespont, lie farther to the north than the Castle of Asia, a fortress of small strength. Iamsaki is only a suburb of the ancient Lampsacus, the ruins of which have been lately discovered at Tchardak.*

Having finished the description of the peninsula of Asia Minor, we come to explore that chain of islands which forms a border to it upon the west. Here every rock has its history, every island has had its renowned sage, its heroes, and its men of renown.

Troezen, Mytilene. Troezen is the key of the Hellespont, the Turks having given it the name of Boghcha-Adassi. From this island, which is rich in wine, we come to Metelin, the ancient Lesbos.† A variety of hills, clad with vines and olive trees, rise around the numerous bays of this island. The mountains of the interior are covered with mastick, turpentine trees, pines of Aleppo and the Cistus. Rivulets flow under the shade of the plane tree. The wine, the figs, and the women of Lesbos, still preserve their ancient reputation. The island has about 25,000 inhabitants, 8000 of which live in the town of Castro. Passing by Kura-boroom, and its savage inhabitants, we come to the delightful island of Scio or Chios, which is indebted to its mastic tree for the enjoyment of a kind of liberty, in consequence of being assigned as the demesne of the sultan another. Industry, accordingly, the offspring of liberty, has transformed into a garden this island, although in a great measure composed of granite and calcareous rocks. M. Olivier computed the population to be about 110,000, almost all Greeks, of whom 30,000 reside in the capital, which bears the same name as the island. Lemons, oranges, and figs, together with an intermixture of fig-trees and pomegranates, perfume the air; while roses grow in as great numbers as thistles in other regions. Grapes of barley are raised, and oil and muscat wine are made. Neither the cotton nor the silk which grows on the island is sufficient to employ the industry of the inhabitants, who can imitate all the stuffs of Lyons and India. The women of Scio, handsome as the Greek statues, disguise their persons by their whimsical dress.‡

Samos. After having traversed the gulf of Scala Nuova, we reach the large port of Vathi in Samos, an island of about half the extent of Scio, and inhabited it is said by not more than 12,000 souls. The soil however is very fertile, and produces muscat wine, oranges, oil, and silk; fine marble is also found in the island. Samos presents to antiquarians the superb remains of a temple of Juno. It is the only island of the Archipelago which has the character of containing ugly women. Megalo-Chori is the chief place in modern times. Mount Kertis retains snow on its summit during the greater part of the summer.§

We pass in front of Nicaria, rich in building timber, but in other respects barren; it is inhabited by a few Greeks, very poor, and very proud, who pretend they are sprung from the imperial blood of the Constantinians, and who never sleep in a bed. Patmos. When they can get one. Neither shall we stop at Patmos, which one of its inhabitants described about 130 years ago as abounding in wines, corn, and

* Castellani, Lettres sur la Grèce, etc. i.
† Olivier, Voyage dans l'Empire Ottoman, ii. 84—102.
‡ Tournesfort, i. Lettre 9. Olivier, ii. 103, sqq.
I. ASIA MINOR.

327

figs, adorned with myrtles and arbuti, and containing about sixteen or seventeen villages; but since that time it has greatly degenerated. Lero, with a large port, Calimnos, which produces excellent honey, and other small islands, lie to the south of Samos. We now come to the birthplace of Hippocrates, Cos, a name now disfigured into Stano. This island presents the view fine plan- tations of lemon trees, intermixed with stately maples; it has given its name in Latin to a kind of stone which is much used for sharpening tools,† and is commonly called Turkey stone.

Opposite to the extremities of Asia, to the south-west, is the island Rhodes. of Rhodes, celebrated in antiquity for its equitable code of laws, and celebrated also in the fourteenth and fifteenth centuries as the residence of the knights of the order of St John of Jerusalem. This island, which produces but little grain, still boasts of its fruits, its wines, its wax and honey. It exports soap, fine carpets, and camlets. Rhodes, the capital, is situated on the declivity of a hill facing the sea. It exhibits for a league round, an agreeable mixture of gardens, domes, towers, and churches. It is one of the best fortresses which the Turks possess. It has a very good port, the entrance of which is confined by two rocks, upon which are erected two towers that command the passage. The famous colossus of bronze, which was 130 feet high, appears not to have been placed across the entrance of the great port, but rather upon the bank or pier which divides the interior port, where the knights kept their galley.‡

The southern coasts of Asia Minor are almost destitute of islands. The steep declivities of Mount Tauros run close along the shore. Some small rocky islands, such as Castelrosso, are barely detached from the continental precipice by narrow channels. Leaving Cape Chaidoni behind, we now direct our course to the port of Paphos in the island of Cyprus. The moderns have changed the name of that town into Bafha, and that of Amathus into Limasol.

An earthquake has destroyed Salamis, and the ruins which bear its name, being nearer the river Pedieus, belong rather to the new town of Constantinople, built by the Emperor Constantius.6 Other cities have acquired the pre-eminence; Nicosa, in the center, is become the capital. The commerce of Famagouste, together with that of Laricte and Salines, is not in a flourishing condition. The ancients extol the fertility of this island; the moderns entertain nearly the same opinion of it. The snow, which remains for a long time upon mount Olympus, (now called the mountain of Saint Croix,) produces a sharp cold in winter, which renders the transition to the heat of summer more insupportable. The most valuable production at present is cotton; we also send thither for turpentine, building timber, oranges, and most of all, Cyprus wine. Hycanthus, anemones, ranunculuses, and the single Paphian, and double narcissus, grow here without cultivation. They deck the mountains, and give the country the appearance of an immense flower garden. But agriculture is neglected; and an unhealthy atmosphere infects some districts, where the method of draining the stagnant water is unknown. It is supposed that the name of Cyprus, or Cyprus, was given to the island from its abounding in copper; or vice versa, the metal derived its name from that of the island, copper being called as Cyprium. Besides this metal, it once produced gold, silver, and emeralds. What is called the diamond of Paphos, is a rock crystal which is found near that town. Amianthus, red jasper, andumber, are also exported from this island.

The inhabitants of Cyprus are a fine race of men; the women, by inhabitants, the vivacity of their large eyes, seem to declare how faithful they still are to the worship of Venus. This island, anciently divided into nine kingdoms, each of which contained several flourishing cities; had perhaps a million of inhabitants; Population, it has now only 83,000. The grand viziers possess it as an appendage to their place; and to make it as profitable as possible, they let the office of superintendent or mousselim, to the highest bidder. During the decline of the eastern empire,

† Thompson's Travels, &c. iii. 103.
‡ Diad. Sicil. x. 83. Olivier, iii. 347.
§ Pococke, ii. 313, (in German.)
Cyprus was conquered by Richard the First, king of England, and given to the house of Lusignan, as an English fief, by way of indemnity for the loss of the throne of Jerusalem.* In the fifteenth century the heiress of that house resigned the sovereignty of it in favour of the Venetians, who in 1570 were expelled from it by the Turks; but, a princess of the house of Lusignan having married a Duke of Savoy, the kings of Sardinia still make pretensions to the crowns of Cyprus and Jerusalem.

Here we conclude our topographical sketch of Asia Minor, and the neighbouring islands. It has necessarily been rapid, because vast tracts, either quite unknown, or known only from the vague relations of the orientalists, are interpolated between the routes of European travellers, routes which are neither sufficiently numerous, nor sufficiently diversified to furnish us with a modern topography equal to that which may be extracted from the Greek and Roman writers. It would be very easy for us to protract this description by repeating the observations so often made upon the manners of the different nations which inhabit this fine country; but the few details of this kind in which we shall allow ourselves to indulge will be found in a more appropriate place. The Greeks and Armenians who inhabit the commercial towns will occupy our attention when we describe the countries whence they derive their name. The Koords and the Turcomans, whose tribes, sometimes pastoral and sometimes agricultural, are scattered over the interior, will also form the subject of a separate article. Lastly, the Turks, their power and civil policy, come most properly to be noticed after the description of the whole of Turkey in Asia. Here then it only remains for us to compare the ancient and modern divisions, a laborious undertaking, the results of which our readers will find in the subjoined tables.

TABLE

Of the different Applications of the names of Asia, Asia Proper, and Asia Minor.

<table>
<thead>
<tr>
<th>Asia, or Asis, a province of Lydia.</th>
<th>A canton comprised between Mount Imolus, Mount Mesogia and the Cayster.†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia, a part of the world.</td>
<td>Pontus, Paphlagonia, Bythinia, Lydia, &c.; Phrygia, Cappadocia, Cilicia, Syria, (Arabia).†</td>
</tr>
<tr>
<td>Lower Asia.</td>
<td>Caucasian, Arthamia, Mesopotamia, Media, Persia, &c. &c. &c. Syria, India.‡</td>
</tr>
<tr>
<td>Upper Asia.</td>
<td>Mysia, Phrygia, Lycaonia, Lydia.§</td>
</tr>
<tr>
<td>Asia, kingdom, called also the kingdom of Pergamus.</td>
<td>Mysia, Lydia, Ionia, Caria, Phrygia.</td>
</tr>
<tr>
<td>Asia, a pretorian province, and afterwards a consular one.</td>
<td>Sometimes synonymous with Pretorian Asia, but commonly taken as comprehending the peninsula as far west as the Halys, and the gulf of Taurus.**</td>
</tr>
<tr>
<td>(in the palatium Asis.)</td>
<td>Pretorian Asia, together with Lycia, Pamphylia, but excluding the western coasts.**</td>
</tr>
<tr>
<td>Asia Proper.</td>
<td>The western coasts from Cape Lectum to the environs of Miletus.††</td>
</tr>
<tr>
<td>Asia, a diocese under Constantine.</td>
<td>All the peninsula which we call Asia Minor.††</td>
</tr>
<tr>
<td>Proconsular Asia, same epoch.</td>
<td></td>
</tr>
<tr>
<td>Asia Minor in the fourth century.</td>
<td></td>
</tr>
</tbody>
</table>

* Eneas Silvius, Cosmograph. c. 97.
‡ Xenophon and Strabo, passim.
‖ Cic. Orat. pro Flacco, cap. 27. Strabo, xiii. 626. Ἄνω Νεκτ. I.
** Strabo, ii. 188.
†‡ Oros. Histor. i. c. 2. Constantin. Porphyrog. de Themat. i. 8. 19.
Divisions of Asia Minor.

I.—Asia Minor, according to the most usual divisions among the ancient Greeks.

<table>
<thead>
<tr>
<th>Grand Divisions</th>
<th>Sub-divisions</th>
<th>Principal Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mysia</td>
<td></td>
<td>Pergamus.</td>
</tr>
<tr>
<td></td>
<td>*Laontrania.</td>
<td>Cymus.</td>
</tr>
<tr>
<td></td>
<td>*Echinos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coast of the Pelasgi, Leleges, &c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Island of Lesbos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Troy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Dardania.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Mysia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N.B. Troas and Little Mysia formed Little Phrygia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interior Lydia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Lydia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Myconia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Asis or Asia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maritime Lydia or Ionia.</td>
<td></td>
</tr>
<tr>
<td>Lycia</td>
<td></td>
<td>Placeae, Smyrna, Erithrea, Clazomenae, Teos, Lebedus, Colophon, Ephesus, Priene, Myras, Milota, (these three are in Caria.) Island of Samos, Island of Chios.</td>
</tr>
<tr>
<td></td>
<td>*Lycia Proper.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milies (Solimi.)</td>
<td></td>
</tr>
<tr>
<td>Caria</td>
<td>Caria, Interior.</td>
<td>Alabama, Stratonic, Mylas. Halicarnassus, Cos, Cnides.</td>
</tr>
<tr>
<td></td>
<td>Maritime Caria, or Doris.</td>
<td>Rhodes.</td>
</tr>
<tr>
<td>Pamphylia</td>
<td>Pisidia Proper.</td>
<td>Patara, Myra.</td>
</tr>
<tr>
<td></td>
<td>Canton of Eumenes.</td>
<td>Altalea.</td>
</tr>
<tr>
<td>Pisidia</td>
<td>— of Orandici.</td>
<td>Isabria, Lake Coralis.</td>
</tr>
<tr>
<td>Phrygia</td>
<td>Isauria.</td>
<td>Synnada, Apamea, Cotyæum, Cibyria.</td>
</tr>
<tr>
<td></td>
<td>Phrygia Proper.</td>
<td>Iconium, Laodicea combusta, Amorium.</td>
</tr>
<tr>
<td></td>
<td>*Phrygia Epictetos.</td>
<td>Ancyra, Gordium, Tavium, Pessinus.</td>
</tr>
<tr>
<td></td>
<td>Lycaonia.</td>
<td></td>
</tr>
<tr>
<td>Phrygia</td>
<td>Galatia (Gallo Graecia.)</td>
<td>Prussa, Nicea.</td>
</tr>
<tr>
<td></td>
<td>1. Trocmi (Tavium.)</td>
<td>Nicomedia, Chalcedon.</td>
</tr>
<tr>
<td></td>
<td>2. Tectosages (Ancyra.)</td>
<td>Heraclea, Bithynium.</td>
</tr>
<tr>
<td></td>
<td>3. Tohostobog (Pessinus.)</td>
<td>Gangra, Pompeipolis, Sinope, Amastris.</td>
</tr>
<tr>
<td>Bithynia</td>
<td>Bithynia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thracia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mariandynis.</td>
<td></td>
</tr>
<tr>
<td>Paphlagonia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vol. I.—Tt
<table>
<thead>
<tr>
<th>Grand Divisions</th>
<th>Subdivisions</th>
<th>Principal Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*Saramene.</td>
<td>Amasia, Comana Pontica.</td>
</tr>
<tr>
<td></td>
<td>*Phazemonit.</td>
<td>Sebastia, Neo-Caesarea, Oenee, Polemonium.</td>
</tr>
<tr>
<td></td>
<td>*Phanarrea.</td>
<td>Mazaca, or Cesarea, Amelaias, Nazianus, Tyana.</td>
</tr>
<tr>
<td></td>
<td>*Daximonit.</td>
<td>Cybeba, Comana.</td>
</tr>
<tr>
<td>Polemonic Pontus</td>
<td>*Sidene.</td>
<td>Melitena.</td>
</tr>
<tr>
<td></td>
<td>*Calapene.</td>
<td>Zimia.</td>
</tr>
<tr>
<td></td>
<td>*Chalybes (western.)</td>
<td>Taras, Mopsuestia.</td>
</tr>
<tr>
<td></td>
<td>*Heptacometes (seven tons.)</td>
<td>Selencis, Soli.</td>
</tr>
<tr>
<td></td>
<td>*Macrones or Zani.</td>
<td>Salamis.</td>
</tr>
<tr>
<td>Cappadocian Pontus</td>
<td>Cappadocia Proper.</td>
<td>Amathus.</td>
</tr>
<tr>
<td></td>
<td>4. Tyantit.</td>
<td></td>
</tr>
</tbody>
</table>
Diocese of Asia

<table>
<thead>
<tr>
<th>Provinces</th>
<th>Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pamphylia</td>
<td>Attalia</td>
</tr>
<tr>
<td>Pisidia</td>
<td>Sagalassos, Laodicea</td>
</tr>
<tr>
<td>Lycaonia</td>
<td>Iconium</td>
</tr>
<tr>
<td>Phrygia Pacatana</td>
<td>Laodicea</td>
</tr>
<tr>
<td>Phrygia Salutary</td>
<td>Smyrna, Cotyma</td>
</tr>
<tr>
<td>Hellasponit</td>
<td>Pergamus</td>
</tr>
<tr>
<td>Lycaonia</td>
<td>Philadelphia</td>
</tr>
<tr>
<td>Caria</td>
<td>Stratonice</td>
</tr>
<tr>
<td>Lycia</td>
<td>Myra</td>
</tr>
<tr>
<td>The Islands</td>
<td>Rhodes</td>
</tr>
</tbody>
</table>

Provinces of Proconsular Asia, independent of the diocese of Asia.

- Bithynia
- Honoria
- Galatia 1st
- Galatia 2nd
- Theodoseus
- Hellenica
- Pontus Polemoniae
- Cappadocia 1st
- Cappadocia 2nd
- Valentinian
- Armonia prima
- Armonia secunda
- Cilicia prima
- Cilicia secunda
- Issaria
- Cyprus

Diocese of Pontus

<table>
<thead>
<tr>
<th>Provinces</th>
<th>Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cappadocia</td>
<td>Passa</td>
</tr>
<tr>
<td>Pontus Polemoniae</td>
<td>Sinope, Amisus, Neo-Caesarea</td>
</tr>
<tr>
<td>Bithynia</td>
<td>Callinicus, Trapezus</td>
</tr>
</tbody>
</table>

Under the diocese of the East.

- Armenia prima
- Armenia secunda
- Cappadocia 1st
- Cappadocia 2nd
- Valentinian
- Armonia prima
- Armonia secunda
- Cilicia prima
- Cilicia secunda
- Issaria
- Cyprus

Diocese of the East

- Armonia prima
- Armonia secunda
- Cappadocia 1st
- Cappadocia 2nd
- Valentinian

N.B. The division of the empire of the East by Thessalae, having had but little duration, and no influence upon the modern divisions, we shall not give it. It may be seen in Basadyi's Eastern Empire. We shall only observe that the Thessalae Anatolicæ nearly includes Ptolemais Asia. This is the first time that Anatolia makes a figure in geography; but the use of the term Asia (supple ἀσίαν), that is, the country of the Levant, was without doubt, anterior to the division by Thessalae.

* The ancient province re-established only comprised the neighboring countries of Iconium.

† Comprising all ancient Mysia.

‡ The proconsul, independent of the vicar of the diocese of Asia, and of the prefect of the East, inspects the provinces of the Hellespont and the islands; thus, his prefecture represents in some respects the code of the Capitan-pacha, or great admiral.

§ Theodosius the II. named it thus in honour of his uncle Monanous. It appears to be represented by the sandzicac of Boli. ** Comprising the regions of Turkey and the Cape of Sasean.

†† The Iberian, almost always in rebellion, took possession of Cilicia Trachea.
III. Asia Minor, according to the Turkish Divisions, in the Ajebem-nuna.

<table>
<thead>
<tr>
<th>Turkish Divisions</th>
<th>Chief Towns</th>
<th>Ancient Divisions corresponding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Paehdlic of Anad-</td>
<td>Kuthia (Cotymum.)</td>
<td>Western and central parts of</td>
</tr>
<tr>
<td>houly.</td>
<td>Degush or Lassiah, (not</td>
<td>Phrygia properly so called.</td>
</tr>
<tr>
<td>1. Livah, or Sandgie-</td>
<td>far from Lodicea upon the</td>
<td></td>
</tr>
<tr>
<td>cat of Kuthia</td>
<td>Lycus.)</td>
<td></td>
</tr>
<tr>
<td>2. — Sarou-Khan</td>
<td>Magnisa (Magna ad S.</td>
<td>Northern Lydia.</td>
</tr>
<tr>
<td></td>
<td>pylum.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Akhissar (Thyatira.)</td>
<td>N. B. Sarou-Khan is the</td>
</tr>
<tr>
<td></td>
<td>Fotchia (Phocée.)</td>
<td>name of a prince who reign-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ed over this country.</td>
</tr>
<tr>
<td>3. — Aadin</td>
<td>*Tireh.</td>
<td>Central and Southern Lydia.</td>
</tr>
<tr>
<td></td>
<td>Guzelhissar (Magna ad</td>
<td>Parts of Ionia.</td>
</tr>
<tr>
<td></td>
<td>Mæandrum.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amscheher (Philadelphion.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ayasaluk, Sart, Sc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mentasche (Mynuss.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melasso (Mylassa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kothianah (Attalia.)</td>
<td>Lycia and Pamphylia.</td>
</tr>
<tr>
<td></td>
<td>Kondissar (Perga?)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tighne (Olympus)</td>
<td></td>
</tr>
<tr>
<td>5. — Tekieh</td>
<td>*Isarteh (Segalassin Lance-</td>
<td>Mityas and the interior of P-</td>
</tr>
<tr>
<td></td>
<td>dmona)</td>
<td>sidia.</td>
</tr>
<tr>
<td></td>
<td>Bardah.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Akasar.</td>
<td></td>
</tr>
<tr>
<td>6. — Hamid</td>
<td></td>
<td>South East parts of Phrygia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. — Karahissar-</td>
<td>*Karthissar (Gokosain)</td>
<td>South East parts of Phrygia.</td>
</tr>
<tr>
<td></td>
<td>Sahib</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boulawadéq (Philomelium.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandhoukhi.</td>
<td></td>
</tr>
<tr>
<td>8. — Sultan Eugny</td>
<td>*Kedigosehur (Doryleum.)</td>
<td>Phrygia Epictetos. Parts of</td>
</tr>
<tr>
<td></td>
<td>Kedigosehur (Nacoia.)</td>
<td>Galatia.</td>
</tr>
<tr>
<td></td>
<td>Lin-Eugny.</td>
<td></td>
</tr>
<tr>
<td>9. — Angoumi</td>
<td>*Angous (Anyr. Canton of</td>
<td>Central Galatia. (Testo-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haimaneh.)</td>
</tr>
<tr>
<td>10. — Kiangari</td>
<td>*Kiangari (Gangra.)</td>
<td>The interior of Paphlagonia,</td>
</tr>
<tr>
<td></td>
<td>Toussiegh (Tocia.)</td>
<td>(supposing, as we do, that</td>
</tr>
<tr>
<td></td>
<td>Tchorkia.</td>
<td>Changregh and Kiangari are</td>
</tr>
<tr>
<td></td>
<td>Tokhet.</td>
<td>the same place.)</td>
</tr>
<tr>
<td>11. — Kastamooni</td>
<td>*Kastamooni.</td>
<td>Maritime Paphlagonia with</td>
</tr>
<tr>
<td></td>
<td>Sinoub (Sinepe.)</td>
<td>Mount Oigasys.</td>
</tr>
<tr>
<td></td>
<td>Tasch-Kourprou (Pompeio-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>polia.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Theboli (Iomopolia.)</td>
<td></td>
</tr>
<tr>
<td>12. — Boli</td>
<td>*Boli (Claudiope)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amassereah (Amastris.)</td>
<td>Homonias, or Bithynia eastern,</td>
</tr>
<tr>
<td></td>
<td>Bend-Erekhei (Heraclia.)</td>
<td>with a part of Paphlagonia.</td>
</tr>
<tr>
<td></td>
<td>Viranacheher.</td>
<td></td>
</tr>
</tbody>
</table>

* i.e. The Mirror of the World, a geographical work, composed by Madji-Khalaf, the
 manuscript translation of which is preserved in the royal library at Paris.
† The towns marked with an asterisk are the chief places of the Sandgiscats.
III.—Continued.

<table>
<thead>
<tr>
<th>Turkish Division</th>
<th>Chief Towns</th>
<th>Ancient Divisions corresponding</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. — Kedjarli</td>
<td>Isnikmid (Nicoomedia.) Iznik (Nicza.) Kadikeni (Chalcedon.) Iskudar (Chrysopolis.) Imperial Domain.</td>
<td>Bithynia to the west of Sangarius.</td>
</tr>
<tr>
<td>17. — Sogla</td>
<td>*Ismir (Smyrna.) Ourlah. Manimen (Temmus.)</td>
<td>Part of Ionia.</td>
</tr>
</tbody>
</table>

II. Pastable of Siwas.

III. Pastable of Tarambozan.

| | — Kireasount (Cerasa.) — Irizeh (Rizæam.) | |
| 3. — Batoomi | Batoomi | Southern Colchis. |

* Hadgi-Khalif does not mention Jeuzgatt, but it is now the chief place of Bouzok.
† Hadgi-Khalif considers the pastable of Tarambozan as a dependence of Armenia.
III.—Continued.

<table>
<thead>
<tr>
<th>Turkish Divisions</th>
<th>Chief Towns</th>
<th>Ancient Divisions corresponding</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. Pashalic of Konieh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Liwah of Konieh</td>
<td>Abhieh (Iconium)</td>
<td>Central and Southern Lycoonia.</td>
</tr>
<tr>
<td>2. — Nighde</td>
<td>Nigdie</td>
<td>Eastern part of Cataonia.</td>
</tr>
<tr>
<td>3. — Beysheh</td>
<td>Beysheh</td>
<td>Isauria.</td>
</tr>
<tr>
<td>4. — Akshehr</td>
<td>Aksehr (Tyriens)</td>
<td>Western part of Lycoonia.</td>
</tr>
<tr>
<td>5. — Akseh</td>
<td>Akseh (very uncertain)</td>
<td>Western and Central parts of Cappadocia.</td>
</tr>
<tr>
<td>6. — Kaisareh</td>
<td>Kaisareh (Cesarea)</td>
<td></td>
</tr>
<tr>
<td>7. — Kirseh</td>
<td>Kirseh (Archelais?)</td>
<td></td>
</tr>
<tr>
<td>V. Pashalic of Meraseh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Liwah of Merash</td>
<td>Merash (uncertain.)</td>
<td>Cilicia of Syria, Commagene, Cataonia, and Cilicia.</td>
</tr>
<tr>
<td>2. — Kars</td>
<td>Kars-Zoukardy</td>
<td>Metile.</td>
</tr>
<tr>
<td>3. — Antab</td>
<td>Antab (uncertain.)</td>
<td></td>
</tr>
<tr>
<td>4. — Someisath</td>
<td>Someisath (Samosata)</td>
<td></td>
</tr>
<tr>
<td>5. — Malatinah</td>
<td>Malatinah (Melitena)</td>
<td></td>
</tr>
<tr>
<td>VI. Pashalic of Adana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Liwah of Adana</td>
<td>Adana (Antiochis ad Sarum)</td>
<td>Cilicia proper.</td>
</tr>
<tr>
<td>2. — Tarassus</td>
<td>Tarassus (Tarsus)</td>
<td>Idem.</td>
</tr>
<tr>
<td>VII. Mussulmanliks of Cyprus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Island of Cyprus.</td>
<td>Lefcosia (Nicocia of the Europeans.)</td>
<td></td>
</tr>
<tr>
<td>No Subdivisions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Country of Itchil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Liwah of Itchil</td>
<td>Selcejeh (Seleucia)</td>
<td>Cilicia Trachea.</td>
</tr>
<tr>
<td>2. — Alanieh</td>
<td>Alanieh (Sidet?)</td>
<td>Pamphylia.</td>
</tr>
</tbody>
</table>

* This country, possessed by Turcoman beys, called Doulgradir, or Zoulhadir, takes the name of Doulgradir-Ill.
† This little country was a principality of the Turcoman beys, called Ramadan-Oglou, or Sez of Ramadhan.
‡ When the Qamanis made the conquest of the State of Karahan, they divided it into two parts, viz. 1st, Kherride, or exterior country to the north of Taurus. 2d, Itchil, or interior country to the south of that chain. Djeznan Numa, p. 1750 of the manuscript translation.
BOOK XXVII.

TURKEY IN ASIA.

PART II.

Including Armenia, Mesopotamia, and Irac-Arabia.

The eastern provinces of the Turkish empire in Asia form three natural divisions; the region of Orontes and Libanus, or Syria and Palestine; that of the sources of the Euphrates, and of the Tigris, or Armenia with Koordistan; finally, the region of otherwise Mesopotamia, and Babylonia. We shall here connect the two divisions, without founding them. Syria will be described in a separate book.

Armenia, Mesopotamia, and Babylonia, though modern geographers, have a good claim to our case that the first towns known in history were built. It was here that Alexander gave the mortal blow to the colossal monarchy of Persia. At a later period, the banks of the Tigris and Euphrates became the bloody theatre where Trajan, Julian, and Heraclius conducted the roman legions against the squadrons of invincible Parthia. In modern times, the people of Omer and that of Ali, are two great powers and still two great powers.

Nature has here presented us with a sufficient number of objects both of interest and study, independent of the actions of men, and their transient powers. There are few countries of the globe where, in so small a space, so many striking contrasts are found united. Within an extent of ten degrees of latitude, we have at Bagdad a heat equal to that of Senegal, and on the summit of Ararat, eternal snows. The forests of fir and cedars of Arabia echo to the howling of the bears of Mount Taurus. We might indeed say that Africa and Siberia had here given each other a meeting. This near approach of climates so opposite, principally arises from the great differences which are found in elevation. Armenia, which is a very elevated plain, is encompassed on all sides by lofty mountains.

Ararat, always whitened with snow, rises in the centre of this country. To the north, the mountains of Tashelder, and Djankir, separate Armenia from the Euxine Sea. This chain, although in part covered with fine forests, does not appear to yield in height to Caucasus; for in the month of June snow sometimes falls near Erzroom upon the southern declivities. The chains of Taurus enter Armenia near the cataracts of the Euphrates; they rise considerably in advancing to the east: the Niphates of the ancients, to the south-east of the lake Van, derive their name from the snows which cover their summits all the year. The Gordian mountains of Xenophon, called Corduene in the map of Anville, fill the whole of Koordistan; one branch prolonged to the south is the Zagrus of the ancients, which separates the Ottoman empire from Persia. Its lower branches terminate at some lakes with the eastern banks of the Tigris. A detached branch of Taurus, the Mons Masius of the ancients, passes between the Tigris and the Euphrates, and forms the declivity upon which the town of Merdin is situated, and then terminates in the hills of Singar, to the west of Mosul. From these two points
an immense plain extends to the coasts of the Persian Gulf, where the weariest eye scarcely perceives the slight undulations of the ground: a great part of these plains, below the point where the two rivers unite, was formerly covered with a number of lakes now dried up, and even now there are a great many parts which are inundated by the slightest increase of the rivers.

To this general description of the country, we shall now add that of the two great rivers which water it.

Course of the Euphrates.

The Euphrates takes its rise from several sources; two branches, in particular, dispute the honour of being the principal; one not far distant from the town of Rayyazid, in the mountains named Al-Dag, anciently the mountain Jabus, and of which Ararat makes a part: this river, which bears the name of Murad, disappears under ground at the distance of four hours travelling from Rayyazid. It reappears, and receives, near Melasheker, another river of this name, and traverses all the district of Turberal, the southern part of Armenia Proper. The other branch of the Euphrates, which the Orientals call Frat, is formed under the walls of Erzoum, by the junction of two small rivers, one of which probably represents the Lycus of Pliny; these two rivers united do not equal the Murad, which Xenophon considered the real river. Frat and the Murad unite their waters a little below the town of Arabik; the river, now very considerable, descends rapidly towards the defile called the Pass of Nushar; having passed this, it winds along an elevated plain, but soon meeting with a fresh inequality of ground, forms a double cataract twenty-two miles above Semiset. Disengaged from all the obstacles which restrained its force, it rolls majestically along a wide and verdant valley. To the south of Kerkisheh it enters the immense plains of Senassar; but being repelled on the Arabian plain, the wind side by side by some sandy and calcareous heights, it is forced to approach the Tigris in its course.

Course of the Tigris.

This other river, the rival and companion of the Euphrates, has its source in the mountains of the country of Zoph, the ancient Sophene, a part of Armenia. The Euphrates, already of great size, receives all the streams of that country; but, by a singular exception, this, the smallest of them, is the most considerable. Of its source, the Medians call Dighito in Arabic, and Hiedekol in Hebrew; all of which terms denote the flight of an arrow.

Besides this branch, which is best known to the moderns, Pliny has described to us in detail another, which issues from the mountains of Koordistan to the west of the lake Van. It passes by the lake Arethusa. Its course being checked by a part of the mountains of Taurus, it falls into the subterranean cavern called Zorander and appears again at the bottom of the mountain. The identity of its waters is shown by the appearance of light bodies at its source above the place where it enters the mountain. It passes also by the lake Tophit, near the town of Erzen, and presents itself again in subterranean caverns, and reappears at a distance of 25 miles below, near the modern Nymphæa. This branch joins the western Tigris below the city of Diarbekir.

Unites the two streams.

In proportion as the Tigris and the Euphrates approach one another, the intermediate land loses its elevation, and it is occupied by meadows and morasses. Several artificial communications, perhaps two or three, which are natural, form a prelude to the approaching junction of the rivers, which finally takes place near Korna. The river formed by their junction is called Shat-al-Alar, or Shat-al-Abab. It has three principal mouths, besides a small outlet; these occupy a space of thirty-six miles. The southernmost is the deepest and freest in its current. Bars of sand formed by the river, and which change in their

† Hadji-Khalilah, p. 1151, sqq. D'Anville, Euphrates and the Tigris.
‡ Wahl, Asien, i. 711.
§ Plin. loc. cit.
form and situation, render the approach dangerous to the mariner. The tide, which rises above Bassora, and even beyond Korna, meeting with violence the downward course of the stream, raises its waters in the form of frothy billows.*

Such are the known facts respecting the course of these two rivers. A full discussion of the questions which have been raised on this part of geography, would require a separate treatise. Some of the ancients described the Euphrates as losing itself in the lakes and marshes to the south of Babylon; others consider the river formed by the union of the two as entitled to a continuation of the name of Euphrates. According to some the Euphrates originally entered the sea as a separate river, the course of which the Arabs stopped up by a mound. § This last opinion has been in some measure revived by a modern traveller, who supposes that the canal of Near-Sares, proceeding from the Euphrates on the north of Babylon, is continued without interruption to the sea. || The bay called Khore-abdallah would, according to this hypothesis, represent the ancient mouth of the river; but this bay existed in the time of Ptolemy under the name of the Sinus Mesanitis. With regard to the canal Nahr-Sares, it appears for certain to rejoin the river near Semawé. The dry bed corresponding to the gulf of Khore-abdallah, and on which we find the remains of the old city of Bassora, terminates in the Euphrates a little to the west of Korna. The Pallacopas, or the canal of Koufa, seems to extend no farther than the lakes on the south of Babylon. The continual changes to which this flat and moveable ground is subject, the inundations of the rivers, and the works of human labour, concur to render the solution of these points impossible.

There is also some uncertainty respecting the relative size of the Tigris and the Euphrates. The last has certainly the longest course, but weakened by drains; it presents at Hilleh a width not exceeding 420 feet, while the Tigris at Bagdat is more than 600. The inhabitants of the country, in order to irrigate their lands, dam up both the one and the other with dykes, which the historians of Alexander have, in their simplicity, mistaken for military bulwarks, intended to check the progress of the Arabian pirates up the river. †† We must now ascend to the sources of the Euphrates, to give a description of Armenia. This country, we have already said, forms a very high plateau, crowned with mountains still higher. Ararat and Kobi-seiban show from a great distance their summits covered with perpetual snow. Several parts of Armenia have undergone changes by the operation of earthquakes. Djebel-Nimrod, i.e. the mountain of Nimrod, has sometimes emitted flames, and still has on its summit a small lake which, according to the account of a Turkish geographer, seems to be an old volcanic crater: the country seems rich in natural curiosities. The great lake of Van, sometimes called the Argis, is the Arsissas palus of Ptolemy and the Mantian lake of Strabo. Its water is very saline. ** Two rivers near Sousshe-scheri produce crystallized salt, the one white and the other red. The round stones found near Keify appear to be natural aggregates of orbicular granite. The cold, very intense in the high districts, leaves only three months for the season of vegetation, including seed time and harvest; † yet the crops of corn are abundant. Walnut and apple trees are to be found here; the latter afford, in the cold district of Akhlat, apples weighing nearly a pound. As we go down the Euphrates, we see the vine and the olive flourish, although at Erzroom there are neither fruit trees nor wood for fuel. †† The horses of Armenia are highly extolled by the ancients. Gold mines which were worked are mentioned by them. §§ At present, copper and iron are exported to Mosul. ||

* Philipp. a Sancta Trinitate, Itiner. p. 144.
§ Plin. vi. 27. § Niebuhr, Voyage ii. 228, 253, 261.
¶ I've's Travels, p. 51. Niebuhr, ii. p. 343. ** Tavernier's Six Journeys, i. iii. cap. 3.
†† Hadiji-Khalafiah, p. 1136. †† Id. p. 1117.
|| Sprengel, Bibliothèque des Voyages, viii. p. 2 and 93, (in German.)
Vol. I.—U u
Erzroom, one of the bulwarks of the Ottoman empire on the east, has walls built of clay hardened in the sun. It contains 25,000 inhabitants, of whom 8000 are Armenians. These are manufacturers in copper utensils, and carry on a great trade in skins and furs. Kars and Van, on the frontiers of Persia, are little known. They, as well as Erzroom, are the residences of three pashlas, who govern the country. Ardgis is still mentioned as a town on the Van lake, Erezendgian on the Euphrates, and some others, among which Khanooz deserves our attention. This town is situated in the hollow of a rock, which forms a natural wall round it. In the centre of the town there stands a high isolated piece of rock. This singularity leads us to recognize here the ancient Theodosiospolis, which was forty-two stadia from the sources of the Euphrates. The towns of Baibuth and Isir give animation to a fruitful valley, from which building timber and different kinds of conserves are exported. On the north-east of Armenia, the old pashalic of Tashkird, mentioned by Ricaut, and which many geographers have sought for in vain, has taken the name of Akalziko, from that of a fortress situated on the Kour, and which is its capital. It is sometimes called Turkish Georgia. South from this, and on the very frontier of the Persian province of Erzvan, are the ruins of Anni, one of the ancient capitals of Armenia, on the river Harapaz, a tributary of the Araxes. These ruins present brilliant specimines of the former grandeur of the place. The whole surface is covered with hewn stones, broken capitals, columns, and shattered, but highly ornamented friezes. Several elegant churches are still standing. The palace is a structure of great extent, resembling a town, and superbly decorated within and without with varied and highly wrought carving on the stone, and the floors of its numerous halls are beautified with finely executed mosaic patterns. The masonry of the whole place is firm and well finished, seeming to bid defiance to the influence of time, though exhibiting the dilapidations of the ruthless hand of barbarism. Sir Robert Ker Porter, who paid it a hasty visit in 1817, says that the masterly workmanship of the capitals of pillars, the nice carvings of the intricate ornaments and arabesque friezes surpassed any thing he had ever seen when abroad, or in the most celebrated cathedrals of England. The churches and other religious houses also abound with inscriptions; but it is completely deserted, and only the haunt of parties of desperate banditti. At a distance of five miles to the east, there is an Armenian monastery, where that hospitality is shown which, in such a country, affords a valuable solace to the pilgrim or the traveller."

The Armenian nation. The Armenian nation, one of the most ancient in the world, is called in their own language of Hai-kani; and although the accounts which the Armenian historian, Moses of Chorene, gives of a king Haik, grandson of Japhet, are involved in deep obscurity, certain it is, that the Armenian language, rude and uncouth in its pronunciation, has in its syntax more analogy with the European than with the oriental languages. This nation is distinguished by an elegant form and an animated physiognomy. The constant victims of wars, waged by the great surrounding powers contending for the possession of the country, they have been forced in a great measure to leave their paternal soil. Addicted to commerce and manufactures, they have prospered in every country from Hungary to China. They find their way to places inaccessible to Europeans; they traverse the elevated plains of Tartary, and that which is watered by the Niger. With them frugality preserves the earnings of industry. In their own country, as well as abroad, they generally live in large families, under the patriarchal government of the oldest member, and in a state of happy concord. But this family attachment is found but too compatible with insensibility, injustice, and perfidy to persons of a different race. The religion of the Armenians is that of the ancient eastern church, only they deny the doctrine of the two natures in the person of Christ, or rather consider these natures as

* Hadji-Khalil, p. 1128.
‡ Hadji-Khalil, p. 1127.
§ Id. p. 1069.
‖ Porter’s Travels in Georgia and Persia, vol. i. p. 172.
¶ See Adelung, Mithridate, i. p. 423.
** Cartwright’s Travels in Persia, p. ii.
existing, but united in one; * they have also some peculiar notions about the Eucharist. Like the Greeks, they allow the priests to marry. Their fasts and abstinences surpass in rigour and frequency those of all other Christian sects. † Two great patriarchs, called catholic or universal, rule the Armenian church. One, whose residence is at Etchmiadzin, in the province of Erivan, or Persian Armenia, had, a century and a half ago, 150,000 families within his spiritual jurisdiction. The patriarch of Sis, in the little Armenia of antiquity, and who has formed a union with the church of Rome, reckoned only 20,000. Proceeding on this fact, ‡ we may estimate the whole nation at that time at 1,700,000 individuals, and it has not probably since diminished.

Besides the Armenians who are engaged in trade and agriculture, and the Osmani Turks who hold civil and military offices, Armenia maintains a Tartar nation called the Turcomans. This nation, originally inhabiting the eastern shores of the Caspian Sea, came first to establish themselves in Armenia Major, called for that reason Turcomania. But their attachment to a wandering life brought several hordes of them to the interior of Asia Minor and the government of Ithchil; they have adopted the Turkish language and a rude form of Mahometanism. Ignorant, and content with a life of poverty, they support themselves on the produce of their flocks, and spend the principal part of their time under tents of felt.

Their women spin wool and make carpets, an article in use in that part of the world from time immemorial. The sole occupation of the men is to tend their flocks, and to smoke. Constantly on horseback, with the lance on their shoulder, a curved sabre by their side, and a pistol in their girdle, they make vigorous horsemen and hardy soldiers. They have frequent disputes with the Turks, who respect their power. About 30,000 Turcomans wander in the pashalics of Aleppo and Damascus, the only parts of Syria which they frequent. A great part of these tribes migrate during the summer to Armenia and Caramania, where they find the pasture more abundant, and return in winter to their former quarters.

Koordistan, or the country of the Koords, extends in the south of Armenia to a length of nearly 300 miles, and less than the half in breadth. The mountains known to the ancients under the names of Gordyai and Niphates, are always partially covered with snow. No such summer heats as those which burn up the plains of Mesopotamia, extend a scorching influence to the verdant pastures where the Koord tends his flocks of goats. The cheerful vales, and the long terraces of mountains, yield fruits and rice. The forests consist chiefly of oaks, which afford gall-nuts of the best quality of any in the east. § Grain, cotton, flax, and sesame, are raised in the plains. A small tree, resembling the oak, yields, over all its surface, a rich manna, on which the ancients and moderns concur in their encomiums, and to which they have sometimes been disposed to ascribe an origin more sublime than that of vegetable secretion. ‡ The rivers, the largest of which are the Dila and the Zaab, are rapid and fall into the Tigris.

According to Garzoni, who passed eighteen years in Koordistan, this country consists of five principalities. That of Bidlis comprehends the countries on the west and south-west of the lake Van, where Koordistan comes in contact with Armenia, and their limits become uncertain. The capital, which bears the same name, is situated in a charming valley covered with apple and pear trees. A little to the south of that town, the road from Persia to Syria passes through a perforation in the rock. † The Koords of this principality are denominated Bidlis. ** To the south of the lake Van stands the town of Giulamerk, the capital of the principality of that name, the inhabitants of which are called the Sciambo. Some call them also the Hakiary, which is perhaps the name of the reigning family. † †

† Vitriacus, Hist. Orient. c. 79.
† Hadji-Khalkiah, p. 1092. ** Garzoni, i. c. † † Hadji-Khalkiah, p. 1106.
The Baldinan Koords live on the west of the principality of Gulamerk, between 4. Amadia. | Mosul and Bidlis. Their capital is Amadia. This district produces excellent grapes, and other fruits in abundance.* More to the north-west, and indeed 4. Djezira. | within the pashalic of Diarbekir, we find Djezira, the capital of a principality, the inhabitants of which are called Bottani. Here is the mountain of Dgioudi, where, according to the Koords, Noah's ark rested; and that of Kiaveh, always enveloped in fogs; where wild bees hive in holes under ground, and produce remarkably fine honey, and a fragrant wax.† The largest principality of this country is 5. Kara | Kara Djilian, with a capital town of the same name. The tribe, according Djilian. | to Garzoni, is called Soranes: but according to Niebuhr, this is the name of the reigning family. This state, comprehending all the northern part of Koordistan, is capable of furnishing 15,000 armed men. The other four princes can only raise from 10 to 12,000 each. The two small pashalics of Sherzour and Kerkouk, governed by mousselmans or superintendents, appear to be formed by forcible encroachments on the principality of Kara-Djilian. There is a town called Sha-meran on the Diala, which occupies so steep a position, that its only entrance is by steps formed by vine branches.‡ Another town, Arbil, represents the ancient Arbela, immortalized by the defeat of Darius and the fall of the Persian monarchy.

The Urghians. | Some other independent cantons are mentioned by authors. The Urghians on the Persian frontier are quite different from the other Koords. Perhaps they are the descendants of the Hyrcanians, of whom colonies were established by the Persians in other parts of their empire. The Sekmans are shepherds and robbers, who make predatory incursions into Armenia. The Turkish geographers mention several Koordish tribes dependent on the pashalic of Diarbekir, but these wandering hordes form no part of the population of Koordistan.

The Koords. | The Koords, the descendants of the ancient Kirducci Gordys, of Kyrty, speak the Persian language, mixed with several Arabic and Chaldean terms. They make use of the Persian character; and a mollah or doctor is kept in each village, who understands the Persian language.§ The Mahometan religion is here conjoined with various superstitions, seeming remnants of the system of the ancient magi. According to the Turks they offer worship to the devil, that is, the evil principle, the Abriman or the ancient Persians.|| About 100,000 Koords are Nestorian Christians, and acknowledge the authority of two hereditary patriarchs. One who always bears the name of Mar-Simon, resides at Kodgiomisi near Gulamerk; he has five suffragan bishops. The other lives at Raban-Ormes; his title is Mar-Eliahs, and he has under him thirteen bishops. The episcopal dignity is hereditary, descending from uncle to nephew. Their ordination often takes place at the age of twelve. The inferior clergy can scarcely read.¶ Xenophon tells us that the Kirducci, though shut up on every side in the Persian empire, had always bravely the power of the great king and the arms of his satrape. They have changed but little in modern times. Though apparently tributary to the Ottoman government, they pay but little respect to the orders of the Grand Signior Government. | and his pachkas. According to the information collected by Niebuhr, they have a sort of feudal government in their mountains. Each village has its chief, who is vassal to the prince of the tribe. Garzoni mentions that the assirtekla, or small tribes, often revolt against their princes and dethrone them. The wars arising out of this state of anarchy have separated from the nation many families, who have betaken themselves to the wandering life of the Turcomans and Arabs. These are scattered through Diarbekir, the plains of Erzroom, Erivan, Sivas, Populous. | Aleppo and Damascus. Their hordes, taken together, are estimated at 140,000 tents, equivalent to the same number of armed men. These Koords, like the Turcomans, are shepherds and wanderers, but differ from them in some of their customs. The Turcomans give marriage portions with their daughters; the Koords receive a high price from the bridegroom. The Turcomans pay no respect to distinctions of high birth. The Koords set a high value on extraction.

§ Garzoni, p. 11. || Hadgi-Khalifah, p. 1211, etc. ¶¶ Garzoni, p. 7.
The Turcomans are not addicted to thieving: the Koords are every where considered as robbers. The Koords have a white complexion, an animated physiognomy, and an imposing aspect. They are capable of any undertaking. Mahomet himself said that they would yet revolutionize the world.

Mesopotamia, in the most extensive acceptation, encroaches on the ancient Armenia. The pashalik of Diarbekir comprehends the ancient Sophene; it is a country of mountains of moderate height, well watered and separated by agreeable valleys. The mines of Maaden furnish gold and silver, but the chief metallic production is copper. The forests which supplied Alexander and Trajan with timber for the building of their fleets have not yet entirely disappeared from the banks of the Tigris. Those of the Euphrates are crowned with lilacs, jessaminines, vines, olives and other fruit trees. Tobacco, cotton, silk, and wool, might be added to the riches of this province, if it had a more regular government to repress the rapine of the Koords. The ancient city of Amida, now called Amid, or more commonly Diarbekir, has flourishing manufactures of morocco and silks. The houses, built of lava, amount at least to 8000, and contain upwards of 40,000 inhabitants.

The environs produce melons and pumpkins of a hundred pounds weight. Wheat gives a return of thirty fold. The city of Mardin consists of three thousand houses, looking down from its heights of calcareous rocks on the plains of lower Mesopotamia. To Josaphat Barbaro, a Venetian traveller; Mardin appeared to have the most extraordinary possible situation. It is ascended by a stair cut in the rock more than a mile high, at the top of which is the gate; but there is no wall, the defence of the place being trusted solely to its inaccessible situation. The Turks hyperbolically say that the inhabitants never see a bird flying over their town. It has manufactures of silk and cotton.

Descending the Tigris, we enter the pashalik of Mosul, a small but fertile country, part of which, situated on the east of the river, belongs to ancient Assyria. It abounds in grain, cotton, figs, and pomegranates. The air, very cold in winter, is often hot and sickly in autumn. Mosul reckons—
The village of Numis on the banks of the Tigris, opposite to Mosul, is ascertained to be the site of the ancient Nineveh. Here are found a rampart and fosse, four miles in circumference; but Mr. Kinnear believes these to belong to a city founded subsequent to the time of Adrian, so that Nineveh has left no trace now in existence.

The western part of Mesopotamia, which has for its boundary the circuitous course of the Euphrates, is separated from the flat desert by the great river Khaboor, the ancient Chaboras, which, according to an oriental geographer, is formed at once by 800 salient springs. Several such springs create in other parts a rich verdure; but in general a deficiency of water diminishes the natural fertility of this country, which corresponds to the ancient Osroene, and which at present forms the Mousselimat or pashalik of Orfa. The city of this name, containing a population of 30,000 or 40,000, profits by its manufactures, and by the passage of the caravans of Aleppo. Some traces of volcanoes are found in its vicinity. About twelve miles from Djour Kouri, to the north-east of Orfa, there is an immense number of artificial caves in regular arrangement, presenting the remains of a subterranean city. Here the ancient Cycolpa, Arabs, or Syrians, who inhabited these perennial dwellings, were perfectly secure from the burning summers and the still more chilling winters of the climate.

* Volney, Voyage en Syrie.
† Dio. Cass. lxviii. 36. lxv. 9.
‡ Hadji-Khalil, p. 1134.
§ Abuliceds, apud Busching, Magazin Géog. v. 239.
** Niebuhr, ii. 407. Tavernier, l. ii. cap. 4.
†† Hadji-Khalil, p. 1191, compared with Olivier.
† M. Trezel's journal, in MS.
‡ Olivier, Voyage, iv. 265.
§ Olivier, Voyage iv. 379.
The ruined town of Harran,* known in the age of Abraham, figures in the Roman history under the name of Charra. It was here that Crassus and his legions were destroyed. Two hours’ walk from this city, says the Turkish geographer, are to be seen, on a place called Abraham’s hill, the remains of a temple of the Sabean or worshippers of the stars. We are informed by the ancients that there was at Charra a temple of the god Luwas.†

The north west part of the pashalic of Orfa, or the ancient Mygdonia, presents us with luxuriant pastures and flowery hills. Hence the Greeks called it Anthemusia, from ἀνθέμιον, “a flower.” Here the famous fortress of Nisibis stood so long out against the arms of the Parthians. It has only left some feeble traces in the town of Nisibin, a place which is remarked for white roses.‡ A large Roman fortress, has left more extensive ruins. In descending the river which runs from Nisibin to the Habour, we come to a lake called Katonis, with an island on which a pyramid is erected.§

On the south east, the isolated mountain of Sindjar commands an extensive view of the arid plains; its sides, watered with fresh streams, are adorned with date trees and pomegranates. But a ferocious and sanguinary race here made it the retreat of their robberies.

The desert of Mesopotamia, in all its gloomy uniformity, new meets our view. Saline plants cover detached spots at great distances, in the burning sands or the parched selenite. Here the wormwood, like the heath in Europe, takes possession of immense spaces, to the exclusion of every other plant. Flocks of fleet antelopes scour the plains where, in former times, wild asses wandered. The lion, lying in ambush in the rushes by the river side, watches the approach of these animals, and from thence, when his hunger has not found sufficient prey, he sallies in his rage, and seizes his dreadful roar, like peals of thunder, echoing from desert to desert. The water found here is generally bitter or brackish. It is usual to correct its taste by dissolving in it the root of liquorice, which is plentiful in these parts. This desert is a continuation of the great desert of Arabia, giving a specimen of its horrors beyond the Euphrates. The air, like that of Arabia, is generally pure and dry. In the bare plains of sand it sometimes becomes burning. The miasmata arising from stagnant waters are diffused in it, and its pestilential qualities are aggravated by exhalations from salt putrescent lakes. It is this element set in motion by some want of equilibrium in the atmosphere, that has been supposed to create that fatal wind known by the name of the samoom or sarmel, which is less dreaded in the middle of Arabia than on its borders, and chiefly in Syria and Mesopotamia. When this dreadful wind arises, the sun seems covered with blood, from the dust which is raised to an immense height in the atmosphere; animals in consternation lay themselves flat on the ground to escape its torrefying force, which suffocates any living being rash enough to expose itself. A sound philosophical views the heat and the violent motion of the air as adequate to all its effects, which are certainly not exaggerated; but we may be permitted to reckon the poisonous impregnation attributed to it among the creations of the same propensity to the terrible, which remarks the analogy between the obscurity now imparted to the light of the sun, and the colour of blood.

This desert is skirted by some agreeable and fertile stripes. Tamarinds, wild cherries, cypress, and weeping willows, here and there shade the banks of the Euphrates; the waters of which, raised by wheels, irrigate in various spots groves of Anab. pomegranates, lemons, and sycomores.** The town of Anah is one of these delicious spots. It extends on both sides of the Euphrates, and seems to be

* Niebuhr, ii. 410. Otter, i. cap. 11.
† Spartan, Carcalla, cap. 7. compare with Ammian. Marcell. xxiii. 3.
‡ Hadgi-Khalaf, p. 1170.
§ Niebuhr, ii. 390.
‖ Xenophon, Cyri Expedit. i. c. 5. Ammian. Marcell. xxv. c. 8.
¶ Travels and Observations of De la Boulaye-le-Gouz, p. 390, (4to edit. 1657.)
long to Arabia Deserta, of which the ordinary run of geographers make it the capital, as if a hundred wandering independent tribes required or admitted of a capital. This place seems to be at times the residence of an emir or Arabian prince, the chief of some powerful tribe. On the north of Anah, along the Euphrates, a district covered with mulberries extends as far as a place called Balia. Narrow paths lead through its thickets to hidden hovels. Here a tribe of peaceful Arabs, the Beni-Semen, raise silk-worms, and export the produce. This district, little known to European travellers, is called the country of Zombouk.*

The caravans which carry goods from Bagdat to Aleppo usually pass by Anah. They pay tribute to the Arabs, who reckon themselves the lords of the desert, even to the east of the Euphrates. They have to encounter the dangers of the suffocating winds, the swarms of locusts, and the failure of water, as soon as they depart from the line of the river. A French traveller tells us that he witnessed one of the most appalling scenes of this kind between Anah and Taibou. The locusts having devoured everything, perished in countless heaps, poisoning with their dead bodies the ponds which usually afforded water when no springs were near. This traveller saw a Turk running down a hillock with despair in his looks. "I am," says he, "the most ill-fated man in the world. I have purchased, at an enormous rate, two hundred young women, the finest of Greece and Georgia. I brought them up with great care, and now, when arrived at the age of marriage, I have come with them on my way to Bagdat, thinking to dispose of them to advantage. Alas! they are all now dying of thirst in the desert. My despair, however, is more tormenting than even theirs." The traveller, turning round the hillock, beheld a sight of horror. In the midst of twelve eunuchs, and about a hundred camels, he saw all these girls, from twelve to fifteen years old, stretched on the ground in the agonies of a burning thirst and inevitable death. Some had already been buried; a larger number had fallen down by the side of their keepers, who had not sufficient strength left to bury them. On every hand were heard the sobs of the dying, and the cries of those in whom enough of life still remained, begging for a drop of water. The traveller hastened to open his flask, in which a little water was left, and was now offering it to one of these poor victims. "You fool," exclaims the Arabian conductor, "would you have us also perish for the want of water? and with his arrow laid the girl dead at his feet; laid hold of the bottle, and threatened the life of any one who should dare to touch it. He advised the Turkish merchant to go on to Taibou where he would find water. "No," says the Turk, "at Taibou the robbers would carry off all my slaves." The Arab forced the traveller to accompany him. At the moment of their departure these unfortunate, losing the last ray of hope, uttered a piercing shriek. The Arab was affected, took one of the girls, poured some drops of water on her burning lips, and placed her on his camel, intending her as a present to his wife. The poor girl fainted repeatedly on passing the dead bodies of her companions. The small stock of water of the travellers was soon exhausted, when they discovered a well of fresh clear water. Here, disconcerted by the depth of the well, and the shortness of their rope, they tore their clothes into strips, which they tied together, and with this frail cordage contrived to take up the water in small quantities, dreading the loss of their bucket, and the disappointment of their hopes. Through such perils and anxieties, they at last found their way to the first stages of Syria.†

As the two great rivers approach one another, particularly at Bagdat, where there is only a distance of a six hours walk between them, the desert passes into an immense meadow, which only requires irrigation to yield prodigious vegetable crops. This is the ancient Babylonia, formed, like the Delta of Egypt, by alluvial soil. Even to the people of the east, the heats of this country seem excessive.§ The proximity of the mountains of Kordistan renders the winters cold. The flats are inundated by the Euphrates and the Tigris, which deposite no alime

* Hadji-Khalifah, Turkish Geography, p. 1197.
† Voyages des Indes Orientales, par Carré. Paris, 1699. vol. i. Voyages de Pietro de la Valle, de Texeira, etc.
‡ Niebuhr, ii. p. 392. Ives, p. 75, etc.
like the Nile: yet these natural irrigations are sufficient to make the fields of Bagdad productive. The garden of Asia. Here rice and barley formerly yielded a return of two hundred fold. The canals being at present neglected, the crops do not exceed one-tenth of what they were. Cotton is cultivated. The lemons and apricots are excellent. Indigo might undoubtedly succeed, and probably the sugar cane. There is a great want of trees. The date is the only one which ornaments the fields; the inhabitants live upon the fruit, cover their houses with the leaves, and Springs of bitumen. make their posts of the trunks. Along the Tigris, springs of naphtha and bitumen are found in great number. The black bitumen serves instead of oil. The white or naphtha is esteemed a valuable drug. They adhere to the ancient custom of pitching over with bitumen the vessels of willow basket-work in which they navigate the river. This substance is in such abundance, that it is allowed to flow into the Tigris, where, floating on the surface, it is sometimes set on fire by the boatmen, and exhibits the appearance of a burning river.

Bagdad. Bagdad, the second Babylon, the ancient residence of the Kaliphs, and the theatre of so many oriental tales, contains at the present day, rather less than 80,000 inhabitants, of whom 50,000 are Arabs. Adorned with fine bazars, it has the air of a Persian rather than a Turkish city, but the streets are extremely dirty, and the houses destitute of elegance. The city, properly so called, is protected by a high wall. Manufactures of cotton cloths and velvets, together with the trade of India, contribute to the opulence of the inhabitants, whose manners preserve some remains of the politeness which distinguished the brilliant court of the Kaliphs. A traveller remarks, with astonishment, that in this place there is no such thing as the slaughtering of oxen. The Turkish geographer informs us that this arose from a law of the Abbassides made for the encouragement of agriculture. The pass of Bagdad, whose dominion extends from Bassora to Orfa, and from Shergoor to the ruins of Babylon, can raise 50,000 soldiers, and yields but little submission to the Sublime Porte.

Below Bagdad, the ruins called Al-Modain, or the Two Cities, have attracted the attention of every traveller. One of them is unquestionably the ancient Ctesiphon; but the other, which lies on the western side of the river, is not Seleucia, as all the travellers affirm. It is Kochoe, a fortress situated opposite to Seleucia, and which according to the positive testimony of Arrian and Gregory of Nazianzus, was different from Seleucia. The ruins of the latter must be found three miles at least from the Tigris, on a canal of communication between that river and the Euphrates. It is at Ctesiphon that we find the admirable ancient buildings, called Takt-Keeroo, which according to the most general opinion, means the palace of Chosroes. The whole country is strewed over with the debris of Grecian, Roman, and Arabian towns, confounded in the same mass of rubbish. In the eighth century, the towns of Samarah, Harounieh, and Djasserik, formed, so to speak, one street of twenty-eight miles. Their ruins, as seen by Tavernier, bear testimony to the truth of this account.

None of these cities, however, made any approach in magnificence to the celebrated Babylon, the remains of which occupy a whole district in the environs of Helleh. Built of bricks cemented with bitumen, the buildings of this city, which, in the first century of the vulgar era, was a deserted place, cohering in large masses in their fall, have formed hillocks which the drifted earth collected by length of time has smoothed over and almost effaced. Daily, however, quantities of bricks are dug out bearing inscriptions; some in relief are dated in the Arabian era; others in hollow letters belonging to the ancient Babylonians. These bricks are still the subject of many learned discussions.

II. ARMENIA AND MESOPOTAMIA.

manufacturing town, of considerable size, agreeably situated in a forest of palms, seems to be entirely built of bricks taken from the ruins of Babylon. The famous tower of Nimrod, a large square mass of ruinous walls, is six miles from Helleh; a circumstance which, when we consider the immense extent of Babylon, is not inconsistent with the belief that this is the ancient temple of Belus.

On the west of Helleh, there are two towns, which, in the eyes of the Persians, and all the Shiites, are rendered sacred by the memory of two of the greatest martyrs of that sect. These are MeshedAli and Meshed Houssain, lately filled with riches accumulated by the devotion of the Persians, but carried off by the ferocious Wahabees to the middle of their deserts. In the same part of the country, the celebrated city of Kufa, the seat of a learned school, which gave to the old Arabian characters the name of Kufic, has left very inconsiderable ruins. We know not the full extent of lakes and morasses formed in this quarter by means of canals connected with the Euphrates. Tavernier seems to have followed them farther west than any traveller of our times. There is, in the direction of the Euphrates, a long succession of morasses, or, as they are called in that country, bathara, in the midst of which is the village of Djamdeh, the capital of a race of people who worship the heavenly bodies, and consider themselves as the posterity of Seth.*

Descending the Shat-el-Arab, formed by the junction of the two rivers, we find the low countries covered by the tide, and thus rendered barren; the more elevated grounds forming a continued forest of palms.

Basra or Basseora, below the junction, may be considered as an independent Arabian state; which pays to the Grand Signior an uncertain homage. The city contains from 15 to 20,000 inhabitants. Its harbour forms a station of commercial intercourse between Europe and Asia. Here the different products of India are exchanged for those of Persia. It is the point of departure of the wealthy caravans which terminate their journey in the different cities of Asiatic Turkey.†

The Arabs of Bassora are very exact in preserving the genealogy, not only of their horses, but even of their pigeons and their rams. The latter are said to be distinguished by a white ring round the tip of the ear, a mark impressed by the fingers of the prophet on the first animal of the race.‡

Nebuhr, in Zehab, Correspondance, vii. 433, where he corrects the views given in his Travels.

* Hadgi-Khalfah, p. 1272.
† Olivier iv. near the end.
‡ Hadgi-Khalfah, p. 1226.
Divisions of the Countries on the Tigris and Euphrates.

<table>
<thead>
<tr>
<th>Modern Divisions</th>
<th>Chief Towns</th>
<th>Ancient divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pashalic of Kara.</td>
<td>Kars (Hartze)</td>
<td>Chorzeene.</td>
</tr>
<tr>
<td></td>
<td>Bayazid</td>
<td>Basenia.</td>
</tr>
<tr>
<td></td>
<td>Erzroom (Arze)</td>
<td>Carina.</td>
</tr>
<tr>
<td></td>
<td>Molazkerd</td>
<td>Malaza.</td>
</tr>
<tr>
<td></td>
<td>Lapi</td>
<td>Hisperatis.</td>
</tr>
<tr>
<td></td>
<td>Arzim</td>
<td>Acilisene.</td>
</tr>
<tr>
<td></td>
<td>Taro</td>
<td>Arzane.</td>
</tr>
<tr>
<td></td>
<td>Van (Iban)</td>
<td>Tauranitium, &c.</td>
</tr>
<tr>
<td></td>
<td>Ardgis</td>
<td>Vaspuracania.</td>
</tr>
<tr>
<td></td>
<td>Diarbekir (Amida)</td>
<td>Armeni.</td>
</tr>
<tr>
<td></td>
<td>Mordin (Miredis)</td>
<td>Moxoene.</td>
</tr>
<tr>
<td></td>
<td>Nesibin (Nisibis)</td>
<td>Bagrvandene.</td>
</tr>
<tr>
<td></td>
<td>Orfa (Edessa)</td>
<td>Mygdonia.</td>
</tr>
<tr>
<td></td>
<td>Charran (Charrze)</td>
<td>Anthemusia.</td>
</tr>
<tr>
<td></td>
<td>Kacca (Nicephorium)</td>
<td>Chalcis.</td>
</tr>
<tr>
<td></td>
<td>Mosul (Labbana?)</td>
<td>Gausanitis.</td>
</tr>
<tr>
<td></td>
<td>Irbil (Arbela)</td>
<td>Ancisaratius.</td>
</tr>
<tr>
<td></td>
<td>Eski-Mosul (Ninive of the Romans)</td>
<td>Assyria.</td>
</tr>
<tr>
<td></td>
<td>Bedlis</td>
<td>Corduene, Gordyene.</td>
</tr>
<tr>
<td></td>
<td>Djazra</td>
<td>Gordynasia.</td>
</tr>
<tr>
<td></td>
<td>Giulamerik</td>
<td>Arapatitias.</td>
</tr>
<tr>
<td></td>
<td>Kara-Dgiolan</td>
<td>Adiabene.</td>
</tr>
<tr>
<td></td>
<td>Amadia</td>
<td>Sittacene.</td>
</tr>
<tr>
<td></td>
<td>Bagdat (Sittace?)</td>
<td>Apolloniatis.</td>
</tr>
<tr>
<td></td>
<td>Helleh (Babylon)</td>
<td>Babylonia.</td>
</tr>
<tr>
<td></td>
<td>Bassora</td>
<td>Chaldea.</td>
</tr>
</tbody>
</table>

Note: The obscurity in which the ancient and modern geography of the countries on the Euphrates is in some measure involved, does not admit of our giving synoptic descriptions in great detail; nevertheless, in order to prove that we have taken some pains to clear this part of geography from confusion, we present to the learned part of our readers the following essay upon the divisions of Armenia.
DIVISIONS OF ARMENIA,

According to the Armenian History, composed by Moses of Chorene in the Fifth Century, compared with those known to the Greeks and Romans.

<table>
<thead>
<tr>
<th>Great Divisions or Provinces</th>
<th>Small Divisions according to Moses</th>
<th>Greatian and Roman Divisions</th>
<th>Corresponding Modern Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Upper Armenia—at the head of the Euphrates.</td>
<td>Carina -</td>
<td>Caranitis -</td>
<td>Erzroom (territory.)</td>
</tr>
<tr>
<td></td>
<td>Spera -</td>
<td>Hesperatis -</td>
<td>Isper (Town.)</td>
</tr>
<tr>
<td></td>
<td>Derzane -</td>
<td>Karzene or Derzene†</td>
<td>To the south of Erzroom.</td>
</tr>
<tr>
<td></td>
<td>Ekeleqia -</td>
<td>Akilesia -</td>
<td>Egkoliis.</td>
</tr>
<tr>
<td></td>
<td>(And five others) Unknown -</td>
<td>Unknown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chorzenie -</td>
<td>Chorzenie†</td>
<td>Kars.</td>
</tr>
<tr>
<td></td>
<td>Hastiane -</td>
<td>Asiantane†</td>
<td>Uncertain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Austanitis. -</td>
<td>Idem.</td>
</tr>
<tr>
<td>II. Armenia—Quarta—the ridge from Kars to Diarbekir.</td>
<td>Balahwuitia -</td>
<td>Bolfene † -</td>
<td>Part of Diarbekir.</td>
</tr>
<tr>
<td></td>
<td>Zopha -</td>
<td>Sophene -</td>
<td>Uncertain.</td>
</tr>
<tr>
<td></td>
<td>Shadachia -</td>
<td>Soduceña -</td>
<td>Uncertain.</td>
</tr>
<tr>
<td></td>
<td>Hanista -</td>
<td>Asetene, Asiten -</td>
<td>Uncertain.</td>
</tr>
<tr>
<td></td>
<td>(And three others) Unknown -</td>
<td>Unknown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arzene -</td>
<td>Arzen.§</td>
<td>Meincarikin, town.</td>
</tr>
<tr>
<td></td>
<td>Nephemarta -</td>
<td>Uncertain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(And eight others) Unknown -</td>
<td>Uncertain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taron -</td>
<td>Tauranitiun II -</td>
<td>Uncertain.</td>
</tr>
<tr>
<td></td>
<td>Harkh -</td>
<td>(Basilisseum)</td>
<td>Towards the sources of the Murad.</td>
</tr>
<tr>
<td>III. Armenia—along the Tigris.</td>
<td>Corxonnia -</td>
<td>Uncertain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bessunia -</td>
<td>Unknown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(And thirteen others) Idem -</td>
<td>Idem.</td>
<td></td>
</tr>
<tr>
<td>IV. Turberania—between the Murad and the lake Van.</td>
<td>Moxoene -</td>
<td>Moush, near lake Van.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ishenis -</td>
<td>Isenchi -</td>
<td>Unknown.</td>
</tr>
<tr>
<td></td>
<td>(And eight others) Uncertain -</td>
<td>Uncertain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corduza -</td>
<td>Gordyeus, Corduene -</td>
<td>In Koordistan.</td>
</tr>
<tr>
<td>V. Moca, between the provinces of the lake Van.</td>
<td>Atrovana -</td>
<td>Atropatene -</td>
<td>In Adjebidjan (in Persia.)</td>
</tr>
<tr>
<td></td>
<td>Garthunisia -</td>
<td>Proper -</td>
<td>In Koordistan.</td>
</tr>
<tr>
<td></td>
<td>Albac -</td>
<td>Gordynesia -</td>
<td>In Adjebidjan.</td>
</tr>
<tr>
<td></td>
<td>(And four others) Idem -</td>
<td>Unknown.</td>
<td></td>
</tr>
</tbody>
</table>

* Pliny says that Armenia was divided into 120 Strategia, vii. 9. and Ptolemy names twenty-one of them. Strabo and Tacitus also give some names. Moses of Chorene points out fifteen great provinces, and 187 sub-divisions; it appears to us almost certain that he has not given a just classification of the subdivisions; and in that case all efforts to explain this distorted topography must fail to the ground; but the select results which we have extracted may elucidate both the ancient and modern geography, by showing their correspondence with each other.

‡ This is probably the Katazene of Ptolemy; but the Chorzene or Chorzianene of Procopius, (de Efinif. ii. 3. de Bello Pers. ii. 24.) should be quite to the south of Armenia, by the side of Sophene, Mannert.
§ Tac. Annal. xiv. 23.
|| This lake bore the name of Bessunius, Mos. Chor. Hist. Arm. p. 31.
|| Tac. Annal. xiii. 37.
Continuation of Table of Divisions of Armenia.

<table>
<thead>
<tr>
<th>Great Divisions or Provinces</th>
<th>Small Divisions according to Moses</th>
<th>Grecian and Roman Divisions</th>
<th>Corresponding Modern Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII. Persarmenia - a part of Adi-</td>
<td>Maria -</td>
<td>Marunda **<sup>5</sup></td>
<td>Meramid, (Persian.)</td>
</tr>
<tr>
<td>jerbidjan.</td>
<td>Zurchwan -</td>
<td>Unknown</td>
<td>Zorova.</td>
</tr>
<tr>
<td>And others</td>
<td>Unknown</td>
<td>Idem -</td>
<td>Uncertain.</td>
</tr>
<tr>
<td>VIII. Vaspurate-</td>
<td>Iban, capital†</td>
<td>Uncertain</td>
<td>Van.</td>
</tr>
<tr>
<td>nia - the Vaspuracan of modern maps, with</td>
<td>Arissaeovita -</td>
<td>Arsia</td>
<td>Ariss Territory.</td>
</tr>
<tr>
<td>a great part of Erivan.</td>
<td>Artazaka -</td>
<td>Artazata</td>
<td>Uncertain.</td>
</tr>
<tr>
<td>And thirty-one others</td>
<td>Golthene -</td>
<td>Golthene</td>
<td>Idem.</td>
</tr>
<tr>
<td>And nine others</td>
<td>Naxuana -</td>
<td>Naxuana</td>
<td>Nachchewan.</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Uncertain.</td>
</tr>
<tr>
<td>IX. Syria - the</td>
<td>Sissacene -</td>
<td>Sibacene?</td>
<td>Uncertain.</td>
</tr>
<tr>
<td>Siunikh.</td>
<td>And nine others</td>
<td>Unknown</td>
<td>Idem.</td>
</tr>
<tr>
<td>X. Arsachia - to the S. and E. of lake Erivan.</td>
<td>Irania major -</td>
<td>Uncertain</td>
<td>Erivan, called also Iran.</td>
</tr>
<tr>
<td>Of twelve others</td>
<td>Muchania -</td>
<td>Idem -</td>
<td>Moghan?</td>
</tr>
<tr>
<td>Of ten others</td>
<td>Bagrawe -</td>
<td>Bagrawane</td>
<td>Uncertain.</td>
</tr>
<tr>
<td>Of ten others</td>
<td>Aleuanet -</td>
<td>Unknown</td>
<td>In Adjirbidian.</td>
</tr>
<tr>
<td>XII. Utia - on the river Harpasu, the ancient Usia.§</td>
<td>Utia proper -</td>
<td>Otanej</td>
<td>In Erivan.</td>
</tr>
<tr>
<td>Of six others</td>
<td>Shicasene</td>
<td>Sacassene</td>
<td>Uncertain.</td>
</tr>
<tr>
<td>Colbophoria -</td>
<td>Unknown</td>
<td>Idem -</td>
<td>Idem.</td>
</tr>
<tr>
<td>Threlia -</td>
<td>Gazarène</td>
<td>Gurgistan.</td>
<td></td>
</tr>
<tr>
<td>XIV. Gugaria † in Georgia.</td>
<td>Gangaria -</td>
<td>Uncertain</td>
<td>Trialetia, (Georgia.)</td>
</tr>
<tr>
<td>Of three others</td>
<td>Artavania -</td>
<td>Artawand, (Georgia.)</td>
<td></td>
</tr>
<tr>
<td>Of three others</td>
<td>Zavachia -</td>
<td>Zavach, (Georgia.)</td>
<td></td>
</tr>
<tr>
<td>Of six others</td>
<td>Cholus † †</td>
<td>In the Upper Koor.</td>
<td></td>
</tr>
<tr>
<td>Colba -</td>
<td>Cholusa † †</td>
<td>Idem.</td>
<td></td>
</tr>
<tr>
<td>Of six others</td>
<td>Surta † †</td>
<td>Uncertain.</td>
<td></td>
</tr>
</tbody>
</table>

* Ptolemy places these people upon the lake of Urmia, (Wahl.)
† Cedrenus is the first who names this town, Iban pronounced Iwan, synonymous with Van.
‡ Notwithstanding the similarity of names, the position will not permit us to regard it as the Alasia of Ptolemy on the Chaboras.
§ MMS. of Pliny, vi. 9, (Mannert.)
|| Pliny, vi. 13, Stephan. Byzant, in loc.
† From the position of the cantons known to belong to this province, we cannot avoid recognizing in Gugaria a corruption of Kurgia or Gurgistan, names given to Georgia, (Wahl.)
++ A town of Albania Ptolem. edit. of Erasmus.
† † According to Ptolemy, a town on the southern arm of the Phasis; but this arm appears to be the upper part of the Koor or Cyrus.
‡ ‡ A town on the Phasis.
III. SYRIA AND PALESTINE.

Continuation of Table of Divisions of Armenia.

<table>
<thead>
<tr>
<th>Great Divisions or Provinces</th>
<th>Small Divisions according to Moses</th>
<th>Grecian and Roman Divisions</th>
<th>Corresponding Modern Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>XV. Ararat* around the Ararat</td>
<td>Batenia - - - Unknown - - -</td>
<td>Pasin-Suafa? Upon the Araxes to the N. of Eschmiadzin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arasarunia - - - Idem - - -</td>
<td>Upon the Sanki. Uncertain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siracia - - - Idem* Bagravandet</td>
<td>Uncertain. Melazkerd—town.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bagrevanda† Bagravandet Phanas? Idem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanandia - - - Phanas? Idem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malaza - - - Uncertain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>And fourteen others</td>
<td>Idem - - - Uncertain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOOK XXVIII.

TURKEY IN ASIA.

PART III.

Syria and Palestine.

Those countries belonging to Asiatic Turkey which remain to be described, have so frequently attracted the attention of travellers, that a large library might be formed of the accounts of them which have been published. Two or three pages would scarcely contain the names of the pilgrims who have left journals of their travels in the Holy Land, works full of repetition and puerility, yet claiming the examination of the enlightened critic. From these, compared with the writings of Abulfeda and Josephus, the learned Busching has formed an excellent geographical treatise. In modern times we have judicious missionaries, such as Dandini; antiquaries as Woods; and naturalists as Maundrell and Hasselquist, who have ably elucidated particular parts of these countries. It was reserved for the genius of Volney to combine these detached accounts with the fruits of his own observation and study, so as to present the world with a complete description of Syria. As the nature of the present work does not admit of minute topographical descriptions, we may, in a general way, refer for such details to the researches of Busching and of Volney.

On the north-east, Syria is bounded by the Euphrates; on the north, by Mount Amanus, the modern Almadagh; on the west, by the Mediterranean; on the east, its deserts and those of Arabia are confounded, no constant frontier line having been pointed out either by the ancients or the moderns. Among the ancients, Palmyra, Damascus, and the Dead Sea were the extreme points of this country. By the moderns the ruins of Palmyra are considered as belonging to Arabia Deserta.† In the midst of a similar uncertainty on the south, a straight line drawn from the end of the Dead Sea to the mouth of the small stream of El-Arish, offers the only boundary that can be assigned between Syria on the one hand and Arabia Petraea and Egypt on the other.

* The distances prevent us from placing the Syriacs here, a people on the north of Caucasus.
† The position prevents us from recognizing in this canton the Bagravandet of the ancients, notwithstanding the resemblance of the names.
‡ Herod. ii. 12.
The original name given to this country by the inhabitants was Aram, whence the Arimi of Homer. The Arabs call it Bar-el-sham, "the shore on the left," in contrast to Yemen, or the country on the right. These denominations refer to the position of Mecca, and proceed on the idea that Syria forms a part of Arabia.

Mountains. The mountains of Syria are not all ramifications of Mount Taurus. Mount Rossus, a prolongation from Amanus, terminates at the valley of Orontes. Other heights skirt the Euphrates, and extend towards Palmyra. But the proper Syrian chain begins on the south of Antiocch, by the huge peak of Mount Casius, which shoots up to the heavens its needle-like point, encircled with forests. The same chain, under various names, follows the direction of the shore of the Mediterranean, being in general at no greater distance than twenty or twenty-four miles from the sea. Mount Libanus forms its most elevated summit. This chain, which extends between the parallels of Acre and of Tripoli, and the summit of which, called Hermon in Scripture, is between Damascus and Helipolis, is divided into two, one on the west, which looks to the Mediterranean, and the other on the east, which bounds the plains of Damascus. This last received from the Syrian Greeks the name of Anti-Libanus, a name unknown among the natives, and which, being employed somewhat arbitrarily by historians, has given rise to unprofitable discussions. Libanus and all the mountains of Syria present frequent ruins of towers and fortified places. They are composed of a calcareous rock, whitish, hard, and ringing when struck. The granite scarcely begins to make its appearance till we come to the neighbourhood of Mount Sinai and the Red Sea. Near Damascus there are immense caverns, one of which is capable of containing 4000 men.

Valleys of Jordan offers many traces of volcanoes. The hot springs and sulphurous water of Lake Asphaltites, the lava and basalt thrown out on its banks, and the warm bath of Tabarieh, show that this valley has been the theatre of a fire not yet extinguished. Volumes of smoke are often observed to escape from Lake Asphaltites, and new crevices are found on its margin. Strabo, says, that according to the local tradition of the country, the site of this lake was once occupied by thirteen flourishing and populous towns, which were swallowed up by an earthquake. He states, however, that this catastrophe was ascribed by the philosopher Eratosthenes to a simple subsiding of the surface. The eruptions have long ceased, but the earthquakes, which form to them a sort of interludes, sometimes still occur in this district. That coast in general is subject to them, and several instances are recorded in history, which have produced marked revolutions on the surface of Antioch, Laodicca, Tripoli, Berytus, Sidon, and Tyre. So lately as 1759, one of them occurred, which was productive of extensive devastations. We are told that more than 20,000 lives were destroyed by it in the valley of Balboc. The losses thus occasioned are not yet repaired. It is observed that the earthquakes of Syria are almost wholly confined to the winter season after the autumnal rains.

Rivers. The Orontes and Jordan both have their rise on Mount Libanus; the former runs to the north, the latter to the south. The Orontes is undoubtedly the first of the Syrian rivers; yet were it not for the numerous bars which damp up its waters, it would be completely dry in summer. The water thus retained requires the aid of machinery to raise it for the supply of the adjoining plains. Hence it has received the modern name of Lasis or the Obstinate. The Jordan, which Voltaire treats with contempt, is represented by Pliny the naturalist as a fine limpid river, large enough for the valley which it waters; and the same account is given of it by the greater part of travellers. Among the other rivers, which in general are only entitled to the names of rivulets, the Casmy or Casimir, to the north of Tyre, seems to be the Leontes of the ancients; the Nahar-el-kebir is the Eleutherus, the boun-
dary of Phœnicia, where, according to a fabulous tradition, the Emperor Frederic Barbarossa perished.

The numerous traverse barriers which stop the waters of the Syrian rivers, give origin to many lakes. The valley of the Orontes contains the Bahar Lake. El-Kades near Homs, the lake of Apamea, through which the river flows, and that of Antioch.

In the eastern and southern districts there are lakes without any outlet. Such are the lake of Acla, and that of Old Aleppo, both of which are saline. The lake called El-Sargi, or the lake of the meadows, not far from Damascus, resembles the soloniac waters of the neighbouring mountains. The most celebrated of them all, lake As(calites, or the Dead Sea, has probably always been, as it now is, without any communication with the sea.

Syria has three distinct climates. The mountains of Libanus, covered with snow, diffuse a salubrious coolness through the interior; while the maritime law situations are constantly subjected to heat, accompanied with humidity; and the adjoining plains of Arabia Deserta are exposed to a dry and scorching heat. The seasons and the productions consequently vary. In the mountains the order of the seasons very nearly resembles that of the middle of France; the winter, lasting from November to March, is sharp and rigorous. No year passes without falls of snow, which often cover the surface to the depth of several feet during entire months. The spring and autumn are agreeable, and the summer not oppressive. In the plains, on the contrary, as soon as the sun has passed the equator, a sudden transition takes place to overpowering heats, which continue till October. But, to compensate for this, the winter is so temperate, that orange trees, dates, bananas, and other delicate fruits, grow in the open field. Thus the space of a few hours forms the transition from spring to winter.

If the advantages of nature were duly seconded by the efforts of human art, we might, in the space of twenty leagues, bring together in Syria the vegetable riches of the most distant countries. Besides wheat, rye, barley, beans, and the cotton plant, which are cultivated everywhere, there are several objects of utility or pleasure peculiar to different localities. Palestinian abounds in sesame, which affords oil; and in almonds, similar to that of Egypt. Maine thrives in the light soil of Bebec, and rice is cultivated with success along the marsh of Haoulé. Within these twenty years sugar canes have been introduced into the gardens of Saide and Bairost, which equal those of the Delta. Indigo grows without culture on the banks of Jordan, in the country of Basan, and only requires a little care to acquire a good quality. The hills of Lataké produce tobacco, which creates a commercial intercourse with Damietta and Cairo. This crop is at present cultivated in all the mountains. As for trees, the olive of Provence grows at Antioch and Ramli to the height of the oak. The white mulberry forms the riches of the country of the Drusees, by the beautiful silk which are obtained from it; and the vine, raised on poles, or creeping along the ground, furnishes red and white wines equal to those of Bourdeaux. Jaffa boasts lemons, and her water-melons; Gama possesses both the dates of Mecca, and the pomegranates of Algiers. Tripoli has oranges equal to those of Malta; Bairost has figs like Marseilles, and bananas like St. Domingo. Aleppo is unequalled for pistachio-nuts; and Damascus possesses all the fruits of Europe; apples, plums, and peaches, grow with equal facility on her rocky soil. * Niebuhr is of opinion that the Arabian coffee-shrub might be cultivated in Palestine.

Syria produces all our domestic animals, to which are added the buf- falo and the camel. The gazelles occupy the place of our deer: for wolves it has jackals, hyenas, and dœcuses; which last have sometimes been mistaken for tigers. None of these ferocious animals occasion ravages equal to those of the locust. An unusually mild winter generates this animal in swarms in the deserts of Arabia. Their armies, which darken the sky, fall down on the plains of Syria. Grass, foliage, and every description of vegetation, are completely consumed in their track. The approach of these formidable swarms spreads universal terror, and their

* Volney, i. 284, &c.
† Volney, ii. 127, 153, 164, 230.
visit is followed by certain famine. The sole hope of the Syrian, under this calamity, is in a bird called sammaraw, which devours the insects, and the south-east winds, which drive them into the waters of the Mediterranean. There is a species of locusts which furnishes a tolerable article of food to man.*

Inhabitants. | Syria, successively invaded by the Persians, the Greeks, the Arabs, the Crusaders, and the Turks, presents a very mixed population. The original inhabitants, amalgamated with the Greeks, form a very small proportion of the whole. All civil and military employments are in the hands of the Turks. A great many Arabs are settled as cultivators. There are likewise many Bedouin or wandering Arabs, especially in the pashalik of Damascus. In that of Aleppo there are hordes of Turcomans and Koords. The Druses, the MTouflas, the Ansar, and the Maronites, constitute small nations which will be particularly described in their proper Language. | place. The old Syrian language is only spoken in a few districts, chiefly in the neighbourhood of Damascus and Mount Esbanus, and in less purity than in Mesopotamia, at Orfa, and at Harran.† The Arabic predominates both in the country and the towns. The Nabatéan language is a corrupt mixture of Syriac and Religion. | Chaldee, spoken by the peasantry or Nabayoth. Of the different Christian sects tolerated in this country, those of the Greek church are the most numerous. The nickname of Melchites, or royalists, which is given to them, is a relic of the bad policy of the Byzantine emperors, who intermeddled with theological disputes. The Jacobites have many adherents. The Maronites are connected with the church of Rome. The religion of the Druses, and still more that of the Ansar, consist of a mixture of old Syrian faiths, and some principles of the Mahometan system. The MTouflas follow the doctrines of Ali, which the Turks hold in detestation. In addition to these are the Chinganes or Bohemians;‡ and the Bedouin Arabs, who, if they have any religious principles, have at least no forms of worship. There are also some European Christians, Jews, Armenians, and Nestorians. In fact, no country furnishes a more ample collection of opposite religions. The different sects of Christians and Mahometans rival one another in the apparent fervour of their devotional zeal. This mass of population, so varied in their genealogy and their religious belief, are viewed as under the government of four Turkish pashas. The pasha of Aleppo has, within the boundaries of his government, hordes of Turcomans and Koords, who are scarcely at all subjected to him. That of Damascus pays to the sheiks of the Arab tribes, in the name of the Sultan, suarts of money which have been presented to him in a piece of clotl; hence named chouvar-el-salat, or Sultan's cloth.§ In fine, the pashas of Tripoli and of Seyde or Acre, have provinces almost entirely consisting of Maronites, Druses, and other independent tribes. The anarchy consequent on this political situation assumes different aspects, according to the character and conduct of the pashas themselves, the émirs of the Druses, and the Arabshahis. Entreprensing chiefs erect independent states for a moment: yet Syria always returns under the unsteady yoke of the Turks. The unhappy condition of the people continues unchanged. The agriculturist is continually pillaged by the authorized robberies of the pasha, and the predatory attacks of the Arabs. The traveller can only have his choice of different bands of robbers for his escort. Art and industry languish for want of vigour and of information. Commerce, exposed to arbitrary vexation, is confined to timid bargains, or consigned to all the risks of caravans. Such is the deplorable condition of a country, rish in its soil, important in its local position, and which, by a new crusade, be easily wrested from the grasp of its barbarous oppressors.

Pashalis of Aleppo. | Let us examine now the most remarkable localities, beginning by the tract on the Euphrates, or the pashalik of Aleppo. The city of this name, which, according to the Byzantine history, is undoubtedly the ancient Berea,||

† Authors quoted in Adelung's Mithridates, i. p. 333—341.
‡ Olivier, Voyage dans l'Empire, Ottoman iv. 193.
§ Seeetzen, Annales des Voyages, viii. 204.
∥ See the authors quoted by Harlequin in his Notes on Pliny, v. 23.
has the superiority among the cities of Asiatic Turkey, both in the culti-
vated character of the inhabitants, in size, and in opulence. Its population is es-
imated at upwards of 150,000.* The buildings are of hewn stone, with which also
the streets are paved. The dark foliage of the cypress, forming a contrast with the
dazzling whiteness of the numerous minarets, produces a highly picturesque effect.
The silk and cotton manufactures are in a flourishing condition. The large cara-
vans of Bugdat and Bassora bring hither the productions of Persia and of India.
Aleppo is the modern Palmyra. The environs, planted with vines and olives, pro-
duce wheat in great abundance: but the Arabs and Turcomans, living by plunder,
carry off the property earned by the toil of the labourer. The water, being some-
what brackish, probably generates the slight complaint endemic in this place, called the
*Alep boil.†

In ascending the river Kowait, which runs along the walls of Aleppo, and has no
outlet into the sea, we find on the sides of Mount Taurus the large city of Antab,
the houses of which, arranged in the form of an amphitheatre, are in terraces, on
which we pass from streets which are covered with glass. This district is rich in
apple trees and vineyards.‡ The Turkish is the only language spoken. At Bir, a
small town a little to the east, is the common passage of the Euphrates. To the
south of Bir are the handsome ruins of Hieropolis, now known under the
old Syrian name Mabog, pronounced Mambedge. The walls, still
standing, attest the ancient greatness of this city, sacred to the worship of the
Phenician goddess Astarte, called in Scripture the queen of heaven, and the goddess of
the Sidonians.§

The deserts which, in our day, extend from Mabog to Palmyra, were in former
times subjected to cultivation, and formed the province of Chalybonitis, the capital of
which, Chalybon, seems to differ from Aleppo.

The famous city of Antioch, once greater and richer than Rome itself, \| Antioch.
but often ruined, and finally razed by the Mamelukes in 1269, is now only a small
town full of gardens, known by the name of Antakia. The port of \| Scanderoon.
Scanderoon or Alexandria, frequented by Europeans, has a most deadly climate.
The pigeons of that place are celebrated over all the East. They were formerly
employed as the carriers of dispatches to Aleppo, of which Alexandria is the
nearest harbour. The intermediate mountains are filled with towns and villages. In
those of Kesfin and Martosuan the women carry their hospitality as far as those of
Babylon of old. This authorized prostitution seems to be a remnant of old Asiatic
superstitions.|| The yellow and white jessamines perfume the hills of Casius.
From a distance we distinguish two species of juniper,\| which almost equal the
cypress in height: the pines, the larches, the oaks, the box trees, the laurels, the
yews, and the myrtles, conceal on every hand the aridity of the rocks.

Following the banks of the Orontes or El-Aasi, we find the remains of two cities
celebrated in their day, Apamea, now Aphamiah and Hems, the ancient
Apamea, Ha-
emess, where a black stone was the object of adoration in a famous
temple, of which no ruins are now to be seen. Hamath has regained the impor-
tance which it possessed in the times of the Hebrews. This commercial city was
the native place of Albulfed, an Arabian prince and geographer, who boasts much
of the fertility and the high cultivation of the countries watered by the Orontes.**

From Hamath, or rather from Famieh, an ancient Roman road leads to Palmyra,
the Tadmor of Solomon, and the residence of the immortal Zenobia, || Palmyra.
and the elegant Longinus. This ancient city is 150 miles to the south-east of Alep-
po, and an equal distance from Damascus, in a small district surrounded with deserts.
The eye of the traveller is all at once arrested by a vast assemblage of ruins; arches,
vaults, temples, and porticos, appear on every hand: one colonnade, 4000 feet long,

* Seetzen in Zach, Correspondance, xi. p. 364.
† Maundrell’s Natural History of Aleppo. Olivier, iv. 178.
‡ Rauwolf, quoted by Busching.
§ Pococke.
|| See the memoir of Heyne, in the Annales des Voyages, xiii.
\| Juniperus drupacia and oxyedrus of Linnæus.
** Albulfed, Tab. Syr. 104, 108, etc.

Vol. I.—Y y
is terminated by a beautiful mausoleum. Time has partially preserved the peristyles, the intercolumniations and tabulatures; the elegance of the design equals throughout the richness of the materials. These magnificent ruins present a sad contrast with the hovels of wild Arabs, now the only inhabitants of a city which in former times emulated Rome. Every spot of ground intervening between the walls and columns is laid out in plantations of corn and olives, enclosed by mud walls. There are two rivers, the waters of which; when judiciously distributed, must have conducted greatly to the subsistence and comfort of the ancient inhabitants, but are now allowed to lose themselves in the sand.

Having taken a survey of those parts of Syria which lie on the Euphrates and the Orontes, we proceed to the sea shore, to the two pashalis of Tripoli and Acre, comprehending Phoenicia and a part of Colesyria, and some other little ancient divisions. The heat and moisture which render this country dangerous to European constitutions, maintain at the same time a rich vegetation; oranges, lemons, and pomegranates, form cheerful groves at the bottom of the mountains, which project in various directions, forming landscapes highly picturesque. Notwithstanding the want of cultivation, it is still what Ammianus Marcellinus calls it, "a country full of charms and graces." Latiké or Lataké, the ancient Laodicea-ad-mare, is a flourishing commercial city; it exports tobacco. After being entirely ruined, it was rebuilt by a Turkish Aga. It is thus a curiosity in its kind, indebted for its renewal to a race of people who usually combine their exertions to the work of destruction. The island of Ruad formerly contained the city of Aradus, the houses of which, like those of many towns in Europe, had five or six stories. Liberty and trade drew to it an immense population. At the present day the island is deserted, and presents not so much as a fragment of ruin, nor has tradition preserved any accounts of the spring of fresh water which Tripoli discovered in the middle of the sea. Tripoli is named Tarabolos in the Turkish and Arabic languages. It is a great commercial city, though its harbour, like the others on this coast, is inconvenient and unsafe. It exports silks, cottons, and potash. Batoon and Gebail are the ports of the countries of the Maronites; the latter being the ancient Byblos. A short way from this, River Adonis. place is the river once named the Adonis, but now the Ibrahim-Pasha, the waters of which are red, not with the blood of the favorite of Venus, but with the red-coloured earth which at certain times of the year, they hold in suspension. || the ancient Berytus, now Beirut, is the place where the cottons and silks of the Druses are shipped. Here are to be seen the remains of an elegant palace built by the famous Emir Facardin. The town, surrounded by splendid plantations of mulberry trees, enjoys a healthy climate.|| Seyye. The ancient Sidon, mother of the Phenician cities, is now a town of 7000 or 8000 inhabitants, under the name of Seyde. It is the principal port of Damascus. The harbour, like all the others on this coast, was formed with much art, and at an immense expense, by means of long piers. These works, which still subsisted under the lower empire, and the harbour, are now fallen to decay. The Emir Facardin, who dreaded the visits of the Turkish fleets, completed the destruction of the famous harbours of Phenicia. A fate still more desolating has overtaken Tyre. Tyre, the queen of the seas, the birth-place of commerce, by which an early civilization was diffused. Her palaces are supplanted by miserable hovels. The poor fisherman inhabits those vaulted cellars where the treasures of the world were in ancient times stored. A column, still standing in the midst of the ruins, points out the site of the choir of the cathedral consecrated by Eusebius.|| The sea, which usually destroys artificial structures, has not only spared, but has enlarged,
III. SYRIA AND PALESTINE.

and converted into a solid isthmus, the mound by which Alexander joined the isle of Tyre to the continent. Acre, or St. Jean d'Acre, celebrated under this name in the history of the crusades, and in antiquity known by the name of Ptolemais, had, by the middle of the eighteenth century, been almost entirely forsaken, when Sheik Daber, the Arab rebel, restored its commerce and navigation. This able prince, whose sway comprehended the whole of ancient Galilee, was succeeded by the famous tyrant Djezâr-Pashâ, who fortified Acre, and adorned it with a mosque, enriched with columns of ancient marble, collected from all the neighbouring cities. The harbour, which has fallen down, was one of the best in this part of the Levant. In the history of modern warfare, it has acquired celebrity as the scene of a sanguinary struggle, in the years 1798-9, between the French army of the East under Bona parte, and the troops belonging to a British squadron under Commodore Sir Sidney Smith, in which the latter, by their persevering bravery, proved successful in repressing the progress of that conquering force.

Leaving these burning shores, we now proceed to take a rapid survey of the mountainous country by which they are overlooked. That which extends from Antioc to the river called Nahar-el-kebir, is inhabited by the Nasserians or Ansarites, whom those who are best informed in the language and history of the east consider as a Mahometan sect, founded in the seventh century by one Nassar, but who, according to a passage of Pliny; as pointed out by the judicious Mannert, appear to be an ancient Syrian race, who even under the Romans had a tetrarch of their own. It was in this same country that the crusaders found the famous nation called the Assassins, governed by the "old man of the mountain," a prince rendered formidable by the blind zeal of his subjects, who, at his command, put to death every person whom he designated as a victim, whom he scourged not to select occasionally from the throne itself. When the Assassin himself lost his life in these bloody expeditions, he was led to retain the firm persuasion that the nympha of Paradise, who were made known to him in a vision, held forth their arms to receive him to their celestial embraces. Burchard or Brocard, author of a well known book of travels in the Holy Land, went over the country of the Assassins in the thirteenth century, and found it extremely fertile and highly cultivated. It is not easy to come to an accurate conclusion amidst the different solutions which have been given of this enigma in history. We incline to believe with the learned M. Saci, that the name Assassin, derived from hashâh, an intoxicating plant, had been given to an Arabian tribe among whom this plant was used to stimulate their courage. The old man of the mountain, means an Arab sheik, this word signifying an elderly person. It would still be practicable for an Arabian chief to employ the arm of a fanatical adherent for the murder of a monarch in the midst of his court, to gratify that bloody vengeance which forms a hereditary appetite in that nation. Such are the known facts. The rest is probably the offspring of imagination.

Next to the country of the Ansariteh, Mount Libanus raises its summits to the clouds, still shaded with some cedars and buttied with thousands of rare plants. Here the Astragalus tragacanthoides displays its clusters of purple flow ers. The primrose of Libanus, the mountain amaryllis, the white and the orange lily, mingle their brilliant hues with the verdure of the birch-leaved cherry. The snow of the mountain is skirted by the Xeranthemum frigidum. There is but little variety in the rocks of this great Syrian chain. They chiefly consist of a brown calcareous stone. In the valleys we meet with argillaceous schistous, trap, and friable sandstone. Puddingstone, and frequently calcareous conglomerates, are also met with. A piece of yellow amber has been found here imbedded in a hard calcareous rock. Nitre is abundant; alum and vitiros are less frequent. The only metal found is iron. The deep ravines of these mountains are watered by numerous

† Amaplam Masyà smne diviasiam à Nazarìnum Tetrarch. Plin. v. 33.
‡ Burchard, Descrittpio Terras Sancte, in fine
§ Frunus postrata.
¶ Seetzen, Correspondance de Zach. xii. 551.
streams, which arise on all sides in great abundance.* The highest of the valleys are covered with perpetual snow. Arvieux and Poocke found the snow lying here in the month of June; Rauwolf and Kort in August. But it does not appear that any of the exposed peaks are covered with snow. The coolness, the humidity, and the good quality of the soil, maintain a perpetual verdure. These bounties of nature are protected by the spirit of liberty. It is to an industry less harassed by predatory encroachments than that of the other districts of Syria, that the hills of Lebanon owe those fine terraces in long succession, which preserve the fertile earth; those well-planted vineyards; those fields of wheat, reared by the industrious hand of the husbandman; those plantations of cotton, of olives, and of mulberries, which present themselves everywhere in the midst of the rocky steeps, and give a pleasing example of the effects of human activity.† The clusters of grapes are enormous, and the grapes themselves as large as cherries. Goats, squirrels, partridges, and turtle-doves are the most numerous animal species. All of them become a frequent prey to the pouncings of the eagle, and the prowlings of the panther. This last is the animal which is here called the tiger.‡ These retreats, secured from warlike invasion, but unfortunately accessible to the intrigues of Turkish pashas, are inhabited by two races, differing in religion and in manners, but similar in their love of independence, the Maronites and the Druses.

Kesraouan and the Maronites.

The country of the former is called Kesraouan, the Castravan of the historians of the crusades. It reaches from the river Kebir to the Keib. The Maronites, amounting to 120,000, dwell in villages and hamlets. The convent Kanobin, the residence of their patriarch, may be considered as their capital. They export their own corn, their wine, and their cotton, by Tripoli and Djebik. Distinguished into two classes, the common people and the sheiks or upper ranks, they all cultivate the ground with their own hands; all live economically in the bosoms of their virtuous families, under a rustic roof, where the Christian traveller uniformly meets with a hospitable reception.

Christian Worship.

The ringing of bells, and the display of processions, proclaim the liberty enjoyed in this district by the Christian worship. There are 200 convents, in which the discipline of St. Anthony is rigidly observed. There are numbers of individuals who lead the lives of hermits in the caverns of the mountains.§ The Maronites, though connected with the Roman Church, having renounced the heresy of Maro their founder, maintain the old institution of marriage among their priesthood. The fervour of devotion which pervades this people recalls to us the ideas of the primitive church. An imposing superstition has consecrated a cedar forest, which is said to have furnished the timber of Solomon's temple. Only twenty large cedars remain, and this old vegetable race verges fast to its extinction.|| Every year, on transfiguration day, the Greeks, the Armenians, and the Maronites, celebrate a mass on an altar of rough stones raised at the roots of these venerable trees.¶

Country of the Druses.

The Druses, also 120,000 in number, live to the south of the Maronites. Their country has several subdivisions, differing from one another in their soil and productions. Matn, on the north, has rich iron mines in the midst of its rocks. Garb, next in order, has fine forests of firs. Sahel, or the flat country adjoining the sea, produces mulberries and vines. Chouf, in the centre, is distinguished by silks of inferior quality. Tefa, or the apple district, is on the south. Chagif excels in tobacco. The highest and coldest region is called Djoord; to this the shepherds retire with their flocks in summer.** The Emir, or prince of the Druses, resides in a town called Deir-el-kamar in the sub-division of Chouf. It is

* Korte's Travels in Palestine, in German, p. 458.
† Dandini's Travels to Mount Lebanon, (French Translation) p. 76—50.
¶ Dandini's Travels to Mount Lebanon, passim.
¶ Korte, p. 421. Dandini, p. 75.
** Volney's Travels, ii. 173.
by religious peculiarities that this people is separated from the other in-habits of Syria. Long unknown to Europeans, kept exclusively in the hands of the Okals or teachers, their system is now known by the publication of some doctrinal books in the Arabic language, the style of which is remarkably obscure.* The Druses believe in one God, who for the last time showed himself in human form in the person of Hakem, Calif of Egypt, in 1080. Persuaded that all other systems of belief will finally be united in that which they profess, they regard them all with equal indifferance, although the Christians have considered them as entertaining a marked contempt for the Mahometan religion. This system of deism has some traces of doctrines of a more remote antiquity, such as the transmigration of souls, and the worship of a calf;† whence it has been judiciously conjectured that the Druses, as a political body, existed prior to the time of the Caliph Hakem and his prophet Hamzah. This conjecture assumes a character of great probability, when we compare the passages in which the Hebrews mention a nation of Itura,‡ those in which the Greeks and Romans celebrate the invincible bravery of the Iturai, who were the masters of Libanus from Beryte to Damasc,§ and the testimony of a modern traveller, according to whom, the real name of the Druses was Durzi, or Turzi.|| Hence we are induced to think, that the ancient Iturai have always maintained a sort of political independance in the midst of the revolutions of Syria, and that the doctrines of Hakem only gave fresh energy to a society already existing. Whatever credit this hypothesis may receive, the Druses, though a small body, was the only race in the Turkish empire that gave a good specimen of the dignity of human nature. Republicans in austerity of manners, always either dreaded as rebels, or respected as free vassals by the neighbouring pashas, they acknowledge the authority of a hereditary prince. Several families enjoy peculiar honours, but a noble simplicity gives them a unity of character in the social state. Invincible in the mountains, they are ignorant of the art of fighting in the plain. Their fidelity is equal to their courage; they never prove treacherous to the unfortunate who throws himself on their protection; but they fail not to revenge blood by blood; and the satellites of their emirs, have, like those of the assassins of old, been known to inflict death on the enemies of their masters in the midst of populous cities.¶ Jealousy respecting females is carried among them to an extreme. An inviolable veil screens from all profane curiosity the attractions of their women, who are said to be very handsome, and actuated by the lofty sentiments of the dames of Lacedemon. The husband cannot listen without uneasiness to any encomiums passed upon his wife, and any animated eulogy from the mouth of a stranger exposes the Drusean lady to the danger of death itself.** Agriculture and politics form the subject of conversation of the Druses; collected round the doors of their cottages, the children themselves listen in silence to the rustic assembly, and, untaught to read, devote themselves with enthusiasm to warlike exercises.

The Mutulis, first mentioned by Avireux,†† occupy the great valley | Mutanlia. which divides the two principal chains of Libanus, the easternmost of which is called by some of the moderns Anti-Libanus. These are ancient Syrians who have embraced the doctrines of the Mahometan Shi-ites. The respect which they manifest for the Calif Ali almost amounts to religious worship. Governed, like the Druses, their habitual rivals, by sheiks and emirs, they render themselves formidable to the Turks. Their cavalry was once considered as invincible; but they have been singularly weakened by intestine discord. In their country Balbec is situated, a town containing 5000 souls, and which is, as it were, buried among the ruins of

† Marius Iustia de Facardino. Niebuhr's Travels.
‡ Paral. i. cap. 1. v. 3. cap. 5. v. 19. Josephus xiii. 19.
¶ Niebuhr.
** Niebuhr and Avireux.
†† Venture, Ann. des Voyages, iv. 345.
†† Though Velney says otherwise ii. 79.
the ancient Heliopolis. The porch of the temple of the sun, though disfigured by two Turkish towers, is a structure of exquisite beauty. The stone of which the temple was built was brought from the neighbouring quarry, at the bottom of which there is a single stone still lying, sixty-six feet in length, fourteen in breadth, and fourteen feet six inches in thickness. Blocks of this size show the grandeur of the architecture of the edifices for which they were employed.

City of Damascus. On the eastern base of Libanus is the fertile plain watered by numerous streams, where the ancient city of Damascus stands, the Demeshk, or Sham-el-Demeshy of the orientalists. This city was once famous for the manufacture of sabres, which appear to have been made of thin laminé of steel and iron welded together so as to unite great flexibility with a keen edge. The art of making them is lost, since Tamerlane carried off the artizans to Persia. Sabres are still made here, but of inferior quality. It has a manufacture of excellent soap, and of stuffs made of a mixture of cotton and silk. The cabinet-work of fine wood, adorned with ivory and mother of pearl, has excited the admiration of the Europeans. This city is enlivened by the bustle of commerce, and the passage of the caravans to Mecca. The great street which crosses it presents two rows of shops, in which the riches of India glitter along with those of Europe. Its population may amount to 100,000. The private houses of Damascus, simple in external appearance, exhibit in the interior all the splendour and elegance of refined luxury; the doors are of marble; alabaster and gildings are displayed on every side. In every great house there are several fountains playing in magnificent basins. The smallest house has three water pipes, one for the kitchen, another for the garden, and a third for washing. The same magnificence is displayed in the mosques, the churches, and the coffee-houses. The Cham-Verdy, or Coffee-house of Roses, is considered as one of the curiosities of the Levant.

Environ. The environs of the city, watered by the Haurad and other small streams, present at all seasons of the year a pleasing verdure, and contain an extensive series of gardens and villas. The valley of Damascus or Guta is, according to Abulfeda, the first of the four terrestrial paradieses. But beautiful places are often inhabited by unworthy people. The citizens of Damascus are accused of fanaticism by the Christians, and of perfidiousness by the Mussulmans. The Arabs have three proverbial characters for the three great cities on the confines of Arabia, expressed in a kind of rhyme; and signifying, the Damascenes are false and traitorous, the Aleppans foppish idiots, and the people of Cairo a set of vindictive wretches. But a recent traveller, Seetzen, contradicts this unfavourable account of the Damascans. The pashalik of Damascus is in a much more flourishing condition than those of Aleppo and of Acre. Yusuph Pasha lately governed it with a paternal sway, but was displaced by the Porte for not duly remitting the revenue, and succeeded by another who also holds Acre, and who, though bred under the brutal Djezzar, is said to be a well disposed man.

Palestine. Ancient Palestine, and the small provinces which have generally belonged to it, remain to be considered. To the south of Damascus lie the countries called by the ancients Auranitis and Gaulovitès, by the moderns Hauran and Tchaulin, consisting of one extensive and noble plain, bounded on the north by the ancient Hermôn, the modern Djibel-el-Sheeh ; on the south-west by Djibel-Edj-Ian; on the east by Djibbel Hauran. In all these countries there is not a single stream which retains its water in summer. The most of the villages have their pond or reservoir, which they fill from one of the ouadi, or streamlets, in the rainy season. Of all the countries of Syria, Hauran is the most renowned for the culture of wheat. Nothing can exceed in grandeur the extensive undulations of their fields moving like the waves of the ocean in the wind. This plain contains many scattered hummocks, the sites of villages either inhabited or deserted. All

† Nouveaux Mémoires des Missions de la Compagnie de Jésus, vi. 127, &c.
§ Abulfeda, tab. Syria, p. 100.
these hummocks, all the round stones found in the fields, all the building stones, and
the whole mountain of Haurn, consist of basalt. The houses being entirely built
of this stone, even to the door posts, present rather a sombre appear-
ance.* The ancient Bostra, the capital of Roman Arabia in the third century, pre-
serves its name, but is now in ruins.

The district of Bothin, the ancient Batanea, contains nothing except | Bothin,
calcareous mountains, where there are vast caverns, in which the Arabian shepherds
live like the ancient Troglodytes. Here their she-goats come spontaneously to be
milked; and they have a huge log of wood to serve them both for light and heat.
Here a modern traveller, Dr. Seetzen, in 1806, discovered the magnifi-
cient ruins of Gerasa, now called Djerash, where three temples, two su-
perf amphi theatres, and hundreds of columns, still stand, among other monuments of
the Roman power. The finest thing that he saw was a long street, bordered on each
side with a row of Corinthian columns of marble, and terminating in a semicircular
open space, surrounded with sixty Ionic columns.† This discovery confirms the
opinion of Mannert that Gerasa had a more southerly situation than that assigned to
it by D'Anville. The hill of Edgeloon, the ancient Gilfed, bears oaks which pro-
duce gall-nuts. The inhabitants of the village of Es-salith, the capital | El-Belka,
of El-Belka, the ancient Peræa, are subject to no master. Their country presents on
its enormous terraces a mixture of vines, olives, and pomegranates. Karak-Moab,
the capital of a district corresponding to that of the ancient Moabites, is to be distin-
guished from another Karak in Arabia Petrea. The countries now described are
to the east of the river Jordan.

This river, in the higher part of its course, forms the boundary between the coun-
try of Tchaulan and the fertile and beautiful Galilee, which is identical | Galilee,
with the modern district of Saphet. The town of this name is said to be the same
with the ancient Bethulia which was besieged by Holofernes; it is situated on a hill,
at the bottom of which myrtle groves extend on all sides.‡ Tabarya, an insignificant
town, occupies the situation of Tiberias, which gave its name to the lake, which also
went by that of Gennesareth or the Sea of Galilee. Date trees, orange trees, and
indigo plants, surround this picturesque piece of water; but no fishing boat is em-
ployed here, though the fish are in great abundance.§ Nazareth, where Jesus Christ
was brought up, is a middle sized town. Six miles to the south of Nazareth stands the
hill of Tabor, forming a pyramid of verdure; olives and sycamores crown | Tabor,
its summit, which also contains a plain covered with wild wheat. It was called Ita-
ryus by some of the ancients. From the top of this mountain, which a venerable tradit
assigns as the scene of the transfiguration of Christ, we look down on the river Jor-
dan, the lake of Gennesareth, and the Mediterranean. || Galilee would be a paradise
were it inhabited by an industrious people under an enlightened government.
Vine stocks are to be seen here a foot and a half in diameter, forming by their twining branches
vast arches and extensive ceilings of verdure. A cluster of grapes, two or three feet
in length, will give an abundant supper to a whole family.¶ The plains of Esdrelon,
and all the other parts of it which afford pasture, are occupied by Arab tribes, around
whose brown tents the sheep and lambs gambol to the sound of the reed, which at
night-fall calls them home.** Of late years this whole neighbourhood has groaned
and bled under the malignant genius of Djezzar Pasha. The fields are left without
cultivation, and the towns and villages are reduced to beggary. In the districts which
come next in order, Dr. Clarke remarks a happy change of aspect, as they were sub-
ject to the more humane sway of the Pashâ of Damascus.

The ancient Samaria comprehends the districts of Areta and Nablous. | Samaria.
In the former, to the north of the oak forest formerly called Saronas, we find the
remains of Cesarœa; and on the gulf of St. Jean d'Acro, the town of Haifa, or Caifa,
where there is good anchorage for ships. On the south-west of this gulf a chain of

† Seetzen, Correspondance de M. Zach. xvi. 425.
‡ Schulze, in the collection of Paulus, vii. 60.
§ Seetzen, ibid, 349.
¶ Schulze, in Pallas, vii. 102

** Id. ibid. p. 6.
mountains extends, the promontory of which, in particular, is known by the name of Mount Carmel, a name famous in the annals of our religion. There, we are told, the prophet Elijah proved by miracles the divinity of his mission. There thousands of religious Christians once lived in caves of the rock; the mountain was then wholly covered with chapels and gardens. At the present day nothing is to be seen but scattered ruins amidst forests of oaks and olives, the verdure of which is interrupted by the whiteness of the calcareous rocks. The heights of Carmel enjoy a pure and enlivening atmosphere, while the interior of Galilee and Samaria is often obscured by fogs.

The city of Nablous, the ancient Nesopolis of the age of Herod, but better known by the primitive name of Sichem, contains, in houses which make but little appearance, a considerable population for so desert a country. The Samaritans, called Semri in Arabia, still worship the Deity on the verdant heights of Jarazim. They have forgotten their ancient language, which was a dialect of the Hebrew. Six miles farther north, the ruins of Samaria are covered with orchards. The country produces abundance of wheat, silks, and olives.§

Judea proper. Judea, properly so called, comprehends the modern district of Gaza, or the ancient country of the Philistines, that of Khalil or Hebron, and that of El-Kods, or Jerusalem. In the first, besides Gaza, the chief town, we remark the celebrated port of Jaffa,| corresponding to the Joppa of antiquity. Fortified and dismantled in frequent alternation, this town is variously described in books of travels. It is here that the pilgrims land on their way to Jerusalem. If Judea were well cultivated, the exports of cotton from Jaffa might be considerable.

Productions. The soil, consisting of a sandy earth, rises from Jaffa towards the mountains of Judea, forming four ascending terraces. The sea-shore is lined with mastic trees, palms, and prickly pears. Higher up, the vines, the olives, and the sycamores repay the labour of the cultivator; natural groves arise, consisting of evergreen oaks, cypresses, androches and turpentine trees. The ground is covered with rosaries, cistuses, and hyscinths. The vegetation of these mountains is compared by Pierre Belo to that of Ida in Crete.** Other travellers have dined under the shade of a lemon tree as large as one of our strong oaks, and have seen sycamores, the foliage of which was sufficient to cover thirty persons along with their horses.††

The wine of St. John near Bethlehem is delicious. The wild olive trees near Jericho bear olives of a large size, and give the finest oil. In places subjected to irrigation, the same field, after a crop of wheat in May, produces pulse in autumn. Several of the fruit trees are continually bearing fruits and flower at the same time in all their stages. The mulberries, planted in straight rows in the open fields, are festooned by the tendrils of the vine. If this vegetation seems to languish or become extinct during the extreme heats; if in the mountains it is at all seasons somewhat detached and interrupted, such exceptions to the general luxuriance are not to be ascribed simply to the general character of all hot and dry climates, but also to the state of barbarism in which the great mass of the present population is immersed.

Ancient fertility. Still some remains are to be found of the walls which they built to support the soil on the declivities; the remains of cisterns, in which they collected the rain water; and traces of the canals by which these waters were distributed over their fields. These labour necessitated created a prodigious fertility under an ardent sun, where a little water was the only requisite to revive the vegetable world. The accounts given by the ancients of the fertility of Judea, collected

by the Abbé Guérin, are not in the least degree falsified by the present state of things. "The case," as Belo observes, "is exactly the same with the islands of the Archipelago; a tract from which a hundred individuals draw a scanty subsistence, formerly maintained thousands." Moses might say justly that Canaan abounded in milk and honey. The flocks of the Arabs still find in it succulent pastures, and the wild bees borde in the holes of the rocks a fragrant honey, which is sometimes seen flowing down the surface. Nor were the ancients, and particularly the Hebrew writers, averse, where the truth was dictated, to notice the dryness and sterility of particular parts, such as the central chain of the hills of Judea, and a desert which extended from these mountains eastward to the Dead Sea. Here, both ancients and moderns tell us they have found nothing but stones, sand, ashes, and a few thorny shrubs. Belo had already remarked this contrast between the two sides of the chain of Judea.

"As we approach the centre of Judea," says a celebrated writer, "the sides of the mountain enlarge and assume an aspect at once more grand and more barren; by little and little the vegetation languishes and dies; even mosses disappear; and a red and barren hue succeeds to the whiteness of the rocks. In the centre of the mountains, there is an arid basin, enclosed on all sides with yellow pebble-covered summits, which afford a single opening to the east, through which the surface of the Dead Sea and the distant hills of Arabia present themselves to the eye. In the midst of this country of stones, incircled by a wall, we perceive extensive ruins, scanty郊区, bushes of the aloe and the prickly pear; some Arabian butes, resembling white-washed sepulchres, are spread over this heap of ruins. This spot is Jerusalem." "This touching description of the holy city, as it existed in the third century, has applied too nearly to its modern condition. Though the city is peopled with 20 or 20,000 inhabitants, according to the varying estimates of travellers, this city is described by many who have visited it as presenting to our view nothing but cabins resembling prisons rather than houses. Their interior, however, is allowed to be richer than the external aspect would lead us to believe. Dr. Chalmers, one of its latest visitors, says, that at the first view he was struck with its grandeur, that instead of a wretched and ruined town, as he had expected, he beheld a flourishing and stately metropolis, domes, towers, palaces, and monasteries, shining in the sun's rays with inconceivable splendour. Like many other ancient places, it no doubt, presents two aspects, a mixture of magnificence and paltriness. On the whole Jerusalem appears to be at the present moment in a state of progressive improvement. There are these comments in its belonging to the Latins, the Greeks, and the Armenians, resembling strong castles. On the site of the temple of Solomon, a fine exposure, stands the Mahometan mosque, adding a degree of external splendour to the place; but the Christians are not allowed to approach, and much less to enter it. The church of the holy sepulchre enclosed within its magnificent but irregular walls the place where the cross of Jesus Christ was set up, and the hole in which his body was deposited. A Turkish guard draws the tax imposed on the pious pilgrim, on visiting the memorable spot where the great Founder of Christianity, confirmed his divine morality by his death.

Few cities have undergone so many revolutions as Jerusalem. Once the metropolis of the powerful kingdom of David and of Solomon, it had its temples built of the cedars of Lebanon, and adorned with the gold of Ophir. After being laid waste by the Babylonian army, it was rebuilt in more than its original beauty under the Maccabees and the Herod; The Grecian architecture was now introduced, as is shown by the royal tombs on the north of the city. It then contained some hundred thousands of inhabitants; but in year 70 of the Christian era, it was visited by the civic scales of heaven, being razed to the foundation by the Roman Titus. Adrian built in its stead the city of Eia Capitolina; but in the time of Constantine, the name of Jerusalem was restored, and has ever since been retained. Helen, this emperor's mother, adorned the holy city with seve-
ral monuments. In the seventh century it fell under the power of the Persians and
Arabians. The latter called it El-Kods, "the holy," and sometimes El-Sherif, "the
noble." In 1198, the chevaliers of Christian Europe came to deliver it from the
hands of the Mahometans. The throne of the Godfrey's and of Baldwin imparted
to it a momentary luster which was soon effaced by intestine discord. In 1187,
Saladin replaced the crescent on the hills of Zion. Since that period, conquered at
different times by the sultans of Damascus, of Bagdat, and of Egypt, it finally
changed its masters, for the seventeenth time, by submitting in 1517 to the Turkish
arms.

Bethlehem. — Bethlehem, where Jesus Christ was born, is a large village, inhabited
by Christians and Mussulmans, who are actuated by an equal spirit of dislike to the
existing government. The reputed locality of the sacred manger is occupied by an
elegant church, ornamented by the pious offerings of the whole of Europe. It is not
our intention to enter on a minute critical discussion of those old traditions by which
the particular places rendered sacred by the Saviour's presence are marked out.
They present much vagueness, mingled with the truth. No credit certainly is due
to the story in which the city of Hebron, called in Arabic Khallil, claims the possess-
sion of the tomb of Abraham, and attracts on this account the veneration both of
Hebrews. Christians and Mahometans. Hebron, situated to the south of Jerusa-
lem, in a country less arid, contains from 1000 to 1200 inhabitants, has some pretty
manufactures of glass, and exports a great quantity of dibet, a sort of sugar obtained
from the grape. * To the north-east of Jerusalem, in the large and fertile valley
called El-Gov, which is watered by the Jordan, we find the village of Kibha, the
ancient Jericho, called by Moses the city of palms. This is a name to which it is still entitled; but the groves of opobalsamum, or the balm of Mecca, have
disappeared; and the envoys of this city are no longer adorned with the flowers of
the amastia hierochuntica, to which an error, founded in superstition, has given the
appellation of Jericho roses.

To the east of Judea, two rude and arid chains of hills encompass, with their
dark steeps, a long basin, formed in a clay soil, mixed with bitumen and
rock salt. The water contained in this hollow is impregnated with a
mixture of different saline matters, having lime, magnesia, and soda, for their base,
partially neutralized with muriatic and sulphuric acid. The salt which they yield by
evaporation is about one fourth of their weight. † The asphaltum, or bitumen of Ju-
dea, rises from time to time from the bottom, floats on the surface of the lake, and
is thrown out on the shores, where it is gathered for use. Formerly the inhabitants
were in the practice of going out in boats or rafts to collect it in the middle of the
lake. None of our travellers have thought of sailing on this lake, which would un-
doubtedly contribute to render their acquaintance with its phenomena more com-
plete. We are told by the greater part of those who have visited it, that neither fish
nor shells are to be found in it, that an unwholesome vapour is sometimes emitted by it,
and that its shores, frightfully barren, are never crossed by the note of any bird.
The inhabitants, however, are not sensible of any noxious quality in its vapours; and the
accounts of birds falling down dead in attempting to fly over it are entirely fabulous.

Physical features. — We are taught to believe that the site of the Dead Sea was once a fer-
tile valley, partly resting on a mass of subterranean water, and partly
composed of a stratum of bitumen; that a fire from heaven kindled these combustible
materials, the fertile soil sunk into the abyss beneath, and that Sodom and Go-
omrha, and other cities of the plain, probably built of bituminous stones, were con-
sumed in the tremendous conflagration. In this manner the amateurs of physical
geography contrive a scientific explanation of those awful changes of which, accord-
ing to the Scriptures, this place was once the scene. ‡

* Shaw's Travels.
† Gordon in the Bibliothèque Britannique.
‡ Annales des Voyages, xiii. Mémoire sur la mer Macht, d'après Buxach.
TABLES

OF THE SUBDIVISIONS OF SYRIA AT DIFFERENT PERIODS.

Table I.—Under the Romans in the first three centuries.

<table>
<thead>
<tr>
<th>Greater Divisions</th>
<th>Subordinate Divisions</th>
<th>Chief Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syria Superior.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Upper Syria.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comagene</td>
<td></td>
<td>Semosata.</td>
</tr>
<tr>
<td>Cyrrhestica</td>
<td></td>
<td>Cyrrhus. Berera, (Aleppo,)</td>
</tr>
<tr>
<td>Hircapolis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieria</td>
<td></td>
<td>Alexandria.</td>
</tr>
<tr>
<td>Seleucia</td>
<td></td>
<td>Seleucia.</td>
</tr>
<tr>
<td>Antiocchene</td>
<td></td>
<td>Antiochoia.</td>
</tr>
<tr>
<td>Casrites</td>
<td></td>
<td>Laodicea, ad mare.</td>
</tr>
<tr>
<td>Apamene</td>
<td></td>
<td>Apamia, Emesa.</td>
</tr>
<tr>
<td>Chalcedice</td>
<td></td>
<td>Chailef.</td>
</tr>
<tr>
<td>Chalybonenis*</td>
<td></td>
<td>Chalybon. Thapsacus.</td>
</tr>
<tr>
<td>Palmyrene</td>
<td></td>
<td>Palmyra.</td>
</tr>
<tr>
<td>Coele-Syria.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenice.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Phenicis.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galilee Superior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samaria Inferior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galilee Superior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judea.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judea Propria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentapolis, s. Palaeastina Propria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ismaena.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perea.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachonitis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaulonitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batanaea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auranitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iturea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapolis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perea Propria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moabitis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Some of the learned consider Chalybonitis as a small subdivision of Cyrrhestica. Chalybon, according to such, is the present Aleppo or Chalep, called also Berera; but Ptolemy makes Berera distinct from Chalybon.

TABLE II.—Divisions of Palestine (or Canaan) among the Twelve Tribes, compared to those of the Romans.

<table>
<thead>
<tr>
<th>Ancient Canaanitish Division</th>
<th>Israelitish Division</th>
<th>Roman Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidonians</td>
<td>Tribe of Asher</td>
<td>Upper Galilee.</td>
</tr>
<tr>
<td></td>
<td>(In Libanus.)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>Naphthali</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(North-west of the lake of Genesareth.)</td>
<td></td>
</tr>
<tr>
<td>Pheresites</td>
<td>Zeabulon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(West of that lake.)</td>
<td></td>
</tr>
<tr>
<td>The same</td>
<td>Issachar</td>
<td>Lower Galilee.</td>
</tr>
<tr>
<td></td>
<td>(Valley of Esdraelon. Mount Tabor.)</td>
<td></td>
</tr>
<tr>
<td>Hivites</td>
<td>Half-tribe of Manasseh</td>
<td>Samaria.</td>
</tr>
<tr>
<td></td>
<td>(Dora and Cesarea,) mingled with the following.</td>
<td></td>
</tr>
<tr>
<td>The same</td>
<td>Ephraim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Sickem, Samaria, district of Sarous.)</td>
<td></td>
</tr>
<tr>
<td>Jebusites</td>
<td>Benjamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Between Ephraim and Judah. Jericho. Jerusalem.)</td>
<td></td>
</tr>
<tr>
<td>Hethites, Amorites</td>
<td>Judah</td>
<td>Judæa.</td>
</tr>
<tr>
<td></td>
<td>(Hebron. Judea proper.)</td>
<td></td>
</tr>
<tr>
<td>Philistines</td>
<td>Simeon</td>
<td></td>
</tr>
<tr>
<td>(Pentapolis, Palæastina propria)</td>
<td>(South-west of Juda.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Joppa, &c.)</td>
<td></td>
</tr>
<tr>
<td>Moabites</td>
<td>Reuben</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Perea proper, southern Hesbon.)</td>
<td>Me.</td>
</tr>
<tr>
<td>Ammonites, Gilead</td>
<td>Gad</td>
<td>Perea.</td>
</tr>
<tr>
<td></td>
<td>(Northern Perea, part of Decapolis and of Ammonitis.)</td>
<td></td>
</tr>
<tr>
<td>Kingdom of Bashan</td>
<td>Half-tribe of Manasseshe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Gaulonitis, Batanea.)</td>
<td></td>
</tr>
</tbody>
</table>

N. B. The Canaanites and Israelites having long led the lives of shepherds, their limits are not quite distinct. Michaelis could not complete the researches which Beland and d'Anville began, nor can any one.

The Tribes of Simeon and Dan do not appear to have ever occupied their whole territory. The Philistines lived in them, as a state of vassalage. The tribe of Asher was expelled from the sea coast by the Tyrians: Reuben, Gad, and the eastern half of Manasseshe, appear never to have subdued all the Ammonites and Moabites.
Table III.—Division of the Diocese of the East, (established by Constantine and his successors, partly also by Trajan.)

<table>
<thead>
<tr>
<th>Province</th>
<th>Chief Towns</th>
<th>Corresponding Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabia*</td>
<td>Bostra</td>
<td>Batanea, Auranitis</td>
</tr>
<tr>
<td>Palestinena prima†</td>
<td>Cesarea (ad mare)</td>
<td>Samaria, Judea propria</td>
</tr>
<tr>
<td></td>
<td>*Jerusalem</td>
<td>Pentapolis or the country of the Philistines.</td>
</tr>
<tr>
<td>Palestinena secunda</td>
<td>Scythopolis (Bethsan.)</td>
<td>Galilcea, Gaulonititis, Decapolis.</td>
</tr>
<tr>
<td>Palestinena tertia, or salutaris</td>
<td>Petraea</td>
<td>Idumea, Arabia Petraea.</td>
</tr>
<tr>
<td>Phoenicia prima</td>
<td>Ptolemais</td>
<td>The Sea coast</td>
</tr>
<tr>
<td></td>
<td>*Tyris</td>
<td></td>
</tr>
<tr>
<td>Phoenicia Libanica</td>
<td>Heliopolis</td>
<td>Colesyria</td>
</tr>
<tr>
<td></td>
<td>*Damascus</td>
<td></td>
</tr>
<tr>
<td>Syria</td>
<td>Antiochis</td>
<td>Seleucia, Pieria, Cassiotis Apamea, &c.</td>
</tr>
<tr>
<td></td>
<td>Apamea</td>
<td></td>
</tr>
<tr>
<td>Syria Euphratesia</td>
<td>Samosata</td>
<td>Comagene, Cyrrhostica, Chalcidice.</td>
</tr>
<tr>
<td></td>
<td>*Hierapolis</td>
<td></td>
</tr>
<tr>
<td>Syria salutaris</td>
<td>Palmyra</td>
<td>Palmyrene, Chalybonitis</td>
</tr>
<tr>
<td>Ophroene, Mesopotamia</td>
<td>Mesopotamia</td>
<td></td>
</tr>
<tr>
<td>Cypris, Isauria</td>
<td>See Asia Minor</td>
<td></td>
</tr>
</tbody>
</table>

Table IV.—Divisions of the Kingdom of Jerusalem in the Twelfth Century, according to the globe Guenee.

Provincial Divisions.

1. Royal Domains
 - Jerusalem.
 - Nabulous.
 - Agre.
 - Tyre, and their respective districts.
 - Country of Jaffa.
 - of Ascalon.

2. First Great Barony
 - Lordship of Rama.
 - of Mirabel.
 - of Ybelin.

3. Second Great Barony
 - Principality of Galilee.
 - Lordship of Sidon.
 - of Cesarea.
 - of Bethsan.
 - Lordship of Krak (Petra.)
 - of Hebron.
 - of Montreal.

4. Third Great Barony
 - A dependent principality, but distinct from the kingdom of Jerusalem.

* The coins found by Mr. Seetsen at Gerara and other places belong to the reign of the Antonines. It is improbable that the division under the name of Arabia is as old as Trajan or the Antonines.

† Finding Cesarea preferred to Jerusalem as the capital, we are led to believe that these divisions of Palestine are as old as the reign of Adrian, if not of Titus.
Ecclesiastical Divisions.

I. Patriarchate of Jerusalem
 - Bishoprics of Bethlehem.
 - of Lydda.
 - of Hebron.

II. Archbishopric of Krak
 - of Mount Sinai.

III. Ditto of Caesarea
 - of Sebaste. (Samaria.)
 - of Tiberias.

IV. Ditto of Nazareth
 - Priory of Mount Tabor.
 - Bishoprics of Beryta.
 - of Sidon.
 - of Pææas.
 - of Ptolemais.

V. Ditto of Tyre

Table V.—Present leading divisions of Syria.

<table>
<thead>
<tr>
<th>Divisions.</th>
<th>Towns.</th>
<th>Corresponding Divisions of Antiquity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pashalik of Tripoli.</td>
<td>{Tarabulus, (Tripoli, Lateka.</td>
<td>Casotis, (of Upper Syria.)</td>
</tr>
<tr>
<td></td>
<td>Djebail.</td>
<td>The north part of Phociticia.</td>
</tr>
<tr>
<td>of Acre.)</td>
<td>the country of the Druses.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saphet.</td>
<td></td>
</tr>
<tr>
<td>Pashalik of Damascus.</td>
<td>{Famieh, (Apamea,) Tadmor,</td>
<td>Apamea and Palmyrene, (of Upper Syria.)</td>
</tr>
<tr>
<td></td>
<td>(Palmyra,) Damascus, Jerusalem,</td>
<td>Eastern Gelesyria. Palestine, with the exception of Galilee.</td>
</tr>
<tr>
<td></td>
<td>Gaza.</td>
<td></td>
</tr>
</tbody>
</table>

Present Divisions of Ancient Palestine, according to Busching, Volney and others.

I. El-Kods
 - Jerusalem. Jericho, &c. The north-west
 of Judea.

II. Et-Khalil
 - Hebron, and the south of Judea.

III. Gaza or Palestine
 - The sea coast, with Jaffa, Gaza, &c.

IV. Ludd
 - A district round the city of Ludd:

V. Nablous
 - The city of this name, with the ancient
 country of Samaria.

VI. Areta
 - Mount Carmel, with part of the plain
 of Esdraelon.

VII. Safet
 - Ancient Galilee, called also Be-Ind-el-
 Bushra, or the country of the Gospel.

VIII. Belad Shekyf
 - Ancient Trachonitis, with Belad-Hauran,
 Auraitis, &c.

IX. El-Gaur, (eastern.)
 - Ancient Pereæ. One district is named
 Es-Szalt.

X. El-Sharrat
 - On the south and south-east of the Dead
 Sea, with El-Djebal, the ancient Gebalene.
BOOK XXIX.

TURKEY IN ASIA.

PART IV.

A general view of the Ottoman Empire.

HAVING described the provinces of Asiatic Turkey with that care which is justly claimed by countries which once enjoyed so brilliant a celebrity, and which, let us hope, will, at some future time, be again subjected to the benign influence of civilization, let us now take a political survey of the Turkish empire, which also extends into Europe and into Africa, though its principal possessions are in Asia.

The darkness in which the history of the Turkish or Tartar nations in general is enveloped, conceals from our view the origin of that tribe which has acquired such celebrity under the name of the Othmans. We have already seen that some Turks, governed by some princes of the race Seljoukid, were in the tenth, eleventh, and twelfth centuries, in possession of a powerful state, which under the name of the Sultanat of Kanich and of Room, comprehended Asia Minor, with Armenia and Georgia. About the year 1308, this sultanate was destroyed by the Mongols; and in a short time the Ottoman power appeared in its stead. The learned Dezguigshe thought he had proved that the Ottomans were a Cumanian tribe which was driven from Chorassan by the same Mongols, and came to settle in the mountains of Taurus, under the protection of the sultans of Room, about the year 1231. Whatever may have been their previous history, one of the chiefs of this tribe, named Othman, made himself independent about the year 1300; and his successors, adopting the title of "sultan," in exchange for that of "emir," contrived in the course of a century to extend their empire from the banks of the Euphrates to those of the Danube. Thrace, Servia, Macedonia, and Thessaly, were now subject to their power; and Constantinople was surrounded by their conquests; then Tamerlane, in 1402, having defeated the sultan Bajazet the first, the Ottoman power seemed to totter. Constantinople began to breathe from the pressure by which her existence had been threatened; but Mahomet met the first, with the assistance of the vizir Ibrahim Khan, re-established the fortunes of the Turks. The great Amurat the second, maintained a desperate contest with Joannes Hunyad and Scanderberg, antagonists every way worthy of him. He punished the perversity of the Christians by the defeat of their main army at Varna. Mahomet the second, in 1453, entered Constantinople sword in hand, and established himself on the throne of Constantine and Justinian. From Trobisond to Bosnia every thing submitted without a contest to his arms. He subdued the Crimea; his fleets made descents even on Italy. Selim I. in 1517, overthrowing the sultanat of the Mamelooks, subjeguated Syria and Egypt. Rhodes was wrested from its valorous knights. Hungary, distracted by intestine broils, opened in 1520, a passage for Soliman II. to Vienna; but this imperial city presented an effectual barrier to the further progress of the Crescent. Selim II. in the mean time, wrested from the Venetians the isle of Cyprus. The defeat of the Turkish fleet near Lepanto in 1571, was not followed by any important consequences. But a race of weak sultans, and a series of revolutions in the seraglio, now sowed in the empire the seeds of anarchy. Under Mahomet II. the energy of the nation seemed to revive: the island of Candia was conquered. Vienna sustained a second siege in 1683, which was raised by the exertions of John Sobieski, king of Poland. The conquest of Bagdad marked the superiority of the

* Pronounced in Arabic Othman.
Turkey to the Persian power. But no Solimans nor Amurats now sat on the throne of Constantinople. A century was spent in frequent wars attended with no decisive results. Asoph, in the north, conquered in 1642, was lost and reconquered. The Morea, lost in 1699, was soon after subjected to the Turkish power. Austria, which in 1699 and 1718, had made large acquisitions in Servia and Wallachia, lost her advantages in the disgraceful treaty of 1739, by which the Russians themselves were forced to surrender the conquests which they had made under the conduct of Munnich. Yet this war instructed Europe in the secret of the weakness of the Ottomans. Russia soon ventured to contend single-handed with the Turks, and beat them by land and by sea. Romanoff passed the Danube: the fleet of Orloff sailed round from the north into the Mediterranean, and burned the Turkish fleet in the Bay of Teiresias. The treaty of 1774, restored independence to the Crimea and Kuban, delivered up to the Russians the most important military stations in those countries, and thus opened to their flag the Black Sea and the passage of the Dardanelles. The Ottoman Porto attempted to evade these severe conditions. In consequence of this reluctance, she saw Crimea in the possession of the Russians in 1783; and, in five years after, was involved in a war with Russia and Austria together. It was to the inexperience of Joseph II. and of Prince Potemkin, to the daring efforts of Gustavus III. in the north, and to the interference of the Russian and British governments, that she was indebted for the conclusion of the war, in which Otchakoff was lost, and which threatened the instant expulsion of the Turks from Europe. Russia, however, afterwards availed herself of the events of the French Revolution to engage the Turks in an alliance, by which her command over the destinies of that empire was extended to every corner. A weak divan sacrificed its independence for the recovery of Egypt. The Russian squadrons passed under the sacred walls of the saccagio. The Russian armies established themselves in the Greek islands; the name of Russia was invoked by the restless spirits of Servia and Wallachia, eager to throw off the yoke of Turkey. The French under Bonaparte, pleasing themselves with the prospect of universal conquest, spared the Turkish power only because the conquest of the Russian empire was a more brilliant object for their arms, and the materials of that empire were more easily amalgamated with those already in the hands of this all-powerful invader, and more easily made effective for future conquests. The sudden fall of French preponderance having imparted a renewed energy to the influence of the Russian monarchy, and Austria being for the moment in mutual league with Russia, the extinction of Turkish domination now becomes a matter of the utmost facility. Great Britain may wish to interpose her power to check the extension of an empire so threatening in its aspects, towards herself as Russia. But the Russian power is too close on Turkey, and has in other respects too little to dread from any other nation to allow such distant considerations to shackle her movements. Or, if she wishes to avoid a contest with the maritime prowess of that country, she may purchase her peace by a division of the spoil, allowing to the British, what she cannot prevent, the occupation of the numerous islands of the Mediterranean, now in the hands of the Turks. Such is the morality dictated by the sword, the law of emperors and dominoing courses, the execution of which may be postponed by convenience or a sense of decency, while the occurrence of future pretensions and opportunities is wished for and expected. It is well for mankind when this looseness of international principle is in some degree expired by the establishment of just institutions, and the protection of civil liberty in the countries subjected to these mutually tolerated and occasionally confederated powers. We have not yet reached the period when a plurality of them have shown any willingness to adjust their relative interests by a conjoint relinquishment of conquests which they have long held, in favour of home-born governments, suited to the original character and the cherished pride of ancient national communities. But, taking men as they are, and considering the ready intercourse now maintained among the most distant parts of our planet, it becomes matter of doubt whether extensive governments are not better suited to the repose of the world than a frittering down of the inhabited earth to small nations, where the prejudices and the inclinations of one ferocious tribe
might disturb the transactions of all who come in contact with them. The ravages attending the wars of great nations are, while they last, evils of proportional magnitude. But they are open; they attract attention; they give warning to the peaceful to prepare for avoiding the scene, or to choose the part which their inclination or principles may lead them to take in the contest: and, when these are terminated, they leave mankind in a condition to prosecute the business of life without the perpetual dread of lawless attacks. We have not yet arrived at an era in which the bubble of military glory has lost its delusive hues, nor is civilization so widely extended as to produce one deliberate understanding, and one code of mutual conduct among the whole human species. It is when local prejudices and confined habits are prohibited from exercising an influence on more foreign relations, that the great mass of mankind will have it in their power to lay a hand of gentleness, but of irresistible weight, on every unjust inclination, and to repress in the conduct of conspicuous individuals every movement implying a tendency to a vain and ungenerous aggrandizement. Were this happily the case, the rare occurrence of international crimes would limit the field of pretexts for acts of unjust aggression under the guise of a redress of our own or other's grievances, or a forcible maintenance of the peace of the world.

While we wait for the effects of political circumstances, we perceive in every quarter of the Turkish frontier the encroachments of adverse fortune. An extremely precarious authority is all that is left to the Porte in Africa. The uncertain boundaries of Syria are liable to the constant insults of the Arabs. The line of separation from the Persian empire has continued unaltered for a century, but the pasha of Bagdat and the tribes of Koordistan yield to the Grand Sultan a very dubious homage. It is not easy to say where the Turks have a barrier on the side of Russia. The latter extend to the banks of the Phasis in Asia, and to those of the Danube in Europe. From Austria, the mountains of Transylvania and part of the course of the Danube and the Save, form a sort of natural frontier, rendered ineffectual by Dalmatia (which spreads over the frontiers of Servia and Bosnia) having passed through the hands of Bonaparte into those of Austria, and the Ionian islands having passed through the same medium into the hands of Britain.

A government of a mild and enlightened character, possessed of these extensive countries, might form one of the finest empires in the world. It would derive great commercial advantages from that central situation which Turkey enjoys in the old continent, giving her so ready access to the commodities of Europe, Asia, and Africa; that intercourse being at the same time admirably facilitated by the openings which the Mediterranean Sea, the Red Sea, the Persian Gulf, and the river Euphrates afford to the two great oceans of the globe.

The Turks never reckon up their population, nor keep statistical records of the component parts of their empire. They do not know whether it is so much depopulated as others represent it, or if their weakness in this particular has been exaggerated. With respect to extent of territory, the results of a comparative examination of modern accounts and modern maps are represented in the following table:

TURKEY IN EUROPE.

<table>
<thead>
<tr>
<th>Country</th>
<th>Square Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moldavia (with Bessarabia)</td>
<td>26,639</td>
</tr>
<tr>
<td>Wallacia</td>
<td>23,066</td>
</tr>
<tr>
<td>Servia, Bosnia, and Turkish Dalmatia</td>
<td>31,366</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>27,174</td>
</tr>
<tr>
<td>Romania proper</td>
<td>25,716</td>
</tr>
<tr>
<td>Macedonia</td>
<td>21,142</td>
</tr>
<tr>
<td>Albania proper</td>
<td>16,645</td>
</tr>
<tr>
<td>Epirus, Thessaly, Livadia</td>
<td>14,915</td>
</tr>
<tr>
<td>Morea</td>
<td>7,227</td>
</tr>
<tr>
<td>Candia or Crete</td>
<td>4,613</td>
</tr>
<tr>
<td>Euboea and the other isles of Europe</td>
<td>3,806</td>
</tr>
</tbody>
</table>

Total Turkey in Europe | **202,300**

Vol. I.—3 A
BOOK TWENTY-NINTH.

TURKEY IN ASIA.

Anatolia, with Caramania and Room, as far as the Euphrates - - 200,196
Syria, exclusive of the Desert - - - - 51,778
Armenia, with Turkish Georgia, &c. - - - - 64,002
Diarbekir, Mesopotamia, &c. - - - - 144,650

Total Turkey in Asia - - - - 460,626

Do. Do. in Europe - - - - 202,309
Egypt - - - - 152,261

Total of the Ottoman Empire, (exclusive of the Barbary States) - - 815,196

Population. It would be vain to expect a near approximation to the truth in any
conjectures which we might indulge respecting the population of a state in which re-
gisters and a regular census are unknown. Some writers estimate that of European
Turkey at twenty-two, while others have reduced it to eight millions,* and both as-
sign equally plausible grounds for their opinions. Respecting Asiatic Turkey, the
uncertainty, if not still greater, is at least more generally acknowledged. Supposing
the houses to be as thinly scattered as in the less populous parts of Spain, the popu-
lation of all Turkey, in Europe, Asia, and Africa, may amount to 25 or 30 millions,
of which one-half belongs to Asia. Under the want of any thing like positive evi-
dence, we shall not deviate far from probability in allowing to Anatolia, five millions;
to Armenia, two;† to Koordistan, one; to the pashalis of Bagdat, Moseul, and Diar-
bekir, one and a half; and to Syria, 1,800,000, or at most two millions.

The moral and political condition of the Ottomans is a subject which presents less
uncertainty, and is in itself more interesting. The Turks are allowed to be a large, well formed, and robust race of men, of rather a harsh yet
ten a noble physiognomy, and a tawny complexion, with black or rather dark
brown hair.‡ They have a natural gravity of deportment, which is increased by a
large flowing dress, thick rolls of turban on the head, and long mustaches, the last
of which ornaments are by them, as by all Asiatic nations, reckoned indispensable.§
Their exterior gives no countenance to the Mongol extraction which their national
authors ascribe to them. They seem to differ from other Tartar nations in nothing else
than a degree of favourable alteration arising from an admixture of European blood.

Language. The language of the Turks, however, in the unanimous opinion of philo-

logists, has in its radical materials a closer alliance with that of Tartary than with any
other. But the Turkish writers have introduced into their more elevated style many
words and phrases adopted from the copious language of Arabia, or from the elegant
idiom of modern Persia. This admixture has procured to the Turkish language the ap-
pellation of Mulemma, or "the pied mare." The Turks, of all the races
which have proceeded from central Asia, that which has most recently settled in
Europe, and their former glory and honour having inspired them with a lofty national
pride, we find them still preserving inviolable, and most particularly in the Asiatic
provinces, the same religious creed, and the same manners and customs by which
three centuries ago they were distinguished, a constancy which might merit our
praise if enlightened and directed by sound principles of policy. Frugal,
and generally vegetable fare, a prevalent abstinence from wine, habitual masculine
exercises, such as riding and the use of arms, (the more effeminate exercise of
dancing being proscribed,) a grave ceremonial hospitality, taciturnity, much exter-
nal devotion, simple and quiet dwellings, gardens retired and romantic, these are the

* Bruns. Magaz. Géograp. i. cal. l. p. 68—74, compared with Ludeck's Authentic Account
† Olivier, Voyage iv. Volney, Voyage en Syrie. ii.
‡ Busbeck, Ludecke, Lady M. Montague, &c.
§ Tott, i. 191.
" Adellang. Mithrid. i. 459, &c. Jenisch, de fati linguarum orientalium. Meninski, Dic-
©tosarium Turcicum, &c.
chief features which impart to the mode of living of the Turks, as well as the orientalists in general, an original and distinct character.

The indolent Turk is a stranger to the bustle of our social circles; he reposes on his sofa covered with the softest cushions; smokes the tobacco of Syria; warms and regales himself by sipping at short intervals the coffee of Moka; looks on while the slaves dance before him; and at times takes a few grains of opium, by which his imagination is transported to the third heavens. Polygamy, however, is far from bringing to every Mussulman that exuberance of voluptuous enjoyment with which, in the minds of the inexperienced and unreflecting, the word is so often associated. The Turkish women being entitled to spend with extravagance, while they have no line of industry to follow, men of moderate fortune are prudent enough to confine themselves to one wife. Sometimes those women who are at their own disposal, or their relations for them, insist, in their marriage contracts, on a formal renunciation on the part of the husband of the licence which Mahometans enjoy to marry four wives. Polygamy thus becomes the luxury of the rich and the great. Female slaves, purchased from the Georgians and Circassians, but in larger proportions from the Lesghians, people their harams, those close and sacred apartments within which Turkish jealousy has confined the empire of beauty. When walking abroad from their harams, which we improperly call seraglios, the Mahometan women, whether wives or concubines, are always covered with triple veils, and a dress by which the features and the forms of these walking mummies are effectually concealed from the most sagacious observation. It is only in their baths, which are scrupulously locked, or in the interior of their harams, that the women enjoy one another's society, and give fêtes. There they regale themselves with sherbet, sweetmeats, coffee, and tobacco: there they display their dresses, their laces, their jewels, and indulge in criticisms on their husbands or their neighbours. Dancing girls are admitted, who entertain them with rather wanton exhibitions; but no women of character dance in Turkey. The Turkish women are not furnished with any pretext for occasional liberty by the places of worship, the law of Mahomet not requiring them to attend prayers in public. But notwithstanding the precautions employed, we are told that the Mahometan ladies find some opportunities of repaying the indifference or the infidelity of a husband; that by the medium of the milliners, who are generally Jews or Armenians, they can extend their correspondence beyond the triple walls of the haram of the most formidable pasha. It is said, but we do not vouch for the accuracy of the fact, that as they cannot read or write billet doux, they convey their sentiments by showing or sending flowers under certain emblematic arrangements. The Turks have some points which indicate the gentle feelings of humanity lurking in the heart. The same species of benevolence which restrains the Indians from depriving animals of life, seems to be equally inherent in the masters of the Bosphorus. In the Turkish towns dogs and cats enjoy an abundance which our beggars might envy. Flocks of pigeons traversing the air, light on the merchant vessels which are loaded with grain, to levy a tribute which is seldom refused them. Aquatic birds swarm on the banks of the canal at Constantinople, and their nests are respected even by children. This benevolence is even extended to trees. A useful and commendable prejudice prevents the most avaricious proprietor from depriving the village or the field of their pleasing and salubrious shade. The rich take a pride in adorning the public walks with fountains and public walks with seats, two things which are rendered necessary by the frequent ablutions and prayers enjoined by the Mahometan religion. The khans, or caravan, sers, are public inns, in which travellers and working people are lodged without payment. In the houses of Turkish proprietors, whether in the Morea, Anatolia, or the island of Candia, several travellers concur in remarking purity of manners, domestic happiness, and a patriarchal hospitality. But the ex-

* Seraglio is a Persian word for a palace.
† Lady M. Montague's Letters. Hammer in the Fundgruben des Orientes, or the Annals des Voyages.
treme pride of the Turks, rendered more offensive by the harshness of their manners,
has so wounded the feelings of the generality of travellers, that they have seen nothing
in the whole race except a ferocity, an ignorance, and a grossness, which are proof
against all the means of civilization. Europe has forgotten the power and the able
policy of the Amurats and the Solimans. To our scandalous terrors, and our stupor
blended with inordinate admiration, an extreme and groundless contempt has suc-
ceeded. We are too apt to lose sight of the influence of laws and institutions in
moulding the character of a people.

It is not to despotism, in the meaning annexed to that word by modern
Europeans, that the misery and weakness of Turkey must be ascribed.
The Sultan, who also assumes the title of Padi-Shah, translated the Grand Signor,
is far from enjoying by law an unlimited authority. He cannot infringe on any of
the rules dictated in the Koran, the divine law which is obligatory on all the Moslem
or true believers. He cannot ever, without extreme risk, interfere with the institu-
tions which long usage and national prejudice have consecrated. He appoints and
displaces at his pleasure the great civil and military functionaries; be is master of
their fortune and their lives. But the exercise of this redoubted power is impeded by
great obstacles. One pashâ beats the armies sent to deprive him of his government;
another sends to Constantinople the head of the capidji who came for his. Yet these
restrictions on the sultan's power, substantial as they are, have not the effect which
some have maintained, of making Turkey a limited monarchy in the European ac-
ceptation. We rather find in the constitution of that empire a military tyranny which
has fallen to pieces, and degenerated into anarchy. The opposition made by the
people and the pashâs amounts to nothing more than a dismal train of devastating
insurrections. Its political state is characterized by two principles. The first is,
that every man who is invested with power is at liberty to delegate this power en-
tirely to another; the sultan is the vicegerant of the prophet: every pashâ is a repre-
sentative of the sultan; every soldier who carries an order is the representative of
the pashâ.† This principle, which by multiplying to infinity the number
of oppressors, makes the oppression bear heavily on all classes, is the
consequence of the military origin of the Turkish empire. This victorious nation
continues to treat its vast conquests like a city taken by assault. It is less like a
nation than an army encamped in the midst of vanquished nations. Hence a second
fundamental principle, that all persons and property conquered by the Ottomans be-
long to the Sultan. What can Christians, Jews, Armenians, and other dogs, be ac-
counted, but the slaves of the conqueror? They are allowed to live, but are forced to
pay a tribute the receipt for which bears that it is the ransom of their heads. The
same principle applied to territory, prevents the Turks themselves from having a
right in fee simple to any hereditary property. They are only tenants for life; and
when they die without male issue, the sultan becomes their heir. If there are sons,
he claims indeed only a tenth of the property left; but the clerks of the treasury em-
ployed to value this tenth, rate it as high as they please.‡ The state officers do not
even enjoy this imperfect right; whatever they possess falls at their death into the hands
of the sultan. This instability of property prevents any one from undertaking expen-
sive and substantial buildings.§ The Turks prefer the collecting of trinkets and
such riches as are portable and easily concealed. The only way of avoiding this
system of universal confiscation is, according to the acknowledgment of one of the
vindicators of the Turks, to give their lands as a wakf, that is, a pious legacy to a
mosque: the proprietor, on paying a small rent to the mosque, thus becomes an irre-
movable tenant;‖ but the lawyers, whose employment it is to take charge of the
legacy, often contrive to become the chief profiteers by this singular institution. We
must add to the two principles now stated, the universal prevalence of a most scan-

dalous venality. The situations of pashâ, of cadir or judge, and all public
employments, are openly given to the highest offerer. He naturally uses his best

† Volney, Syrie, ii. du Gouvernement des Turcs.
‡ Ludecke, Relation de Turquie, i. § 63. § Lady M. W. Mont. vol. ii. letter 32.
‖ Porter, p. 79, 90.
exertions during his term of office, generally short, to indemnify himself at the expense of those whom he governs. The anarchy is increased by the obscurity and ambiguity of the laws. This vast empire is in want of a legal code more precise and more suited to the existing state of things than that of Soliman II. which consists of the substance of the institutes of Justinian and Theodosius, enforced by the moral precepts of the Koran. Probably in this, as in other countries, the professional persons whose business it is to execute the forms which the law enjoins, and who are generally unwilling to acquire new habits in their business, would raise a clamour against all material improvement. Turkey is also in want of institutions capable of restraining the arbitrary power of men in place, and defending the execution of the laws from personal influence.

The general weakness of monarchs born in the seraglio has led them to entrust the cares of government to a prime minister, called the vizier-azem, or grand vizier. This personage is, in the full extent of the term, the vice-regent of the sultan. He keeps the imperial seal, he commands the armies in person, he arranges the finances of the state, he disposes of all civil and military offices. But the responsibility attached to his situation is dreadful in proportion to his power. To him are attributed all the misfortunes that befall the state, scarcities, conflagrations, military defeats, rebellions, and epidemic diseases. The sword, constantly suspended over his head, strikes him with equal certainty whether he displeases the people or the sultan. Encompassed with snares, and laid open to every person’s attacks, it is rarely that in this high situation he reaches old age.

The divan or council of state consists of the principal ministers. The divan, Reis Effendi is the High Chancellor of the empire, and stands at the head of the body of kudja or attorneys, which has contrived to acquire a great political influence, and which, at the present moment, contains the best informed men of the nation.

The Uléma, or the body of doctors in theology and jurisprudence, is entrusted with the guardianship of the fundamental laws of the empire. These laws reduce themselves to the Koran itself, and the commentaries which the ancient doctors have written on it. The members of the Uléma, who are called Effendi, combine the judicial with the religious authority. They are both the interpreters of religion, and the judges in all civil and criminal causes. None of them can be legally condemned to death without the consent of their head.

The mufti, or sheikul islam, is the supreme head of the Uléma, and the vice-gerent of the sultan, as caliph, or successor of Mahomet, and the head of the church. The sultan issues no law, makes no declaration of war, establishes no tax, without having obtained a fests or decision of the mufti. This eminient office would form a sort of counterpoise to the almost unlimited authority of the sovereign, and might even paralyse its exertions, did not the sultans take on themselves the power of deposing, banishing, or even decapitating the mufti. This dignified person presents annually to the sultan a list of candidates for the highest judicial situations; they are from the body of the Uléma. The influence both of the mufti and of the Uléma would be far greater than it is, if they could maintain a good character for probity. But the venality of all the employments introduces into all ranks and conditions of the inhabitants of this empire such a keen cupidity and corruption, that the least favour or service conferred must be purchased by presents. The sentence of the judge, and the declarations of witnesses, are purchased in the same way as any employment or any favour from a man in place is purchased. In no country in the world are false witnesses so common and so devoid of shame as in Turkey. This is productive of a state of society so much the more dreadful, as all gradations of judges, the molla, the cada, and the simple nabi, pronounce a sentence from which there lies no appeal. The Turkish jurisprudence is that of a tribe of wandering soldiers. After a few depositions on oath on each side of the question, the cada pronounces his sentence supported by some passage from the Koran. To order the bastinado as a punishment of the common people’s minor offences, to impose a fine, or what is called in the Levant an avanie, on a rich Greek or Euro-

* Muradjee d’Ohason, Description of the Ottoman Empire.
pean, to condemn a thief to be hanged, constitute all the duties and all the knowledge of an ordinary judge. Without information, and without intelligent pleaders, justice is awarded, or injustice consummated in a few hours. This is exactly what we must suppose to have been the method of proceeding in the camp of Othman. Hence the two great judges, that of Roumili or Europe, and that of Anadhouli or Asia, are denominated kadi-laskar, or "military judges."*

Yet the Ottoman empire is not without a species of popular representation. The chief delegates of the people are called ayams, from an Arabic word for "the eye;" their office consists in watching over the safety and interests of private individuals, attending to the good order and the defence of the towns and cities, to resist the unjust proceedings of the pashas, and the exactions of the military, and to look after the equitable distribution of the taxes. These are usually men of the most virtuous characters, who, when chosen by the people, discharge this honourable function without remuneration. The ayams take the advice of the leading men of the place, and the practitioner of the law, to discuss the general interests, to put in due form such representations as are to be made to the pasha, and to make out, in concert, any subjects of complaint against him which it may be necessary to present to the Porte. Almost every Mussulman, from the merchant to the lowest mechanic, belongs to some corporation, the heads of which are commissioned to watch over the rights of the community and of individuals. If the lowest member is arraigned before a mékémié, or court of justice, the heads of the body to which he belongs appear in his defence. Sometimes the whole body is known to intercede in favour of a person known to be innocent. Yet justice is for the most part only to be obtained by the payment of a sum of money.

The provincial administration is modelled on the same system by which the empire is governed. The pashas, distinguished in rank by the number of tails or standards which they use, unite the military to the civil power, and, by an abuse still more prejudicial to the interests of the people, the greater part unite with these the farming of the taxes. They would be completely satiated on a smaller scale, were not the judicial power entirely in the hands of the cadis. The pasha with three tails possesses, like the sultan whom he represents, the dreadful prerogative of punishing with death any agent whom he employs, and even any individual who seems to threaten the general safety.† Some pashas of three tails have the title of beglerbeg, as the pasha of Sophia or Romelia, and the pasha of Kintaye or Anatolia. He keeps on foot a military establishment, more or less numerous according to the condition of his revenues and the position of his pashalic, and marches at the head of his armed force when the frontier is menaced, or when he is called on by his sovereign. The beys and the sanjaüs, or sub-governors, are under his orders. This accumulation of powers often renders the provinces a prey to tyranny.

In the capital, many things concur to restrain the spirit of oppression; the presence of the sovereign, a greater collection of well-informed persons, an immense population, and the expectation of credit, of favour, and of power. The Grand Vizier watches over his ministers, and is watched by them in his turn. Even the Sultan has sometimes a secret police in pay. In short, the people, when they choose to rebel against their tyrants, by setting the city on fire, almost always find support in the jealousy or ambition, if not in the indignant probity of some powerful individual; but the provinces have no such resources to put in action against their pashas. If, in the end, the numbers of complaints and insurrections demonstrate the insupportable oppression under which a province groans, the government sends a capidji with a secret order for his execution, or another pasha with an army; the guilty pasha is seized; his bloody head is exhibited on the gate of the seraglio; his wealth goes into the coffers of the state, and thus the people are revenged: exactly such another scene as the Roman Empire exhibited with its proconsuls and its praetors, whose heads a centurion was very commonly ordered to bring and present at the foot of the throne, after they had for a sufficient time pillaged Gaul, Syria, or Africa.

† Ludecke, i. § 60.
One of the greatest misfortunes of the Ottoman empire is the diversity of its religions, with their reciprocal spirit of hostility. The Turks and other Mahometans do not form a third part of the population of that of European Turkey, and not more than two-fifths of Turkey in Asia. Three-fifths, perhaps two-thirds, of the whole population, consist of nations which profess Christianity. Besides the Greeks properly so called, there are Sclovonian tribes, such as the Servians, Walachians, and Montenegrins, which follow the ritual of the eastern Greek church. This church, which the Roman Catholics consider as schismatical, persecutes with savage fury the inconsiderable number of united Greeks, as they are called, or those who acknowledge the authority of the Pope. The Armenians form a numerous church, which derives a great influence from its character for austerity and for probity. Other religious communities, such as that of the Jacobites, called Coptes in Egypt, the Nestorians and the Maronites, derive a degree of strength from the internal union which they respectively enjoy. The Druzes are the avowed enemies of the system of Mahomet. The Jews swarm in Turkey more than in any country of Europe. All these associations are, in the eyes of the Turks, so many bands of conspirators. All, excepting the Maronites and the Druzes, are restricted in the free exercise of their worship, subjected to marks of ignominy, and abandoned to injustice, without protection or defence: and all are actuated by a spirit of inveterate hatred to one another, and thus deprived even of that sad harmony which a participation in slavery might engender. Had the Turks conjoined a longer-sighted policy with their religious predilections, they might have, either by brutal force, or by a system of discouragement to an infidel in favour of a Mahometan population, exterminated every race that was guided by an obnoxious faith. While from some quarters of Europe we contemplate the medley of religions that subsists in Turkey, whether shall we rejoice in the effect, while we despise the infatuation that tolerates and produces it, or shall we recognize in this fact a degree of laudable tolerance, to the renunciation of which some countries of Christendom owe at least a temporary, if not a perpetual state of comparative repose? The total extirpation of the Mahometans from Spain, the determined and unrelenting extinction of the first efforts of the Lutheran reformation in that country and in Italy, and the rigid policy which the governments of these countries still maintain on the topic of religion, present a contrast to the practice in Turkey which the liberal and candid will not be forward to applaud.

The absurdities of the religion of Mahomet have undoubted been sometimes exaggerated. Its radical doctrines are certainly simple, and, even allowing that its precepts were unexceptionable, the pretensions of its origin are as unnecessary for any moral purpose as they are in themselves extravagant and overbearing. The very simplicity of its doctrines has excluded the spirit of inquiry and improvement. It has remained, as at its earliest appearance, a religion only adapted to a horde of conquerors. The exclusive attachment of its followers to the Koran, a book replete with raving follies interspersed with a few poetical effusions; the inflexible fanaticism with which it inflames the mind, and the contempt which it inculcates for all profane knowledge, fetter the communications of its votaries with other people, and thus raise an insurmountable barrier against arts and sciences of every kind.

The influence of this religion modifies, in some measure, the physical constitution of the Mussulmans, the prohibition of wine having generated among some a secret abuse of spirituous liquors, and among others a pernicious indulgence in opium. The injunction of frequent ablutions induces rich individuals to build many public fountains; these maintain habits of cleanliness which are conducive to health. The Turkish burying grounds are pleasing in the eyes of the religious. The flowers which they carefully cultivate on the surfaces of their graves, the cypress with which they shadow them, and the resort of families to these places to mourn over the memory of deceased friends, form a mixture of sorrow, devotion, and pleasing rural scenery, which gives an agreeable surprise to every traveller of sensibility.* The lents of the Mussulmans, which occupy at least seven months of

* Chateaubriand, Itineraire, i. 36. Castellan, Lettres sur la Grece, partie ii. lettre 20.
the year, are rigidly observed. No necessity, however pressing, will induce them to dispense with the fulfilment of their rules. The fast of the Ramadas, which lasts for a month, precedes the Bairan, a festival equally solemn in Turkey as that of Easter is among the Roman Catholic Christians.

The Dervises are monks who are addicted to acts of religion of an extravagant description, principally consisting in a convulsive species of dancing. The Imauns, or officiating priests of the Turkish mosques, enjoy no such credit and power as the body of the Uléma already described.

Such being the genius of the Mahometan religion, it is no surprise to find that the civilization of the Turks, in so far as literature and science are concerned, is still in its infancy. Yet they have in some measure begun to feel the necessity of some public instruction. To the imperial mosques of Constantinople, of Broosa and Adrianople, madresses or colleges are attached, to which the youth are sent from all parts of the empire, to receive instruction in the law of the prophet, in religious, civil, and criminal jurisprudence, and to acquire erudition in all the strange opinions and extravagant subtleties of the expounders of the Koran. They are subjected to various examinations, and, when they have made the due proficiency, they receive the degree of students, or professors. The colleges were founded by different sultans: the first at Nicea in 1330 by Orkhan; but that of the mosque of Soliman at Constantinople is the most esteemed. They have a considerable revenue, and support two or three thousand scholars. The pupils afterwards fill all the civil and judicial situations. But in Turkey, as in other countries, knowledge when limited to a few often merely serves to render tyranny more expert. In that country there is no channel for a general communication of thought. The Mussulmans certainly owe to their kudjas, or writers, many works highly esteemed among them, on the Arabic and Persian languages, on philosophy, morality, the Mahometan history, and the geography of their provinces. These works, written generally in a bombastic style, may contain some knowledge, but they are not circulated among the great mass of the nation. The attempts made to introduce printing have encountered the powerful opposition of all the tribe of writers, as threaten ing to deprive copyists of their means of living, and consequently this art has never yet been able to acquire a permanent footing in Turkey. It is at least partly from that cause that this country is so far behind Christian Europe in civilization. Of late, however, this noble art has received the patronage of the Grand Signor, and several regular printing establishments have been formed.*

The absence of scientific knowledge necessarily affects the state of the useful arts. Although the Turks, especially those of Asia, are not desistute of a taste for agriculture, this first of arts is in a languishing condition in all parts of the Ottoman empire. Those fields are indifferently cultivated which are liable to be reaped by a rapacious pashâ, or by a body of marauders. Manufacturing industry maintains its ground in some cities, among which the most conspicuous are Damascus, Aleppo, Mosul, Angora, Kastamoooni, Broosa, and Smyrna, in Asia; and in Europe, Constantinople, Salonica, Adrianople, and Ruteshuk. The chief manufactured produce consists of carpets, moroccos, silks, Turkey thread, and satins. Commerce is chiefly kept up by the exportation of raw materials, such as wool, silk, cotton, leather, tobacco, and metals, particularly copper. Wines, oils, figs, dates, almonds, Corinthian raisins, and other fruits, furnish leading articles of export. We also receive from that country madder, gall-nuts, alum, pipe-clay, and meerschaum.

The Mussulmans are little addicted to commerce, but some of them are able agriculturists; and they show considerable dexterity as cloth manufacturers, tanners, and armourers. Their works in steel and in copper, as well

* In the Revue Encyclopédique for May 1821, there is a review of a Turkish publication on Anatomy, Medicine, and Therapeutics, by Chanzidech, a member of the Ulema, partly taken from the French, German, and English authors, in one folio volume, with fifty-six copper plates, printed at Constantinople in 1820. This is the first scientific work that has appeared. It was written and published by order of the Turkish government, or rather in virtue of a Khatti-sherif, or edict of the Grand Signor, who could only give it in his quality of Caliph, or supreme head of the church.
as their died stuffs, equal or excel the most perfect productions of Europe in the same departments.* Their tailors and shoemakers are more intelligent than ours. The Greeks, forming so numerous a body, are of course engaged in all | Greeks. the arts and professions. Among them are found the best seamen of the Ottoman empire; but their nautical skill makes a poor figure in the eyes of other Europeans,† with the exception of some of the islanders of the Archipelago. The | Armenians. Armenians are the most industrious mercantile people in the empire. Patient, economical, and indefatigable, they traverse the interior of Asia, and extend to India. In every place they have their correspondents and their stores. The greater part of them exercise mechanical arts: they at the same time act as bankers, brokers, and men of business to pashas and other persons of distinction. The Jews here appear in a more unfavourable light than even in the west of Europe. They follow every sort of trade that promises to be profitable. The rich act as money-lenders, and the Turkish custom-house officers employ poor Jews to value articles for the laying on of duty.

In a state in which the ramifications of power are so singular, we cannot estimate the revenues on the same principles as in more regular | State reve- governments. Many sums are levied by the pashas, which never reach | nuce. the hands of the Tefstedar-Effendi. It is the business of this minister of finances to watch over the great treasury of the empire, into which all the profits arising from the sale of great employments are paid; those arising from the renewal of the bap-

rtes, or firms, a sort of charters obtained by the zaime, timariots, and other persons in possession of feudal tenures; the amount of the karatch, or poll tax, imposed on Jews and Christians; the rest of the domains that are in lease; and the custom-house duties. The khamé-vekil, a black eunuch, is entrusted with the general administration of the imperial treasure of the interior, consisting of the products of confiscations, and of the lands destined to the maintenance of the seraglio. The personal treasure of the sultan is committed to the management of the khasmader-aga, one of the confidential pages. This treasure, accumulated by the savings of the greater part of the sultans, is kept up by the profits of the coinage.

The office of the tchelabí-effendi was created under the reign of Selim III. when the tax was laid on wine, provisions, and the greater part of goods, such as cotton, wool, and silk. The revenue arising from this tax, known under the name of nisam-djedid, was appropriated to the maintenance of the new corps of cannoniers, bombardiers, artillery-men, and fusilieers that had been formed, to the cannon foundry, and the manufacture of muskets, and other useful establishments: but a number of serious revolts having obliged the sultans twice to abolish that system, it seems uncertain whether it will ever be able to triumph over the national prejudices. Some authors have asserted that the revenues of the Turkish empire are valued at £6,670,000, and that the ordinary expenses do not exceed five millions sterling. On such estimates we have no data for delivering an opinion.

Two able military authors have succeeded in showing that the Turkish armies have never been so very numerous as the fears of the | Turkish vanquished led them to suppose.† Soliman II. when he struck terror into Vienna and the whole of Europe, had only a disposable force of 150,000. The composition of the Turkish armies, both in their original and present state, is not consonant with the acknowledged principles of the military art. The Ottoman nation was, in its origin, only a warlike tribe, of which the Agas were the chiefs. This is the name new given to the feudatory proprietors of a zaime and a timar. They are bound to give personal military service, and in time of war bring to the field one or more gébelis, horse or foot soldiers, armed and equipped according to the extent of their fiefs. The timar differs from the zaime, by being of inferior value. The zaimes and the timars furnish a militia of 60,000 men. This soldiery long formed the chief strength of the Ottoman empire, and to it the first sultans were chiefly indebted for the astonishing success of their armies. The spahis are of | spahis.

* Sestini's Travels in Asiatic Turkey, letter 25.
† Pouqueville's Travels in the Mores. Chateaubriand's Itinéraire.
Vol. I.—3 B
older date than the janissaries; they have higher pay, and are considered as sons of musulmans in easy circumstances. They fight under the same standards as the zaïmets and the timariots. They ought to succeed the latter in the possession of Janizaries. | their siefs, if the regulations of the first sultans were attended to. In the reign of Amurat I. the plan was adopted of taking a fifth part of all the prisoners to form a new corps of infantry, under the name of Yenicheri, a term signifying new soldiers, and which we have converted into Janizaries. The necessities of war produced afterwards another very politic law, which embodied with these troops a tenth part of the children of Christians, and which remained in force till the reign of Amurat IV. Under Soliman I. there were already 161 odas, or companies of janizaries at Constantinople, each of which amounted to 300, or from that to 800 men. The whole body might then amount to 100,000. At present none but Mahometans are received into it. Several rich persons in the cities get themselves enrolled among the janizaries, with the view of being more effectually protected, and enjoying all the privileges attached to that body. They draw no pay, and obtain an exemption from all military duty by dint of money; accurate observers have rated the janizaries of Constantinople at a number varying from 10 to 20,000 effective men.* The rest of the empire may perhaps contain 60,000 janizaries, but they are not pre-Discipline. | pared to march against a foreign enemy. That body, once so formidable to Europe, is now so only to the Christian subjects of the Turkish empire. The personal courage of the Turks would still make them excellent soldiers, if they would deign to conjoin with it some knowledge of modern tactics. Attempts have Tactics. | been made, and are still making, to introduce European tactics among the Ottoman troops; but indolence conspires with pride to resist the innovation, and to frustrate its success.

The navy. | The Turkish navy, created by Mahomet II. and rendered formidable under Selim IV. fell into decay in the first reigns of the eighteenth century. After it was re-established, the Russians, in 1770, almost entirely destroyed it. Of late they have conceived the project of modelling it by the pattern of that of England. It is intended to consist of thirty ships of the line, with a great number of frigates, and other smaller vessels, particularly row-gallies, xebecs, and other vessels used in the Mediterranean. But they are manned with Greeks, who, with a deficiency of nautical skill conjoin a strong inclination to betray the cause of their oppressors.

The seraglio. | To all these departments of the Turkish government we must join the seraglio, or court of the Grand Signor, his sacred retreat, which, however, has been more than once the scene of revolt, and in which fear and anxiety are often concealed in the arms of effeminate indulgence. Thousands of bostamgis, or well armed gardeners, form a sort of guard to that vast enclosure, filled with palaces and gardens, which is called the seraglio. In the isolated buildings which include the harem, or the abode of the women, some hundreds of eunuchs act as domestics, and at the same time as inspectors of a troop of concubines, which is more or less numerous according to the humour of the sovereign, and among whom love or intrigue may raise seven to the rank of kadumes, or wives of the sultan. The eunuchs are sometimes white men, sometimes black; some of the latter being from Negroland, others from the Sunda Islands; strangers to every sentiment that constitutes human worth, they succeed admirably in the arts of servility. Their head, called the kislar-aga, the ordinary confidential servant of the sultan, often acts a leading part in the state. These savage and stupid slaves have been known to amass enormous fortunes, to appoint the viziers, and to hold both people and sovereign subjected to their ignoble authority.

Such is an abridged view of the Ottoman empire: Disorder and weakness in the different branches of administration, oppression and restlessness in the provinces, the high ways overrun with robbers, insurgents in every quarter, neighbours powerful and ambitious, and no foreign alliance or support that can be depended on. The c upidity of nations and of sovereigns has an eye to the different provinces of this miserable empire. The barbarity of its character deprives it of all claim to commiseration

* Riedescel, Remarques d'un voyageur, etc. p. 337. Porter, p. 154.
in its approaching overthrow; and, while it will shield any aggressor from the charge of injustice, will conceal the selfish motives by which he may be actuated. The contending interests of different powers will prevent Turkey from falling entirely into the hands of any one foreign invader; and in order that they may not engage in reciprocal contests, they will probably divide the spoil, according to their respective convenience, and their comparative address in negotiation. Perhaps they will make a show of liberalty, by establishing an independent government among the Greeks. It may be doubted, however, whether the humanity of the Greeks can as yet be trusted for the establishment of an enlightened and benignant policy. If an experiment of this kind should prove unsuccessful, it is easy to predict, that the nation must abandon political individuality, and associate herself in one common submission with one or more neighbours, under a different government. The liberal and humane wait with eager expectation for the total reduction of the Turkish power. The scenes of retaliation on the part of the hitherto oppressed, and certainly bigoted Greeks, which may be in that case expected, may prove equally horrible with those which they have succeeded; but, with the existing prospects of society, they are not likely to become equally lasting, nor to be permitted to prosecute the exclusive establishment of Christianity by inhuman measures, which are equally repugnant to the spirit of religion, and to the first indefeasible principles of common candour.

A Table of the Longitudes and Latitudes of the principal places of Turkey in Asia, according to the best observations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coasts of the Euxine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trebisond</td>
<td>41 2</td>
<td>0 39 43 45</td>
<td>Beauchamp.</td>
</tr>
<tr>
<td>Idem.</td>
<td>41 2</td>
<td>41 39 36 30</td>
<td>Connaissance des Tems.</td>
</tr>
<tr>
<td>Ounieh</td>
<td></td>
<td>37 19 37</td>
<td>Beauchamp.</td>
</tr>
<tr>
<td>Sinope</td>
<td>42 2</td>
<td>16 35 7 12</td>
<td>Connaissance des Tems.</td>
</tr>
<tr>
<td>Idem.</td>
<td>42 2</td>
<td>17 25 8 15</td>
<td>Beauchamp.</td>
</tr>
<tr>
<td>Cape Kerempé</td>
<td>42 5</td>
<td>30 33 6 15</td>
<td>Idem.</td>
</tr>
<tr>
<td>Inichi (Elichi)</td>
<td>42 0</td>
<td>26 33 56 30</td>
<td>Idem.</td>
</tr>
<tr>
<td>Amasserro</td>
<td>41 46</td>
<td>6 32 21 31</td>
<td>Idem.</td>
</tr>
<tr>
<td>Ereği</td>
<td>41 17</td>
<td>51 31 27 20</td>
<td>Idem.</td>
</tr>
<tr>
<td>Remainder of Asia Minor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Marmora, eastern point</td>
<td>40 37</td>
<td>0 27 25 15</td>
<td>D. Galiano, Connaissance des Tems.</td>
</tr>
<tr>
<td>Tenedos, N. E. point</td>
<td>39 51</td>
<td>15 25 53 0</td>
<td>Idem.</td>
</tr>
<tr>
<td>Cape Baba</td>
<td>39 30</td>
<td>15 25 51 40</td>
<td>Idem.</td>
</tr>
<tr>
<td>Brusa</td>
<td>40 7</td>
<td>2 28 58 27</td>
<td>Seetzen, Zach’s Correspondence.</td>
</tr>
<tr>
<td>Akhissar</td>
<td>39 5</td>
<td>10 27 48 15</td>
<td>Idem.</td>
</tr>
<tr>
<td>Smyrna</td>
<td>38 28</td>
<td>55 24 44 45</td>
<td>D. Galiano.</td>
</tr>
<tr>
<td>Smyrna</td>
<td>38 28</td>
<td>7 24 53 38</td>
<td>Triesneck, Archives of Lichtenstein.</td>
</tr>
<tr>
<td>Scio, town</td>
<td>38 23</td>
<td>27</td>
<td>Seetzen.</td>
</tr>
<tr>
<td>Chora (Isle of Samos)</td>
<td>37 42</td>
<td>24</td>
<td>Idem.</td>
</tr>
<tr>
<td>Rhodes (harbour)</td>
<td>36 26</td>
<td>0 28 12 30</td>
<td>Niebuhr, Correspondence of Zach.</td>
</tr>
<tr>
<td>Idem.</td>
<td>36 28</td>
<td>30</td>
<td>De Chazelles, member of the academy of sciences, 1761.</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Coasts of the Euxine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angora</td>
<td>39 31</td>
<td>0 32 41 42</td>
<td>Ephem. Géogr. XV.</td>
</tr>
<tr>
<td>Karabiassar (Aphioon)</td>
<td>38 46</td>
<td>0 30 21 35</td>
<td>Idem.</td>
</tr>
<tr>
<td>Konieh</td>
<td>37 50</td>
<td>0 32 40 15</td>
<td>Idem.</td>
</tr>
<tr>
<td>Malatiah</td>
<td>35 11</td>
<td>0 40 54 45</td>
<td>Schillinger (doubtful.)</td>
</tr>
<tr>
<td>Merasche</td>
<td>35 6</td>
<td>0 40 4 15</td>
<td>Idem. (id.)</td>
</tr>
<tr>
<td>Cyprus.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape St. Andrew</td>
<td>35 36</td>
<td>0 34 31 45</td>
<td>Galiano.</td>
</tr>
<tr>
<td>Larcana (the castle)</td>
<td>34 54</td>
<td>0 33 40 45</td>
<td>Idem.</td>
</tr>
<tr>
<td>Larcana (the castle)</td>
<td>34 56</td>
<td>0 33 47 45</td>
<td>Unpublished Travels. Connaissance des Tems. 1811, p. 205.</td>
</tr>
<tr>
<td>Nicosia</td>
<td>35 13</td>
<td>0 33 26 45</td>
<td>Idem.</td>
</tr>
<tr>
<td>Limasol</td>
<td>34 12</td>
<td>0 32 50 45</td>
<td>Idem.</td>
</tr>
<tr>
<td>Baffa (harbour)</td>
<td>34 46</td>
<td>0 32 18 45</td>
<td>Idem.</td>
</tr>
<tr>
<td>Cirigna</td>
<td>35 25</td>
<td>0 33 21 45</td>
<td>Idem.</td>
</tr>
<tr>
<td>Syria.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Canzir</td>
<td>36 17</td>
<td>0 35 40 15</td>
<td>D. Galiano.</td>
</tr>
<tr>
<td>Latakia</td>
<td>35 32</td>
<td>0 35 44 15</td>
<td>Idem.</td>
</tr>
<tr>
<td>Tripoli</td>
<td>34 26</td>
<td>0 35 44 20</td>
<td>Idem.</td>
</tr>
<tr>
<td>Cape Blanc</td>
<td>33 11</td>
<td>0 35 7 15</td>
<td>Idem.</td>
</tr>
<tr>
<td>Aleppo</td>
<td>36 11</td>
<td>0 37 12 24</td>
<td>Simon, calculated by Monnier and Triesnecker, see Zach's correspondent.</td>
</tr>
<tr>
<td>Idem</td>
<td>36 11</td>
<td>0 33</td>
<td>Niebuhr.</td>
</tr>
<tr>
<td>Jerusalem (Convent of Terra Sancta)</td>
<td>31 47</td>
<td>0 46 35 41 25</td>
<td>Seetzen.</td>
</tr>
<tr>
<td>Idem</td>
<td>31 48</td>
<td>0 35 29 15</td>
<td>Paultre, map of Syria.</td>
</tr>
<tr>
<td>Country of the Euphrates.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erzroom</td>
<td>39 58</td>
<td>0 35 16 0</td>
<td>Beauchamp.</td>
</tr>
<tr>
<td>Diarbekir</td>
<td>37 54</td>
<td>0 30 20 15</td>
<td>Simon, calculated by Monnier.*</td>
</tr>
<tr>
<td>Idem</td>
<td>37 55</td>
<td>0 30</td>
<td>Niebuhr.</td>
</tr>
<tr>
<td>Idem</td>
<td>39 51</td>
<td>0 30</td>
<td>Simon, calculated by Triesnecker, in Zach V. 316.</td>
</tr>
<tr>
<td>Merdin</td>
<td>37 18</td>
<td>0 48</td>
<td>Niebuhr.</td>
</tr>
<tr>
<td>Mossul</td>
<td>36 20</td>
<td>0 30</td>
<td>Idem.</td>
</tr>
<tr>
<td>Bagdad</td>
<td>33 19</td>
<td>0 44 24 45</td>
<td>Beauchamp, Mem. Acad.</td>
</tr>
<tr>
<td>Idem</td>
<td>33 19</td>
<td>0 54</td>
<td>Simon.</td>
</tr>
<tr>
<td>Idem</td>
<td>33 20</td>
<td>0 4</td>
<td>Niebuhr.</td>
</tr>
<tr>
<td>Hilleh or Babylon</td>
<td>33 34</td>
<td>0 54 13 30</td>
<td>Beauchamp, Mem. Acad.</td>
</tr>
<tr>
<td>Idem</td>
<td>44 24</td>
<td>0 42</td>
<td>Beauchamp, calculated by Triesnecker, Ephem. Vindob. 1800, p. 397.</td>
</tr>
<tr>
<td>Basra or Bassora</td>
<td>30 30</td>
<td>0 2</td>
<td>Niebuhr.</td>
</tr>
</tbody>
</table>

* Compare with Zach's Correspond. iii. 571, where the observation of Simon is re-established according to the Philosoph. Trans.
ARABIA.

ARABIA is a sort of peninsula, occupying a position intermediate between the rest of Asia and Africa. Its south-east boundary forms a part of the shore of the Indian ocean. On the opposite side it is bounded by Syria, a comparatively narrow strip of country, by which it is separated from the Mediterranean. On the north-east, its variable limits follow very much the course of the Euphrates. From Persia it is separated by the Persian Gulf. From Egypt and Abyssinia in Africa, by the Arabian Gulf or Red Sea.

This position renders Arabia a sort of centre to the old continent. Sometimes it has offered a commercial route and intermediate emporium, by which the most distant nations have been connected in their transactions. At other times it has bred in its bosom revolutions by which the affairs of mankind have been overturned. The shades of antiquity conceal everything that relates to the consanguinity of the Arabs with the Assyrians and Phenicians; a consanguinity indicated, however, by the mutual analogies of their language; nor are we acquainted with any particulars of the conquests of the ancient kings called Tobba, or the power of the Homeric, the princes of the country of Himiar. In the books of Moses and of Job an interesting picture is given of that patriarchal species of civilization, of which the manners of the Arabs to this day bear the indelible impression. According to some, Alexander the Great intended to make Arabia, or some situation on its confines, the seat of his mighty empire. The fleet of Nearchus was prepared to make the circuit of this country, when the death of the conqueror terminated all his magnificent designs. Under the Ptolemies, as well as under the Roman government, Egypt received from the Arabians, by the Red Sea, large quantities of valuable articles, which were considered as the productions of Arabia Felix. It was afterwards learned that the finest spices, the ivory, and the murrhine vases, came from India, Caramania, and Serica; but nothing could efface the brilliant idea which had been formed of Arabia. A general of Augustus made an attempt to penetrate the country of the wealthy Sabae. Arabia was defended by its deserts, and was then, as it is now, divided into several small states, which enjoyed a prosperous commerce.

The cities, the temples, and the palaces of the Arabians were embellished with the precious metals which the Romans and the Persians had given them in exchange for spices, balm of Mecca, incense, precious stones, and murrhine vases, while the Arabians bought no foreign articles for their own consumption. The art of navigation was as yet low. The riches of India, and probably also of the eastern coast of Africa, were brought to their country in wretched canoes. Between the sailing of their fleets and their return, an interval of five years elapsed. It was only in the first century of our era that the monsoons were understood, and the navigation of the high seas rendered practicable. Such was the kind of civilization of the ancient Arabians, the subject of raving eulogiums among some modern writers. At an early period, however, Arabian colonies appear to have been settled extensively in Africa and in India.

Arabia still flourished in trade and opulence, when, in the sixth century of the Christian era, Mahomet made it the scene of a political and religious revolution. This country, the first seat of a fanatical and conquering sect, soon became the mistress of the finest part of the old continent. The victorious standard of the Crescent was raised on the cold mountains of Tartary, and in the burning sands of Ethiopia. Its dominion extended from Spain to the Molucca islands, perhaps even to the Archipelago of the Carolines. To the south, it went beyond Mozambique and Madagascar.

The Arabians have avoided the fate of other conquering nations, that of being conquered in their turn. They still enjoy their ancient independence. But t'
have no more Avicennas, Abul-Pharagius, or Edrisis. They have reverted to that low degree of civilization from which the keen and comprehensive genius of Mahomet had drawn them, by uniting them into one state. Divided at the present day among many sovereigns, weak, and harassed by a number of petty tyrants, Arabia no more presents to the view of the universe those magnificent courts of the caliphs, at which genius and learning found such generous protection, and to which the Europeans, in a comparatively rude state, applied for the rules of the fine arts, and the models of luxury.

The Arabian

and Persian

Gulfs.

The first object to be considered in the description of the Arabian territories, is the nature of the two gulfs which form its eastern and western boundaries. The Persian Gulf is formed by a simple continuation of the banks of the Euphrates. The Arabian Gulf, commonly called the Red Sea, occupies a deep cavity which receives no river. Thus it presents to those who indulge a rage for hypothesis the appearance of an ancient strait which once united the Indian Ocean and the Mediterranean, and which has been subsequently filled up at its northern extremity. Strabo has compared its shape to that of a broad river. Both of these gulfs are filled with sunk rocks, sand banks, and small islands, and allow but little space for a free and safe navigation. The north-east monsoon, which prevails from the 15th of October to the 15th of April, renders the entrance of that sea easy, which is impossible during the opposite monsoon. These periodical winds have great influence on the height of the tides, so that the extremity of that arm which divides Suez from Arabia may sometimes be passed on foot.* In the Persian Gulf the north-west winds, sometimes interrupted by storms from the south-west, prevail from October to July.† The south-east winds, which prevail during the rest of the year, favour the entrance of vessels into this gulf; they bring with them an extreme humidity. The tides and medium level of the gulf are subjected to great variation from the influence of the winds.‡ The shores of both gulfs principally consist of shell limestone rocks. Their bottoms are covered with a carpet of greenish coral; in calm weather the bottom, when it comes into view, is not unlike a series of verdant submarine forests and meadows, and thus even affords an agreeable contrast with the gloomy uniformity of arid and sandy country by which it is encircled.§ The coral of these seas is inferior in quality to that of the Mediterranean.|| The beautiful fuci attracted the admiration of antiquity,|| and procured for the Arabian gulf the name of Bahr-Soopk in Hebrew, i.e. the sea of algae. That of the Red Sea, which was applied by the Greeks to all the seas round Arabia, seems to be derived from Edom or Idumea, which also signifies red. The wide plains skirting these gulfs appear to have been under water at a period comparatively recent. That which is called the plain of Tehama, runs only along the eastern shore of the Arabian gulf, whereas the Persian gulf, has on the north the plain of Chaldea and Mesopotamia, in the same direction with the gulf itself. Nowhere, says Pliny, are the deposits from rivers more perceptible than at the mouths of the Euphrates.** The strait of Ormuz is not so narrow, nor so encumbered with islands, as that which justly bears the name of Bab-el-mandeb, (erroneously written Babelmundel,) "the Gate of Misfortune," or the "Strait of Shipwrecks." We shall take another occasion to describe the islands of these seas; but we may here remark, that, in several parts of the Persian gulf, and particularly near the islands of Baharein, fresh springs rise in the middle of the salt-water,†† and that the Arabian gulf contains, in the island of Djebel-Tar, a volcano which appears to be extinguished. The principal chain of mountains of Arabia runs nearly parallel with the Red Sea, at a distance of from thirty to eighty miles. It increases in elevation as it extends southward, and it seems certain that it is continued in a line parallel to the shore of the Indian ocean, as far as Oman. This chain probably contains some mountains of great elevation. The pilgrims, in travelling

† L'Après de Mannevillette Neptune Oriental, Instructions, p. 24.
§ Forskal, Descrip. anim. p. 132.
‖ Plin. xxxii. 2.
** Plin. vi. 27.
†† Ives, i, 360. Niebuhr, ii. 189.
from Damascus to Mecca, perceive at a distance of two days' journey, Mount Shahak, rising like a tower in the midst of the plain. The interior of Arabia is probably a high plain, inclining towards the Persian gulf. A great proportion of it is occupied by extensive deserts. But these deserts are separated by small mountainous Oases, which seem to form a continued line from the south-east of Palestine to Om'm.

All the rivers of Arabia are more or less a sort of occasional torrents. In Arabia they receive the common name of Oooda. The dryness of the Arabian soil is almost proverbial; but a Turkish geographer tells us that the Nadjed, the interior plateau of Arabia, contains some lakes. Strabo, an eye witness, also mentions lakes which are formed by rivers.

Arabia partakes of the climate of northern Africa. The mountains of Yemen are moistened with regular showers from the middle of June till the end of September; but even then the sky is seldom overcast for twenty-four hours together. During the rest of the year scarcely a cloud is to be seen. At Maskat, and in the mountains of Om'm, the rainy season commences in the middle of November, and continues till the middle of February. In the plains of the kingdom of Yemen a whole year sometimes passes without rain. In July and August, the thermometer rises at Moka to 98° of Fahrenheit's scale, while at Sana, in the mountains, it only reaches 85°. In this last district it sometimes freezes, though rarely. Edrisi mentions mountains in which it freezes even in summer.

It is in the desert bounded by Bassora, Bagdat, Hâleb, and Mecca, that the hot wind is most dreaded, which is known by the name of Samoor, Samiel, and other analogous terms varied by the different dialects of the Arabs. It blows only during the most intense summer heats. The Arabs of the desert, being accustomed to an atmosphere of great purity, are said to perceive the samoom by its sulfurous odour before it reaches them. Its approach is also indicated by a redness in that quarter of the atmosphere from whence it comes. When it approaches, the Arabs lie flat on the ground, and even the animals hold down their heads. Those who are rash enough to face it are suddenly suffocated, and their bodies are observed to be greatly swollen, a phenomenon imputed by the Arabs to the operation of a subtle poison which it communicates. The arid deserts of Arabia have discouraged naturalists from exploring them; yet there are numerous mountainous Oases shaded with date trees, and other palms, which might deserve to be visited. The sandy plains produce the same plants as northern Africa. They are chiefly of the saline and the succulent kind, such as various species belonging to the genera mesembryanthemum, aloe, euphorbium, stapelia, and salsoila. They serve to alleviate the thirst of the camel, and present exhilarating objects to the traveller in the painful journeys of the caravans.

The sea-shores wear a richer and more varied aspect. The numerous rivulets descending from the mountains maintain along their banks an agreeable verdure. The plants native to the sand in the neighbourhood of the sea are in their nature the same with those of the deserts. But the banks of the rivers, the valleys, and the plains, enjoy a fertility which forms a complete contrast with the aridity of the mountains. Many of the plants of Persia and India, celebrated for their beauty or their usefulness, have been always indigenous also in this country. Such are the tamarind, the cotton shrub, the banana or Indian fig, the sugar cane, a species of nutmeg, the betel, and all sorts of melons and pumpkins. The chief boast of Arabia consists in two valuable ligneous species. The one is the coffee shrub, the Coffee Arabica; the other, the balm tree, or Amyris opobalsamum. The balm of Mecca, the produce of this last, is the most fragrant, and sells at the highest price of all the gum-resins. The coffee plantations are cultivated in terraces on the western side of the great

* Seeztzen, Rach's Correspondence, xvi. 389.
† Hadji-Khafaf, Djehan Numa, p. 1298. Tard. M.
‡ Niebuhr, t. i. p. 5, &c. Cloquet in the Annales des Voyages, x. 179.
§ Plin. xix. 1. Comp. xii. 10.
¶ Abi Abdallah Ibn Bathoutâ an Arabian traveller. MS. in the library of Goth, (Seeztzen
mountains of Yemen. A great deal of coffee is to be found in the provinces of Hashid, or Bekil, of Kataba and of Yafa; but the climate of the departments of Oudden, of Koosma, and of Djebi, is the most favourable to it, and yields it both of better quality and in great abundance. We are told that the Arabians have prohibited, under the severest penalties, the exportation of this plant, and that the Dutch, French, and English, have notwithstanding found means of transferring it to their colonies; but the coffee of Yemen still preserves its superiority. The Arabians say that they originally obtained it from Abyssinia: perhaps it was in that country that the use and cultivation of this article were first discovered.

Incense. In ancient times, Arabia was not less celebrated for incense than for gold; but the incense which the northern nations procured from Arabia Felix was not wholly the produce of that country. That which is cultivated in the south-east part of Arabia, in the neighbourhood of Rashein, Dafar, Merbat, Hasek, and above all, in the province of Shahr, is only the kind called liban or olibanum by the Arabians, the quality of which is very inferior. The soil of the mountains where the incense grows is of a clay texture, and impregnated with nitre. The Arabians procure several sorts of incense from Abyssinia, from Siam, Sumatra, and Java. This is exported by them in great quantities to Turkey; and the smallest of the three kinds of benzoin, sold by the traders, is more valued than the olibanum of Arabia.⁵

There are some groves or thickets on the mountains of Arabia, but no forests properly so called are to be found. In the order of palms, Arabia possesses the date tree, the cocoa, and the fan-leaved palm. Among other trees, natural or cultivated, are to be distinguished the fig, the orange, the plantain or banana, the almond, the apricot, the acacia vera, (from which gum-arabic is obtained,) the sensitive plant, and others of the mimosa tribe. The fruit of the quince tree, and the vine, is enjoyed in perfection.† Among the shrubs and the plants, the Ricinus communis, (the castor oil plant,) and senna, both employed in medicine, are worthy of mention: also the Gomphrena globosa, or globe amaranth; the white lily, and the large Pancratium, all of distinguished fragrance; the aloe, but inferior to that of Socotora; the styx, and the sesamum, which supplies the place of the olive.‡

Agriculture. Wheat, Turkey corn, and doura, cover the plains of Yemen and of some other fertile parts of the country. The horses are fed on barley, and the asses on beans. Indigo is also planted, and a plant which affords a yellow dye called ouasr, which is exported in large quantity from Moka to Oman, and the fous, which is employed as a red dye. The plough is of a simple construction. Mattocks and pick-axes are used instead of spades. The principal cares of agriculture consist in managing the distribution of the water for irrigation, which proceeds from rivulets, wells, or pools. In harvest, the corn crop is pulled up by the roots, and the hay is cut down with a sickle.§

Animals. The camel has justly been called a living ship, without which the Arab could not cross the seas of sand with which his country is covered. Pliny and Aristotle have given an exact description of the only two distinct species of this genus which are known. The one, which is used in great numbers in Arabia, Egypt, and all the northern half of Africa, has only one hump, and was called by these writers the camel of Arabia. The other, which is found in Persia, in the south of Russia, and in Bucharia, or the ancient Bactriana, has been called the camel of Bactriana. But among the varieties of the Arabian species, that which is best adapted for carrying burdens is distinguished from that which is fitted for running. Didorus, Strabo, and Isodorous, in speaking of this last, distinguished it by adding the appellative dromas, or runner, to the Greek noun for camel. This term has been converted by the Europeans into dromedary, which they have erroneously extended to all that species which is called the Arabian, and is distinguished by its single hump. The Arabian nouns kadjin and raguahil seem to apply to the two distinct races of this species, the former being destined for carriage.

⁵ Niebuhr, i. 292.
† La Roque, Voyage d’Arabie, 268.
‡ Niebuhr, i. 213, sqq.
and the latter for running. The word bactj is the term for the Bactrian camel.*
The Arabian and Bactrian species are capable of producing a mixed breed, but
it is not certain if this is capable of propagating its kind.

The oxen of Arabia have generally a hump on their back like those of
Syria. In western Nedged, butter is used instead of oil.† We are not
particularly informed about the breed of sheep; they have a thick and broad tail,
which they are said to drag behind them on a small carriage;‡ but their wool seems
to be coarse, and their flesh none of the most delicate. The wild goat is found in
the mountains of Arabia Petrea. The other animals are the jackal, the hyena, dif-
ferent species, the jerboa or rat of Pharaoh, antelopes, wild oxen, wolves, foxes, wild
boars, and the great and little panther. A degree of respect bordering on adora-
tion is paid to a bird, which is a sort of thrush, which comes every year from
eastern Persia, and destroys the locusts, the deadly enemies of all vegetation. The
escalent locust is found here, and is esteemed a delicacy.§ As for birds, | birds,
the plains are peopled by the partridge, the woods by the guinea fowl, and the moun-
tains by the pheasant. The ostrich is not unknown in the deserts. All the coasts
abound with fish. That on the south east produces the shell called piana marina,
with its shining byssus,|| and immense quantities of sea turtle, which | Turtles
form a chief article of subsistence to whole tribes. Land turtles abound in Arabia,
and form the food of Christians during Lent and other fasts. There is a small ser-
pent called haitan, distinguished by white blotches, which is of a highly venomous
nature, its bite being followed by sudden death. The large lizard, or guarl, found
here is said to equal the crocodile in strength.¶

We must not forget the horses, which are the glory of Arabia. They | Horses,
are divided into two classes, the kchedi or common, and the koshti, or noble kind,
which are considered as sprung from the breed of Solomon, and of which the gene-
alogy has been preserved in the country for two thousand years. The greatest care
is taken to preserve the purity of the race. They are capable of sustaining great
fatigue, can pass entire days without eating, and make an impetuous charge on an
enemy. The best are bred by the Bedouins in the northern deserts.

This country also possesses an excellent breed of asses, which are | Asses,
sold high, and have qualities similar to those of the mule. In Yemen the soldiers
perform their patroles on asses,** and every military service in which parade is not
an object. They are also employed by the Mahometan pilgrims in their long and pain-
ful journey to Mecca. Niebuhr reckons the progress which the Arabian asses make
in a half hour at 1750 paces, double those of a man. The large Arabian camels
make 775, and the smaller ones 500. The trot of the camel is harsh and disagree-
able.

According to Niebuhr, Arabia neither contains mines of gold nor sil-
ver, though a small quantity of the latter metal is contained in the lead obtained
from the province of Oman. There are iron mines in the district of Saadé in the
north of Yemen, but the iron which they yield is brittle. The onyx is found in Ye-
men. The agate called the moka-stone comes from Surat, and the finest cornelians
are brought from the gulf of Cambay.†† Niebuhr denies that Arabia produces
any precious stones, and maintains that they are all brought from India. But
the positive and unanimous testimony of the ancients will not permit us to doubt
of the former wealth of the Arabian mines.‡‡ The country is in itself | Ancient gold
vast, and there is no reason whatever for refusing our assent to these
accounts. It was in the mountains of Yemen that mines of gold were formerly
worked; sometimes it was found in the body of the rocks, at others in loose nodules

* Bochart, Hierozoicun, lib. ii. c. 4.
† Strabo, xvi. 537.
‡ Barthena, Navig. ii. cap. 5. 9. Herodot. iii. 115.
∥ Ptolem. Geo. vi. cap. 7. ¶ Kazwiny and Abdallatif in Bochart, part i. lib. iv. cap. 3.
†† Niebuhr, i. 197.
‡‡ Job, ch. 28. v. 45. Abulfedæ, Arabia, edit. Gagn. p. 45. Teihlach, excerpts de gemmis,
on the surface. Rock salt is still worked near Lohiea, and in several other places. The town of Gerra in the Persian Gulf was entirely built of this substance. The aro sanctions, or aromatic stone of the ancients, is probably amber, and the Smarag- das chelos, or inferior emerald, which, according to Pliny, was used as an ornamental stone in the walls of houses, was probably diaspore. Niebuhr observed in Yemen five-sided columns of basalt, blue alabaster, selenite, and various spars.

Division. We now proceed to examine Arabia, as divided into provinces. By the ancient this country was divided into three unequal portions: Arabia Petraea, a small province situated between Egypt and Palestine, at the northern extremity of the Red Sea; Arabia Deserta, which extended towards the Euphrates, and towards the centre; and Arabia Felix, which comprehended the remainder. The modern divisions, as given by Niebuhr, are quite different. The series of deserts in the centre forms an extensive province called Nedjed. Hedjaz is on the shore of the Red Sea, a little north of the middle of its length, and contains Mecca and Medina. Yemen is to the south of this, extending to the straits of Bab-el-mandeb. Hadramaut lies along the shore of the Indian Ocean. Oman is at the entrance of the Persian Gulf, and Lahez or Hajar occupies the western shore of that gulf.

Desert of Mount Sinai. The small peninsula formed by the gulfs of Ailah and Suez, attracts the attention of travellers by its ancient celebrity. There is nothing at all interesting in the town of Ailah, which gives its name to the eastern gulf, nor in that of Karak, which lies on the south of the Dead Sea, nor in the harbour of El Tor. Mount Sinai is an enormous mass of granite rocks with a Greek convent at the bottom, called the convent of St. Catharine. It is the highest summit of a chain of mountains, called by the Arabians Djebb el Moosa, and which requires a journey of several days to go entirely round it. This chain is partly composed of sand-stone. It contains several fertile valleys, in which are gardens which produce grapes, pears, dates, and other excellent fruits. These are taken to Cairo, where they are sold at a high price; but the general aspect of this peninsula is that of a frightful sterility. It is the favourite soil of the rose of Jericho, the bitter apple, and apocynum or dog's vegetable. There are also different ligneous shrubs, such as the acacia vera, or Egyptian thorn, which furnishes gum-arabic, a substance often used as food in cases of necessity; the tamarind tree, from which, in the months of June and July, a mild aromatic gum exudes, supposed to be the manna of the Scriptures, and still called in that country el-mamm, also the bun, or Balanus ngrespa, from which a much esteemed oil is obtained. The caper, the rose-laurel (nerium), the cotton plant, and various other shrubs, form scattered tufts of verdure in the midst of the dark rocks of granite, jasper, and silex, and in plains covered with sand and pebbles. The few Arabs who wander in this desert seem to lead very abstemious lives. They have opportunities, however, of hunting, as gazels and other sorts of game are to be found in considerable number. The coasts of this peninsula are lined with coral reefs, and covered with innumerable organic petrifications.

Sacred history and tradition have given Sinai and Horeb a character of sanctity in the eyes of Jews, Christians, and Mahometans. The latter, on their return from Medina, often honour with the sacrifice of a few lambs the place where the Almighty condescended to reveal himself to Moses in all his glory. Djebel-el-mokattab is a great rock, situated on the road from Sinai to Suez, and covered with hieroglyphics, which have afforded ample matter for discussion to the learned. Niebuhr, in his visit to this spot, found a cemetery filled with magnificent grave-stones, on which beautiful hieroglyphics were carved; monuments which prove the former existence of populous and flourishing cities. On the route of the great caravan of pilgrims are the towns of Hedjij, Mani, and others, situated in fertile Óasses in the midst of Hedjaz, Hedjaz. A country somewhat less desert than the neighbourhood of Sinai. On the

* Pliny xxxvii. 10.
† Pliny xxxvii. 5.
‡ Hasselquist's journey to Palestine, (in German) p. 570.
§ Seevent, Zach's Correspondence, xvii. 151.
¶ Sicard, Nouveaux Mém. des Missions dans le Levant, i. p. 26. (Paris, 1715.) Pococke, Breusing, Monconys, Thevenot, etc. Niebuhr, Description, ii. p. 176, etc.
coast, which the caravan leaves on their right, are some trifling remains of Madian, Haura, and some other places. On their left they have the city of Medina, which contains the tomb of Mahomet. The pilgrims are not obliged to visit this tomb. The tomb itself is as simple as can be imagined; but we are told that the mosque founded by the prophet is supported by 400 columns, and illuminated by 300 lamps, which are constantly burning. Here are also the tombs of Abu-bekr, and Omar the successor of Mahomet. Yembo is the port of Medina.

All the soil pertaining to the city of Mecca is esteemed sacred. This ancient capital of Arabia was known to the Greeks under the name of Macoraba. The latter part of this word denotes its greatness; which, however, even in its most flourishing times, was perhaps less than one fourth of Paris. The soil is a barren surface of rock; the water of the holy well of Zemzem is brackish and bitter.* The pastures are at a distance from the city; the fruits used here are brought from the gardens of Tayef, situated among mountains, where it sometimes freezes even in summer.† The Koreishites, who ruled at one time in Mecca, were famed among the Arabsians for their courage. They were prevented by the sterility of the soil from encouraging agriculture; but by means of the port of Jedda, which was only forty miles off, they enjoyed a most favourable position for commercial enterprises. An easy intercourse was kept up with Abyssinia; and the treasures of Africa were carried across the peninsula as far as Katif, in the province of Hejor; there they were embarked on the same rafts with the pearls of the Persian Gulf, and were carried to the mouth of the Euphrates. Mecca is placed at a distance of forty days journey from Yemen on the right, and from Syria on the left. The caravans of Arabia used to pass the winter in the former country, and the summer in the latter. They met the merchants from India, who were thus repaid for the toils and perils of the Red Sea. The camels of the Koreishites received a cargo of perfumes at the markets of Sana and Merab, or in the harbours of Oman and of Aden. They also brought grain and manufactured goods from Bostra and Damascus.‡

That commerce has now changed its direction. Mecca at present only subsists by the wealth of the pilgrims who come to present their homage of veneration to the holy Kaaba, or chief temple of the Mahometans. In the common geographical works it has been usual to describe this temple as unparalleled for magnificence, with its hundred gates, and its gilded dome; but, from Niebuhr's description, the Kaaba seems to have more the character of an ancient Indian or Siamese temple than of a mosque. It is an uncovered open square, surrounded with colonnades, and adorned with minarets instead of pyramids and obelisks. This enclosure contains five or six chapels or houses of prayer. In the centre is a small square building called more particularly the Kaaba, the depository of a black stone, which seems to have been an ancient object of adoration among the Arabsians.§ Before the time of Mahomet there was a celebrated temple here, to which all the tribes of Arabia resorted, who, after going seven times round this sacred building, kissed the black stone with respectful homage.|| Sheep and camels were offered in sacrifice to the 360 images which this temple contained, and which Mahomet destroyed. Probably these were the spirits supposed to preside over the days of the year, and the god Hobal, placed on the top of the temple, representing the sun.

The mountains of Hedjaz contain several petty sovereignties. The Arabs who live here do not dwell in tents like those of the plains. They have towns and walled villages; and they defend themselves by means of small forts built on rocks and rugged mountains. Among these states is the district of Kheibar, which is northeast from Medina, and which is said to be inhabited by independent Jews, who live under their own sheiks in the manner of the Arabs. The Turks

hold them in detestation, and accuse them of pillaging their caravans. The Jews of Kheibar seem to have no connexion with those who live in cities on the confines of Arabia. Perhaps they belong to the sect of Karaites, who are more odious to the Drusiacal Jews than even the Mahometans and the Christians.

Nedjed. | On the east of Hedjaz are the vast deserts of Nedjed. According to Niebuhr, this wide country extends from Syria on the north to Yemen on the south, and from Hedjaz on the west to Irac-Abri on the east. Thus it chiefly comprehends the country called Arabia Deserta by geographers, a principle of division unknown to the Arabian. That part of the province more strictly known by the name of Nedjed is mountainous, covered with towns and villages, and filled with small principalities, almost every small town being governed by an independent sheik. It abounds in all sorts of fruit, particularly dates. There are few rivers; and even that of Aslan, which is marked in M. d'Anville's map as flowing from a considerable distance in the interior into the Persian Gulf, is nothing more than a oosdi or torrent which runs only after heavy rains.

District of El-Ared. | This province contains many districts. That of El-Ared, called sometimes Nejed-el-ared, is conterminous with Hajor or Lahsa on the east. In it is Hanifa, a canton once celebrated, but best known in modern times by the name of Darafe.* One of its dependencies is Aijana, the birth place of the new prophet Wahhab. Niebuhr places the district of Kerdje in the south-west part of Nedjed, and consequently on the confines of Yemen. In this, however, he was certainly mistaken. Khardj or Kerdje, according to the Arabians, is the same canton Yemen. | which has Yemen for its capital, a place of great note since the days of Mahomet, as the residence of the rival prophet Moseilama. It forms, with the cities of Lahsa and Yebirn, an equilateral triangle, of which each side is reckoned a distance of three days journey.† The mount El-Ared of Arabian geographers seems to be a ridge of limestone rocks, extending from north to south, of a prerupt form on the west, and gently inclining to the east.‡ It is the Montes Marithi of Ptolemy.

Journey in the interior. | A traveller from Damascus, (Yoosooph-el-Milky,§) has procured for us some recent information respecting the interior of Arabia. By his account, it appears that, from the confines of the canton of Hauran to the banks of the Euphrates, the whole soil is one immense plain, without rivers or permanent springs, without the slightest elevation, without any trace of town or village, but affording vigorous growth to a few thorny shrubs, by which the traveller's eye is somewhat relieved. The name of this plain is El-Hamad, the El-dahna of Abulfeda and d'Anville. This is the scene of the wanderings of different Arab tribes, as the Anash, the Beni-Shafer, and the Szebel.| The tribe Montefik occupies the banks of the Euphrates from Korna to Araije. To the south of this plain the caravans of Damascus on leaving Esrak, a journey of a day and a half from Bostra, follow for seven days the tract of a valley, on the dry bed of a river, called Wadi-Abab-el-Syrrha. | Djof, called also Djof-er-Syrrha. At this place there is a high pyramidal tower. The inhabitants live in a state of perpetual civil war.

It is said that there are wild dogs around it, which are used for food. After this, in the route of the caravan, there is a desert of stones of two days journey, and another of sand of three days, where wild oxen are met with, which sometimes afford opportunities for the chase. Behind this desert rises mount Shammar, covered with forests and villages; in height and extent it resembles mount Liban. Here our traveller ended his journey, without even entering the canton of Shammar. This is the Zametas of Ptolemy, and the Belid-shemer of d'Anville, though that geographer places it too far to the west, and perhaps a little too far south. Our traveller learned that the town of Darreia, the capital of the

* Niebuhr, Descr. p. 203.
† Abulfeda, Gagn. p. 16.
§ Zach's Corresp. xviii.
| Scetzen, in the Annales des Voyages, vii. 221.
Wahabees, is six days journey from mount Shammar. Darreis is rockeased among the Arabs to be at the same distance from the Persian Gulf; but Mr. Reinganaud, an English traveller, who came from Bassora by sea to Khatif, had a journey of seven days to the town of Asha, a place where there are horses of singular beauty, though only fifty-five inches high;* he had then eight days journey across the desert before he arrived at Darreis, which he calls Drahaia. It is an incomconsiderable place, but handsome according to the Arabian style. The sides of the neighbouring hills produce all sorts of fruits. Excellent horses, and numerous flocks of black sheep are reared here.†

To the south and south-east, Nedjed is separated from Yemen and from Omaia by the desert of Ahkaf, which, according to tradition, was once a terrestrial paradise, inhabited by an impious race of giants called Aadites, who were destroyed by a deluge of sand, though their language continues to be spoken in the islands of Kuria and Muria.‡

The towns of Nedjed carry on a considerable trade with one another, and with the neighbouring parts of Hedjaz, Yemen, and Lahsa; and we hope that, by means of it, some European traveller may find an opportunity of penetrating into the interior of Arabia, and acquiring for us a more exact knowledge of it. It is from Nedjed that the formidable sect of the Wahabees has sprung, whose power has excited the attention of Asia and of Europe.§

According to a tradition prevalent in Arabia, and especially in Yemen, there was a poor shepherd of the name of Soliman, who saw in a dream a flame proceeding from his body, which extended itself to a distance round him, destroying every thing in its way. He consulted the wise men on the meaning of this vision, and they answered him that it predicted the rising of a new political power which was to be established by his son. This prediction has proved correct; for if it has not received its footprint, its accomplishment in the person of Abd-el-Wahab, the son of that individual, it certainly has in that of the next of the race, Sheik-Mohammed, who is in fact the founder of the sect which has assumed the name of his father Wabab. He has contrived to take advantage of this famous vision among his countrymen. He has persuaded them that he is a direct descendent of Mahomet, whose name he has taken. His doctrines are few and simple. He enjoins the worship of one God, his doctrines. eternal, omnipotent, just and merciful, a dispenser of rewards and punishments. The Koran he maintains to be in a book written in heaven by the angels. Its precepts are to be followed, but all the Musselman traditions are to be rejected. Mahomet he gives out to be a wise man highly-favoured by God, but entitled to none of that religious homage which is paid to him. He says that God, offended at this species of worship, has sent him to the earth to undeceive mankind, and that all those who shall refuse his instructions are to be utterly exterminated.

At first he disseminated his doctrine in secret, and made some proselytes. For the same purpose he took a journey into Syria. Not succeeding there, he returned to Abria after an absence of three years. Here he was more fortunate and found a protector in an Arabian sheik, called Ebn-| Ebn-Schood, who was descended from the tribe of Negerdis, the progenitor of Sheik-Mohammed. This Ebn-Schood was a man of an ardent and courageous spirit, who, after raising himself to the situation of the chief of his tribe, had subjected to it two other tribes belonging to Yemen and drawn over to his party all the wandering Arabs of that country. With this company he found himself in a condition to make frequent excursions and in fifteen years his conquests were extensive. Desirous of giving them a still wider extension, he considered Mohammed as a person who might materially promote his views by inspiring his Arabs with additional ardour and enthusiasm. He therefore aided the propagation of a doctrine which had already made some progress among his people; and Mohammed readily connected himself with him as promising the most solid political support to his new sect. The whole of the people soon embraced

† Compare with Hadgi-Kalfah, 1431, &c.
‡ Compare with Hadgi-Kalfah, p. 1358.
his tenets. The new worship now assumed a regular form. The son of Abd-el-Wahab was proclaimed supreme head of the Wahabees. Ebn-Sehood held the temporal power under the titles of prince and general; and this partition of authority is preserved among the respective descendants of the two chiefs, who chose for their capital Drahia or Derrein, in the desert to the south of Bassora.

Ebn-Sehood next proceeded to realize his mighty projects of aggrandizement. He formed a well-disciplined army; and, by eloquent harangues, he inflamed their enthusiasm. Sehhood died in the midst of these projects, but his son, Abd-el-Azis, inherited his courage and his zeal. When he wished to subjugate any tribe, his method was to summon it to believe in the Koran as explained by him, threatening extermination in case of refusal. When they preferred the latter alternative, he put them all to the sword, sparing the women and the children, and carried off all the property of the conquered. If, on the contrary, the tribe agreed to submit, Abd-el-Azis gave them a governor, claimed a tenth part of their flocks, their money, their movable goods, and even of the men, the latter being drawn by lot. By these measures he amassed great treasures in a short time, and collected a numerous army. The latter is estimated at 120,000 men. The Bedouin Arabs, one after another, submitted to a power which now embraces all that vast desert which is bounded by the Red Sea, the Persian Gulf, and the environs of Aleppo and Damascus.

Manners and customs of the Wahabees.

The Wahabees hold the other Mahometans in abhorrence; yet they retain many of their ceremonies; their circumcision, their forms of prayer, their ablutions, their days of abstinence, the fast of Ramadan, and their holidays: but their mosques have no decorations, no minarets nor cupolas. They make no professions of respect for the memory of sheiks and of imams, and bury their dead without pomp or ceremony. They live on barley bread, dates, locusts and fish. It is rarely that they eat mutton or rice. Coffee is forbidden. Their clothes and their houses are as simple as possible. This nation is divided into three classes; the military, agriculturists, and mechanics; for they work at different mechanical arts. Their basket work, their woollen and cotton cloths, and their manufactures in copper and iron, are not inferior to those of the other Arabsians.

Hajar.

Descending from the higher parts of Arabia, we enter the Hajar or Hajar, a province lying along the western shore of the Persian Gulf. The tribe of Beni-Khaled formerly were its sovereigns, but it now forms part of the Wahabees.

Lahsa.

Lahsa, a considerable town on the river Astan, is its capital, and sometimes gives its name to the whole province. Kaff seems to be the ancient Germa, which was built of rock salt. Its inhabitants live by the pearl fishery; and when not rich enough to fish on their own account, they hire themselves out for this employment to foreign merchants. The ruins of an old Portuguese fort is still to be seen here. Koneit is another considerable town, called Grain by the Persians. Its inhabitants also live by the pearl and other fisheries, on the coast of Baharain. They are said to amount in number to 10,000. The whole of this coast is very populous. It abounds in dates, rice, and cotton: the rivulets are fringed with lilies and privets. But they suffer dismal encroachments from the drifting sand, by which whole cantons are sometimes invaded.* Taroot, a small town to the east of Kaff, has excellent vineyards, which are sometimes flooded by the tides. It is here that we must place the regio Macina of Strabo, where the vines, raised in baskets of rushes, were sometimes moved out of their situation by the waters of the sea, and afterwards replaced by means of oars.† In some of the towns of Hajar there are woollen manufactures, particularly of a kind of cloaks called abbas.

Islands of Baharain. Pearl fishery.

The isles of Baharain, or Bahrein, in the Persian Gulf near the Arabian shore, may be considered as part of Hajar. This place is remarkable for the valuable pearl fishery which is carried on in its neighbourhood in the months of June, July, and August; a fishery which, in the sixteenth century, was estimated at a produce of 500,000 ducats. ‡ The name Baharain signifies two seas, and seems

‡ Texeira, Chronic. Armuzir, p. 19.
to be of modern application; for Abulfeda, as well as the Arabians of Lahsa, call the large island Aual, a name which d’Anville has erroneously transferred to the peninsula of Ser, situated about 300 miles to the east. The large island has a fortified town, and abounds in dates, according to modern accounts.

The ancients have described it more favourably under the name of Tylos. Flat, and little wooded, it produced figs, grapes, palms, and cotton. A tree [Vegetation] is mentioned, with flowers and leaves like those of the rose, which is remarkable for an uncommon sensibility to light, by contracting in the night, and opening during the day. The tamarind, which in Europe is a shrub, grew here to the size of a strong tree; as there was not that proportion of rain which was requisite for vegetation, the water of the sea was used for irrigating the orchards; the shores were lined with mangroves.* But from any thing we can now learn, the country must have changed. Beyond a wide unknown tract, in which the cities of Mascalat and Julfar are situated, we come to the territory of Omân. It is filled with mountains, Omân, which almost every where extend to the sea. This country abounds in grain and fruit. The sea along its coasts is so full of fish, that cows, asses, and other animals are regularly fed on them, and they are employed as manure to the fields. Its dates form an article of exportation. It contains copper and lead mines. The Imam, the most powerful prince in the country, resides at Rosak. But Mas- [Maskat], kat, or Muscat, is the largest city, and best known to Europeans. It is situated at the southern extremity of a bay about 900 geometric paces long, and 400 wide. On the east and west this bay is bordered with steep rocks, which afford shelter to the largest vessels against every wind. On the two sides of this fine harbour are some batteries and small forts. The town, where it is not defended by nature, is enclosed by a wall. Beyond this wall a pretty large plain opens, bounded also by rocks, which have only three very narrow outlets. Maskat was in ancient times, as it is now, the entrepôt of the merchant goods of Arabia, Persia, and the Indies. In 1508, the city was taken by the Portuguese. The prince himself is engaged in commerce. He has some armed vessels, in which he every year imports slaves and ivory, and other commodities from Affrica.

The inhabitants of Omân are the best seamen in Arabia. They have small merchant ships called frankis, the sails of which are not formed of matting as in Yemen, but of linen as in Europe. These vessels are wide in proportion to their length, very low in the fore part, and very high behind. They have this peculiarity, that the planks are not nailed, but tied or sewed together. The greater part of the Imam’s soldiers are Caffrarian slaves.†

The independent principality of Sehr lies towards Cape Mossandum, which commands the entrance of the Persian Gulf. Omân, and consequently all Arabia, terminates in the east by Cape Ras-al-Hhad, commonly called Rosalgat.

From this the southern coast first runs in a south-east direction, as far as Cape Kanseli, then south-west to the straits of Babelmandeb. The eastern part of this shore is lined with coral reefs and sunk rocks. Strabo says that trees grew here which were flooded at high water. These were probably mangroves. Next comes the mountainous country called Sereg, where frankincense grows. Its harbours are Hasse on the great gulf of Kuria Muria, surrounded with isles; likewise Merbat and Darsar. Behind the country of frankincense lies Mahrah, a large hilly district, where a peculiar language is spoken. All these cantons seem to belong to Hadramaut, taking the name in its widest sense; but Hadramaut Proper is on the south-west, and adjoining to Yemen. Doan in this country is a large and fine town, but its inland situation prevents us from obtaining an accurate knowledge of it. It is twenty-five days’ journey from Sana, and eleven from Kashin. This last city is on the seashore. Its inhabitants are remarked for their politeness to Europeans and other strangers. Its sheik possesses a considerable district in Arabia, besides the island.

† Niebuhr’s Descrip. d’Arabie, etc. ii. p. 141, 16.
of Socotora, celebrated for its aloes. The sheik or Shibam is one of the most powerful in the mountains where the Kabails live. Hadramaut was celebrated in the days of Augustus for the bravery of its inhabitants. In several parts of it there are mountainous and very fertile countries, with interposed valleys, which are well watered by the mountain streams. From the different parts of this country there is an exportation for Maskat and the Indies, of frankincense, myrrh, common gum, dragon's blood, and aloes; and for Yemen, of stuffs, carpets, and large knives, called jambais, which the Arabs wear in their belts.

Yemen.

| The finest province of Arabia remains to be described. It once formed a large kingdom under the name of Saba. Subjugated by Mahomet, and afterwards by Saladim, Yemen at last fell under a sort of subjection to the Mamelukes of Egypt. In 1517, having recovered its liberty through the declining power of the Mamelukes, it was threatened with a Turkish invasion; but in 1630 Amurat II. recognised Sejfd-khassen-ibn-Mohammed, as king of Yemen, reserving to himself a nominal sovereignty. Since that time its kings have lost several provinces, especially on the north and east. Still the state of Yemen contains nearly 20,000 villages. | square miles, and probably a million of souls. The king is at the same time the chief of the sect of Zeidites, which predominates in the whole of Yemen. Hence this prince at first took the title of Imam, which applies in Turkey to the simple officiating priests attached to mosques, but in Arabia and Persia, among the adherents of the sects of Zeidites and Sheeites, means a doctor, or a successor of the great prophet. These Imams, however, soon after stamped on their coin the more imposing title of Emir-al-momenin, or “prince of the faithful.” The true followers of their sect are said to honour them as caliphs. The throne is hereditary. The Emir is independent, and acknowledges no superior in temporal or spiritual concerns. He retains the power of making peace and war. Yet the brave and proud Arabian never submits to the least abuse of power. The Emir cannot even inflict death on a Jew or a pagan, unless the accused has been tried before the sovereign tribunal of Sana, composed of a number of cadis, and of which the Emir is only the president. If the Emir evinces an inclination to despotism he is deposed immediately. | Persons of rank are called fakis. The governors of districts are called dolas, and when they are of distinguished birth, they are denominated walis. The magistrate of an ungarrisoned town is called sheik; if the seat of his authority is a place of greater consequence, he receives the title of emir. There are also public controllers to inspect the conduct of the governors. But we need not detain ourselves longer with these details; they will be found at considerable length in the work of Niebuhr. |

Military force.

| The armed force kept on foot during peace consists of 4000 infantry, and 1000 cavalry. The soldiers, according to the oriental custom, wear no uniform; they are not instructed in any species of tactics, and scarcely know how to manage a musket. Yemen has no marine force, the vessels are rudely built, and their sails are of matting. |

The annual revenues of the prince amount, according to Niebuhr, to nearly 80,000l. sterling. This traveller conceives that they arise entirely from the duties laid on the exportation of coffee. Besides this valuable article, Yemen exports aloes and myrrh; the best comes from Abyssinia; also olibanum, or the inferior sort of frankincense, senna, ivory, and gold, from Abyssinia. The imports from Europe consist of iron, steel, cannons, lead, tin, cochineal, mirrors, knives, sabres, cut glass, and false pearls. The Jews are here the manufacturers in gold and silver, and even coin the money. Some muskets are made in the country, but they are indifferently executed. There are also in Yemen some linen manufactures, but generally of a coarse quality. A very active trade is carried on by the Jews, who amount to 5000 families; but jealousy and superstition combine their influence to persecute this unhappy race. |

Yemen, the most powerful kingdom of Arabia, is divided into several departments, and in a more general way, into the high country, called in Arabic Djebal, and the low country, which is called Tehama. The chief city is

* To be described in our account of Africa.
Arabia.

Sana, situated at the bottom of a mountain called Nikkum. According to Niebuhr this city is of no great extent; its circumference being about an hour’s walk, including also some gardens. The walls are of brick. It has seven gates, and several handsome mosques and palaces, some of them built of baked bricks, and others of stone. The common houses are of bricks dried in the sun. It has several silvers or caravanserais for merchants and travellers. Fuel is very necessary here, and extremely scarce, but the country contains some coal mines and some turf. Pliny says that the Arabsians warmed themselves with odoriferous wood, but of this no modern fact furnishes a confirmation. The fruits are excellent, especially the grapes, of which there are several varieties.

According to the obscure accounts of Pliny and of Strabo, Maren or March. Marib was the ancient metropolis of Yemen. M. d’Anville endeavours to identify that place with the celebrated city of Saba, known to the Hebrews, and mentioned by Ptolemy, Agatharchides, and some other Greek geographers. At the present day this town has become the capital of the country of Djof, which is now independent of the Imam of Yemen. In a contiguous valley, about sixteen miles long, six or seven rivulets join their streams. Some of them contain fish, and retain their water the whole year over. The two chains of mountains approach so near one another to the east, that a person may pass from the one to the other in five or six minutes. It is said this opening was once shut up by a thick wall, which confined the rain water to be distributed through the fields and gardens situated along the bottom of these heights. This great dyke was esteemed among the Arabsians one of the wonders of the world. The Arabian historians mention the bursting of the dyke, and the consequent disasters, as forming the commencement of an historical epoch, of which the learned have not been able to make out any consistent or probable account.†

In the Djebel or high country, the Imam possesses the town of Damar, the seat of the great university of the Zeidites; of Doran, in which there are large magazines of grain cut in the rocks; of Djobla, distinguished for the pavement of its streets; Taaz, which boasts of its elegant mosques. Kousma is a town which is entered only by climbing up steps. It is a day’s journey to ascend to it from the Tehama. Maseek is a place where all the houses are cut out of the solid rock. Independent Djebal contains large cantons, among which is Sahun, of which Saade is the chief place. It produces grapes and other fruits in abundance, and has some iron mines which are worked. The inhabitants of this province have little intercourse with strangers. Their dialect is supposed to come nearer that of the Maren than any other, though they know nothing more of that book than the name. They live on game, honey, milk, and pulse. They marry later in life than any other Arabsians; live to a very advanced age, and retain their eye-sight till the day of their death. By plundering their neighbours they enable themselves to exercise hospitality to visitors.

Nedjran, a small domain, is situated in an agreeable country, supplied abundantly with water, and lies to the east-north-east of Saade, at a distance of three days journey. It produces great abundance of corn and fruit, particularly dates. There is a canton called Hashid-oul-Bekil, the numerous sheikhs of which form a league, which is somewhat formidable to the Imam. Even in the plains of Tehama, there are small states which have braved the power of this prince. Such is Aden, a town celebrated from the remotest periods for its commerce and the excellence of its harbour on the Indian Ocean. The Arabian geographers tells us that it maintained an extensive intercourse with India and China in the 12th, 13th, and 14th centuries: there the riches of the east were accumulated on a tract of rock destitute of water and of trees.‡ Aden, devastated in the wars of the Turks and Portuguese, has lost its commerce since it submitted to the Imam. This prince is master of the best towns on the Arabian Gulf, such as Moka, the name of which sounds so delightful in the ears of every one who is curious in coffee; Bex-el-Fakin, which, from the excellence of its harbour, export more of this article than any other place; Loheia, which also exports

† Reiske, de Arabum epochâ vetustissimâ, &c. Lips. 1748.

Ver. I.—3 D
it in large quantity, though of an inferior kind; and Zebid, which is not the ancient Sabotha, but which enjoyed all the trade before the destruction of its harbour. The isle of Kamaran, fertile but unhealthy, contains, in a good state of preservation, a handsome aqueduct built by the Portuguese.

Manners of the Arabian.

Having thus gone over the topography of Arabia, let us take a short and comprehensive view of its inhabitants. The Arabians are of the middling size, lean, and apparently dried up by the heat; an appearance no doubt arising in part from their abstinence, and the habit which they have of dispensing occasionally with liquids for a length of time. Their complexion is brown, their eyes dark, and their hair black; swift in running, and dexterous horsemen. They have the general character of bravery, of dexterity in handling the bow and the lance, and of being good marksmen ever since they have become familiar with the use of fire arms. Gravity of deportment, regarded among the people of the east as a mark of good breeding, seems less natural to the Arabians than it is to the Turks. Robbery is the open profession of many of those tribes which are called Bedouins. In the commercial towns, the art of cheating is employed as a substitute. These vices are supposed to be the offspring of the want of a regular government, but it may be hoped that means of counteracting such dispositions may be in reserve, besides the presence of an extensive imperial authority in such forms as institutions of this kind have hitherto known. The ancient patriarchal hospitality of this country still remains. A simple traveller, throwing himself on the protection of a hospitable sheik of the desert, may depend on the best reception. In the villages of the Tehama some public houses are found, where travellers are lodged and fed without expense for some days. When the Arabians are at meals, any person who chooses to come in is invited to eat with them, without any distinction of religion or of rank. It is said that, when a Bedouin sheik eats with a traveller, it is a sure pledge that he will give him his best protection. Sometimes a person who has just been robbed happens to enter the tent of the robber without knowing it; the latter tries to console him, by reminding him that God is sufficiently merciful to repay his losses, gives him a suit of clothes different from his own, while the other, in the meantime discovering the fact, still keeps up the appearance of ignorance. In politeness the Arabians emulate the Persians. They always kiss the hand of a superior as a token of respect.

Houses.

Their houses, even when built of stone, are wholly destitute of taste. The men's apartments are in front; their jealousy, matured into a peculiar form of decency, places those of the women behind. Even the pens Bedouin divides his tent into two apartments by a curtain, behind which the women are concealed from

Food.

the eye of indiscreet curiosity. The Arabian is poorer in provision. The common people have only one meal of bad bread, made of down, which exactly resembles thin barley cakes after they have been kept so long as to be perfectly dry, and as hard as stone. They sometimes use a species of milk. With these they take camel's milk, butter, grease, or vegetable oil. Pure water is their beverage; animal food is very little used; pork was prescribed among them long before the time of Mahomet.* At their meals they set small tables about a foot high on a large carpet laid on the ground or on mats, where the guests are seated. Like other Orientalists they are passionately fond of pastry. Their favourite liquor is coffee, which they prepare by burning in an open pan, and pounding in a stone or wooden mortar. This method is supposed to preserve a flavour which is lost by grinding it in a mill. The people of Yeman rarely use coffee, considering it as of a heating nature; but they prepare a liquor resembling tea from the coffee husks. Arabs of distinction make use of Chinese porcelain. Spirituous liquors, though forbidden by law, are not unknown in Arabia; a plant resembling hemp is often smoked, and is productive of a species of intoxication.†

Dress.

The Arabians, like the Persians, are fond of long flowing garments. They also wear wide short tuckedered trousers, with an embroidered leather girdle.

† Niebuhr, i. passim
over them, under which is stuck a shining poniard or dagger. They all wear the cloak called abba; it is a large double square piece of cloth, with a slit at the middle for the neck, and one on each side for the arms. The fabric of these mantles is of goat’s and camel’s hair very closely woven. The proof to which they are subjected in buying, is to pour on them a pail of water, which they sometimes retain, without transmitting a single drop, for a quarter of an hour. The Arabians load their heads with a number of caps, which they encircle with several folds of a scarf. In general, they wear nothing on the legs or feet, the soles of their feet being hardened by use to bear the heaviest sand without inconvenience. In the mountains, however, they use sheepskins as a protection to them. Some shave the head, others do not. The women of the lower orders wear nothing but a large shift and pantaloons. In the Hedjaz, as in Egypt, their eyes only are seen through the muslins with which their heads are covered; in Yemen they wear long veils. An Arabian female who was surprised naked by M. Niebuhr, covered her face with her hands, disregarding all other exposure. Arabian coquetry displays itself by showing off rings, bracelets, and necklaces of false pearls. Sometimes, like the women of Indestan, they wear rings in the nose in addition to the more common ornament of pendants to the ears. They use the juice of the henna to dye their nails red, and their feet and hands of a yellowish brown; their eyelids are blackened with the native sulphuret of antimony. The practice of marking the skin with the figures of animals, flowers, or stars, which was in existence before the time of Mahomet, has still left some traces among the Bedouin women. The fashions of this part of the east are subject to very little change. The dress of Esther, Salamith, and other personages of the Old Testament, probably was on the same model with that which is seen on the women of rank of modern Arabia.

The constraint to which the Arabian women are subjected does not altogether prevent intrigues. But the youth who is bold enough to trespass on the sanctuary of the hareem finds his path compassed with perils, battles, and death. The pastoral life of the Bedouins affords greater freedom to their women; and the desert is the general theatre of the keen passions depicted in the Arabian tales. In the Song of Solomon, and various love-songs and tales, the taste of the Arabian connoisseur in beauty is exhibited in the poetical portraits drawn of the favourite female. Her form is tall and slender like the rush which bends before the wind, or like the lances of the men of Yemen. Voluminous at mid height from right to left, she enters with difficulty through the stent door. Two firm pomegranates swell the alabaster white surface of her bosom. Her eyes are lively and tender like those of the antelope; her eye-brows arched; and her black hair, drawn together with a strap, waves over the neck like the camel’s. The complexions of the lower orders of women in the masaithe plains are a deep yellow; but in the mountains, even the females of the peasantly exhibit forms and complexions which Greece and Italy would not disdain.

The ancient language of Arabia seems to have had a near resemblance to the Hebrew. Before Mahomet’s time there were two leading dialects, that of the Ham-yarties, or Homerites, which prevailed in Yemen; and that of the Komounties, which was used in the country round Mecca. The latter was the first agreeable and pure of the two, but the promulgation of the Koran, and the victories of Mahomet, gave a triumph over the other. This sacred language is taught in the schools by fused rules; in it alone the public instructions in

* For an account of the henna see a note of M. Langles, Collection portat. des Voyages, ii. 127.
† Moallakat, trad. de Hartmann, p. 69-125. Taraphae Moallakall, ed. Reiske, p. 45.
‡ Arrieux, Mémoires, ed. Labat. iii. 297.
§ Hartmann on the Toilette of the Hebrew Women, in German. Schrader, de vestitu mulierum Hebræarum.
¶ Medijoon and Lella, Fr. translation of M. Chesy, pref. xxv. etc. etc.
‖ Passages from Hariri, Ibn Doreid, Mottani, and others, collected in Hartmann’s Aufklärungen über Asien, i. 549, etc.
** Pooccke, Specimen Historiae Arabum, p. 150. Eichhorn’s Preface to the German translation of Richardson’s Treatise on Oriental Literature. Adelung’s Mithridata, i. 393, &c.
the mosques are delivered. The present language of the learned, and which is also employed in solemn addresses, does not differ from it in construction, or in the application of its terms.* But a similar uniformity does not extend to the vulgar Arabic, which, like all languages that are widely diffused, has experienced many admixtures and alterations.† Not only do the people speak differently in the mountains and the Tehama of Yemen, but people of rank have a pronunciation difficult to imitate, and terms for various objects different from those of the peasantry; and all these dialects have but a slight conformity with that of the Bedouins. In the distant provinces the difference is still greater. It is by the jargon of dialects so numerous, that the Arabic language boasts of so copious a vocabulary. In treatises on the subject we are told that it has no less than a thousand terms for a camel, and five hundred for a lion. The pronunciation of the south and of the east is easier for the organs of the inhabitants of the south of Europe than that of the Arabs of Egypt and Syria. Our northern nations possessing a greater variety of consonants, especially of those called gutturals, are more capable of acquiring it. The conquerors of the Arabs have disseminated their language along the southern shore of the Mediterranean, from Egypt to the straits of Gibraltar, and from the island of Madagascar along the whole shore of the Indian Ocean.

The most ancient characters used in Arabia seem to be those called the Parthopolitans, formed of long lines, broad and split at one end, and brought to a point at the other, distinguished from one another chiefly by position and size, compared by some writers to mails, by others to arrows, and called the nail-headed or arrow-headed characters. These were succeeded by the Ham-yazic, so called from a dynasty of that name; and these gave place to the Kufic or old Arabic characters.

The Arabic language is not so difficult of acquisition as its alleged multiplicity of terms and dialects might lead us to suppose. Among the other difficulties which are to be encountered in the mode of teaching languages generally employed, much waste of time arises from the attention of the pupil being first directed to the written or printed characters. If the sounds were represented, in the first instance, by judicious and well understood combinations of the elements of our own alphabet, and if a considerable advancement in the knowledge of words were made on that plan, all that is essential would be speedily acquired, and the use of the characters would be afterwards more easily studied, and with greater interest. The dialects have been represented by some so equally distinct from each other as the different languages of Europe are. But this is by no means the case. A native of Morocco or of Malta can converse without difficulty with Egyptians and Arabs. The Maltese servants who went with the Jewish army in their expedition to Egypt were very useful interpreters. The wide extent of countries in which this language is spoken and written, the works in history and science, and even in poetry and the belles lettres, which it contains, its affinity to the classical language of Persia, as well as to that of the Old Testament, and the light which is thrown upon philology, general grammar, and the genealogy of languages, furnish motives sufficient to make the acquisition of the Arabic language very desirable to every liberal scholar.

Although science in Arabia is reduced to some crude notions of medicine, and some of the revivals of astrology, the unenlightened of this people is exhibited and proved in the numerous poetical turns of thought which are contained in the Koran. Morality and poetry are still the favourite objects of their studies. The country of Djof, in the kingdom of Yemen, contains several persons who possess the talent of writing extemore verses. Education, though it has declined in Arabia, is not altogether neglected. Several of the common people can both read and write. The higher classes keep teachers in their houses for the instruction of their children and young slaves. In general, every mosque has a school attached to it, and a revenue, arising from the donations of the

* Aryda, chief priest of Tripoli in Syria. Memoir in answer to Niebuhr, in Arabic. See Jahn's Christological Arabic, p. 222, (Vienna, 1802.)
† Niebuhr, l. 118, etc.
charitable, is devoted to the maintenance of the teacher, and of poor scholars. The large towns contain many other schools to which the children of the middling classes are sent for reading, writing, and arithmetic. The girls are taught separately by female instructors. In some of the chief towns there are colleges for astronomy, astrology, philosophy, and medicine. The kingdom of Yemen has two famous universities or academies; one at Zebid for the Soomites, and the other at Damar for the Zeidites. The explanation of the Koran, and the history of Mahomet and the first caliphs, are the branches of study most generally attended to.

The extraordinary men who founded the Mahometan religion, had to contend with the ancient idolatry of the Arabians. In remote times human sacrifices were in use among those, as well as among their neighbours the Syrians and Carthaginians. Sabiasm, or the worship of the heavenly bodies, was common to them with the people of Syria and Chaldea. The Christian religion had made some progress in Arabia before the time of Mahomet. The country contained numerous tribes of Jews who followed this ancient worship. The Arabian prophet had some difficulty in reducing them. His church, like every other, is divided into parties maintaining contradictory opinions. Besides the sect of the Soomites, there is another very considerable one, which goes by the name of the Zeidites. In doctrine they seem to agree with the former, but are less rigid in their religious observances. Towards the middle of the last century a sect of Yemen formed a new sect about the same time that the religion of the Wahabees sprung up in the centre of Nedjed. The Sheeites, or the sect of Ali, prevail along the Persian Gulf. In Oman another sect has arisen, rather of a political than a religious nature: its adherents are called Bedjjas, and they do not acknowledge any of those great prerogatives which the descendants of Mahomet exercise, particularly in the province of Medjaz.

Having already given some view of the arts and commerce, as existing in Yemen and Oman, we subjoin a few general remarks. The arts are neglected in Arabia. There is no printing press in the country. The chief obstacle to this art is, that the modern Arabic letters being mutually connected and often placed above one another or interlaced, are thought more handsome when well written than when printed. Hence, painted works are so offensive to the eye that no person will read them. This obstacle, however, we may expect to see removed by the use of that elegant recently discovered art called the lythographic, by means of which written characters continuous without interstices are impressed with a saving of labour equally great, if not greater, than that attending typography, as compared with that of multiplying copies with the pen. As the zealous Soomites allow of no figures of objects, painting and sculpture are arts unknown in Arabia; but their inscriptions in relief are well executed. Gold and silver are very well worked in Yemen. But this art is chiefly carried on by the Jews and Banians. Clock and watch-making are neither much advanced nor greatly esteemed. Music is also neglected, at least as instruments except drums and fifes are used. All mechanics work in a sitting posture. These are some sorts of employments in which the Arabs use their toes with the same dexterity as we do our fingers. No wind mills or water mills are found in Arabia, but Niebuhr having seen in Tehama an oil press which was turned by an ox, thought it probable that corn mills of the same description were also used.

Arabia probably contains a population of ten or twelve millions, who, united under one political head, might give a formidable enemy to Persia; to Turkey, or the whole of Africa.

* See the passages collected in Schultens, Historia Roctanidarum, p. 61, 62—144.
Table of the Geographical positions of Arabia.

<table>
<thead>
<tr>
<th>Names of places</th>
<th>Lat. N.</th>
<th>Long. E. of London</th>
<th>Authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tor (in Arabia Petrae)</td>
<td>-33 33 10</td>
<td>Unpublished Travels, quoted in the 'Connaissance des Tcns.'</td>
<td></td>
</tr>
<tr>
<td>Idem</td>
<td>-28 12 19</td>
<td>-</td>
<td>Niebuhr, in Zach's Corresp.</td>
</tr>
<tr>
<td>Raz Abou Mohammed</td>
<td>-27 50 0</td>
<td>-</td>
<td>Unpublished Travels, Connaiss. des Tcns.</td>
</tr>
<tr>
<td>Kalaat-el-Mollah</td>
<td>-27 28 0</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>El Hamman Firann</td>
<td>-33 33 30 60</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Jembo -</td>
<td>-24 7 6 37 32 30</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Idem</td>
<td>-24 5 6</td>
<td>-</td>
<td>Niebuhr in Zach’s Corresp.</td>
</tr>
<tr>
<td>Ras-Abiad</td>
<td>-23 30 0</td>
<td>-</td>
<td>Unpublished Travels, Connaiss. des Tcns.</td>
</tr>
<tr>
<td>Arabog</td>
<td>-22 33 0 38 52</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Gedda or Djidda</td>
<td>-21 32 42 39 6</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Ghumfude</td>
<td>19 7 0 41 42</td>
<td>-</td>
<td>Niebuhr, in Zach’s Corresp.</td>
</tr>
<tr>
<td>Loheia</td>
<td>15 42 8 24 8 48</td>
<td>-</td>
<td>Niebuhr, in Zach, calculated by Father Hell.</td>
</tr>
<tr>
<td>Beit-el-Fakih</td>
<td>-14 31 17</td>
<td>-</td>
<td>Idem, Corresp. of Zach.</td>
</tr>
<tr>
<td>Zebid</td>
<td>-14 12 0</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Taais</td>
<td>-13 34 7</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Sana, capital of Yemen</td>
<td>-15 21 6</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Moka</td>
<td>-13 18 41</td>
<td>-</td>
<td>Idem.</td>
</tr>
<tr>
<td>Idem</td>
<td>-13 16 0 43 10 15</td>
<td>-</td>
<td>Connaiss. des Tcns.</td>
</tr>
<tr>
<td>Island of Perim in the strait of Babel-Mandeb</td>
<td>-12 38 0</td>
<td>-</td>
<td>Niebuhr.</td>
</tr>
</tbody>
</table>

BOOK XXXI.

PERSIA.

Its General Physical Geography.

General view. | The leading division of Persia, in modern times, is into two monarchies; that of the Afghans on the east, and that of Futté-Ali-Sha on the west. Therefore, though these political divisions are liable to continual change, we shall assign separate portions of our work to these two parts, entitling the latter Afghanistan. Persia, however, being the most conspicuous, as well as the most ancient in a political point of view, and having included, at different times, and for long periods,

* According to several observations of the Satellites of Jupiter, but in the Corresp. of Zach. vii. p. 69, Niebuhr. has given observations of the lunar distances, which seem to give a different result.

N.B. As the ancient and modern political divisions offer nothing certain, and are in a great measure unknown, no comparative Table is given.
the territory at present in the hands of the Afghans, some of our general descriptions under the head of Persia will extend beyond the limits of the modern Persia, especially towards the east, where indeed the boundaries are, in some degree, uncertain. The range of country comprehended in these two monarchies reaches from the basin of the Tigris and Euphrates on one side, to those of the Sinde or Indus, and of the Oxus or Gihon on the other, forms a great natural region washed by the Caspian sea on the one side, and on the other by the Persian gulf, and the Indian ocean; and though this vast plateau is greatly diversified, and comprehends several distinct basins, there are still so many points of resemblance among them as to form one whole.

The political revolutions to which this country has constantly been a prey, have most frequently ended in a union of it under one sceptre. In the earliest dawn of history, we find it possessed by several independent nations; the Persians in the south, the Arameans in the east, and the Medes in the centre; different barbarian tribes—as the Hyscanians, Parthians, and Casdianians, on the north. It is a matter of doubt whether the ancient empires of Nineveh and Babylon ever included ancient Persia, that is, the ancient Fars, with Karman and Laristan. History hangs in suspense about the truth of the marvellous expeditions of Semiramis; but we know that every momentary inroad figures as a constrictor and chaos of primitive history. The Medes, however, really subdued the Persians. That people seems to have first carried their arms against the Scythians of Asia, in Tooran or the present Tarty, and against the Indians. Five centuries before the Christian era, Cyrus delivered his nation from the yoke, and gave it the sovereignty over the whole of western Asia. But on entering Europe, the little nation of the Greeks arrested the progress of the numberless armies of Asia. Soon after, united under Alexander, they overthrew the feeble colossus of the Persian power. After his death, when the discord of the victors gave rise to a multitude of sparsal kingdoms, the warlike tribe of the Parthians about the year 244 B.C., before Christ, took possession of the provinces which form the modern Persia. The Greeks still maintained their ground in Bactria. Demetrius, their king, subdued and civilized Indostan. Eucratides, the first, reigned over a thousand cities. But the Scythians, or rather the new nations which succeeded to the Scythians, uniting with the Parthians, overthrew the Bactrian throne. The Parthians, under their king of the Ashkanian dynasty, the Arscides of the Greek historians, successfully resisted the progress of the Roman power. Towards the year 220 of the Christian era, a private man in Persia, according to the Greek authorities, wrested the power out of the hands of the Parthians, and founded the dynasty of the Sassanides. But the oriental writers do not consider the modern Persians as distinct from the Parthians; and, according to them, Artaxerxes, or Ardshir, is descended from the royal blood of the Parthians. Whatever be the fact on this dark point, the Persian empire often struggled against that of Constantinople; and having made a brilliant appearance under the sway of the wise Nooshewan, submitted to the Arabians, and to the Mahometan religion, about the year 636.

Two centuries after this the kingdom of Persia was re-established in Khorasan; and, after several revolutions, recovered its original extent of territory. In the year 934 the house of Boukah ascended the throne, Shiraz being the seat of government. Persia was included in the conquests of Gengis-Khan in 1220, and Timur in 1399, and recovered its freedom again under the Sophis, who ascended the throne in 1666. Shah-Abbas, surnamed the Great, began in 1586 a reign of half a century, which was brilliant but tyrannical. In 1722 Persia was conquered by the Afghans. This event was followed in 1786 by the extinction of the family of the Sophis, and the elevation of Nadir, surnamed Thamas-Khouli-Khan, to the imperial throne. This ferocious, but able and fortunate prince, was a native of Khorasan. On the 20th of June 1747 he was killed, after a reign of eleven years, which was chiefly signalised by the rapid conquest of Indostan.

This was the commencement of a period entirely new, by which the modern geographical division of the country was fixed. The weakness of Nadir-Shah’s successors, and the dreadful war which devastated western Persia,
gave to the Afghans an opportunity of consolidating a new empire, which embraced the whole of eastern Persia, and of which the city of Kandahar is the capital.

Western Persia enjoyed some repose under the government of Kerim-Khan, who did not assume the title of Shah, contenting himself with that of voéal or regent. This good prince had served under Nadir, with whom he was a particular favourite. When the tyrant died he was at Shiraz. He took on him the reins of government, and was supported by the inhabitants of that city, who were charmed by his beneficence, and placed unbounded confidence in his justice. In return for this attachment Kerim embellished their city with beautiful palaces, mosques, and elegant gardens; he repaired the highways, and rebuilt the caravansaries. His reign was not soiled by any act of cruelty. His charity to the poor, and the efforts which he made for the re-establishment of trade, met with universal praise. He died about the year 1779, after a reign of sixteen years.

The death of Kerim was followed by new disturbances and misfortunes, as his brothers attempted to take possession of the sovereignty to the exclusion of his children. At last, in 1784, Ali-Murat, a prince of the blood, obtained peaceful possession of the throne of Persia. In the meantime, a strum of the name of Aga-Mohammed took independent possession of Meshedarán. Ali-Murat, in marching against this usurper, was killed by a fall from his horse. His son Jafar succeeded to the sceptre, but he was defeated by Aga-Mohammed at Yeza-Kast, and withdrew to Shiraz.

In 1792, Aga-Mohammed attacked that city, and Jafar lost his life in an insurrection. The victor defaced the tomb of Kerim, and insulted his ashes. The heroic valour of Loutuf-Ali, son of Jafar, was opposed in several desperate engagements to the fortunes of the eunuch, but without success, and the latter became final master of the whole of western Persia. He named as his successor his own nephew, Baba-Khan, who, since 1796, has reigned peaceably under the name of Futté-Ali-Shah. This prince has been engaged in several wars against the Russians, and, that he might the more advantageously defend the northern provinces from that power, he established his residence at Tehran. The provinces which in 1810 were subject to him, were Erivan, Azberdjan, Ghilan, Meshedarán, western Khorasan, Irk-Adjemi, Persian Koordistan, Farsistan, and Kermán. The Arabian sheiks on the Persian Gulf were tributary to him, and respectful presents were sent to him by the sheiks or prince of Meheran.*

Present political state. Such has been of late the state of Persia. It had ceased to be customary to crown the sovereigns. The anarchy was so habitual, that the only recognition of majesty was to proclaim every morning the name of the khan who reigned for the day. But Futté-Ali bears the dignified title of Shah or king. This prince, firm and severe, appears to have delivered the people and government from the arbitrary authority and the exactions of numerous khans. The title of khan, derived from the Tartars, corresponds to the denomination of sheik among the Persians, which is now given to gentlemen in general. The khans are sometimes governors of provinces, sometimes only proprietors of small districts, and claim a hereditary right of succession, although the sovereign has it in his power to punish them with confiscation or with death. The great khans are sometimes called begiersbes, and in time of war serdars or generals. Those who have the command of towns are generally denominated darogas or governors.

Futté-Ali-Shah can bring into the field 100,000 men, and the number of his subjects, though greatly reduced by recent wars, is probably from six to eight millions. The kingdom of Kabool, with its Indian provinces, possesses perhaps an equal population, but its strength is greatly impaired by intestine anarchy. On the whole, notwithstanding the bravery of the Afghan infantry, and of the Persian cavalry, these two empires, in a state of separation, can never enjoy a high political importance.

Present boundaries. We now proceed to our description of the country, to which the preceding historical preamble was necessary. Western Persia is bounded

on the north by Georgia and the Caspian Sea, both in possession of Russia. Shirwan, though partly occupied by the Russians, has not yet been formally ceded to them by Persia, nor has she even formally acknowledged the right which the Georgians have exercised in submitting to the Russian authority. The Turkish frontier has not been altered since Ali-Murat gave up the city of Bassora to the Turks. The Persian Gulf already described in our account of Arabia, forms the southern boundary of this country; but the Persians, though situated between two seas, have never cultivated navigation.

The whole of Persia is a highly elevated country, as is proved by the great abundance of snow. This plateau joins that of Armenia and Asia Minor on the west, and becomes confounded with that of central Asia on the east. This is the chain of high lands which the ancients called Taurus, a general term which they applied to any thing gigantic. Taurus divided Asia into two, or rather, according to Strabo, into three parts. The first lies on the north of the mountains. The second is on the top of the Taurus, lying between the different chains of mountains which it consists, and the third is that which is situated to the south. This mode of division is founded on an accurate observation of the leading differences of climate and of produce. But the ancients knew that the numerous chains of mountains comprehended under the general name of Taurus were divided by many valleys and elevated plains. They also knew that several of the mountains of Persia, after rising abruptly from the middle of the plain, gradually became flat at the summit, and presented an absolute plain. These observations are confirmed by modern travellers. The mountains of Persia, according to M. Olivier, do not seem to form any continued chain, nor to have any leading direction. They extend without order in all directions, and are heaped one on another as if thrown together at random. Groups which seem to form the commencement of chains, are suddenly interrupted by smooth, extensive, and very elevated plains. But the plateau itself on which this heap of mountains is reared, must have two declivities, one towards the Euphrates and the Persian Gulf, and the other towards the Caspian Sea.

It is on the south side of the basin of the river Kur, that we must look for the northern continuation of Mount Taurus. The Ararat, and the chain to which it belongs, join the high mountains which separate the lake Van from the lake Oormia. These last are a part of the Niphates of the ancients. But to the south of the river Araxes, there is a chain of very cold mountains, the south side of which embraces Adjarbijjan, the ancient Atropatene. These mountains defied the arms of Alexander the Great; from their sides the Alps go off towards the east, a belt of high limestone mountains which runs parallel to the southern shore of the Caspian Sea. In the ancient Hyrcania, the sides of these mountains are described as not only steep towards the sea, but projecting in such a manner, that the rivers throw themselves into the sea, forming a liquid arch, under which men could pass on dry ground. The “Caspian Gates,” passing through this range, are mentioned by the ancients as an artificial road, twenty-eight Roman miles in length, of a width which admitted only a single chariot to pass, with high black rocks on each side, from which salt water continually trickled down, rendering the road very troublesome, while it was also infested by numerous serpents, rendering it impassable in summer. This passage is near Demawend, at a distance of forty miles from Tehran. According to the ancients, these Hyrcanian mountains were continued to Bactria, where they joined those called the Paropamisan, the Gaoor of the moderns. Mr. Forster, in his travels on the mountains between Kandahar and Herat. This only shows that the traveller went along a plateau, and neglected to extend his researches. This gentleman himself, at the same time, adds weight to our opinion, when he says, that there is a high chain of snowy mountains to the north of Tchershit. These are the mountains of the ancient Parthiene. M. Strabo, lib. xi. p. 338, etc. *

† Olivier. Voyage dans Pempire ottoman, la Perse, etc v. chap. 7.
‡ Strabo, lib. xi. p. 551.
¶ The author here refers to a MS. by M. T——.

Vol. I. — 3 E
Foster travelled along the basin of the Furra Rood, and the Haimund, with its tributaries, and had on his left the mountains of Paropamisus, which are extensive in all dimensions, and occupied by the Eimaka, Hazaurehs, and Doorenees.*

The southern chain enters Persia to the south of the lake Oormia. The branch of Aimagha-Tag, which goes off to the south and forms the boundaries of the kingdom, is the Zagros of the ancients, and always in the possession of the Koords. The first great chain which enters Persia is called Elwend. The Persian geographer, Eb/, Haukel, informs us, that from the neighbourhood of Koordistan to Isphahan, the country consists entirely of mountains. He specifies, among the most noted, the Demavend, from the top of which the eye takes in a range of 200 miles, while that of Bisootoon, in the same country, was celebrated for its singular sculptures which are still in existence. The Hotzerdara, or 1000 mountains, embrace on the north and west the basin in which the city of Shiraz and the ruins of Persepolis are situated. This chain required the utmost exertion for the army of Alexander to penetrate it. The passage called the Gates of Susa, or of Persis, was occupied by a body of Persian troops.† Another defile led from Persia into Media, called Climax Megala, or the great stair, because the passage was cut out in the form of steps.‡ On the south side, the mountains are not far from the Persian Gulf, pass across Kermán or Carmania, and though one of their branches appears to lose itself in the desert to the east of the lake Baktigan, the principal chain seems to join that which separates Seistan, or the country of the ancient Drange, from Mekran, the ancient Gedrosia. A modern author calls them Djibel-Abad. This chain joins the mountains Sooliman, which, with the mountains of Wulli, form a long plateau, separating Persia from India. This plateau, abounding in hills, possesses great elevation even in its valleys, as may be inferred from its temperature. It joins the great central plateau of Asia.

On the whole, it must be acknowledged that, though in this outline of the mountains situated between the Caspian Sea and the Indian Ocean, we have thought proper to pay the utmost respect to the descriptions of the ancients, particularly of Strabo, new local observations are requisite before this part of physical geography can be properly understood. The Persian mountains, separately taken, appear of moderate height, yet, being covered with snow, for a great part of the year, they must be concluded to rest on a very elevated base.||

One of the distinctive characters of the plateau of Persia is its great extent of deserts, which are rather saline than sandy. They are principally five. The most distant is that of Karakum on the north of Khorasan, which is sandy. That which lies between Khorasan and Irak-Adjeim, called the Great Salt Desert, is 360 miles long, and 190 broad, and appears to join that which forms the northern part of the province of Kermán, the Caramania Desert of the ancients; these, along with the deserts of Kiab and of Mekran, occupy three-tenths of the country. In the Great Salt Desert the layer of crystallized sea salt which covers the surface of the ground is in several places an inch in thickness. According to Beauchamp, it is in this desert, not far from Kom, that the enchanted mountain Télémé is found, from which the word talisman is derived. This arid and steep mountain appears to alter its form according to the points from which it is seen. The black moving sand with which it is covered contributes to multiply these illusory appearances. A small stream flows past it, the water of which is remarkably heavy and saline.\n
The Persian deserts, so similar in other particulars to those of Africa, present

* Forster's Travels from Bengal to Petersburgh. See the map accompanying Mr. Elphinston's account of Caubul. Also Book XXXV. of this work.
¶ Beauchamp, Journal des Sçavans, 1790, p. 734.
also the same kind of lakes, but of larger size. There are more than 300
thirty which have no outlets. That of Zereh or Durra, covers an extent of 1100
square miles, and receives the river Hindem, or Helmand, which is upwards of 400 miles in length. This lake is the Aris Palus of the ancients. But it belongs
more properly to eastern Persia or Afghanistan.

Among the high mountains of Adzerbaidjan and of Armenia, is the great lake of Urmia, or Ooroomia, so called from the name of a town situated at its southern extremity. This lake is represented as about 47 miles long and half as broad. This lake must be the Spanda of Strabo, and the Capoton of the Armenian geography, at least if d'Anville is correct in making the Van lake, which is a very short way to the west, the Arises of antiquity. This lake is very saline, and yields a bitter salt when evaporated, and one-third more in quantity than that obtained from the waters of the sea. When the rivers which supply it are much swollen, the surface of this lake sometimes rises thirty feet. From the strata of shells found on the south and north, it seems to have formerly extended farther in these directions.† It contains no fish. The limestone mountains in its neighbourhood are remarkable, as being the country of the famous Assassins. Lake Erivan, about one hundred miles to the north of it, is about seventy miles in circumference. It has a small island in the middle, and abounds in carp and trout. It is the Lycanthes of Ptolemy.

The Euphrates and the Tigris cannot now be numbered among the rivers of Persia. Such others as run into the Persian Gulf are small, and require no observations. The largest river of Khorasan, the Tédiszn of the moderns, and the Oxus of the ancients, loses itself in a marshy lake, according to Wahl, but it is more probable that it passes through the marshes which it forms to communicate with the Gulf of Balkan. Among the other Persian rivers which fall into the Caspian Sea, there is only one of considerable length, the Kizil-Ozen, as the inhabitants of the country call it in the Turcoman language, the Sefyrood of the Persians, and the Mardus of the ancients. Its waters run in a series of cascades, through picturesque ravines, and at its mouth it runs with great force into the sea, the surface of which is affected by it a considerable way from the shore.‡

The soil of the plains is generally a strong clay. The mountains have not been examined; but they seem to consist chiefly of limestone, an observation which is confirmed by the numerous caverns mentioned by the ancients. A French traveller has recently crossed in two places the great chain of Alpon mountains, by which Ghilan and Mazanderan are encompassed, and in which the peak of Demavend rises to a height of 800 feet above the plains of Tehran, which are at least 2800 above the level of the Caspian. All the rocks which he saw consisted of carbonate and sulphate of lime in the form of limestone, marble, and alabaster, with numerous blocks of granite lying in different places.

The reefs which border the coast of Mazanderan are of granite.§

Modern travellers have observed in the westmost chain, the Zagrus, consisting of rocks of sandstone, limestone and granite succeeding one another in the same manner as they generally do in our mountains in Europe.|| From the description of Tournesett, we are led to believe that Ararat and the neighbouring chains contain a large quantity of slate. It is probable that a country of such extent will present to future observers all sorts of rocks, soils, and geological appearances. If Chardin's account is true, the internal structure of the country is laid open on the surface, the mountains being the most arid and sterile in the world, consisting of dry rocks, without wood or any herbaceous plants.**

The last mentioned traveller infers from the vast extent of the coun-
try, that it is very little subject to earthquakes. If this be the case, Ghilan and Mazanderan must be excepted, being liable to shocks of this kind both violent and fre-

quent.* The country round Tabriz experienced, in 1721, one of the most dreadful disasters of this kind that are mentioned in history;† the mountains of Irak-Adjem, among which the Elboors is not the only volcano,‡ and finally, the southermost chains of Farsistan and Laristan, where recent examples of earthquakes have occurred.§

"My father's empire," said the younger Cyrus to Xenophon, "is so large, that people perish with cold at the one extremity, while they are suffocated with heat at the other." This description still applies to Persia. It has three leading distinctions of climate. The shores of the Caspian Sea, being about sixty feet lower than those of the ocean, experience in summer stronger and more lasting heats than those of the West Indies.|| The winter in that quarter is very mild, from the temperate winds which come from the surface of the Caspian. But in both seasons an excessive humidity prevails. Steel speedily rusts, and the inhabitants have a feverish paleness of complexion. The central plateau presents the second climate. Surrounded with mountains, on many of which the snow lies the whole year, this region, from Kandahar to Ispahan, experiences by turns excessively hot summers, and equally rigorous winters. From March till May strong winds are frequent; but from May till September the air is serene, and refreshed by a night breeze. Some have represented the clearness of the sky in the night to be such, that a book might be read by star light. From September to November high winds again prevail; the air is extremely dry; thunder and lightning are rare; a rainbow is seldom seen: but in the spring the vegetation suffers much from the hail. This general character of the climate is subject to local modifications; Farsistan, particularly in the valley of Shiraz, is exempt both from excessive heats and rigorous cold; and the mountains of Koordistan and Adjerdijan derive from their great elevation and their forests a more humid atmosphere and a more equal temperature.

Here, however, the winters are described as sometimes extremely rigorous. Travellers are often caught in snow storms, in which they inevitably perish. Many instances have occurred, in which not only solitary individuals, but whole companies and caravans have been overwhelmed. Sir Robert Ker Porter, while describing these scenes, mentions two circumstances relative to the dispositions of the inhabitants, which we shall take the opportunity of stating in their present connexion; both being strange instances of inattention to the precautions dictated by personal feeling and common prudence, as well as humanity. The one is, that few of them of either sex put on additional clothing, though many of them, both old and young, go with the breast entirely bare; a neglect which, in some measure, accounts for the most melancholy catastrophes, in consequence of an accidental exposure under a degree of frost from which a Gossack, covered with his cloak or boorka, or a Russian under his shaub, would hardly feel inconvenience. Scarcely a day passes in winter without one or two persons being found frozen to death in the neighbourhood of the towns. The other circumstance is, the rigid execution of the general regulations about the closing of the gates, to the loss of numerous lives. The gates of all towns and cities of Persia are shut a little after sunset, and re-opened at sunrise; and many who, from carelessness or unavoidable delay, arrive later at the gate, perish in the cold of the night. Hence, during the inclement season, in the north-west provinces, a terrible scene of death often unfolds itself close to the threshold at the opening of the gates; old and young, children and animals, lying in one lifeless heap.

The face of nature suffers a complete change as we descend from the central plateau to the shores of the Persian Gulf. Here the samiel or burning wind sometimes destroys the imprudent traveller. Strabo tells us that the inhabitants of Susa durst not go from home in the middle of the day, and that

* Lorch, Magasin Géogr. de Busching, iii. 8-38. Herbert, Voyage, p. 208.
† Wahl, ii. 397.
‡ Niebuhr's Travels, ii. 169, (in German.)
§ Olivier, v. 126.
|| Olivier, v. 223.
those who were rash enough to expose themselves to the violent heats often fell down dead in the streets.*

In western Persia, or the present Persian kingdom, three regions are deserving of notice; the southern mountains, the plateau, and the northern mountains. Although Farsistan, or Persia properly so called, seems to have lost the forests with which all its mountains were formerly covered, there are still in the valley of Shiraz delightful walks, shadowed by oriental planes, medlar trees, weeping willows, and poplars of extraordinary size.† In the midst of these fine trees many plants remarkable for beauty and for fragrance are lavished by the hand of nature: such as blue and scarlet anemonies, jessamines, hypericums, tulips, and ranunculus. Olivier gathered in that country several plants formerly unknown to the botanist. He found on the Elboors the Chrysanthemum praeflum, and the Nepeta longiflora. One plant, then new, is since named from his name, Oliviera decum- bens. It is of the umbellate order, and smells like thyme.

The elevated plains of central Persia are covered with those species which affect a saline soil; among which is the Statica Tartarica. But some of the open plains, not yet inundated by sand, still present fertile pastures, where, in former times, the horses fed, which were appropriated to draw the chariot of the great king.

Towards the shores of the Caspian Sea, we find a greater vigour in the growth of the forests. The long lying of the snow, and a very protracted spring, are favourable to vegetation. The atmosphere, warm and moist, permits the sugar cane to grow, and even to produce tolerable sugar. Travellers forcing their way by climbing through thickets of sweet briars and honeysuckles, on the varied and picturesque sides of the hills, find themselves surrounded with acacias, oaks, lindens, and chestnut trees. Above they see the summits crowned with cedars, cyresses, and pines of various descriptions.‡ The sumach, so useful from its astrigent virtue in the arts of dyeing and tanning, grows there in abundance. The flowering or mannah-ash, (Frangulus ornus) is equally common. Ghilan abounds so much in boxwood, that camels cannot be employed in that country. The leaves of this tree are to that animal poisonous, and it has no instinct leading it to avoid them. An old observer, Aristobulus, quoted by Strabe, states that the ancient Hyrcania, on the south-east side of the Caspian Sea, though rich in oaks and many other trees, produced no pines.

But Persia, whose varied soil affords so much pleasure to the botanist, and the painter, has but a small extent of arable land. In the central and southern provinces, a hard dry clay succeeds to barren rocks. This soil requires artificial irrigations. Unfortunately, the canals subservient to this purpose have been destroyed in the frequent civil wars, in order to cut off the supply of water from an enemy. Scarcely a twentieth part of the country is at this day in cultivation. The most common grain in Persia is wheat, the quality of which is excellent. Rice, however, is regarded by the inhabitants as the most delicious food. It grows mostly in the north, where the provinces are well watered. Barley and millet are also grown, but oats very rarely. The Armenians sow a little rye. The ploughs, small and drawn by lean oxen, merely scratch the surface. The hopes of the farmer are in some seasons sadly disappointed, and general famine produced by the want of rain. This was the case in the summer of the year 1781, in the province of Irak-Adjemi and the neighbourhood. The inhabitants then suffered under the consequences of two successive years of this description. Dogs, cats, mules, and horses, were devoured by the starving natives. An unhappy pair at Kashan killed two of their female infants for food; several similar instances occurred. Thousands in attempting to fly to other places where the famine might be less severe, became exhausted by the way, so that the roads were covered with the dying and the dead. Such scenes were alleviated, but not prevented, by distinguished acts of munificence.

* Strabo, lib. xv. p. 503.
† Franklin’s Travels in Persia. See Langles’ Pocket Collection of Travels.
‡ Olivier, Voyage, V. p. 317, sqq.
which were extended on that occasion to the people, by the governor and prince, Abba Mirza.* Agriculture is in some instances hampered by certain impolitic regulations. Land under lease from the crown pays rent according to its produce. Sentinels are placed on the ground, not merely to preserve the harvest from the depredations of strangers, but more particularly to prevent the tenant from stealing his own property, a manoeuvre sometimes adopted to lessen the payment of rent by offering an excuse of a robbery having been committed on the produce.† This regulation must discourage the expenditures of capital and labour in agricultural improvements.

Persia is in some measure consoled for these disadvantages by the excellence of her fruits. There are twenty sorts of melons; the finest grows in Khorasan. In Persia this fruit is extremely succulent, and contributes greatly to health. They are sometimes so large that two or three are a full load for a man. The most esteemed fruits of Europe are believed to have been brought originally from Persia, as the fig, the pomegranate, the mulberry, the almond, the peach, and the apricot. The oranges are of enormous size, and are found in places sheltered by the mountains. The best reflected from the sand is particularly favourable to the cultivation of the lemon. The vine here displays all its riches, but it is only cultivated by the Guebres or worshippers of fire. There are among other varieties of the vine three particularly excellent.‡ That of Shiraz, reputed to be the best, is kept for the use of the sovereign and the grandees of the court. That of Yazd is very delicate, and is transported to Lasc and Ormus. That of Isphahan is distinguished for its delicious sweetness.¶

Among the vegetable tribes that are useful in the arts, Persia produces linen, hemp, tobacco, sesameum, which gives an oil, cotton, saffron, turpentine, mastic, various gums, and gall nuts. Mazanderan is the only province from which olive oil is obtained, although the wild olive grows in all moist situations. Strabo informs us that the attempts made to introduce the olive into Media were unsuccessful.

It is said that Persia produces annually 20,000 balls of silk, each weighing 216 lbs. Only about 1000 of these are used in the country. The rest is sold in Turkey, India, and Russia. Opium, manna, and rhubarb are among the exports. The opium poppy, or Papaver somniferum, is cultivated in large quantities.

The Persian soldiers use Tartar horses, on one of which Sherim Khan once travelled 302 miles in fifty-eight hours; more than five miles per hour, in one uninterrupted journey. The horses of Persia are esteemed the finest and handsomest of any in the east, although, in fleetness, inferior to the Arabian. They are higher than those of England, with a small head, delicate limbs, and a well proportioned body. They are gentle, hard working, lively, and swift. The mules are greatly in request. The ass resembles that of Europe, but an excellent breed has been introduced from Arabia. It is neat, vivacious, and docile, with soft hair, carrying the head high. The camel is very common. The horned cattle are similar to those of Europe. The sheep drag behind them a tail of 80 lbs. weight, which is flat and heart-shaped, becoming widest at the extremity. This appendage is formed of fat, and affords good eating. Numerous flocks of them are maintained on the pastures of Erivan. Pigs are but seldom seen in Persia, being proscribed both among Jews and Mahometans, though recommended for the salubrity of their flesh by Hippocrates.

Some of the forests contain deer and antelopes. Hares breed in great numbers in the uncultivated lands. In the shady woods, the wild boar, the bear, the lion, and according to some the smaller kind of tiger lurk. According to M. Olivier, there is in the neighbourhood of the Euphrates, a species of lion without a mane, which was known to the ancients. It is undoubtedly to this gentle creature, that the accounts of historians refer when they tell us, that the Persians had long been in the practice of taming animals of prey, so as even to hunt with lions, tigers, leopards, panthers, and owces. Luciusius says that the Parthians

* Porter's Travels, &c. vol. i. p. 386.
† Ibidem, p. 381.
‡ Olivier, v. 281, &c. Chardin, viii. 158. iii. 337, and a note by Langlès.
¶ Some of the forests contain deer and antelopes. Hares breed in great numbers in the uncultivated lands. In the shady woods, the wild boar, the bear, the lion, and according to some the smaller kind of tiger lurk. According to M. Olivier, there is in the neighbourhood of the Euphrates, a species of lion without a mane, which was known to the ancients. It is undoubtedly to this gentle creature, that the accounts of historians refer when they tell us, that the Persians had long been in the practice of taming animals of prey, so as even to hunt with lions, tigers, leopards, panthers, and owces. Luciusius says that the Parthians
had attempted, without success, to employ liens along with their armies against the enemy.

The Caspian cat (the Felis Chase of Gmelin,) the Aha, or Cerous pygargus, and other animals live in the deserts and the forests adjoining to the Caspian Sea. There is a distinct species of squirrel called the Persian. The Persian boar is an animal of great ferocity. The wild ass lives in the deserts of the centre; the hyena and jackal in the provinces of the south. The Caspian Sea produces the sturgeon in great abundance, and a delicious sort of carp. The pigeon and partridge furnish excellent food, which the inhabitants share with the birds of prey, the eagle, the vulture, and the falcon, animals which number among the native species of the wild mountains.

BOOK XXXII.

PERSIA CONTINUED.

Topographical details on the Provinces and Cities.

Having taken a view of Persia as a whole, we shall now turn our attention to its chief towns, and other objects of special geography, taking for our point of departure the former capital Isphahan, beginning with the central and north-west provinces, and proceeding to those of the south-east and east.

The vast province of Irak-Adjemi, which nearly corresponds to the great Media of the ancients, takes its name from the first founder of the Persian monarchy; the Dyemshid of the Orientalists, and the Achaemenes of the Greeks. If shah and mecro are considered as terminations, these two words may be deduced to one root, Adjemen or Achem. With the Arabians Irak signifies Babylonia, and Adjemi is their name for the Persians. The name of the province, therefore, means Persian Babylonia. This province occupies the greater part of the central steau of Persia, and the description already given of this plateau is particularly applicable to it.

On its southern boundary we find the remains of Isphahan, that immense city, which Chardin gives thirty-three miles in circumference, and which, when he visited it was contained from 6 to 700,000 inhabitants. This superb capital, which the Persians considered as one half of the world, has now left a mere shadow of its former grandeur. The large squares which served as pleasure grounds to the avenues, now converted into common gardens. We may travel for three hours on country roads, which were formerly streets leading to the centre of the city. Still, however, according to the account of M. Olivier, the bazaars constructed by Sha Abbas, which are covered with vaults, and lighted by numerous domes, are of prodigious extent, and proclaim the former magnificence of the city. Sir R. K. Porter says he travelled under its massive arches considerably more than a mile, to where they terminate at the northern angle of the Royal Square, and that, after crossing the square, the bazar is continued at the opposite angle.

This vast square, called the Maidan Shah, one of the most extensive in the world, was formerly one of the chief ornaments of Isphahan; enriched with fountains, where every commodity of luxury and splendid manufacture was exposed. Here also the troops were exercised, and the nobility exhibited their Asiatic tournaments before their king. In the centre of each side of this immense area, stands

Wahl, Asia, i. 209, 217.
† Olivier, Voyage, etc. v. p. 176.
some edifice, remarkable for grandeur or for character. In the north-west is the great gate of entrance to the bazar, on which, in former times, stood the celebrated clock of Isphahan. The south-eastern side shows the Meashed-Shah, a superb mosque, built by Shah-Abbas, and dedicated to Mehedi, one of the twelve Imams. On the north-east is the mosque of Loof Ullah; and on the south-west the Ali Kapi, or gate of Ali, forms a majestic parallel to the bazar porch on the opposite side. The length of the square is about 2000 feet, and its breadth 700. Each face presents a double range of arcades, the one over the other; the longest range consisting of eighty-six, and the shortest of thirty. At a few paces from these arcades there is a constant supply of water, running through a casal of black marble, and opening into a variety of basins of the same substance, which are constantly full, and rendered more cool and refreshing by a close shade of elegant trees. The Safi, or Ali Kapi gate, is described as one of the most perfect pieces of brick work to be found in the Persian empire. Over the great entrance it rises into several stories, and the flights of steps which lead to them are formed of the most beautiful variegated porcelain. The roof of the large chamber over the gate is sumptuously gilt and carved, and supported by eighteen lofty octagonal pillars, once richly embazoned in gold, but now faded. It is open on all sides but one. On the side nearest the balustrade facing the square, a round platform marks the spot on which Shah Abbas used to sit, and from whence he reviewed his chivalry, galloping and skirmishing beneath, or witnessed the combats of wild animals. The freshness of all the buildings is particularly striking to a European, or the inhabitant of any comparatively humid country, in which the atmosphere cherishes a vegetation of mosses, lichens, and other cryptogamous plants, which we particularly associate in our minds with the spectacle of decay. Above this there is a numerous range of small rooms, some of them evidently appropriated to purposes of carousal. From the roof of the building an extensive view of the city is obtained. In former times this was undoubtedly splendid, but at present, with the exception of the palaces in the gardens, the whole mass below is one mouldering succession of ruinous houses, mosques, and shapeless structures, which had formerly been the mansions of the nobility, broken by groups or lines of various tall trees, which once made part of the gardens of the houses now in ruins. Isphahan, though two-thirds of it are in ruins, contains more than 200,000 inhabitants. There all the mechanical arts are executed in the best style. In the south part of the city is to be seen the famous tract called Sakerbag, which bears a great resemblance to Versailles. It consists of a series of gardens, enclosed within four majestic walls: each garden has a separate palace adapted to the seasons, or to the changing humour of the royal planter, who called them Hesht Behest, or the "Eight Paradises." The prevailing plan of them all is that of long parallel walks, shaded by even rows of tall umbrageous places, the celebrated chinar trees, of which the Persians are extremely fond, and which grow here in perfection. These are interspersed with a variety of fruit trees, and all kinds of flowering shrubs. Canals flow down the avenue in straight lines, and generally terminate in a large marble basin, ornamented with sparkling fountains of square or octagon shapes. The great number of avenues and canals, and the numbers of rills which are seen from any one point, have an uncommonly magnificent effect, and the different palaces belonging to the eight paradises are described at different openings, glittering like so many gay pavilions. The traveller now mentioned, however, on drawing nearer, was less pleased with the architectural taste displayed in these structures. He found them gorgeous, but heavy and discordant, though loaded with every species of external ornament, in gilding, carving, painting, and inlaid mirror-glass. This was particularly the case with the Shehel Setoon, or Palace of Forty Pillars, the favourite residence of the latter Sophi kings. The exhaustless profusion of its splendid materials reflecting their own golden or crystal lights on each other, along with all the variegated colours of the garden, gave the appearance of an entire surface formed of polished silver and mother-of-pearl set with precious stones, a scene well fitted for an eastern poet's dream, or some magic.

* According to M. T—..., there are 20,000 houses.
vision in the tales of an Arabian night. The front is entirely open to the garden, and it is sustained by a double range of columns, upwards of forty feet high, each column shooting up from the united backs of four lions of white marble, and the shafts covered with arabesque patterns, and foliages in looking-glass, gilding and painting; some twisting spirally, others winding in golden wreaths, or running into ozenges, stars, connecting circles, and many intricacies of fancy and ingenious workmanship. The ceiling is equally ornamented, particularly with the figures of all sorts of animals, from insects to the largest quadrupeds. At some distance within the front is the entrance to a vast interior saloon, in which all the caprice and cost of eastern magnificence are incredibly exhibited. The floors of both apartments are covered with the richest carpets of the age of Shah-Abbas, but as fresh as if just laid down, a proof of the excellence of the dye, through some ascribe this and all similar phenomena, without any meaning, to the purity of the climate. So far as this cause is concerned, the only property of the atmosphere is the absence of dampness. A door in one angle of this saloon, opens into a spacious and lofty banquetting hall, the sides of which are hung with pictures, mostly descriptive of convivial scenes, similar representations being also ornamented on the doors and panels of the room near the floor. Its lower range is spotted with little recesses taking the shapes of bottles, fan-gongs, and other vessels indispensable in those days at a Persian feast, though of a character equally different from the abstemiousness that marked the board of the great Cyrus, and from the temperance which at the present moment presides at the Persian court. Sir R. K. Porter gives an interesting account of the subjects and occasion of six large pictures, four of which represent royal entertainments given to different ambassadors in the reign of Shah-Abbas, and two are battle pieces; these too, in generally ill-conceived in point of taste, but executed with great nicety and observation. The hall of audience exhibits a profusion of very recent paintings, among which are several of the king, but wretched likenesses, and altogether they betray a decline of this fine art in Persia, while a similar comparison of the ornamented work shows that considerable progress in that department has been made. The river Zenderood, which divides the superb promenade in two, has a beautiful bridge of hewn stone and brick, composed of thirty-six arches, with a covered gallery, in the form of a terrace on each side, commanding a delightful view of the surrounding gardens, and the suburb of Julpha, situated on the margin of the river, though now in ruins. A little lower is another bridge built by Shah-Abbas, with wider galleries, and a hexagonal circuit of buildings in the centre. Under the arches, the bottom of the river is so paved as to make the water fall in the form of a cascade, which is in full view of a fine palace built directly opposite, and surrounded with beautiful gardens. That these bridges might have a sufficient river flowing beneath them, Shah-Abbas introduced into the bed of the Zenderood, another river, from a distance of eight miles, by cutting a passage through some mountains at a great expense. Chardin describes the size of the river as equaling in spring that of the Seine at Paris in winter.

The suburb of Julpha, which we have mentioned, also owes its origin to Shah-Abbas, who founded it for a body of Armenians whom he transplanted from their own country. The inhabitants of the opulent town of Julpha on the Araxes, having particularly conciliated his favour, by expelling their Turkish garrison at the sight of his troops, and opening their gates to receive him, he treated them as friends, but would not leave such valuable subjects behind so near the frontier, where they might at a future period fall into the hands of the enemy. He demolished the town, brought the inhabitants to Persia, and stationed them in this great suburb, naming it Julpha, and gave them here as well as in other parts of his dominions, full toleration for the publicity of their religious institutions, and some valuable privileges as merchants. This occurred about the year 1603, and for more than a century the colony continued to prosper. To it Isphahan owed its great commercial character and its wealth. But in the Afghan invasion, the ill-advised monarch Shah Houssein

deprived the inhabitants of Julpha of their arms, and it was abandoned to become the first prey in the bloody and rapacious hands of the Afghans. The noblest and best fell in front of these assaults, and few survived to maintain the good old character of the Armenian merchants. Their transactions are now only characterized by low cunning. Their trade and gains, and every circumstance that confers respectability, have been miserably reduced, and their habits have become disgustingly vicious, even the women being remarked for intemperance. A strange irregularity has obtained a sort of sanction among them from established usage, that of temporary marriages. The mothers bargain with strangers for their daughters in this species of connection. The young women are said to be in every respect faithful to their lords during the whole term of agreement; when the term expires, they are considered as free but not degraded, and the pecuniary consideration which they have obtained, operates as a recommendation to a more permanent matrimonial alliance with their own countrymen. Not countenanced by Christianity, these arrangements are of course viewed with marked reprobation by consistent professors of that religion, and it is alleged that the want of principle thus betrayed lowers their general character even among the Mahometans, with whom concubinage is legitimate. The degree of neglect to which the children procreated by connections of this description are subjected is justly viewed as aggravating their immorality.*

Revival of Isphahan. • At present, Isphahan is in some degree recovering from its state of abject decay. Mohammed Hussein, whose talents have raised him to the place of Ameer-a-Doolah, or second minister of the king, being a native of Isphahan, has erected in it a splendid new palace, and enlarged and beautified many of the former edifices. Having, in the faithful discharge of his public duty, encouraged agriculture, and colonized many deserted villages in the country, he has used similar means to populate the inhabitable streets of the city, by promoting the old manufactories, and striving to attract commerce back to its ancient channels. In Isphahan as well as in the surrounding country, the effects of his good intentions are manifested, and if security in the possession of property were permanently established, and industrious habits formed, this desolate city might regain its ancient prosperity.

Kashan. • On the road from Isphahan to Teheran, the residence of Shah Futté Ali, we pass by Kashan, containing 5000 houses, and a palace built by Abbas the Great. The silk brocades of this place are at present, as in former times, celebrated all over Persia. A particularly rich shawl of silk fabric is also made here in great request. It contains besides, a manufactury of copper vessels, which forms an article of commerce between the town and its adjacent provinces, so that Kashan is one of the most thriving places in that quarter of the empire. The town is handsome, but more infested by scorpions of the most venomous description than any other part of the country.†

Kom. • After this, we come to Kom, a large town of 2000 houses, where there is a mosque, to which many devout pilgrims resort, but it is partly destroyed by an earthquake. Large sums are paid by individuals for the privilege of having their remains buried here, as it has been the burying place of many sanctified characters. But this place has, notwithstanding its sanctity, been treated with a relentless spirit of destruction even by Mahometan pruders. About a century ago, the Afghans, being of a different sect, that of the Sunnites, gave it a blow from which it has never recovered. The water here is brackish.‡ Owing to its proximity to the great salt desert, the heat of the summers is insupportable. It is hemmed in by rocky mountains to the southward.

Teheran. • Teheran has acquired considerable importance by becoming the ordinary residence of the sovereign. It consists of 7000 houses. It is not newly built, as M. Olivier tells us: in the time of Abbas the Great it was an important place, and some of the last Sophis often resided in it.§ During winter, it contains from 60 to 70,000 inhabitants. The houses are of clay or mud, as is the case through

the whole of Persia, and the walls comprehend a large extent of ground not yet occupied. The city is of a square form, and in the middle is another space also square, surrounded with walls, and within which is the royal palace, which is a structure of great extent and highly magnificent. For a position of general surveillance, the Persian monarch could hardly have chosen a better situation, being quite central between the north-west provinces, which border on Georgia, and those to the east, which are exposed to incursions from the Turcomans and Afghans. But it is not strictly the best locality, being extremely unhealthy during summer, from the exhalations emitted by the low ground moistened by the spring torrents which pour from the adjacent heights; although the cause by giving birth to an early verdure, contributes to the pleasantness of its general aspect. In summer, therefore, the court flies to the more temperate plains of Sulłtanah, or Gyanj, and the people to towns or villages among the hills.

To the south-east of Tehran are to be found the extensive ruins of Ray. Ray, the ancient Rhagae or Rhagiana, known for a short period under the name of Arsacis,* 2000 stadia to the east of Hamadan, the ancient Ecbatana, and 500 from the Pylos Caspia. Going north-west from Tehran, we come to the cities of Kasbin or Kasoom, and Sulultanich. This last, situated in a fine valley among rugged mountains, in a cold climate, has for a long time gone to utter decay.† In the 18th century, it was the thriving focus of the trade between India and Europe.‡ Zinghan is a town of some importance, twenty-four miles from Sultanich,§ containing 2000 houses. Kasbin, according to Beauchamp, who determined its longitude, contained in 1787, 10 or 12,000 souls; the number of their houses was rated at 3500. The old palace of the king is still to be seen here, but in very bad condition. It is celebrated for its manufacture of sabres. Ferriere says that it contains considerable copper manufactures, the metal being obtained from the adjacent mountains. Copper vessels of all kinds are better made here than in Turkey. There are always numerous caravans in the place; from Khorasan or Adzerbidjan, which make it an entrepôt of trade. It has been more than once nearly overwhelmed with earthquakes, so that at present little remains of its past grandeur but broken masses of domes and towers, and long lines of mouldering walls; yet the existing town has many fine edifices, and spacious gardens, producing fruits of great variety and delicacy of flavour.

Hamadan is, from its situation, one of the most agreeable towns in Persia. The houses are indifferently built, but being separated by gardens, which are watered by streams from the hills, they form a very agreeable whole. Here is the tomb of Avicenna.†† Passing east Elwend on the south-west of Hamadan, we come to Kermannshah, a flourishing town of 3000 houses, near which is Kermannshah mount Risooton, containing a singular monument called "the throne of Rustam." It consists of two halls, shaped out of the solid rock, in the form of a portico, the one being nearly double the size of the other; the largest is from twenty to thirty feet in both dimensions, and contains a colossal equestrian statue, besides several other statues, baso-relieves which are chiefly hunting pieces, and several inscriptions, all cut out in the solid mountain.‡‡

To the north of Kermannshah, and the west of Hamadan and of Sul-tanié, we have a very mountainous country, where the grass and the soilage are never searched by the summer heats; a country inhabited by the independent Koords, who are always ready to save their tents and their flocks out of the reach of any controlling power. This country is called Al-Djebel, or Persian Koor-distan. No frequented road passes through it. The snow remains on the mountains till August.*** The valleys are filled with agreeable woods, orchards, cultivated fields, and pastures, which are always verdant. The villages are generally built on

* Marnier, Geographie des Grecs et Romains, v. pars. 102, &c.
† Cartwright on Persia, p. 245. (Elzevir.)
‡ Ruy Gonzales Clavijo.
§ Various MS. Journals.
†† Beddul Kerim’s Travels from India to Mecca, translated into French by Langlés, p. 97.
‡‡ Memoires sur diverses Antiquités de la Perse, par M. Sylvestre de Bacy, in 4to, 1793, p. 211.
the tops of hills, and the burying grounds in similar situations. The Soomrite is
Senney. here the prevalent form of Islamism. Senney, the chief town, and con-
taining 3000 houses, is surrounded by a very rich cultivation. The whole country
is capable of furnishing 20,000 horsemen. Some of the tribes are entirely inde-
pendent, as the Mekris, who have a capital called Shass-Poola.

Adzerbidjan. We are better acquainted with Adzerbidjan, the Adjerbadjan of the
Zenda Vesta, and the Atropatena of the ancients. These names signify "the
Country of Fire," either from the worship of that element having taken its origin in
this country, or from the volcanic eruptions to which it is subject. It is hilly, rugged,
and cold; but possesses valleys which are very fertile in fruit and in madder. Here
is Tabriz, or Tauris, a considerable town of 7000 houses. The bazzars
or Tauris. and other public buildings, are very spacious; and the great square is said
to be capable of containing 30,000 men drawn up in battle array. Tauris was the resi-
dence of the Persian monarchs for several centuries. It still possesses a great silk
trade. The continual resort of Turks, Georgians, and Kourds; gives it an appearance
of great populousness. A large quantity of shagreen skin is prepared here, an article
much used in Persia for shoes. This town is remarkable for its fine mosques faced
with glazed bricks, and ornamented with stones of alabaster, a rock common in the
neighbourhood.

At present Tabriz is well known, from being the capital of the province of Adzer-
bidjan, and the principal residence of the heir-apparent to the Persian crown, Abbas
Mirza, who is governor of the province. In distant ages this city rivaled Ecbatana.

It has often been the victim of the contortions of fire, and has suffered
in repeated wars from Turks, Persians, and Tartars. But its most
destructive enemies have been two fatal earthquakes which occurred in the last cen-
tury, in the years 1737, and 1797, and laid it in ruins. During these dreadful
catastrophes upwards of 100,000 of the inhabitants perished. Yet a new city has
risen over the ruins, and at present enjoys equal prospect of increasing prosperity.
It has been re-fortified by the prince, and surrounded with a thick wall, protected by
bastions and towers, with the addition of a very deep dry ditch. Out of 250 mosques
mentioned by Chardin, the ruins of only three are visible. The most considerable
is that of Ali-Shah, erected 600 years ago by Ali-Koja, and still presenting lofty
arches, and the mouldering vaulted work of splendid domes; the whole of the build-
ing within and without has been cased with lacquered tiles of porcelain, adjusted
into intricate and elaborate figures, with an ingenuity and taste which would honour
the most accomplished artist of any age. The colours of those decorations are
green, dark and light-blue, interspersed with Arabic sentences in gilt letters; and a
broad band of similar inscriptions, formed in white on this beautifully varied ground,
and interwoven with flowers in green and gold, winds round the entire extent of the
building.* This fine ruin is within the limits of the new city, together with the re-
 mains of the citadel. Here part of the old palace, with its attendant mosque, may
also be traced, executed in brick work, and put together with the nicest care. This
city has often changed with respect to its relative importance, and the numbers of
its houses and inhabitants, from the effects of war, massacre, and forcible emi-
gration.

Maraga. The south-west part of Adzerbidjan, contains also the town of Ma-
rage, consisting of 3000 houses. This part is almost entirely comprehended in the
basin of the lake Oormia. The town of Oormia is built on the west side of the lake
among steep mountains, where the winter is of nine months duration. The north-
west part of Adzerbidjan is formed by the basin of the Karasou, a river which runs
into the Araxes. It contains Ardshil, a good commercial town of 2500
houses. Excellent fruits are gathered in the neighbourhood, and agriculture is kept
up by numerous canals for irrigation.

Persian Ar-
menia. Persian Armenia or Erivan is a large valley, forming part of the basin
of the Araxes, a river which in that part of its course still preserves its

* Porter's Travels in Persia, vol. i.
impetuous character, and, as described by the poets, appears to hate bridges.* The principal bridge, that of Djoolia, has often been carried away. The lake | Erivan lake. of Erivan, enclosed in a basin of its own, has no outlet. Its waters are clear, and abound in fish. In this country, which is filled with highly picturesque situations, the climate is healthy, though somewhat foggy; a long and severe winter produces many falls of snow; the summer is cold.† For several months the Armenian peasantry cover their vines with earth. They maintain that this is the place where the vine was first cultivated by Noah, and the quality of the wine which it affords ranks very high. The capital of Persian Armenia is Erivan. It is surrounded by an earthen wall. It has been in the hands of the Persians since 1635, when it was included among the conquests of Nadir-Shah. It is east of the residence of the Persian governor, who has the title of Sirdar, or general, and holds his office by a sort of military tenure, paying no tribute, but furnishing a certain number of troops during war. Its natural situation is remarkably beautiful. The river Zengay‡, which passes the city on its way to join the Araxes, and is itself previously augmented by numerous streams in the neighbourhood of this city, contributes greatly to beauty and enlivens it; while the assemblage of mountains and vale through which it flows can hardly be excelled. Another smaller river called the Queyboorak,§ is expended in supplying water for the necessities of the city. But Erivan has no longer the aspect of the capital of a large province, having been the scene of sanguinary invasions. Its appearance is ominous, with the exception of the fortress. The number of its inhabitants is supposed not to exceed 15,000. A short way to the south-west is the celebrated Armenian monastery of Etch-May-Asoon, or "the three churches," and mount Ararat, which is a sort of frontier to the territories of Persia and Turkey. The monastery has very extensive buildings, and is much resorted to by the Armenian pilgrims. Here the patriarch leads a life of as great austerity as the other monks. In the Armenian church the fasts are observed with a frequency and a rigour proportioned to the ecclesiastical dignity of individuals. Naccitchevan, or Nakashivan, was formerly the second town in this province, but it has gone to decay, and its place has been occupied by Khoy, a town consisting of 1100 houses. At this place the present governor of the province, Abbas Mirza, spends a short time every summer in hawking and hunting; and it shares with Tabriz the views which this prince entertains of general improvement. It is more pleasantly situated than that capital, and possesses a safer foundation, though not lying so central for all the objects of the governor.

Many of the oriental, and several Christian authors, regard Persia Armenia as the first cradle of the human race. Here they tell us, was the vale of Eden, the happy abode of our first parents. Here Noah's ark, after having floated over a shoreless ocean, rested on the summit of Ararat. But these two ideas have no natural connexion with one another. There is no necessity for the scene of our creation having been the same spot which was afterwards the quarter where the survivors of the flood were landed, and from which they were again to people the earth. But this plain distinction seems to have been overlooked, and the Euphrates has always been fixed on as one of the four rivers of paradise, respecting which no doubt could be entertained.§ Deluc held that the terrestrial paradise was situated on an antediluvian continent, which the flood destroyed, and converted into a part of the ocean; and that the names Frat, or Euphrates, and Hiddekel, or Tigris, were given to those of paradise, the remembrance of which had been transmitted to posterity. This hypothesis has been thought most in unison with the books of Moses, considered as minute historical records. Some of the German literati, less scrupulous on this point than M. Deluc, look for the terrestrial paradise on the pre-

* Pontem indignatus Araxes, Virg. L'Araxe gémissant sous un pont qui l'outrage, Louis Racine.
† Philipp. à S. Trinit. p. 73. Tournefort, &c.
‡ Porter describes these two rivers as issuing from lake Erivan, while Mr. Macdonald Kin- neir, with M. Malte-Brun, represents the lake as having no outlet. Tr.
§ Dictionaries of Calmet and of Bruyzen la Martinière, on the words Eden and Paradise. Reland, Dissert. de Situ Paradisi.
sent continent. They consider the geography of the book of Genesis, like the astronomy of the scriptures, as not forming an article of religious faith, but merely a poetical exposition of ideas originating with man, and of traditions transmitted in that unshackled, furnishes explanations which may have some plausibility, but must be altogether uncertain. Some make an Eden of the whole of Persia, as the country first civilized, in contradistinction to the land of Nod or of wretchedness, the country of the wandering tribes, and to which Cain, stained with his brother's blood, was driven. This peopled world was watered by four rivers; the Gihon or Oxus, the Araxes, called also Phasis or Phipos, the Euphrates, and the Hiddekel or the Tigris.* The enchanted garden, the habitation of the first man, was designated by the Persian and Chaldean term Paradis, whence the Greek Paradisos, which was applied to all the royal parks of Persia, and is for that reason given to many places not included in Persia properly so called.† Eden was, on this hypothesis, in some canton of Persia. Others of the learned have understood by Eden, the whole of the east that was known to the first men, of whom traditions were collected in the form of obscure fragments by the Hebrew writers. Eden thus comprehended the basin of the Euphrates, the Indus, named Hind-Dekel, the Ganges or Gihon, and Isabett, called by Ptolemy Besygna, a name considered as allied to Phisun. Admitting bold hypotheses of this nature, some have demonstrated that paradise was nothing else than the smiling valley of Cashmir.‡ These various researches afford but dubious and vague conjectures, and are perhaps worse than idle. We derive little more satisfaction from those which have been formed on Noah's ark. If, with M. Deluc, we admit the universality of the deluge as the effect of a sinking of the earth, and conceive the old continent to have occupied a part of the present ocean, there is nothing absurd in conceiving Mount Ararat to be the resting place of the ark. Armenia and Koerdistan might, at that remote epoch, form a large island, which, being nearer to the level of the sea than it now is, enjoyed a milder temperature. This circumstance, together with its central situation rendering it a convenient source for the diffusion of inhabitants over the rest of the continent, might be urged in favour of the hypothesis; but it is only an hypothesis. Profane history, civil as well as physical, does not go farther back than an epoch in which families of human beings spread, like the animals and the plants, over the whole surface of the earth, presented no irrefragable evidence of their common origin.

Leaving these discussions as equally vain with the curiosity of those who search Mount Ararat for the wreck of Noah's ark, we resume the sober details of our description. In a preceding book we described the provinces of Shirwan, Daghhestan, and Georgia, in the region of Caucasus; countries which once belonged to Persia, but now to Russia. We proceed to that portion of Persia which lies along the Caspian Sea. To the east of Armenia and of Azerbaijan, and to the south of Shirwan, lies the fertile province of Ghilan, pleasing to the eye, but unhealthy. Its wooded mountains, and numerous rice fields, render the air humid. M. Trezel, who has just returned from it, informs us, that in crossing the forests with which it is filled, he was suddenly seized with headache and sickness, which he could only attribute to climate. The powerful exhalations emitted by plants, trees, and stagnant waters. The extreme humidity of the atmosphere rests the insides of watchful, though kept with the utmost care. The inhabitants, however, remark that the women, the mules, and the poultry enjoy very good health. The most unhealthy months of the year are June, July, and August. In October, November, and December, there is generally heavy rain. In 1761 there was such a prodigious fall of snow that the inhabitants were deprived of communication, except by the roofs of their houses. The

* Wahl, Asien, i. 851, sqq.
† Paradiscus, a town of Syria. (Pliny v. 23, Strabo xvi.)—a river of Cilicia. (Plin. v. 27.)—a river of Euphrates. Syria. (Mart. Capela, ix. 5.)
‡ Buttmann's Primitive Geography of the East. (In German.) The same author on the Mythis, contained in the Primitive History of Moses, in the Berliner Monathschrift, 1804.
§ MS. Journal. He travelled in 1806 and 1807, in Ghilan and Mazanderan.
spring lasts several months. The meadows and the woods are at all times variegated with flowers. The soil being exceedingly fertile, produces hemp, hops, and fruits of all kinds, without culture. Oranges, lemons, peaches, and po-

| Produce. megaranes, are in great abundances. Here, as on the banks of the Mississipi, the convolvuli, with their luxurious but noxious vegetation, suppress the growth of the oaks, the ashes, and the beeches. Natural vines also grow on the mountains, and attach themselves to the trees; but, for want of culture, the grapes make indifferent wine, unless mixed with others. The chief produce of the country is silk.* The Ghilianians have blue eyes, white hair, a small figure, delicate features, and a good shape. At an early age the children are remarkably pretty, but the | Inhabitants, male part become much less so as they grow up. The men are lean, uncleanly in their habits, and of an unstable character. Their language is quite peculiar, possessing no affinity with Arabic or the Persian. The population is reckoned at 50,000 families.

Rasbd, the capital of Ghilan, is about five or six miles from the sea, in | Towns.
the best silk manufacture. According to M. Trezel, it may consist of 3000 houses, and contains 2000 silk manufacturers. We may also mention Ermely, a sea-port frequented by the Russian vessels from Astrakan.

We have already mentioned the high limestone mountains which separate both Ghilan and Mazendaran from the rest of Persia. The valleys which this chain of mountains contains are sheltered from the winds which blow from the Caspian; have a dry atmosphere, a steady temperature, and a more regular distinction of the seasons than the maritime parts of Ghilan.† This chain is crossed by two defiles, the one leading from Arezil to Astara, the other from Casbin, by Rooeas, to Rasbd. Another from Langkeran, between the mountains and the sea, connects Ghilan with Shirvan. This mountainous part of Ghilan is called Dilem, from the name of a tribe which has given sovereigns to Persia, and which Moses of Choreme mentions for the first time under the name of Delmi.† The name of Ghilianians, or Ghilakis, is the same with that of the ancient Goths. The | Part of Ghilan
Ambarks, or people of the valley, occupy the district of Tenkaboom, under a khan of their own.

Mazendaran, situated on the east of Ghilan, has a great resemblance to it in its physical character. High mountains on the south, on the north, contain between them valleys covered with forests, and rapid currents. The air, at least in some places, is purer, and that of Ghilan.§ The inhabitants are stronger and healthier, bushy, and meet together. They live on rice, fish, and garlic. well here, but the sugar cane is cultivated, which is somewhat | Mazendaran.
interesting for a latitude of 37°, and so near to the centre of Asia, four months sooner than in the West Indies, and affords an abundant supply of sugar, to the inhabitants express, and collect without art or care, obtaining only a coarse syrup or thick paste. This product has an unpleasant taste, which might without success to introduce into this country a sugar-refining manufactory.

The best town in Mazendaran is Balfush, containing 25,000 inhabit-
tants, and enjoying a prosperous silk trade. The iron of the province of Amol is worked. This province is adorned with a very magnificent bridge. Sari | Sari.
is the residence of the khans. Asterabad, an agreeable and picturesque canton, has sometimes asserted its independence of the sovereignty of Persia. Its city bears the name of the canton, and has manufactures of silk and of wool. The neighbourhood produces a valuable root used as a red dye for the beautiful stuffs of Persia. The port of Meshehed-Ser exports cotton, indigo, and Indian drugs. At Ashraf, a place containing 4000 houses, Shah Abbas wanted to establish his resi-

* Gmelin's Travels in Russia, etc. Ill. p. 448, (in German.) Hanway's Travels in Persia, etc. part II. chap. 40 and 41. Forster, II. 320. Langlé's French translation.
† Gmelin, iv. 196. Compare iii. 356, (in German.) + Wahl, Asien, i. p. 540, note.
| Trezel, in MS. | Culture of the sugar cane.

Balfush.

It ripens.

surprise.

more salubrious than

Wheat does not grow

Russeian merchant once attempted without success

to introduce into this country a sugar-refining manufactory.
dence, and set out a navy; but the palaces of this place went to ruin before they were inhabited. Mazanderān is said to reckon 150,000 families and from 6 to 700,000 souls.

Taberistan. | The hilly part of western Mazanderān is called Taberistan, either from the name of the ancient Tapyri, or from an Arabic and Chaldee word, signifying a wooded mountain. It is here that a long defile, the chief of the Caspian gates, leads from Key to Amol. Another defile leads from eastern Mazanderān, by the district of Komis, into Khorasan. The roads in Mazanderān are very bad: there is no navigation: the boats, open and badly rigged, are neither fit to withstand the waves nor the winds. The houses are built of brick and mortar, with flat roofs. When a traveller of distinction enters a village, the inhabitants assemble, erect a tree in honour of him, and treat him with the spectacle of a wrestling match. The Gilianis wear the conical bonnets that of the Mazanderanis mounted with furs, has long termination bent backward. The open jacket and pantalons give them more of a European air than the other Persians.†

Two large portions of Persia still remain to be attended to; the one consisting of the declivity towards the Persian Gulf and the Indian Seas, the other situated on the plateau of Tartary, though the greater part of this last belongs to Afghanistan.

Khuristan. | Proceeding in a south-west direction from Isphahan, we first cross the El-Ahwas mountains, anciently called Parachoatra,‡ or the Mountains of Fire. These are succeeded by a large plain, where there is an immense number of serpentine rivers, and where the atmosphere is hot and moist. The only tree to be seen is the palm, and rice the only cultivated crop. This is the ancient Susiana. Its capital, Susa, or the city of lilies, (Sus being the Persian word for a lily,) the most delightful of all the residences of the Great Kings, is now reduced to a heap of ruins. Susiana itself has lost its ancient name. That of Khuristan, under which geographers have known it since d'Anville described it, has also, according to Niebuhr, nearly been forgotten, and Looristan substituted for it. But some learned orientalists observe, that the real general name of the province is Khuristan, comprehending four subdivisions. 1. Kousistan, corresponding to the country of the ancient Uzii, and enjoying a temperate atmosphere. 2. Khuristan, the country of the ancient Cossai, who were a race of mountaineers, formidable for their robberies. This is the same as Looristan. 3. Susistan, or Susiana, properly so called, and 4. Elam, or Elymas, which extends to the mouths of the Euphrates.§ The last two are fertile countries, but unhealthy, and have been devastated by the Arabs. The tribe of Kiah has obtained some celebrity since 1765, when the Sheik Soleyman procured three English ships of war, and made himself master of the whole Persian Gulf. The town of Shuster, which is subject to Persia, consists of 3000 houses, and has a good trade in embroidered stuffs and in silk.

From Shuster we may enter by the city of Rasi, and by the desfiles of Zindjeran.

Paristan. | which are ancient gates of Susiana into Paristan, or as it is called by the modern Persians Farsistan, the Persis of the ancients, the finest province of the kingdom, and containing the second city in it for importance and celebrity. According to the account of the traveller Franklin, Shiraz, the capital of Farsistan, is situated in a fertile valley, about twenty-six miles long, and twelve broad, enclosed on all sides by lofty mountains. The circumference of the city is about four miles: it contains 2000 houses. It is protected by a wall twenty-five feet high, and ten in thickness, with round towers at every eighty paces. The citadel is built of brick. In front it has a large open space, furnished with a park of wretched artillery. The mosque of Kerim is magnificent, but in an unfinished state. The modern Persians excel in painting with blue and gold, in a way which is particularly brilliant as well as durable. The bazaar presents a magnificent assemblage of shops.

* Forster, ii. 315. Langlé's translation.
† This dress is figured in the Persia of the Elzevirs, p. 72. Trezel MS.
‡ Hadji-Khalifah, Abulfeza, etc.
The tomb of the Persian poet Hafiz is to the north-east, at the distance of two miles from the ramparts.

There is no place in the world in which provisions are more plenty or of better quality than at Shiraz. It is impossible to conceive a more delightful valley than that in which this city stands. Its fields are covered with immense crops of rice, wheat, and barley. Harvest begins in May, and is generally over by the middle of July. Plenty of fruit is eaten here of the same species which are common in Europe, but much larger in size, and much more delicate in taste and odour, particularly the grapes and the apricots.* The climate is particularly fine, neither heat nor cold being experienced in the extreme. In spring, the air naturally mild and pleasant, is perfumed with the effluvia of the finest flowers, and the eye is delighted by their richly varied colours. The vales of Ooroomia and of Salmos, to the north-west of Tabriz, are the only places in the empire that can be compared with Shiraz and its autumnal bounties. The garden nightingale, which the Persians call booboot-booboot-dastan, (the turdus bubul of Gmelin,) the Gmelin, goldfinch, and the linnet unite at this season their melodious accents. So many pleasures, added to the politeness of the inhabitants, and the excellence of the police, furnish some foundation for the boast of its inhabitants, that their city has not its equal in the world. Scenes so charming were well fitted to inspire the genius of a Hafiz, a Saady, or a Djamy. The females, with large black eyes, and celebrated for their beauty and their attractions, had undoubtedly a large share in animating these elegant and tender poets. But this joyous and peaceful city has not always escaped the horrors of political revolution. More than once taken by assault, it has been given up to fire and pillage.

We cannot proceed a step in Persia without encountering some monument of the cruelty of conquerors, and of human vicissitudes. Thirty miles north-west of Shiraz, and about ten to the east of the town of Mayn, are the famous ruins of Isatkhar, or Persepolis, the ancient capital of Persia, in which Alexander triumphed, and in a moment of mad festivity gave way to the suggestions of a spirit of wanton destruction, of which he almost instantly repented. This city was destroyed ultimately by the fanatic Arabs, as is shown in a memoir by M. Langles, contained in his Collection of Travels.†

We have no satisfactory means of ascertaining the period at which Persepolis was founded. The best are perhaps those suggested by the appearance of the most conspicuous remains found on the spot. Accordingly, Sir Robert Ker Porter, in applying to this subject the exertions of an inquiring mind, aided by extensive erudition and correct taste, observed that the most remarkable objects contained in it, viz. the Shehel-minar, of "Forty Columns," produced in him the impression, that both as a whole, and in their details, they bore a strong resemblance to the architectural taste of Egypt; a resemblance sufficiently accounted for by the early hostile intercourse between the two countries and their interchanges of inhabitants by captivity. About forty years before the conquest of Babylon by Cyrus, Nebuchadnezzar overran the whole of Egypt, and returned with the rich spoils of the country, and a multitude of captives. Cambyses, king of Persia, the friend and kinsman of the conqueror, was likely to share in the ingenuity and talents of the ingenious among the captives of the former; and when Cyrus afterwards added Babylon to his empire, he would then transfer them to his own country, and employ them in the superb edifices of Persepolis. Cambyses, the son of Cyrus, in his expeditions against Amasis and Psammeticus, kings of Egypt, carried off the richest ornaments of its edifices to decorate his palaces of Susa and Persepolis, and took along with him Egyptian workmen to place them properly in their new stations. Other princes followed the example, and Persepolis became the most splendid city in the east. The remains of the Shehel-minar continue to bear testimony to this fact. To describe them fully in this place would far exceed our bounds, and we must refer the reader to the account given by the traveller now

* Franklin's Journey from Bengal to Shiraz, in Langles' Collection of Travels, (in French) ch. 9, 14.
† Langles, iii. 199. etc. (in French.)
mentioned, which, in graphic description, ingenious research, and irresistible interest, is not exceeded by any writing in existence. From his ample details we can only select a few lines as a specimen. The royal palace of forty pillars, or Shebeel-minar, consists of a number of buildings, forming both a palace of ample magnitude, and a citadel, or bulwark for the capital, on a situation of a most commanding character. This situation consists of an artificial plain, or platform, cut out of a mountain, and having a higher part of the same mountain connected with its eastern side, being on the other three sides at a great elevation in a perpendicular precipice from the plain beneath. On the royal mountain to the east, are the ancient sepulchres of the kings, consisting of artificial excavations. The extent of the faces of the square are 1425 feet in length on the west side, 802 on the south, and 926 on the north; part of the steep is faced up with gigantic square blocks of dark-grey marble, without mortar, but fitted with such precision as to appear part of the solid mountain. The general height seems to have been about fifty feet, though now much lowered by the accumulation of ruins beneath. The only road to the summit is by an ascent of steps on the western side, forming a double flight. The steps are broad and shallow, and ten or fourteen of them are cut out of one block of marble. The ascent is so beautiful and easy, that they may be ascended and descended on horseback with the utmost facility. On ascending the platform, the first objects that meet the eye are the remains of two colossal bulls, of a noble form and attitude, indicating that they were intended as symbolic representations of power. These are sculptured in the lofty sides of an enormous portal. Other symbolic representations in basso-relievo are found in different places of huge size, and rather strange mixtures of the forms of different animals. From the great platform, different others rise, distinguished by ruins, differing somewhat in their character, and the apparent destination of the buildings. On one of these are the striking ruins of the magnificent Palace of Forty Pillars. Only a few of the pillars are standing entire, at different places, but the bases and other remains of the rest still exhibit something of the original arrangement. The former capitals and decorations of those which stand, and of many of the fragments, lying on the surface of the heap of rubbish, are beautiful and elegant, the taste different from the Grecian, yet correct and commanding in the highest degree, and executed with a delicacy which cannot be excelled; "I gazed at them," says this traveller, "with wonder and delight. Besides the admiration which the general elegance of their form, and the exquisite workmanship of their parts excited, I never was made so sensible of the impression of perfect symmetry, comprising also in itself that of perfect beauty." The height of each column in the colonnade, to which, in particular, he applies these observations, was sixty feet. These pillars seem to have been the supports of ponderous roofs of massive timber. The traveller gives reasons for supposing that he has ascertained the precise part of this building which formed the banqueting hall where Alexander displayed his triumph, in setting fire to the fabric; the place where the kings of Persia received the homage of their subjects, displayed their magnificence, and dispensed their beneficent orders; also the private palace which was appropriated to the domestic intercourse of the members of the royal family. The numerous basso relieves are highly valuable, as illustrating the ancient costumes and manners of the Persians, and their value has been in a great degree communicated to the European reader by the accurate plates of them contained in the Travels now referred to, accompanied with the author's exposition of their meaning. Those carved on the walls of the staircase, by which the platform is ascended, are numerous, exhibiting trains of Persian subjects from the different parts of the kingdom, bringing presents to the sovereign, led forward in small parties by officers of the court acting as masters of the ceremonies. In other parts are figures of the king on his throne, and over him a symbolic representative of him, in the form of a genius, or celestial type of the earthly potentate, conformable to the views inculcated by the ancient Persian religion. Guards of different descriptions are also delineated, and animals, partly exaggerated and symbolic, and partly fair representations of nature, contributing to the effect of lively and extended ornament. Battles, single combats, and other incidents in
the Persian history, are here, as well as in the other Persian relics of antiquity, represented sometimes according to nature, and at other times by symbols.

In the same neighbourhood is Nakshi-Roostam, or the mountain of Sepulchres, where many celebrated sculptures have been cut in the white marble forming the face of the mountain. On the summit many sepulchres are cut out of the solid rock, and others are built of immense blocks of marble. This summit is ascended with difficulty, and chiefly by the assistance of ropes.

Between twenty and thirty miles from this place are the ruins of Mourg-Aub, shown by Mr. Morier to be the ancient Parsargada, a sacred city, occupied by the magi of old, and containing the tomb of Cyrus, the remains of an ancient fire temple, and other buildings, with sculptures which have exercised the skill of many learned persons, and are well described in the travels of Morier and of Porter. There is a tomb here called Meahed Madre-i-Sulieman, or the Tomb of Solomon’s Mother, a name given at random by the natives, and which is frequently done in such cases, showing the wide extended fame of Solomon in the east. This tomb is well described by Porter, who considers it as the tomb of Cyrus, concerning which we have some interesting passages in the historians of antiquity.

The other modern cities of Farsaistan, besides Shiraz, are of little importance. Komaha, Karzeroto, and Fireozabad, are the principal. The only one which merits particular notice is Yezd, situated almost in the centre of the Persian and Afghan dominions. Many geographers place it in Irak-Adjemi, and some in Kerman. It is on the road from Kerman to Isphahan, and inhabited partly by Guebres, or worshippers of fire. It possesses a manufacture of carpets and stuffs of camel’s wool, and a great trade in cotton cloth and silk. The immediate neighbourhood is well cultivated, and produces the finest wheat in Persia. Hence a Persian proverb, that “to enjoy life in perfection, a man must eat bread from Yezd, and the fruits of Azerbaidjan, drink the wine of Shiraz, and possess a Georgian wife.” Yezd has 4500 houses.

The forests which are frequent on the mountains of Farsaistan, and the waters which refresh its romantic valleys, give this province a great advantage over the arid plains of Irak-Adjemi. The oaks, the birches, the cypresses and lentisci, adorn the mountains; the pomegranate, the pine, the orange, and the vine, enrich the level countries.* The horses have lost part of their former renown, but the race of sheep with the fat tails is preserved. Yet even this fine province has deserts of considerable width, extensive sandy plains, and many barren rocks. The rocks in the neighbourhood of Darahghder furnish a celebrated and valuable article. This is mooum, a kind of liquid petroleum, perfectly limpid, and of an agreeable odour.† The cavern from the sides of which this petroleum distils, is kept with religious care. It is opened once in the year by the governor of the district of Darab, and a small quantity of the mooum is obtained, which is sent to the Court of Persia. It passes in that country for a balsam of miraculous power, which immediately cures the most desperate wounds.

The sea shores of Farsaistan have two important harbours in the possession of the Arabian sheiks. The first and most southerly is Abu-Shehr, which the English call Busheer: here vessels drawing twelve feet of water can, at high tide, lie close to the doors of the houses. The sheik of Abu-Shehr possessesthe island of Bahrein, which enables him to keep some armed ships of war called galvetta. It is of the highest importance to the city of Shiraz, of which this is the nearest port, that the sheik do not rebel. Bender-Rigk is a strong place, which holds in dependence a considerable domain.

There are several independent Arabs on the shore of the Persian Gulf, and they almost all live in the same manner. They subsist by maritime trade, and by the pearl and other fisheries. Their food consists of dates, fish,

* Franklin, Journey to Shiraz, i. p. 53. &c. of Langlès’s French translation. Chardin, viii. 228, 231, 428.
† Kämpfer, Amoenitates Exoticae, 516, 524. Langlès’s Note on Chardin, iii. 311.
and dourah bread. The few cattle which they have live also on fish. Each township has its independent chief, who receives from it next to nothing in the form of salary or revenue. The arms of these Arabs are muskets with matchlocks, sabres, and bucklers. When they are at war all their vessels are employed in the service.

The Buzus. These tribes, among whom that of the Houles is the most powerful, all continue to speak the Arabic language, and are generally of the Sunnite sect, and consequently natural enemies of the Persians, with whom they form no alliances. The houses of these Arabs are so wretched that an enemy would think it lost labour to destroy them. As they generally have little to lose on land, if a Persian army approaches, all the inhabitants of the towns and villages go on board their little vessels, and take refuge in some island of the Persian Gulf till such time as the enemy retires.

Laristan. Laristan, a maritime stripe of which is called Kersamir, or the hot country, has often formed part of the government of Farsistan. Lar, its capital, possesses manufactures of arms and of silks. Although the soil is sandy, the country is full of orange and lemon trees, and tamarinds; dates also are in great abundance. They drink water which is preserved in cisterns, which they carefully boil to destroy a worm in it, which otherwise they believe would nestle between the skin and the flesh, and is as small as a hair. Whether this account of it in all its minutiae be true or not, such a worm often makes its appearance, and it is not till much pain has been endured, and even danger encountered, that it is got rid of. This malicious Bender Abbas, is very common almost along the whole shore of the Persian Gulf; Bender Abbas, a port situated opposite to the island of Ormuz, is better known under the name of Gomberoorn. It was formerly the most noted resort of ships in the Persian Gulf, and the general emporium for goods. The Portuguese took possession of it, and in 1614, Abbas the Great, with the help of the English, drove them out. The trade of Bender Abbas has now greatly declined; and even the Dutch have abandoned that-town and returned to the island of Karuk. The entrepôt of Bender Kesum is now at Bassorah. Bender Kesum is the most frequented harbour between Gomberoorn and Abu-Shehr. Both at Gomberoorn, and over the whole of the coast, the heats are sometimes prodigious; and it often happens that a person who imprudently exposes himself to the rays of the sun at noon is suddenly killed by them. The sugar cane thrives in this quarter. Between Siraf and Bushan, in the midst of an arid upland plain, a series of rocks rise into view, which have the appearance of broken obelisks or ruined towers.

Isles of the Persian Gulf. This whole shore is lined with islands. We have just mentioned Karuk, or Kharedge, where the Dutch, attracted by the goodness of the soil, the water, and the moorings, built a town in 1764. It is enclosed by coral reefs attached to a limestone rock. Probably the other islands are formed of similar rocks, but not without some exceptions. Ibn-el-Ouardy informs us that the island Kishmis, which the Portuguese of the sixteenth century call Queixorna and Broct. This last name reminds us that it was the Oraecta of the ancients. Of all these and other islands, shaded with cocoa nuts and bananas, none has obtained a celebrity equal to that of Ormuz; yet Ormuz is a bare rock, covered with red and white salt stones, without any water fit for use, and almost without vegetation. Commerce formerly made this spot a storehouse for the treasures of the east. It was abandoned and forgotten in 1622, but of late has attracted the attention of the English, who have formed an establishment on it.

Kerman. Kerman, which is extolled by the ancients for the excellence of its grapes, its wheat, and its mines, is at present known by its beautiful shawls of camel's wool, and by its stuffs, formed of the silky hair of a kind of goat, similar to that of

* Niebuhr's Arabia, ii. 271, 274.
† Kampfer, Amencit. Ex. 525, &c. Compare Chardin, viii. 473. (Langley's edition.)
‡ Journal communicated by an Arab to Mr. T. Kampfer, Am. p. 730, 382.
Idem. p. 434. "Niebuhr's Travels, ii. 297. (German.)
** Notices et Extraits des MSS. t. ii.
Angora.* It produces various medicinal drugs and gums: moon and tutty are found in it. It abounds greatly in roses. Mount Khophez is covered with an eternal verdure; but the interior half of the country is occupied by a vast desert. The city of Kerman, though flourishing by its manufactures of shawls and | 7 tess., stuffs, seems to have lost its ancient porcelain manufacture. The real name of this place is Sirdjan.† The towns of Kermesia, Velazgher, and Berdahyr, offer nothing worthy of notice. Khorma, or Hamedan, contains, according to a tradition among the Jews, the tomb of the fair Esther, and the wise Mardochaeus. The maritime part of Kerman, an unhealthy region, is called Mogistán, which means the country of date trees.

Mekrân, on the east of Kerman, is the Gedrosia of the ancients. It | 7 discusses extends along the shore of the Indian ocean, as far as the mouths of the Indus, and is bounded in the interior by Sefstan and Afghanistan. In its political condition, this province is more connected with the Afghan than with the Persian sovereignty. The most northerly and easterly parts of it, comprehending more than one half, are called Beloochistan, and are subject to the Afghans. The southern and western are more particularly called Mekrân; but even here, the influence of the Shah of Persia is slight and ambiguous. Chobar, and several other places on the coast, are subject to the Imam of Muscat, who thus enjoys a sort of ascendency in the maritime parts. These, however, are poor and sandy deserts. It was here that the army of Alexander was subjected to such wretched privations in their attempt to return from India. The interior consists of high mountainous tracts, interspersed with fertile valleys, supplied with water by mountain torrents, but containing no permanent rivers which reach the sea. The communities consist of similar materials to those of the other hilly parts of Persia, partly agricultural, partly pastoral, and predatory. There are many different tribes and independent chiefs, of whom the Belooches are the most numerous. There are also some Loor tribes, whose character for robbery is singularly infamous. They murder in cold blood on the slightest provocation, and abandon themselves to irregular inclinations of all kinds. Little disposed to family cares and affections, they rear few children, and keep up their number chiefly by manslaughter.

The women of Mekrân, in general, are not subjected to the same seclusion as in other Mahometan countries, and appear indiscriminately in public. Further details will be reserved for our account of Afghanistan. Sefstan, a pro- | 7 sstan. vince singular for the melancholy change both of physical and moral aspect which it has undergone, will also be described in the same place.

The great province of Khurasan, or the "country of the sun," might | 7 Khuras. deserve a very extended geographical description, but we must here confine ourselves to the most remarkable points. Conterminous with Tartary, it is exposed to great variations of temperature. The soil though in many places sandy and dry, produces in abundance all the necessaries of life, also a large quantity of indigo, gull nuts, and good cochineal. There is a great number of Turcomans in this province, which furnishes good pasture for their flocks. The finest carpets in Persia are made in Khurasan; and sabre blades are made here, equaling in reputation those of Damascus. The mountains furnish rubis-balais and turquoise stones. The high reputation of the horses of this country leads us to believe that it was the birth place of the famous Nysean horses, so much extolled in history. The ancients generally concur in placing the Hippobotos, or great stud of Persia, in the plains of Ray; so that it was necessarily on the way in travelling from Babylon, or from Persepolis to the Caspian Gates.‡ The denomination of the Nysean plain is still generally applied, though with strong doubts, to this Hippobotos of Media. Adhering to these data, we must consider the Nysean horses as a race diffused through a very wide country, since there was reckoned in the Hippobotos, 150,000 horses, or, according to some, 50,000 mares. But when we find Xerxes causing to be led in pomp, before his tri-

 BOOK THIRTY-SECOND.

umphal car, ten Nysean horses, consecrated, and magnificently adorned; when we find this same monarch drawn by Nysean horses, while none of that precious breed seems to have been assigned to his guards, or to his retinue,* we are tempted to think with the learned Mannert, that a distinction must be made between the great Hippobotoes, destined to mount the whole of the cavalry, and the stud which was appropriated to the king at Nysea. But it may be asked what Nysea this was, among all those mentioned in ancient writings. The royal studs of Persia were, by the ancients, placed in Media; this name, taken in the very extended meaning given to it by Herodotus, may include Hycania and Parthiæ, and in this case we may consider Nesa on the Tedzen, corresponding to Nysea on the Ochus,† as the country of the horses so much valued by the Persian monarchs.

Chis. | For half a century the numerous towns of Khorasan were devastated by civil war, and they are now slowly re-establishing. Herat, which was formerly the capital of Khorasan, is now subject to the Afghans.‡ The first Sophi of Persia Meshed.| made Meshed the capital, which contained the tomb of Musa, one of the twelve great men of Persia, whom he claimed as his ancestor. It consists of about Nishaboor, 4000 houses. Nishaboor is a considerable town of about half the size of Meshed; Kelat is another, the birth-place of the famous Nadir-Shah; Nesa is another, rich in palms, in springs, and in the tombs of saints.§ Roohi, a town of 2000 houses, is the residence of the prince Kelesh Khan, the chief of 12,000 wandering families. Between Nishaboor and Herat are Meroo-Shajean, and Meroo-al-Rood, situated in the fertile vale of the ancient Margiana, which terminates on the confines of the desert of Tartary.

Dahistan. | Khorasan is bounded on the west by Dahistan, the country of the ancient Dahi, and by Djordjan, which is the territory of the ancient city of Hycania. These countries have the same productions with Khorasan.

Kermis and Ko- | To complete our topographical view of Persia, we must make men- bistan. tion of the small districts of Kermis and Kohistan. The first canton ad-joining Mazanderan and Irak contains the town of Damegan. Here also is said to be a fountain, which sometimes sends forth a wind so impetuous as to carry off men and animals, and tear up trees by the roots; it is called Bad-khanet, or the house of wind, sometimes Tcheshme-Bad, or the fountain of wind.|| The province of Ko- histan is a mere desert; it is probably the crest of the central plateau of Persia. Tebbes is a good town of 1500 houses. Some connect Kohistan with Irak, others with Khorasan. The Persian geographer, Hamdoola, makes it a distinct province, extending as far as Gazor. A long tract, lying on the south side of the Hindoo-Coosh range of mountains, in Afghanistan, is called Cohistan by Mr. Elphinstone,** which certainly is altogether different, although those who place Cohistan, or part of it, near the mountains of Gazor, or Paropamisus, would appear to connect them to-gether.

BOOK XXXIII.

PERSIA CONCLUDED.

A Moral and Political View of that Country.

A general idea has already been given of the political condition of Persia. Our present object is to delineate the character of the people whose country we have just described; a subject which, though interesting, is confessedly obscure.

The ancient authors make a general distinction between "all the Scythians," and "all the Persians." The oriental writers distinguish in the same way, Tooran, or Scythia, from Iran, or Persia. On the monuments of Persepolis this last name is written *Erienne.* It is evidently identical with *Ariana*, known to the Greeks; but Ptolemy and Eratosthenes apply the name *Ariana* exclusively to eastern Persia. The old name of Iran, or Eriene, seems to have been restricted to this part, in consequence of Persia and Media having become warlike states, and rendered their own names illustrious. Herodotus, however, gives us a proof of the general extension of the name Iran, or *Ariana*, by telling us that the Medes were originally called *Arii.* The name Iran never became extinct in the east. The Armenian geographer, Moses of Chorene, who was born almost on the spot, includes under the designation *Aria*, or *Arians*, the whole Persian empire in the fourth century.

The Scythians of Asia have always been distinct from the Persians, and were their constant and implacable enemies. The latter distinguished the Scythians by the name of *Saces*, or *Sak*, which signifies dogs.† The Scythians appear, according to some not very good authorities,§ to have founded, in fabulous times, an empire which embraced Persia and the whole of western Asia; such an empire, if it ever had existence, has left no traces behind it. History only admits one known Scythian invasion, which took place 824 years before the Christian era. Very probably the wandering tribes of ancient Persia, such as the *Cossae*, the *Uxii*, the *Mardés*, and other pastoral communities, were the remains of the Scythian hordes, who, after they were forced back into the mountains, continued to infest the cultivated plains with their predatory incursions.

The Parthians, who, two centuries after the death of Alexander, re-established in great glory the independence of Persia, were Scythians or *Saces,* according to some authors of middling authority.|| Herodotus and other writers of greater weight, mention them simply as inhabitants of a province of eastern Persia. Nothing in their habits nor in the names of their kings gives any indication of a Scythian origin.¶ In short, we may consider it as clear, that up to the great revolution effected by the Arabians, and the Mahometan religion, Iran, or Persia, has, in general, been peopled by the same indigenous race, divided into different nations, and speaking the same language, though with differences of dialect.

This conclusion, as drawn from historical testimony, might receive additional elucidation by a comparison of the early idioms of Persia, if time and barbarism had left us complete and incontestable monuments of that kind. The following are the facts which criticism has collected on this subject.—The most ancient dialect is the Zend language, in which the sacred books were written, which go under the general name of Zend-Avesta, books which, though not perfectly authentic, certainly contain very ancient traditions,** and most

* Langlé's Notes on Chardin, iii. 261. Wahl, Asien, i. 232.
† Herodot. vii. 6. 2.
§ Plin. vi. 17. Solin, c. 4. 9.
|| Justin, Hist. ii. cap. 3. Eusebe, Chronikon Paschal.
¶ Justin i. cap. 11. (It is of the Parthians that Ammian. Marc. speaks, xxi. Compare xxiii. at the end.)
¶ Richter's historical and critical essay on the Arscicides and Sassanides.
** Zend-Avesta, a work of Zoroaster, &c. by Anquetil du Perron, 177. Kleuker's try
probably, some fragments anterior to the alleged description of the manuscripts of the Magi, which is attributed to Alexander.* It is repugnant to common sense to call that language a jargon invented at random by the modern Guebres; but it is difficult to ascertain the places where it was spoken. Those who most strenuously support the authenticity of the Zend-Avesta, vary between Bactra,† the most easterly, and Adzber- bidjan, the most westerly country.‡ Perhaps it was never a vulgar, but always a sacred language, like the Sanskrit, with which it possesses many radical terms in common.

The Pehlevi. | The Pehlevi, or Pehloowian dialect, that is to say, the idiom of the warriors and heroes, seems to have prevailed in Irak-Adzemi, or the Great Media, and among the Parthians. It has even been said that this was the only dialect spoken at the court of Cyrus, and that of the Parthian kings. It is mixed with many Chaldian and Syriac words, but is not a mere dialect of the Chaldean, as Sir William Jones seems to think.§ According to some authors, the Pehlevi was likewise in use among some tribes in the north of Persia, and among others the Paddams of Shirwan.|| The Turkish geographer says that it is spoken in one part of Farsistan. The sacred books were translated into this language, and in it there are several inscriptions of the times of the Sassanides.‖ But by degrees, the princes of this dynasty (who reigned from the year 211 to 632,) banished the Pehlevi to the Sassanides. The Parsee. | tains of Parihtien, and even introduced, by express laws, the use of the Parsee, or the dialect of Farsistan. This language, softer than the Pehlevi, which, in that respect, excelled the Zend, must have long had the ascendency in the Persian monarchy. It is the only one which furnishes an explanation of almost all those Persian names which were known to the Greeks and Romans.** When the Arsacids, in the seventh century, invaded Persia, the Parsee, banished from the court, lost its high reputation, and when it was meant to be restored to its former rank, under the Dilemites in 977, it was now corrupted by a large intermixture of Arabic. Yet great poets and able orators formed it into a rich and harmonious language, distinguished under the name of the modern Persian.† The ancient Parsee, used among the Guebres, will owe its immortality to the Sha-Namah, the historical work of Ferdoosi, and the Statistical account of Indoistan, entitled Ayen Akbeir, written in 1600; for in proportion as the true Parsee lost its predominance in its native country, it gained a fresh ascendency at the court of the Great Mogul. At the present day the modern Persian is banished from the north of Persia, and even from Tehran, by the ruder language of the Turks. The term dervi, or language of the court,‡‡ is now applied improperly to the modern Persian, although it is so designated by Ferdoosi in the following passage.

"The language of the Persians was divided into seven different dialects. Four of these, the Sooki, the Harohi, the Sagri, and the Sevachi, are fallen into disuse, and never were esteemed fashionable, but the case is different with the other three, the Parsee, the Dervi, and the Pehlevi. The Parsee is distinguished for its softness, and is spoken chiefly in the district of Istakbar; the Dervi, derived from the ancient Persian, is celebrated for its politeness and elegance. Belook, Maroo-Shazan, and Bokhara are the principal towns in which it is spoken. Some authors add to these Badakhshan."

Among these dialects, the Harohi or Herwi was spoken in Khorasan, the Sega or

* Massooi in the Notices and Extracts, i. 21. &c.
† Heeren, Idees, sur la politique, etc. ii. 403.
‡ Anquetil de Porrà, Zend-Av., passim. Wahl, Langues de l'Orient, p. 182.
§ Adelung, Mithr. i. 272. Sir W. Jones's Description of the Persians, in the Asiatic Researches, and the Notes of M. Langlès.
¶ Sylvestry de Sacy's Persian Antiquities.
†† Anquetil, Zend-Avesta, ii. &c.

† Dar signifies a gate and palace. We may remark its affinity to the Danish der, the Ger- thor, and the English door, all meaning the same thing.
Sagzi in Segistan, and the Sewali or Zabuli in Zabulistan, a name given to the Soliman range in the present Afghan territory. Others mention also the Sogd, the Khooshi, and some other dialects. The Koord is like the Pehlevi, a mixture of Persian and Chaldean.

We must now take notice of a remarkable phenomenon presented to historical geography by the Persian language, both ancient and modern. In all its dialects, and at all periods, this language contains not only a great number of German words, but German inflections, and forms of syntax. It contains also words of Danish, Icelandic, and English, which are not German, but pure Gothic; and to complete these irregular coincidences, it follows, in some measure, the Icelandic rule of vermiculation, strange and arbitrary as they are. This resemblance, not so strong or so uniform as has been maintained by Leibnitz, who has been always copied by compilers, is still sufficiently so to arrest the notice of an Icelandic taken to Shiraz, and sufficiently so to enable us to explain the ancient Persian and Scandinavian names by one another. Thus the city of Pasargades, the name of which signifies, "an entrenched Persian camp," would in Icelandic be Parsegard; and it is probably the Persian name from which the Greeks have made Pasargadae.

From the resemblance thus substantiated, system-makers have ventured to draw a thousand conclusions. The Goths and Germans they have found to be a Persian colony, and the Persian Kerman they make the etymon for Germany. Bold compilers have proceeded farther. — A Scottish author, who revived the old error of those who confounded the Saxonians, the Goths, and the Goths, has ventured to trace from Persia to Scotland the imaginary route of a chimerical people, whom he has formed from so many heterogeneous elements. These reveries vanish when we observe the resemblance of the Parthians the Gothic is not stronger than that of the same language to the Sanscrit, and the other ancient idioms of India. On the other hand, the resemblance of the Sanscrit to Greek and Latin is equally strong. In short, from the recent observation of a great critic, the ancient Slavonian, the resemblance of which to the Persian was already known, presents as much affinity with the German and the Icelandic, as the modern Slavonian languages. Thus all these languages resemble one another; but they are all to be referred to some common but unknown origin. Perhaps men of one and the same race peopled all these countries previously to any historical records. Or perhaps ancient communications had diffused the same ideas of civilization, and had subjected to rules possessing great mutual similarity the sounds by which these ideas were expressed. We are not acquainted with the fact; but we know that no one of these nations has a better claim than another to be considered as the original stock.

The physical constitution of the Persians is similar to that of the Syrians, the Armenians, and the Jews. It is on the whole good, but the complexion even in the northern provinces has a tinge of yellow. It even assumes some degree of the olive hue, particularly in the men, in the Farsaistan and Kerman. The hair is black, the forehead high, the nose aquiline, the cheeks full, the chin large, and the countenance generally oval. People of rank and wealth are often distinguished by

* Adelung has mentioned 221 German roots in the Pehlevi. The infinitives end in ten, den, &c. The prepositive articles bi, mer, der, correspond to be ge, &c. in German. Mithr. i. 284.

† The following are a few instances:

Prestem, greatness, (in Zend.)
Frestim, nourishing, do.
Tramfl, food, do.
Onkari, rock, do.
Khooda, God, (Parsée.)
Hads, pure, holy, (Pehlevi.)

‡ Compare Gladwin on the Rhétoric and Poetry of the Persians, and the Scalda. Iceland MS. or Olafson's Poetry of the ancient Scandinavians, (in Danish.)

Schleeter, in his edition of Nestor.

Vol. I. — 3 H
a larger make. A Persian female beauty has a middling stature, long black hair, large eyes, arched eye-brows, long eye-lashes, the complexion a fine carnation with a little red, a small nose, the mouth narrow, the chin retiring, the teeth white, the neck long, the breast of moderate projection, the feet and the hands small, the shape slender, and the skin extremely soft. The men are generally robust, and well adapted for military exercise; but, from the dryness of the air, and perhaps the prevalence of saline matter in the dust, they are particularly subject to diseases of the eyes. Their clothing. Heads are shaved, and generally covered with long crimson bonnets. The form and the ornaments of the turban vary according to rank, wealth, or private fancy. Those of the princes and grandees are covered with waving tufts of feathers, pearls, and diamonds. The monarch, alone wears on his head the emblems of the sun, or of the terrestrial globe. The beard is sacred with the Persians, and cultivated with the utmost care. For any one to touch it is an unpardonable insult. They often wear three or four light suits of clothes over one another, bound round with a girdle. The peasantry wear only one simple surcoat of a square shape, but varying in width and length in the different provinces. It appears from some paintings in the Palace of the Forty Pillars at Isphahan, which represent the costume of turbans, full mustachios, and smooth-shaven chins, which has now given place to the high narrow or bushy beard; the latter appendage having been a turban before. The women cover their heads with The clothes of the dancing women are shorter than of condition they descend to the toes. White, light air of a religious habiliment, or a magnificent worn in the towns. A general fashion in the whole the women of Persia to wear enormously wide panamas, stuffed with cotton. The luxury of dress has sustained considerable retreat. Their dwelling-houses, like those reverse of ostentations in their exterior, being generally no windows appearing to the view of the passenger. They are almost all that roofed, and only one story high. The only exceptions seem to be attached to local situations. At Sultameh, the roofs are of the shape of bee-hives. At Lanker-Bad and Dey Nain, in Irak-Adjemi, those of the old buildings resemble the roofs of mosques, and seem to be the remains of an old fashion prevalent in the heart of the country. At a neat village, called Koorood, in the same province, the houses have several stories, with flat roofs. Those of the richer classes are highly superb in the interior, yet simple in every thing that can be denominated furniture. The floor is entirely overspread with carpets; those of Kerat being the richest and finest; and nothing else is required by prince or peasant for seat, bed, table, and devotional kneeling,— the only difference being in the quality. The custom of kneeling on their carpets at their prayers gives those articles of furniture a sacred character, and forms one reason for the custom of visitors always leaving their slippers at the door. The doors of the apartments are of carved or painted wood, and double, but always open during the day, the door-way being filled by a light curtain. Mode of living. The Persians eat twice or thrice in the day. Their dinner is at noon. Their best meal is the supper. The favourite dish of the rich is pillaws or boiled rice, variously dressed. Wheat is the usual food of the people. Melons, fruits, and confections, form the leading articles in the Persian entertainments. Persons of the bon ton were, till lately, almost openly treacherous to the law of Mahomet in their predilection for the profane worship of Bacchus; but the common people were always strangers to intoxication. Their meals, ceremonious and silent, never exceed an hour.

A Persian entertainment. The following is Sir R. Ker Porter's description of an entertainment given to him by the prime minister of the prince of Adzerbidjain at Ta-

* Wahl. Asien, i. plates iii. and iv. † Ibid. pl. v. ‡ Porter's Travel, vol. i.
briz. He and his companions were shown into an extensive saloon, carpeted all over, and with the usual accompaniments of nummuds, which are long and narrow pieces of a thicker and softer substance, made of wool or felt. On some of these sat several of the officers of state, who rose on their approach; and after the usual compliments, the company took their station, sitting cross-legged on the nummuds appointed for their accommodation. When the host entered, all the company rose, and on being re-seated, he bowed to each person according to his rank, uttering a compliment suited to the esteemed importance of the guest. The routine of the entertainment was the following:—Kalioons, or smoking apparatus, were presented; then coffee served in very small cups, without cream or sugar; kalioons succeeded; then tea in larger cups. After this ten minutes were occupied in conversation, when the minister gave a signal for dinner to be brought. Several servants immediately entered, bearing a long narrow roll of flowered cotton in their arms, which they laid down, and spread before the whole company, who occupied both sides of the room. This napery was placed close to their knees. The next service was to set a piece of thin bread or cake before each guest, to be used as a plate and napkin. Then came a tray between every two persons, containing the following articles of food:—two bowls of sherbet, each provided with a wooden spoon of delicate and elegant workmanship; a couple of dishes of pillau, composed of rice soaked in oil or butter; boiled fowls; raisins, and a little saffron; two plates with sliced melons; two others, containing a dozen kabbobs, or morsels of dry-boiled meat; and a dish, presenting a fowl roasted to a cinder. The whole party along the extended web being similarly supplied, the host gave the signal for falling to; at which every back became bent, every face was brought close to the point of attack, and every jaw was instantly in motion. The rice, or other victuals, was, with a dexterity which to strangers appeared wonderful, gathered up with the fingers of the right hand, and at the same moment thrust into the mouth. No cessation could be observed in the universal, active transition of meat, melon, and sherbet, from the board to the mouths of the grave and distinguished assembly. The sounds of mastication were particularly audible. At this repast the foreigners were rather losers from their awkwardness and want of success in gathering up such dishes as were in a comminated state. The servants cleared away in the same order in which the things had been put down: water was carried round, and poured on their hands over a basin, which they dried with their pocket handkerchiefs. A kalioon with tea followed, and continued with a few interruptions during the conversation, which now, for the first time, took place. A fresh kalioon finished the entertainment, and the company rose to take their leave. Their cleanliness, both in their persons and houses, has been praised; yet the common people are somewhat slovenly.

In Persia a native never enters a room in boots or slippers, and a compliance with this custom is expected from foreigners. Where the unmannersly pride of the latter has objected to it, and yet political reasons rendered it advisable to receive such a visitor, means have been provided for receiving him in the open air. Another point of etiquette is to keep the head covered, and the English gentlemen in the entertainment now described were obliged to dine in their cocked hats and feathers, though somewhat incommodious.

The circumcision of the boys is performed by a surgeon. The marriages are conducted through the mediation of agents. The ward-robe forms the only portion. The bride is conducted to her husband's house in the night with a grand procession, accompanied by the light of flambeaux, and instrumental music. Polygamy is allowed, but the first wife enjoys peculiar prerogatives. Their funeral processions are conducted with much show. They raise superb tombs to the rich; such are those of the twelve Imâns or vicars of the prophet, regarded by the Persians as his only legitimate successors.

The luxury of the modern has several points of resemblance to that of the ancient Persians. Umbrellas, sedan-chairs, carpets for the floors, and several other conveniences and luxuries, have been transmitted to us from the ancient Persians. Large

* "Mais celles des filles, pratiquée par les Arabes, est inconnue chez les Persans."
gardens afford a solitary walk to the women of the great, whom jealousy, or conventional decorum, keeps aloof from the view of strangers. But though we are led to consider their home as their prison, such is the kindly influence of habit, that the mere idea of giving even the most handsome women more liberty, such as an opportunity of being seen or admired, though at a respectful distance, by other men than their husbands, would be considered as a degrading insult, pregnant with misery. Sir R. K. Porter had his curiosity gratified with a view of the antechamber, or private apartment of the prince's palace at Tabriz, in which the ladies and female slaves are lodged. It is all rose-coloured, and occupies one side of the square. The windows are particularly splendid, their frames being subdivided into a variety of fanciful patterns, as stars, circles, points, and a thousand serpentine curves, flowing gracefully into each other, while the separations are filled with the most brilliant stained glass of all colours and shades. Adjoining to this there is a series of elegant bathing rooms, and spacious dressing rooms, the walls of which are covered with mirror glass, and the floors laid with the richest carpets. Within the precincts of the harem, the wives and handsome female slaves are treated with great indulgence, which is sometimes carried to an imprudent length, so that these females, by an enormous expenditure in frivolous articles of dress, often ruin the richest masters. The Persian ladies regard the bath as the place of their greatest amusement. They make appointments to meet there, and often pass seven or eight hours together in the carpeted saloons, telling stories, relating anecdotes, eating sweetmeats, sharing their kalaions, and composing their pretty forms into all the fancied perfections of the east: dyeing their hair and eyebrows, and staining their bodies with fantastic devices, and not infrequently with the figures of trees, birds, and beasts; sun, moon, and stars. This is spread over the breasts, as far down as the naval, to which point all their garments are open, for the display of these artificial embellishments. The Persian mothers have the happiness of being treated with the utmost respect and kindness by their children of both sexes, during life. It is rather an ambiguous glory for the Persians, that they have the credit of being the inventors of eunuchs as guardians to the seragios. It is, at all events, certain that the eunuchs were as numerous and as powerful at the ancient court of Persopolis as at the modern courts of Isphahan and Tehran. The education of the princes, so much admired by Plato, was, like that of the modern Persians, entrusted to eunuchs.†

In addition to an effeminate taste for trinkets and jewellery, the Persian still preserves the ancient practice of painting his eyewords and beardblack.‡ The Persian eunuchs, and the statues of antiquity, were entertained at meals with instrumental music, performed by the dancing women, whom the Greeks called musurses, and the French bayaderes. All that Suidas and Athenaeus have said of them applies to the modern Persians, and might seem to be copied by Chardin in his more recent descriptions.§ The festival of Gubyzah, or the profusion of roses, is also of ancient origin; a fine climate, and a profuse vegetation, render it perpetual.

The great. The great people in Persia never walk on foot. Wheel carriages are not known among them, except one or two specimens of European manufacture in the possession of the royal family. They always travel on horseback; their baggage, and generally their women, being conveyed on camels. They travel in the night, as less exhausting to the constitution, and less threatening to their health, than the heat of the day. Following up the same principle, the industrious inhabitants of some of the manufacturing towns make a practice of spending some of the sultry hours of the day in the public gardens, under the amiable foliage of the trees, where they indulge in conversation, and leisurely social enjoyment.¶

Many barbarous modes of punishment now in use are of ancient institution. Rebels were burned alive, or sawed in two. The victims of

† Plato de Leg. iii. Lucian, in Eunuchs.
‡ Olivier, v. 371. Xenophon, Cyr. 1. and viii.
§ Athen. iii. Suidas on the word Αυθητες. Xenophon, Cyrop. iv. at the end.
political differences had their eyes put out, or their ears, noses, or hands cut off. These were amusements for the ancient, as they are for the modern sovereigns of this country. During the civil contests which followed the death of Korim Khan, Zachee Khan who usurped the government, coming to the town of Yezulikhat, made a sudden demand on the magistrates for a sum of money due to the government, which he accused them of secreting. They denied the arraigs, asserted they had no money concealed, and that it was out of their power to collect the sum he required. On finding the unhappy citizens firm in their declarations, he, without more ado, ordered a certain number of the most respected characters in the town to be taken to a rock, near a window where he sat, and immediately hurled to the bottom of the precipice, where they lay a mangled spectacle of horror. One of the wretched victims still survives, a circumstance which, to those who look at the height of the rock, appears miraculous. The present rulers are of a more benignant character; but the infliction of punishment is still often too summary. Robbery is wisely treated with the utmost severity; one of the princes, having, in a journey, found a band of mountaineers in the act of dividing their plunder, caused their bodies to be disgracing mutilated, and sent them to their friends and neighbours, to warn them of the consequences which that crime would now be sure to bring about in Persia. How different this from the institution of regular trials, which, by the delay and deliberation which they imply, accustom the offended, however powerful and however justly indignant, to repress the acts which flow from their resentment; and how different from those countries in which tribunals and police are diffused alike through every corner of an extensive country, for it is well known, that at a distance from the immediate presence of royalty, the licentiousness of the marauder experiences little restraint from the Persian government. Mr. Kinmei tells us, that he saw two thieves built up in a wall, where they were left to perish.†

The ancient Persians, like the moderns, after being bugged by order | Servile wages. of the king, returned their thanks to him on their knees for attending to their correction and improvement.‡ Marks of the most shameful servitude were not in the least revolting to the ancient lords of Persia, as they are not to those of modern times. At the present day a courtier calls himself his master's dog; and we know that the Satrape, under the Parthian kings, lay down at the foot of the royal table, and respectfully took such leavings of the dishes as the monarch threw down to them..§ The genuflexions of the highest subjects, and the titles of bro-| Pompeus titles. ther to the sun and the moon which they lavished on the Persian monarch, did not allow the latter to believe himself mortal. Like the modern Sophis, he lived inaccessible in his seraglio, surrounded by women and by eunuchs. All subjects, without distinction of rank, are entitled slaves. In short, the ancient history of Persia portrays almost feature for feature the same hideous spectacle of despotism and of slavery which the modern annals of this country present to view. There is something frightful in this hereditary succession of the same vices and the same atrocities. The present monarch, and the most of his family, have the character of being in some measure honourable exceptions. They are said to be affable and humane, and harmonious among themselves. Renouncing the intemperate habits of some of their predecessors, sharing in their journeys all the toils and privations of the lowest subjects with an unaffected ease, they cultivate habits which are more manly and better adapted to persons whose duties embrace the happiness and protection of the whole of society, while their taste for information is directed to all those topics which tend to the general improvement. It is possible that by their intercourse with the different polished countries of Europe, particularly through the medium of well-informed men who visit them, and communicate the information and the spirit which predominate in enlightened communities, they may lay the foundation for a new era in the national character and condition. If other countries will, in their turn, copy their habits of sobriety, the advantage may be reciprocal, and it may not

be easy to say whether they will ultimately receive or confer the most substantial advantages.

General character. It has often been said that the Persians are the Frenchmen of Asia. The inhabitants of Shiraz do indeed bear a resemblance to the Parisians in the quickness and lightness of their walk, their volubility of tongue, their facility at turning a compliment, the delight they take in saying agreeable things about nothing, and the minute care which they take of their clothes and manner of dressing. The Persians have, in general, much subtlety and versatility of mind. In this they certainly exceed. Chardin, their best apologist, allows that they are thriftless, selfish, venal, and incapable of any act of spontaneous generosity. Their politeness is chiefly in empty ceremony. Their hospitality is both sullen with much vanity, and accompanied by the hope of being repaid with presents. They seem to consider themselves as much wiser, and more sprightly than other nations; yet their wisdom, like that of many other countries, has not yet established a permanent system of practical and political happiness, for they continually fluctuate between anarchy and despotism. Mild and humane in time of peace, their temper is completely altered in their civil wars. But, victors or vanquished, rich or poor, their quiet and presence of mind never forsake them: and it often happens that the most violent quarrels are succeeded by immediate bursts of good humour.

Religion. The Mahometan religion, which is now that of the greater part of the Persians, has in that country lost much of its characteristic intolerance and fanaticism. Being sheikts, or followers of Ali, the Persians bear a deadly hatred to the Turks, and others of the sect of Omar. In the festival of Hosseyn, the son of Ali, one of the greatest saints of the Persian sect, the streets of Shiraz ring with imprecations against the Sunnites. This hatred is probably kept up by the political rivalry of the two empires, and no such feelings are cherished towards other religions. In no part of the east are the Christians of Europe better received. The Jews and Armenians are subjected to grievances, but less so than in other countries.

The persecution of the Guebres has now ceased. The reigning king even tolerates, in spite of the Persian clergy, various Mahometan sects, and among others, the Ishmaelites, whose patriarch resides at Khekh in Irak-Adjemi. The clergy experienced a still more marked affront under the reign of the famous Nadir. This conqueror, who, in the prosecution of his profound but cruel policy, mediated a reunion of all the Mahometan sects, brought together one day the mollahs, or doctors in theology, and the Imans or ministers of the mosques, and asked them what use they made of their revenues. "We employ them in works of piety," was the answer; "we pay persons to offer prayers for the prosperity of the empire; we educate the youth in the public colleges." This deep insult addressed them in reply: "The calamities which the empire has now for half a century experienced, demonstrate the inefficiency of your prayers; as for the colleges, I will look after their support: and as my soldiers, the supports of the religion and the state, are the only true mollahas, I ordain that your property shall be confiscated to their use." The Persian mosques differ from the Turkish, in having no madrassets, a difference probably rather founded in architectural taste and fashion, than proceeding from any peculiarities of religious opinion.

The Zabians. It is worthy of our notice in this place, that there exists in Khooosistan a very remarkable Mahometan sect, that of the Zabians, who have been erroneously called Sabeans, and thus confounded with the adherents of the ancient worship of the heavenly bodies called Sabeism, and also with the people of Arabia Felix known under the name of Sabá and Shabá, which the Greek geographers have rendered Sabae. The sect now mentioned, though it has some establishments in the neighbourhood of Bassora and Lahsa, has nothing in common with the Sabians of Yemen, nor with the worship of the stars. It was founded in the ninth century by one Nassafri; and his religious books, written in a Syriac dialect approaching to the Galilean, show the country to which it owes its origin. As the Zabians venerate

* Franklin, ii. 99—95.
† Rousseau, in the Annales des Voyages, xiv. 279.
‡ Langlé, Chronological note in Chardin, x. 211.
§ Norberg in Michaelis, Biblioth. Orient. xv. p. 126, 143. Niebuhr's observations in the
the cross, as they employ a kind of baptism, and call themselves "the disciples of John," they were thought at one time to be a sect which had originated along with the Christian religion in Galilee; but this opinion has been sufficiently refuted. Their doctrines approach nearly to those of the Ishmaelites, and partly to those of the Guebres. The name of John, according to a learned orientalist, signifies "light," and has nothing in common with the denomination of the Christians of St. John in India. Perhaps it is rather a remnant of the ancient Chaldean fable on the prophet and demi-god Oannes. The Zabians sacrifice poultry along with a ram. Their marriages are accompanied by several ceremonies referring to the preservation of early virginity.

The sciences and belles lettres made a brighter figure in Persia, under the sophis, than in any other country of Asia subsequent to the time of the caliphs. The poems of Ferdoosi, of Saadi, and of Hafiz, have been read with delight in European translations. The lively and exuberant imaginations of these authors breathe the perfume of roses, listen only to the sweet notes of the nightingale, and live in the world of genii and of fairies; but there is little solidity in their thoughts or sentiments. We have in their writings the picture of a Persian sun presiding over paradises and deserts. Some feeble lights of literature still subsist, which the reigning sovereigns endeavour to cherish and extend. The Arabic, Turkish, and Persian languages, eloquence, poetry, theology, medicine, and astrology, are taught in numerous seminaries. Were it not that Turkey intervenes as a barrier between European light and the genius of the Persians, we should probably find this Asiatic nation making an extraordinary step of advancement. As Persia, men of learning are held in esteem, and the most important places are conferred on them; while in Turkey the most ignorant barber may be made the mufti, and a porter, who can neither read nor write, a minister of state. From some of the details contained in this and the preceding book, it will appear that the power of imitation and invention, as displayed in the arts of painting and of statuary, are not prescribed in Persia as they are in Turkey, although the degree of proficiency has been variable at different epochs, and is at the present moment far from being high.

The natural talents of the Persians have found exercise in the career of industry. Chardin has given a very minute description of the manufactures and trade of Persia in the seventeenth century. The art of embroidery on cloth, silk, and leather, was carried to a high degree of perfection. These were manufactures of pottery in every part of the kingdom; the pots came from Shiraz, from Meshed, and from Yazd. That of Zoroaster equalled the porcelain of China in fineness and transparency. Some of it possessed the property of resisting fire, and was so hard and tough that mortars were made of it in which hard substances could be pounded. The porcelain made in Kerman is renowned for its lightness and elegance, and is from this province, then called Carmasse, that Pinay tells us that a great proportion of murrine vases were brought to Europe. These were probably only a sort of porcelain formed by a process now lost. The manufactures of leather, of agate, and of morocco, are as old as the Parthian kings, and perhaps the days of Cyrus. They subsisted when Chardin travelled, and are still in a flourishing state. The Persians are great barbers; they employ the tis of Sumatra in sliming their kitchen utensils. The Toms of Persia were the most esteemed of the east, and their damascene swords, made of the iron and steel of Indostan, were considered by Chardin as surpassing the skill of any armourers in Europe. Their

same work, xx. p. i. and Norberg's ref. p. 149. The same author, de Religione et Lingua Sabaonum, in Comment. Götting. xv. M. Norberg, a learned orientalist, and Professor at Lund, is now engaged in a work on the dialect and doctrines of the Zabians.

* Tychsen in the German Museum, 1784, and in Murry's Journal, first number. Bruna, in the Reprint. Orient. xvii. p. 35, &c. (M. Langlès is about to publish the alphabet of the Seffil, or Zabians.)

† Boyle-la-Coni, Voyages, p. 303. Chardin vi. 60, 143, &c. Nieb. 11. 141.

‡ Olivier, voyage en Perse, chap. 10.

§ Pinay, xxxvii. 3.

razors and other steel manufactures were also much in request. They excelled in
the cutting of precious stones, and in dyeing colours which united brilliancy with
durableness. Their glass manufactures were less deserving of notice. Their cotton
and woollen stuffs, and those made of goats' and camels' hair, their silks, their
brocades, and their velvets, had arrived at great excellence. The carpets so highly
valued came chiefly from the province of Seistan. Chardin adds, that in his time,
they were called Turkey carpets, because they passed through Turkey on their way
to Europe. The camel-hair stuffs were generally made in Kerman, and those of
goats hair in the mountains of Mazenderan; but the cotton stuffs came chiefly from
Indostan. The making of broad cloths was not known, and their place was supplied
by a kind of felt. The king himself had a share in the trade of silk, brocades, carpets,
and trinkets, which probably fettered, in some measure, the freedom of commerce
in the country. Silks of different fabrics were the staple commodities. The imports
to India consisted of tobacco, preserved fruits, particularly dates, wines, horses, por-
celain, and leathers of different colours. Those to Turkey were tobacco and cooking
utensils; and to Russia, manufactured silks.

Present state of the arts.

Nor has this state of things changed as much as might be supposed.

Excellent sabres are still made at Casbin, and in Khorsan. The fine
quality of the steel is known by its waving clouded streaks. They are damascened
with gold. Those blades do not bend. The sabres of Casbin cost from sixty to
eighty dollars, but those of Khorsan are as high as a hundred sequins, or upwards
of £30 sterling. Among the Persians, as well as the Turks, all metals are ham-
ered cold; even the horse shoes are made in that manner. This is said to give
them greater solidity. The Persians are still acquainted with the silvering of glass,
and the cutting of diamonds. They do not seem, generally speaking, to have lost
any of the arts which they practised in Chardin's time, and they have acquired some
new ones, such as the art of enamelling, which they execute very well.*

Navy.

The want of building timber, and the heat of the climate, seem to
have prevented the Persians from establishing a navy in the ports
which they possess on the Persian Gulf. All their maritime trade is conducted by
foreign vessels. The most lucrative used to be that which they carried on by Or-
muz and Gomborseen with the English and other nations, but theirs perpetual wares
have now ruined it. Yet the goods which annually enter the Persian Gulf are esti-
\n\n
mated at half a million sterling. Two-thirds are bought by the English, and the re-
\n\nmain ing third by the Moors, the Indians, the Arabsians, and the Armenians. The
cargo of the vessels consist of rice, sugar, and 'cotton, Bengal muslins, plain,
striped or sewed; spices from Ceylon and the Moluccas; white and blue
coarse linen from Coromandel, cardamom, pepper, and Indian drugs. Were Turkey
in Asia in the possession of European powers, the Persian Gulf might recover all
its ancient importance. Caravans between Bassora and the Syrian ports would offer
greater security than the navigation of the Red Sea. The Damueblo might also
receive the fleets from Trebisond and Phasis, loaded with the merchandise of Persia.

Pastoral

On the other hand, if the Afghan, Persians were consolidated by the conquest of Bu-
charia and of Kowaresm, Russia would not long delay to conclude a treaty with this
people, by which she might divert to the Caspian Sea a part of the valuable trade
which now goes down the Ganges, and up to the Thames.

Such is the general idea which we have formed of the Persians, on comparing the
relations of travellers with one another. But the sketch must be savorously incom-
plete, till we take into view the numerous pastoral tribes dispersed over
every part of the territory, which, according to the most recent accounts,
form a sort of second nation, almost independent of the Persians, and often hostile
to them.† We shall subjoin to the present book a tabular view of these different
Turcoman, nations. The Turcoman hordes diffused over the northern part of the
empire, reckon 420,000 individuals. The Efschar tribe in Khorasán, which is
88,000 strong, gave birth to the ferocious but able Nadir Shah. That of Katchar,
which consists of 40,000, and which lives in the neighbourhood of Téhrán, has

† See the subjoined table of the Persian nations.
given Persia her present sovereign; and the Turkish language prevails at the court of Fuhtheh-Ali-Shah. The Kooodish tribes of Persia, among which the Koord tribes, Erdilany are the most powerful, amount to 90,000, not including the agricultural Koords. The Loor, or Lorian tribes, whose population is estimated at 140,000, chiefly roam among the mountainous countries between Khooosistan and Irak, and which, from them, have received the name of Looristan. They speak a dialect of their own, which still sufficiently resembles the Koordish language to be sometimes confounded with it.* As Hadji-Khafifah maintains that three languages are spoken in Farsistan, the Parsee, the Arabic, and the Pehlevi, we may, with considerable probability, infer that the Loorish language, the only dialect now known in Fars, besides the Arabic and Parsee, is the Pehlevi, or at least a dialect of that ancient language. The coast of the Persian Gulf is, in a manner, given up to the Arab tribes already described; but there are also in the interior some Arab tribes, wandering tribes of the same nation, amounting to 90 or 100,000 persons. A particular class of them seems to be formed by the Gheky, in the mountains of Ghi- lan, who, within their own community, speak a peculiar idiom, while the Ambalins, or inhabitants of the valleys, speak a dialect of the Persian.† The Paddars, the Hassares, and other tribes who are little known, wander along the banks of the Araxes.

All these wandering hordes receive among the Persians the common appellation of Elaut. They have long constituted the principal strength of the Persian armies,‡ and it is by them that the country has been revolutionized, as the Roman empire was overthrown by the Goths. An Elaut always affects a kind of independence, and measures his deference to civil authority by his existing situation; obeying on the side of his stream, or disobeying in the fastness of his mountains. On this account, as a check to this unconnected and wilful political character, the fashion has arisen of drawing their principal chiefs to court, where many of them are found mingling the refinements of the capital with their bolder habits; delegating, in the mean time, their authority over their tribes to the chief next in rank. With a government and people who have a nascent taste for national improvement, this arrangement may in time become productive of all the most important advantages of an extended representation.

Of all these tribes, none has made so much noise as the Afghans,† The Afghans, called in India Patans, who are generally considered as belonging to the Persian empire, and occupying its eastern provinces; but having for a long time maintained an independent government, will be described in another book.

Table of the Geographical Positions of Persia Astronomically observed.

<table>
<thead>
<tr>
<th>Names of Places</th>
<th>Long. E. from London</th>
<th>Latitudes</th>
<th>Observers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balfroosh</td>
<td></td>
<td>36 34 43</td>
<td>Trezél.</td>
</tr>
<tr>
<td>Tehran</td>
<td>35 39 53</td>
<td></td>
<td>The same.</td>
</tr>
<tr>
<td>Casbin</td>
<td>49 53 15</td>
<td>36 11 0</td>
<td>Beauchamp.</td>
</tr>
<tr>
<td>Tauris, or Tabriz</td>
<td>46 25 0</td>
<td>38 4 0</td>
<td>Major Menteith and Mr. Brown.</td>
</tr>
<tr>
<td>Ispahan</td>
<td>51 50 15</td>
<td>32 24 34</td>
<td>The same.</td>
</tr>
<tr>
<td>Yezd</td>
<td></td>
<td>32 7 11</td>
<td>Trezel.</td>
</tr>
<tr>
<td>Ormuz</td>
<td></td>
<td>27 8 0</td>
<td>The same.</td>
</tr>
<tr>
<td>Lar</td>
<td>27 21 15</td>
<td></td>
<td>The same.</td>
</tr>
<tr>
<td>Abu-Shehr, (or Bender)</td>
<td>28 59 0</td>
<td></td>
<td>Niebuhr.</td>
</tr>
<tr>
<td>Boosher</td>
<td></td>
<td></td>
<td>The same.</td>
</tr>
<tr>
<td>Shiraz</td>
<td>29 36 37</td>
<td></td>
<td>The same.</td>
</tr>
<tr>
<td>Sins, or Sneirne</td>
<td>34 23 35</td>
<td></td>
<td>Simon, French consul. See the Phil. Trans. 1755, vol. XLIX. p. 251, and Zach's Corresp. III. 571, &c.</td>
</tr>
<tr>
<td>(probably Sinné or Senney, in Koordistan.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Compare Otter's Travels, i. 267. (in German.)
† Gmelin's Travels in Persia, iii. 350 and 352. (in German.)
‡ Abdool Keryn's Journey from India to Meccas, p. 37. (Langles's translation.)

Vol. I.—3 I
Comparative Table of the Ancient and Modern Divisions of Iran or Persia, including Afghanistan, or Eastern Persia.*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shirwan</td>
<td>Albania.</td>
<td>Shamakie, &c.</td>
<td>Russia or khans who were vassals of Russia.</td>
</tr>
<tr>
<td>N. B. For the subdivisions see Book XXV.</td>
<td>See Book XXV.</td>
<td>See Book XXV.</td>
<td></td>
</tr>
<tr>
<td>Erivan, or Persian</td>
<td>Armenia Persica.</td>
<td>Erivan - - - -</td>
<td>Futeh-Ali,</td>
</tr>
<tr>
<td>Armenia.</td>
<td>See Book XXVII.</td>
<td>Nackshivan.</td>
<td>Shah of Persia.</td>
</tr>
<tr>
<td>Adzerbidjan</td>
<td>Media Atropatene</td>
<td>Kho.</td>
<td>The same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tauris.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ardebil.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magara.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urmia.</td>
<td></td>
</tr>
<tr>
<td>Ghilan</td>
<td>Country of the Gelasii or Cadusii</td>
<td>Recht - - - -</td>
<td>The same.</td>
</tr>
<tr>
<td>*Dylem.</td>
<td></td>
<td>Astara.</td>
<td></td>
</tr>
<tr>
<td>District of Lengkerán.</td>
<td></td>
<td>Einselly,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lengkerán.</td>
<td></td>
</tr>
<tr>
<td>Mazanderan</td>
<td>Western part of the Satrapy of Hyrcania.</td>
<td>Balfroosh - -</td>
<td>Futeh-Ali-Shah.</td>
</tr>
<tr>
<td>(Annexations.)</td>
<td></td>
<td>Sari.</td>
<td></td>
</tr>
<tr>
<td>Khorasan</td>
<td>Parthynæ - - -</td>
<td>Meshged - - -</td>
<td>The same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nishaboor - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toun.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herat - - -</td>
<td>The king of the Afghans.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooki - - -</td>
<td>Khan almost independent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Usbecks of Bokhara.</td>
</tr>
<tr>
<td>Irak-Adiémi</td>
<td>Margiana - - -</td>
<td>Maru-el-Rud - -</td>
<td>Futeh-Ali-Shah.</td>
</tr>
<tr>
<td>*Isfahun</td>
<td>Media Magna</td>
<td>Ispahan - - -</td>
<td></td>
</tr>
<tr>
<td>*Kom</td>
<td></td>
<td>Tehran.</td>
<td></td>
</tr>
<tr>
<td>*Kashan</td>
<td></td>
<td>Kashan.</td>
<td></td>
</tr>
<tr>
<td>*Rey</td>
<td></td>
<td>Kom.</td>
<td></td>
</tr>
<tr>
<td>*Hamadan, &c. (Isidor)</td>
<td></td>
<td>Kermansha, &c.</td>
<td></td>
</tr>
<tr>
<td>(Annexations.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohestan</td>
<td>Tabiene - - -</td>
<td>Sennei - - -</td>
<td>The same.</td>
</tr>
<tr>
<td>Komis</td>
<td>Comisene - - -</td>
<td>Shaush-Poolat</td>
<td>Independent tribes of Mekris and Bilbas.</td>
</tr>
<tr>
<td>Persian Koordistan</td>
<td>Part of Assyria, &c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khooristan</td>
<td>Susiana (a satrap.)</td>
<td>Sooster, or Tchootchter.</td>
<td>Futeh-Ali-Shah.</td>
</tr>
</tbody>
</table>

* The table, as given by the author, is translated here entire, although the more precise information which has been obtained since the original work appeared has led us to give the Afghan empire, in Eastern Persia, a separate place. See Book XXXV. — Tz.
<table>
<thead>
<tr>
<th>Modern Provinces</th>
<th>Ancient Provinces</th>
<th>Chief Towns</th>
<th>Sovereigns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Housistan -</td>
<td>Countries of the Uxii.</td>
<td>-</td>
<td>Arab tribes scarcely subject.</td>
</tr>
<tr>
<td>3. Khoosian, or Looristan.</td>
<td>Country of the Cossoi, or Syro-Media.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Elam -</td>
<td>Elymais -</td>
<td>Shiraz -</td>
<td>-</td>
</tr>
<tr>
<td>Farsistan -</td>
<td>Persia, or Persia Propria -</td>
<td>Komasha.</td>
<td>-</td>
</tr>
<tr>
<td>1. Khooreh Ashok -</td>
<td>Parætacene.</td>
<td>Yesdekast.</td>
<td>-</td>
</tr>
<tr>
<td>2. Kobaad.</td>
<td></td>
<td>Kazeroon.</td>
<td>-</td>
</tr>
<tr>
<td>3. Shapoor.</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>4. Ardashir.</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>*Kermass or Shifel-Bahr.</td>
<td>*Mesambria, (i. e: southern coast.)</td>
<td>Bender-Rigk.</td>
<td>-</td>
</tr>
<tr>
<td>5. Arradjan.</td>
<td></td>
<td>Bender-Abosher.</td>
<td>-</td>
</tr>
<tr>
<td>6. Dakhour. (Firoozabad.)</td>
<td>Pasargadæ - Persepolis -</td>
<td>Firoozabad.</td>
<td>-</td>
</tr>
<tr>
<td>7. Darab.</td>
<td></td>
<td>Aberkhou.</td>
<td>-</td>
</tr>
<tr>
<td>8. Istarak.</td>
<td></td>
<td>Daragberd.</td>
<td>-</td>
</tr>
<tr>
<td>9. Aberkon.</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>10. Yezd -</td>
<td>Isatichæ of Ptolemy.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Larisian -</td>
<td>Part of Mesambria, or Persia Maritima.</td>
<td>Laar, or Lar</td>
<td>-</td>
</tr>
<tr>
<td>*Part of Kermesir.</td>
<td></td>
<td>Futte-Hali-Shah.</td>
<td>-</td>
</tr>
<tr>
<td>*Hormooz, a province in the middle age -</td>
<td>Harmuzia.</td>
<td>Taroom.</td>
<td>-</td>
</tr>
<tr>
<td>Kerman -</td>
<td>Caramania -</td>
<td>Funit.</td>
<td>(Arab Sheik dependent on the Imam of Muskatt.)</td>
</tr>
<tr>
<td>Sirdjan.</td>
<td>Kerman or Sirdjan Berd sheer.</td>
<td>Bender-Abbas, or</td>
<td>-</td>
</tr>
<tr>
<td>*Berdasheer.</td>
<td>Berd sheer.</td>
<td>Gomberoon.</td>
<td>-</td>
</tr>
<tr>
<td>*Velaghgerd, &c.</td>
<td>Velaghgerd.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Mogistan -</td>
<td>Minau.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Mekran -</td>
<td>Gedrosia, with the coast of the Ichthyophagi -</td>
<td>Tiz -</td>
<td>One or more princes or varli, independent, or nearly so.</td>
</tr>
<tr>
<td>Seistan - (Seghistian.)</td>
<td>Drangiane - Sacastene, (of Isidorus.)</td>
<td>Zareng -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firra.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dergasp.</td>
<td>-</td>
</tr>
</tbody>
</table>
现代省份 | 古代省份 | 首府城镇 | 1810年统治者
--- | --- | --- | ---
萨布尔斯坦 | | | |
1. 阿罗斯 | 阿罗斯西亚 | Bokbardje | 阿富汗国王，或称喀布尔之王。
2. 班扬 | Paropamisade，(它们的国家) | 班扬 | 同上。
3. 阿尔哈德杰 | | 采布尔 | (N. B. 阿富汗
4. 钦巴尔，或阿富汗
5. 坎达哈 | Paropamisade，(它们的国家) | 坎达哈 | 有时适用于
6. 沙尔丁 | | 佩什瓦 | 阿富汗帝国的整个。
7. 托朗 | | | |

表列了居住在波斯的民族，取自手稿《波斯旅行记》，包括东部波斯。

I. 农业或制造民族，居住在固定住所。
1. 现代波斯人，称作塔奇克或土著旅行者。由其组成，包括古代波斯人、塔塔尔人、阿拉伯人和波斯人。人数假设，最多十万。
2. 普塞斯或古布斯，是波斯人的第五和第六世纪，崇拜火的。阿耶兹，等等。在坎曼和梅克伦。人数假设100,000。
3. 阿富汗人。
 a. 阿富汗被 properly so called。在坎达哈，卡宝尔，阿罗斯，坎德杰，等等。
 b. 波罗的旅行。看游牧民族。
 c. 罗希拉，或帕坦。在印度。•
4. 格拉克，或古代的居民，吉尔甘。人数50,000。
5. 亚美尼亚人。在亚美尼亚和阿塞拜疆，70,000。
6. 犹太人。在伊斯法罕，设拉子，陶拉，喀山，35,000。
7. 泽本人。在克霍索恩，10或12,000。
II. 游牧民族，依靠其羊群，或依靠捕鱼，变化或至少可以变化，他们的行列。
1. 现代土耳其语言。
 a. 波斯人，88,000人。在阿塞拜疆，有几个其他省份。他们的主要地方是乌玛。分为卡森和阿什洛。
 b. 凯加尔，40,000。波斯-阿什-沙希人。他们的中心
 c. 莫卡德姆，5000。在马拉加在阿塞拜疆。一个非常勇敢的
 d. 布尔多罗，12,000。在亚美尼亚；在克霍和塞尔马。
 e. 图拉科曼，12,000。在阿塞拜疆；在罕德在伊拉克
 f. 塔利什，15,000。在阿塞拜疆和吉兰。
 g. 卡拉伽胡利，12,000。在罕德。
 h. 贝贾特，20,000。在阿塞拜疆，塔拉，和谢夫波，(在
 i. 舍亚恩德，14,000。在阿雷比和雷。
 j. 黑兹万什希，7000。在舒什何，谢里万，俄罗斯的
 l. 德里尔。数字未知。在克霍萨兰。
m. 法尔德曼鲁乌；在法尔斯；10,000。
n. The Kodjavend; in Ghilan and Mazanderan; 4 or 5000. Twenty-eight less considerable tribes, and of which our accounts in detail are uncertain.

2. Tribes of the Arabic language.
 (4.) Arab shepherds introduced by Tamerlane.
 a. The Bestanič; at Bestan in Khorasan, 12,000.
 b. The Thooni; in Khorasan; 15,000.
 c. The Djindaki; in an Oasis of the great salt desert.
 d. The Agakhani; in Low Farsistan; 15,000.
 e. The Ahwass; in the plains of Khoosistan.
 f. The Athullai, in Kerman; 6000. Three other tribes of 8000 or 9000 each.

(2.) Arab fishermen on the sea coast.
 a. The Beni-Kiab, in Khoosistan, (Elam.)
 b. The Arab Hindiān; on the shores of Farsistan.
 c. The Beni-Hoole; the same.
 d. The Arab-Lindje, (perhaps of the town of Lundje;) the same.

3. Tribes of the Loorkish language.
 a. The Zend, near Isphahan, and in the north part of Farsistan; 12,000.
 b. The Lekes, in Farsistan; 20,000.
 c. The Khogiloo, the same; 15,000.
 d. The Zinguénéh, environs of Kirmanshah; 6000.
 e. The Feillé, in Loorkistan, between Sooster and Kirmanshah; 40,000.
 f. The Bactyari, in Loorkistan, between Sooster and Isphahan; 30,000.
 g. The Kerros; environs of Khamsé; from 8 to 10,000.
 h. The Kara-Zendjiri, near Kirmanshah, 7000.

4. Tribes of the Koordish language.
 1. In Koordistan.
 a. The Mekris; independent, able to muster 3000 horses in one day.
 b. The Bilbas; independent, scattered; able to raise 15,000 men and 5 or 6000 houses.
 c. The Gias; inhabiting the states of Abdul-Ramal, an independent chief; 4 or 5000 families.
 d. The Goorars; environs of Senney, subject to the valhi or Persian governor.
 e. The Baras; 1000 families. Country and political state the same as the Goorars.
 f. The Sunsur; 1200 families.
 g. The Leks; 1000 families.
 h. The Kotchooos; 10,000 persons.
 i. The Shaggelia; 15,000 souls. A peaceful, agricultural, and happy tribe. Distributed through Adzberdian.

2. Out of Koordistan.
 a. The Resheven; in the canton of Taroon, near the defile of Rootbar, between Irak and Mazanderan, 10,000 persons.
 b. The Pazequi, between Rey and Tehran, 3000.
 c. The Zaffemnloc; 10,000 persons, in Khorasan.
 d. The Erdelani; in Khoosistan.
 e. The Boisoor; in Khorasan; 8000 persons.
 f. The Modenllo; in Mazantleran; 4000.
 g. The Embarloo, &c. &c.

5. Tribes of the Patan language.
 a. The Ballootches, in Mekran.
 b. The Hyber.
 c. The Serwani.
 d. The Abdolli and several other tribes, descended of the same stock as the Afghans, and speaking nearly the same language, wandering rather as plunderers than shepherds, or nomades, in the eastern part of Persia.

Note—In the travelling journals some other tribes are mentioned, such as the Kishlaks in Keresa and Koordistan; the Beides, who pretend to work miracles, and who live in Adze.
bidjan, &c. but those manuscripts which we have had an opportunity of consulting give no further information respecting these tribes.

We expect from M. Joannin, Knight of the Order of the Sun, first interpreter of the French legation in Persia, a complete work on the nomade tribes of Persia. Messrs. Amédée Jaubert, Master of Requests, Fabvier, Trézel, and Treilhier, French officers, have also made various remarks on this new and interesting subject, which was, I believe, first brought into notice in the Travels of Abdul-Kerym, (p. 37 of M. Langlé's translations.) We are also indebted to M. Adrian Dupré for the communication of a very complete table of the nomade tribes.

BOOK XXXIV.

CASPIAN SEA.

Geographical Dissertation on this Sea, and the ancient mouth of the river Oxus or Gihon.

Few subjects in geography have afforded more matter of discussion than the Caspian Sea. The peculiar nature of this sea is one of the most interesting subjects of physical inquiry. Geographical criticism has formed a diversity of conclusions regarding its situation, form, and extent, though there can be no doubt that the sea itself has continued unaltered from the remotest times.

Situation. | According to the latest astronomical observations and local measurements, the Caspian Sea extends from north to south, in a longitudinal direction, nearly all of equal width, excepting a contraction which occurs at the encroachment made by the peninsula of Apsheron. The northern end forms a large bay, turning round from the north to the north-east, and approaching to the basin of the lake Aral.

The length of the Caspian Sea may be estimated at 760 miles, in a line drawn from north to south, that is, from the bay of Kolpinskom, on the west of the river Ural, to Balfroosh. This line, however, crosses the peninsula of Karagan. Its smallest width is 113, and its greatest width, that is, between Astar and Daghistan, 275 miles.

Extent. | The situation of this sea, though now well known, was not ascertained a hundred years ago. The ancients laboured under a general mistake that it was a gulf of the Northern Ocean, and this was not corrected till the second century of our era. Ptolemy re-established the fact, which had been known to Herodotus, and perhaps to Aristotle. The Caspian Sea was then restored in the maps to the form of a lake or inland sea, separate on all sides from the northern and every other ocean. But, instead of having its longest diameter in a direction from north to south, it was described as longest from east to west. One reason for this view of it was, that the Northern Ocean was still thought to come much nearer to it than it did, and not to leave room in a northerly direction for the dimensions of this sea, the total extent of which was pretty well known. Besides this, the lake Aral being imperfectly known, was considered as part of the Caspian Sea. This notion is shown to have been entertained by the opinion which the ancients had of the mouth of the river Oxus, an opinion which will be discussed in the present book.

During the darkness of the middle ages, the editors of maps confined themselves

* The passages of Herodotus, Aristotle, Strabo, Ptolemy and others, are quoted and discussed in the author's History of Geography, which forms the first volume of the original, though it has not been thought advisable in the present translation, to alter in this respect the order of the work, by making the history of this science the concluding part. The English reader has in this way more speedy access to the most essentially interesting branches of the subject. *
to the copying of those of Ptolemy. In this the Caspian Sea occupied 20 degrees from east to west; the lake Aral was confounded with it; and the Ghion or Oxus fall into it at the place where the city of Balk is marked in our maps. The first learned traveller who substituted actual observations for vague and obscure traditions, was the English merchant Mr. Jenkinson, who travelled in 1558 and 1561, at the expense of the Russian Mercantile Company of London. Sailing from Astrakan, he visited the northern coast, as far as the mouth of the Yemba; disembarked at Mangialak, from whence he went to Bokhara. He distinguishes the lake of Aral by the name of the lake of Kithay. In his second journey, he went by the Caucasus, to the southern shores of the Caspian Sea. He was succeeded by his countryman Christopher Burrough, who, in 1560, crossed Russia, and embarked at Astrakan, sailed along the western shores of the Caspian, and determined by observation the latitude of several points. In 1633, the learned Olearius, (or Oelschläger, a native of Ascherleben, and professor at Leipsic,) accompanied an embassy from the Duke of Holstein to the Sophi of Persia, ascertained the latitude of many points on the western and southern shores of this sea.

The whole of these insulated observations continued almost unknown to the learned of Europe; at least it would be difficult to produce a French, English, or German map of the 17th century, in which the Caspian Sea has a form in the least degree approaching to the truth. That of John Struys, a Dutchman, undoubtedly the most conspicuous, sets down Astrakan on the eastern shore, and places the islands of the Wolga in the middle of the sea. It was reserved for Russia to find out the truth. The possession of the city of Astrakan, and the extensive schemes of Peter I. created doubts on the form of this sea. Then travels and hydrographic surveys threw additional light on it, till maps were at last constructed which, though rude, exhibited much new truth in the midst of a cloud of error. These maps, prepared from the year 1700 to 1710, by Kirilow counselor of state, Admiral Soimonow, and Vice-Admiral Cruys, a Norwegian, are now become very scarce even in Russia. In 1717, Peter I. employed some Dutch navigators to explore the Caspian Sea. These were engaged for three years in drawing a chart under the direction of Charles Van Verden. The Czar, during his visit to Paris, had frequent conversations with the learned geographer Delisle, and, at the request of this academician, caused the chart of Van Verden, (to which he had himself given some assistance,) to be sent to the Academy of Sciences of Paris, and likewise that of Vice-Admiral Cruys, neither of which took any notice of the longitudes. On examination, Delisle found them still to labour under glaring mistakes. That of Cruys placed Astrakan on the eastern shore of the Caspian; the same places were laid down twice, at a distance of nearly 300 miles; the latitudes, which at that time might have been easily ascertained within four or six minutes of the truth, were five or six degrees wrong. The French academician published the four different representations of the Caspian Sea, from the data furnished by Ptolemy, by Abulfeda, by Cruys, and by Peter I. and added to them a new critical sketch, from the observations of Burrough, Jenkinson, and Olearius.

Twenty years elapsed before any attempt was made to improve the geography of these countries. A new company of English merchants then undertook the project of opening an intercourse with India by Astrakan. The celebrated Jonas Hanway, who, in his travels in Persia, has given a history of that enterprize, received in 1745 from Captains Seton and Woodroof, a new chart of the Caspian Sea, containing few observations not formerly known. Hanway published another, which, being made out according to the old plan of projection, gives a bad outline. About the same time a German traveller, Dr. Lërche, made some excellent observations on the coast of Daghestan and of Shirwan.

† Zeekaert, cartograph de Caspische zee, etc. geteerkt oor Jan Jansen Struys, 1668.
§ Mem. de l'Acad. des sciences, p. 382. 1720.
¶ Mem. de l'Acad. 1731. p. 245. Carte de la mer Caspienne, 2 feuilles, 1725.
The celebrated d'Anville finding some manuscripts in the royal library, drew from them a new chart, in which the Caspian Sea was removed one degree to the east, but was still two degrees out of its true situation. Twenty years afterwards the hydrographer Bonne contrived a new system for the determination of this great problem. He admitted the correctness of Father Bezzen's observation on the longitude of Trebisond, though now known to be 7½° wrong, and the incorrectness of which had then been demonstrated by Delisle.† Along with this he placed Goriw at the north end of the Caspian, agreeably to the accurate observation of the Russian academician Lowitz.‡ A false observation being thus combined with a true one, Georgia, and the other Caucasian countries were carried too far to the east by an excessive lengthening of the Black Sea, and occupied what ought to have been the middle of the Caspian, the northern part of which remained in its true situation. Hence, the whole of this sea received an oblique direction from north-west to south-east, and was represented a fifth part more than its real length. D'Anville opposed this system of Bonne and maintained the true direction of the Caspian Sea.§

In the nautical expedition in which Gmelin and Hablitzl were concerned, all the latitudes, and some longitudes of the eastern and southern shore were determined. The observations of these various travellers, taken along with the longitude of Casbin ascertained by M. Beauchamp, and compared more recently with the numerous journals of French officers who have returned from Persia, seem at last to have fixed the extent and position of the Caspian Sea. Less easily, more indented, and more bent than D'Anville has represented, it still has, agreeably to the opinion of that learned geographer and of Peter I., a direction nearly parallel to the meridian.

If the reader will pardon this exposition of the long continued errors and deceptions of mathematical geography, which to those not deeply concerned in such matters may be somewhat dry, it is hoped he will have more pleasure in following us in the description of this singular sea. The level of it is lower than that of the ocean or the Black sea. Olivier makes a difference of 64 feet. Lowitz, whose researches seem to have been unknown to that learned traveller, makes it only 53.‖ The north and south winds, acquiring strength from the elevation of the shore, added to the facility of their motion along the surface of the water, exercise a powerful influence in varying the level of the water at the opposite extremities. Hence, its variations have a range of from four to eight feet, and powerful currents are generated both with the rising and the subsiding of the winds. Some difference also arises from the melting of the snows swelling the rivers. Of these the Wolga and the Ural or Iaik are the most distinguished on the European side; the Tedzen or Ochus, the Kesil-Ozen, and the Khoor, on that of Asia.

It has also been said to be subject to another variation, which observes very distant periods. We are told that since 1556, the waters of the sea have encroached on the Russian territory to the north. This is a fact which might deserve to be better ascertained. The depth of this sea is inconsiderable, excepting at the southern extremity, where bottom has not been found at a depth of 2400 feet.**

Pallas and others have indulged in the geological speculation first advanced by Varenius, of the former existence of a much greater extension of this sea to the north-west, and a union of it with the sea of Azof along the low grounds, abounding in shells and saline plants, and where the Manitch flows to the sea of Azof, and the Kooma to the Caspian. But of such an extension not the slightest historical trace is to be found in any creditable author. The ideas of the ancient geographers respecting a great extension of this sea to the east have no relation to this supposed

* Essai d'une nouvelle Carte de la mer Caspienne, 1754.
† Mem. de l'Acad. des Sciences, 1789, p. 391.
§ Mem. de l'Acad. des Sciences, 1774, p. 368.
‖ Georgii, Russie, i. 258.
† Hanway's Travels in Persia, i. 209.
** De Sainte-Croix, Examen des Historiens d'Alexandre, p. 701.
CASPIAN SEA. 441

strait. The voyages of the Argonauts would not be at all explained by such a strait, and require no such explanation.* The supposition of the Black Sea having stood at a higher level, and being separated from the Mediterranean by a continuation of land across the Thracian Bosporus till that isthmus was ruptured, and a devastating deluge succeeded by the sudden exit of the waters of the Black Sea and of the Caspian with which it had been previously continuous—all this hypothesised history is subverted by incontrollable physical truths. The valley of the Bosporus is natural and not formed by any violent catastrophe. The united waters of the Euxine and Caspian Seas, raised to the height requisite to form such a deluge, would have found an exit by different valleys from those of the Bosporus.† The general deluges described in these early writings, if they had any reality, were probably nothing more than local inundations limited to certain parts of Greece.‡ The stagnant water mentioned by a Byzantine author as existing on the north side of Caucus in the fourth century, which has been considered as a confirmation of the aqueous connection of the two seas, is nothing else than the lake of Bolcheretzkoi, which still exists.

But what becomes, it may be asked, of all the water which so many rivers pour into the Caspian Sea? Do they flow into two subterraneous communications which connect this sea with the Persian Gulf, and which some travellers pretend to have seen?§ Tunnels of this kind have, at all times, been considered by the judicious as purely imaginary.|| The willow-leaves found in the Persian Gulf do not require to come from Ghilan or any other part of the Caspian shore, the banks of the Euphrates being sufficient to furnish them. The waters of the Caspian Sea, like those of the Ocean, give off their superfluity by evaporation. This evaporation has been considered as established by the extreme humidity of the atmosphere in Daghestan, Shirwan, Ghilan, and Mazanderan; but no such phenomena as these are required for the demonstration. Every person imbued with a slight knowledge of chemistry knows that, while the air becomes charged with the moisture which it imbibes by evaporation, it continues to appearance dry, that is, it retains a disposition to imbibe more rather than to deposit what it contains, till the impregnation reaches a certain degree of strength, or, till a certain degree of cold is communicated to it. The circumstances required for the deposition take place at a considerable height in the atmosphere, and most particularly on the summits of high mountains. The rains and the dew thus formed fill the springs and the rivers, and maintain a constant circulation of the same water travelling from the heights to the seas by the rivers along the surface, and from the seas to the high lands, through the less obvious, but no less certain route of the atmosphere.

The shores of this great Sea are, on the east, formed by steep heights; on the south they are partly skirted with marshy flats; on the west and north by downs of sand. The bottom is strewn with shells, which are partly crumbled, and partly embodied with the roley strata. Chalk, sandstone, and pyrites, are the prevailing minerals. The shores are obscured, and the mouths of the rivers concealed by prodigious crops of reeds and rushes.

Round the mouths of the rivers the water is fresh, but becomes moderately salt towards the middle of the sea, though less so than that of the ocean. In addition to the usual ingredients of sea water, it contains a considerable quantity of sulphuric acid, which is obtained from it in union with soda, that is in the state of Glauber's salt.|| The north and west winds are said to diminish the saltiness, and to increase the bitterness of the water. The powerful phosphorescence of the thick muddy waters of the Caspian Sea is remarked by Pallas. The black colour which they assume at a great distance from the shore is nothing more than the effect of the depth, and owing to the same optical cause which makes the ocean

* The subject is more minutely treated in the author's History of Geography, already referred to.
† Olivier, Voyage en Perse, v. p. 227, etc.
‡ See the account of Greece in a subsequent volume of this work.
§ Struy's Novelles, p. 126, (German edition of 1678.) F. Avril, Voyages in diverses étoats d'Europe et d'Asie, p. 73.
|| Kämpfer Amdnukt, Extr. p. 234.
¶ Gmelin, Voyage iii. 261—267.
VOI. I.—3 K
appear comparatively dark and blue instead of light green, in deep places where the
colour of the bottom does not intermix itself with the natural colour of the water. *

Birds. Its northern gulfs are often frozen. The shores are frequented by

Fish. great numbers of aquatic birds. The sea itself abounds in fish. The

sturgeon (Acipenser sturio) is the principal object of its fisheries. From 300,000
to 400,000 are sometimes caught in a year. But for delicate eating, the sterlet (Acipenser ruthenus) is preferred; and it is from the sturgeon (Acipenser stellatus, called in the Russian language astemige) that the best caviare and the strongest isinglass are obtained. A million and a half of these fish, taken in a year, are valued at

milion of rubles (£158,330). There is also the Acipenser huso, the beluga of the

Russians. This fish attains an enormous size, and one is a heavy cart-load for

tree horses. It is also found in the lake Aral, the Black Sea, the Danube, and in

the great rivers of Siberia; down to the size of the Lena. In one year, 100,000 of

them have been caught in the Caspian, amounting in value to 340,000 roubles.†

Seals. (£53,000.) This sea contains a species of seals not yet well determined.
The species of shells and sea plants found in it are not numerous. ‡

Islands. The islands of this sea are noticed in the descriptions of the countries
to which they belong. Generally speaking, those that have any elevation have no

water and no vegetation. The low islands are often mere sandbanks surrounded

with reeds. There are very few deep and secure harbours; and as the winds are

liable to sudden changes, the navigation is, on the whole, dangerous. Raduz is, in

deed, the only harbour in which a vessel can ride with safety in stormy weather.

Different names of the sea. It would serve little purpose to enumerate all the names which have

been given to this sea. The Caspian is one of the most ancient, and

was probably derived from the word Kasp, a name once given to Caucasus. This

name is not only common to the Greek and Latin languages, but enters into the

Georgian, the Armenian, and the Syriac.§ The Jewish rabbis and Peritsol call it

the Dead Sea. The Turkish denomination for it, Khoosgoon Dzenghi, is variously

translated, but no probable etymology is assigned. The Byzantines and the Arabians

call it the Sea of Khozares, after a powerful nation; and the Russian annalists knew

it in the tenth century under the name of Gualensko or Shvealeensko-More, after the

Shvaths or Slavonian people, not much known, that lived on the Wolga. || In the

maps of the middle age, the name Mar di Sala is applied to it, which the learned

Wahl translates Sea of Salt; but it is, perhaps, rather derived from the town of Sara

or Saray, the capital of Kaptchak, which in some maps is called Sala. There would

be no end to the enumeration of names taken from adjacent provinces, such as the

Hyrcanian Sea, and many others. The name given to it in the Zenda-Vesta is,

however, worthy of remark. That apocryphal work, which is full of old traditions,
calls this sea Teshhat Dalili, or the "great water of the judgment." Perhaps Noah's

flood, as described in some of the Eastern traditions, might have a connection with

a sinking of the earth, which had destroyed the inhabitants of an extensive country,

and converted it into this remarkable sea.

Discussion on the mouth of the Oxus. Having thus traced the geographical history of the Caspian Sea, let

us take some notice of a discussion naturally attached to it. This con-

sists in a question famous in the annals of geography, Did the river Oxus or Gihan

once flow into this sea? Those readers who peruse the works of the Greek and Roman geo-

graphers in a superficial manner will perceive a considerable unanimity among

them on the course and termination of the Oxus. It is described as running from

east to west, and falling into the Caspian Sea. This is what Strabo and Pliny

always suppose to be the fact, and what Ptolemy expressly asserts. But there are

various circumstances which divest this unanimity among authors of its imposing

character. In the first place, the extension which these geographers give to the

Caspian Sea in an easterly direction, and their silence with regard to the lake Aral,

† Georgi, Description de la Russie, p. 1902, &c. 1963, &c.
‡ Gmelin, Voyage, iii. 332—257.
§ Wahl. Asien. i. 679, &c.
lead us to believe that they considered that lake as a part of the Caspian Sea, and that, in speaking of the junction of the Oxus with the Caspian Sea, they meant by the latter the lake Aral. This will appear evident to any person who, with a map before him, reads that passage of Strabo, in which, after describing the Oxus and the Ochus, he affirms that the Iaxartes (the modern Syr-Daria) also flowed into the Caspian: a terminus which the course of that river rendered at all times impossible.*

Another of the ancient writers, Pomponius Mela, gives a description of the Oxus quite conformable to the present geography of the surrounding places. Instead of merely saying that its course is from east to west, (a mode of description which has led so many to conceive that time has altered its direction,) he says that, after running westward, it takes a northerly direction, and falls into the Scythian Sea.† From this account, it must then, as it does now, have fallen into the lake Aral, which was considered by the authors whom Mela followed as a gulf of the northern or Scythian ocean. The order in which the Oxus is named along with other rivers by Dionysius Periegetes shows that, though he makes it run into the Caspian Sea, he places its mouth in Sogdiana or Chorasmia, and not in the country of the Derbies, who lived near the bay of Balkan on the Caspian Sea,‡ showing that he was acquainted with the northerly course of this river.

A very important passage of Patroclus, quoted by Strabo, proves more clearly that the mouth of the Oxus was exactly in the same situation as it now is. "Some say that the Ochus runs through Bactriana, others make it run along the frontier of that country. The latter consider it as distinct from the Oxus to its termination, and lying farther south, although both fall into the sea in Hyrcania. The former, allowing that these rivers are different in their origin, maintain that they join, and that the bed of the Oxus is often six or seven stadia in breadth. It is at least certain that the Iaxartes is, from its rise to its mouth, different from the Oxus, although it runs into the same sea.§ Patroclus says that their mouths are about eighty farsangs distant from each other; but the Persian farsang is with some sixty stadia, with others thirty, and with a few forty."

When we measure with a pair of compasses the present distance between the most southerly mouth of the Iaxartes or Syr-Daria, and the most easterly of the Oxus or Gihon, we find it 2 degrees 20 minutes, equivalent to 2592 stadia, (allowing 1111 1/9 stadia to a degree.) Taking the farsang at thirty stadia, the distance according to Patroclus would be 2400 stadia, which is precisely the number given by Erastothenes, quoted by Strabo a little before. Thus the ancient and modern distances nearly agree. This correspondence will appear the more surprising, if we examine the distance taken along the shores of the lake Aral. It is found to be 3320 stadia, or eighty-three farsangs, of forty stadia. Finally, if we take for our points the most westerly mouth of the Gihon, and the most northerly of the Syr-Daria, we shall have eighty-two farsangs of sixty stadia. Thus the three marks given by Patroclus, or rather by the Persians whom he had consulted, concur to show that the two mouths of the Oxus and Iaxartes were at the same distance as at present, consequently both occupied themselves into the lake Aral.

Thus it appears that the Greeks and Romans had no positive notions of their own respecting the mouth of the Oxus. But the traditions which they had collected, and some geographical data which they had obtained, give us every reason to conclude that this river had always the same course and termination as now.

"O Iaxartes eis Oxum (Oxyrrhynchos) εις Κασπικανον," lib. xi.
† "Iaxartes et Oxus per deserta Scythiae ex Sogdianorum regionibus in Scythicum exunct. Hic, aliquando ad occasum ab oriente currentia juxta Dahae primum infectitus, curisque ad septentrionem converso, inter Amarodos et Pasicas aspexit." § Dion. Periegr. v. 747.
‡ Pliny, lib. vi. c. 13, in giving the same passage of Erastothenes, says, "Ad ostium Zoni fluminis quatuor MDCCC stat. Ab eo ad ostium Iaxartis MCCC. Quae summa efficit quindices centena LXXV millia." The passage is certainly corrupted. It has been proposed to read centena LXXV for the distance between the Zonus and Iaxartes. The name Zonus is somewhat curious. It is a corruption of Zikon, the name which the people of the east have always given to the river Oxus.
The Orientalists undoubtedly furnish some information to those who can peruse their works in the original languages. Ibn-Haukal, and after him Abulfeda, describe the course of the Gihon, agreeably to our modern maps, as terminating in the lake of Khwarezm, which we call the sea or lake of Aral. Abulfeda quotes, but without acquiescing in its truth, the assertion of Ramsol Mamoori, according to whom one branch of the Gihon should run into the Green Sea;* that is, the Persian Gulf. The Turkish geographer Hadiq-Khalis says, after Hamoudallah a Persian geographer, that an arm of the Oxus takes a direction towards the Caspian Sea, crossing in a rapid stream the valley of Kheria. The traveller Abdoul Kerym, who visited these places in 1730, and 1740, affirms that the Gihon, "far from arriving at Mazandaran (Hyrcania,) as some authors had said, did not even reach the lake Khwarezm being entirely expanded by frequent outlets for the irrigation of the fields."†

The European travellers of the 16th and 17th centuries appear not to have observed the facts with their own eyes, but all through the distorting medium of Ptolemy, otherwise they could not have fallen into so many contradictions. Hanway, Bruce, and Jenkinson, pretended to have found a dried arm of the Oxus, but which had at a former period conveyed its waters, or at least a part of them, to the Caspian Sea. But one of these gentlemen, Bruce, makes the mouth of this branch near Sellisourg, in 42° 30' of latitude, while another places it in the great bay of Balktan, in 39°. The large Russian Atlas, lately published, fixes it in this last situation. Nor is there any agreement about the situation where this arm of the river separates from the present line. Some place it at Hazarasp, others at Vazirkend, while some go as far down as Urgamb. Add to this, that the epoch of the supposed stopping of this branch by the Tartars is an equal subject of uncertainty, and of contradictory assertions. The Arabian writers whom we have just mentioned, do not admit any modern change of this kind. It must have been prior to Ibn-Haukal, in the 10th century. Yet the Russians say that it took place about the year 1719, and was intended to present an obstruction to the progress of their arms.

The following memorable transactions were the consequences of this belief, so firmly maintained by that nation.† Peter the Great had received some accounts of gold being contained in the sands of the Kisil-Daria, a river which falls into the Gihon from the east, and is sometimes confounded with the latter. He resolved to take possession of a country where he hoped to find mines of wealth, and through which he might also open a commercial communication with India. Navigators were sent out to find the mouth of the Kisil-Daria, which was supposed to run into the Caspian. A river was found, perhaps the Tedzen, which was taken for the Kisil-Daria. The learned decided that it was the Oxus, and an expedition was resolved on and prepared. Alexander Beckwitz, son of a Circassian prince, captain of the Czar's guard, acquainted with the Tartar language, had a body of 3000 men placed under his command, to proceed to the pretended mouths of the Kisil-Daria, and to take possession of the adjacent countries. The Tartars, uneasy to see the Russians making so many visits to this place, had, it was said, turned aside the course of the river, by damming it up with a strong dyke, and conducting the water in three canals to the lake Aral. Beckwitz arrived with his army, and searched in vain for the river by which he hoped to ascend to Khiwa. The khan met him with a numerous army, but was soon defeated by means of the European artillery. Mortified and rendered desperate by this defeat, the khan sent to inquire of the Russian general what were the complaints of Russia, and what sacrifices were required of him. Beckwitz, full of the notion of the artificial change of direction which had been given to the Kisil-Daria, demands of the khan that he should open the dykes which prevented the river from running into the Caspian sea, and

† Collection des Voyages, par M. Langles, i. p. 55, &c.
‡ Muller, Sammlung, Russcher geschichten, vol. vii.
thus restore it to its old course. The Tartar prince replied, that this operation was beyond his power, and that it was impossible to close up the channels in which the river followed its new direction. Beckewitz then proposed to execute the project with his own men, provided their safety were insured by the delivery of hostages. To this proposal the Tartars willingly agreed, and the hostages were given. These, at the same time, acted as guides to the Russian army, which marched five days towards the supposed dry bed of the river. In every quarter they met with nothing but small puddles of stagnant water. The soldiers were exhausted with thirst. The guides, with the most perfidious intentions, proposed to the Russians that they should divide themselves into small parties, and go in different directions. The Russian commander was under the necessity of following the advice of his enemies. The small Russian army was no sooner dispersed in these unknown deserts, than the Tartars, who had watched them, attacked their feeble detachments on all sides. Some were put to the sword, and the rest reduced to slavery. The unfortunate Beckewitz was taken into the presence of the khan, and hacked to pieces. His skin was dried, and made into the cover of a drum, which was preserved at Khiva as a trophy, to testify to posterity the disastrous issue of an expedition so ignorantly planned, and conducted with so little prudence. The news of these tragical events were taken to Russia by the soldiers who had been left in the fort of Karaganskoi, and saved themselves on board the vessels which had brought them.

There is nothing in these transactions to justify any change of opinion | Observations. about the ancient course of the Oxus. It is not probable that a weak Tartar nation had either any adequate motive for changing the course of the river, or the means of effecting an operation of such prodigious labour. But they had sufficiently strong motives for allowing the Russians to persevere in their mistaken ideas and vain researches.

If the question were considered as deserving of further research, precision would be best attained by means of a well-informed person travelling by land, with a barometer in his hand, from Gurieow to Astrabad, along the east side of the Caspian Sea. The Russian maps lay down a series of sandy valleys between the present course of the Oxus and the Caspian. But we have no satisfactory account of the authorities on which these delineations are founded. Georgii, in his description of Russia, and Grew in his travels, represent this country as occupied by a chain of mountains reaching from the steppe of Kirguis to Astrabad, separating at every point the basin of the lake Areal from that of the Caspian Sea.

BOOK XXXV.

AFGHANISTAN.

The country comprehended under this name is generally considered as a part of Persia, and distinguished by the appellation of Eastern Persia; but both in its physical, civil, and political character, it is entitled to a separate description. At present it forms an independent kingdom, and holds in subjection some surrounding countries belonging at other times to Persia, Independent Tartary (or Turkestan,) and India.

It goes under the names of the kingdom of Caubul from the capital, | Names. sometimes Cabulistan, sometimes the kingdom of Kandahar, from another capital. In former times it was denominat

This kingdom varies in its boundaries, being in itself unsettled, and | Boundaries. thus prevented from exerting its natural strength in retaining some of its most re
mote dependencies. At present its utmost extent is from the west of Herat, in East Long. 62°, to the eastern boundary of Cashmere, in Long. 77°, and from the mouth of the Indus in North Lat. 24°, to the upper part of the Oxus in Lat. 37°.

In these countries the Khoota or church-service is used in which the king of the Afghans is prayed for, although the degrees of subjection of the different localities are various. The empire comprehends Afghanistan properly so called, Seistan, part of Khorasan, and of Mekran, Balk, Kuttore, Kandahar, Sind and Cashmere, together with a portion of Lahore, and the greater part of Mooktan.

Population. | The whole population is estimated at fourteen millions, consisting of the following nations:

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghan</td>
<td>4,300,000</td>
</tr>
<tr>
<td>Belooches</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Tartars</td>
<td>1,200,000</td>
</tr>
<tr>
<td>Persians (including Tanijs)</td>
<td>1,500,000</td>
</tr>
<tr>
<td>Indians of different races</td>
<td>5,700,000</td>
</tr>
<tr>
<td>Miscellaneous tribes</td>
<td>300,000</td>
</tr>
</tbody>
</table>

On the north it is bounded by the range of Hindoo Coosh, or Hindoo Coh, i.e. the Indian Caucasus, separating it from Independent Tartary, but on the western part of the line it extends beyond this range to the territory of Balk. This is called the Mountain range of the Himmaleh mountains on the east, which at Cashmere lose the name of Himmaleh, and take that of Hindoo Coosh, from a peak in the neighbourhood of Caubul, to which that appellation more strictly belongs. The range is perpetually covered with snow, as far as the west peak; beyond this the height diminishes, and the snow is melted in summer. That part of the chain is called Paropamisus. From the place where the Indus issues from Hindoo Coosh, in latitude 35°, and longitude 73°, this river passes through mountains to latitude 33°. After this it has a plain on each side, all the way to the sea; but at a little distance to the west of this river, the mountain range of Solimân extends as far south as latitude 29°. This range sends three branches to the east. The most northerly of these is called the range of 34°, from its latitude at its point of detachment; another is called the Salt range, being chiefly composed of rock salt; both of these extend considerably to the east of the Indus, into that part of India called the Punjab. The third does not reach that river.

From the southern termination of the Solimân range, a chain of hills runs nearly west to the table-land of Helât. On the south-west it has lower hills included in Mekran. If a line is drawn from the south end of the Solimân chain to Herât, at the western extremity, we shall, with the Hindoo Coosh mountains, and a line parallel to the Indus on the west, form a triangle, which comprehends the greater part of the mountainous country of Afghanistan. The first line will be more correct, if, instead of being straight, it has a convexity to the south-west. The hills here included vary in their direction and elevation. All the considerable ones have snow lying on them during part of the year, and are generally separated by fertile valleys. Between the Hindoo Coosh and the valley of the Caubul river, there are three parallel ranges of mountains successively lower, and passing under different local names, some of them very precipitous, and inhabited by different tribes, or subdivisions of tribes. In the eastern part the hills on the two sides of that river approximate; and the river runs among hills and rocks. Different valleys on the left and right, that is, the west and east, open into that of the Caubul. That part of this country, including hills and valleys which lie on the north of the Caubul river, is called Cohistán. To the west of Cohistán is the Paropamisus chain, which is less lofty, but intricate and little known in its minute topography, from being difficult of access. Its eastern part, inhabited by the Hazaureh tribes, is cold and rugged; the

* The reader will remark the great difference between this estimate, and that which is given in the author's Table at p. 436, which proceeded on authority far inferior to that of Mr. Elphinstone's work on the kingdom of Caubul from which the greater part of the present book is taken.—Ta.
western, inhabited by the Eilmaks, is somewhat better cultivated, and has wider valleys, but still poor and wild.

Opposite to a southerly projection and high peak of the Hindoo Coosh range called Coond, and on the south of the Caubul river, is a high peak, called Sufaaid Coh, which is a sort of centre from which different ranges of mountains extend, chiefly belonging to the Soliman chain; the descent from which to the Indus on the east is steep and sudden. On the west it is also sudden, but less considerable, the land itself being higher. The Soliman range consists of a hard black stone at its highest part; next a hard red stone; then a friable grey sand stone. The branches running west from this range are more intricate and less known than the easterly ones already mentioned. Different ranges extend from the north-west of the plateau of Kelat to the east, some inclining northerly, and others a little to the south.

The Indus is the most conspicuous river connected with Afghanistan. | Rivers. A great proportion of the water which falls on that country, flows in different streams from the west into this great river; and the Indus is almost entirely more | Indus. or less under the Afghan dominion after it crosses the great mountain range in which it divides Himalek from Hindoo Coosh. The Abba Seen and the Booringdoo, proceeding from the Hindoo Coosh, and running in general a southerly course, flow into the Indus on the west side. Kaushkshahr River is another which, like the Indus, arises a great way north of the same range, and flows straight south parallel to the Beloot-Tagh range; passes the Coond with great violence on the east, and falls into the Caubul. Higher up, the river Caubul receives various other tributaries from the valleys, and carries all their waters finally into the Indus, a little above Attock. Lower down, the Indus receives several small streams from the west, then the Kooroom, and, farther south, the Gomul, the waters of which, however, though its course is long, are chiefly expended in irrigating the land of Damaun along the eastern base of the Soliman range. The greatest of the rivers which water the west of Afghanistan is the Helmund or Etymander, called in some maps the | Etymander. | Hindmind. It runs 300 miles through the Paropamisian range; then issues into the cultivated plains of the Dooranine territory; soon enters a sandy desert, and terminates in the lake Seistan. Its course is generally west by south. Every where within half a mile or a mile, its banks are cultivated and fertile. Its stream is considerable, though forced for the greater part of the year through almost the whole of its course. In the dry season, it is a broad deep where it leaves the mountains, and at the time of the melting of the snows is deep and rapid. It receives some very important tributaries, chiefly on its left or south side, viz. the Urgundaub, which is the city of Khafahshir; the Turuk and the Sharandar, which join the Urgundaub. On the north side, it receives the Kashmarood. Farther west is the Furra-rood, 300 miles long, which appears to flow directly into the lake, or to be lost in the sands. The Oxus rises within the cultivated territory of | Oxus. Balk, before it crosses Independent Tartary to fall into the lake Aral.

The lowest part of the plain of the Indus is called the Sind, or Lower | Divisions. Sind. It is subject to a native prince, who is tributary to the king of Caubul. From Shikarpoor to Sungur, it is called Upper Sind, which is more directly under his government. Above Sungur is Damaun, a name which is sometimes limited to the skirts of the hills; at other times includes the plain inhabited by various tribes. At the upper part of the Indus, within the Afghan territory, is the country of the tribe called Yoosoffzeyes. The plain of Peshawer occupies the open part of the banks of the Caubul river, not far from its mouth, but divided from it by the mountains of the last mentioned tribe. The northern hills by which this plain is bounded are covered with pines. On the right bank of the river, which does not, like the left, belong to Cohistan, is, first, the country of the Khreyberees, a very predatory tribe; and farther west, the rich plain of Jellallahad. To the west of the plain of Peshawer, is that of Caubul, the north side of which is in Cohistan; the south part of it is spoken of as a most enchanting country. Here is | Giant. Ghiznee, or the country of the Wurduk tribe, containing one of the ancient capitals; and farther south, is the lake Abistandeh, which has no outlet, but, receiving various rivers, forms a basin peculiar to itself. To the south of this, and somewhat to the
west, are the valleys of the Turnuk and the Urgheessaun: the former is 60 miles broad, and tolerably fertile; the latter generally poor, though very rich in the immediate vicinity of Kandahar. The upper part of both valleys is inhabited by the Ghiljie tribes; the remaining and most extensive part, from Kolat-Ghiljio to Herat, by the Dooranee,—the tribe considered as at present the ruling one, as the king of Caubul belongs to it. It is the largest tribe of the Afghans.

To the south of all this tract, are the valleys opening on the river Gomul and the intervening mountains. Sirufca, Oorghoon, and Waunch, are the valleys descending in stages to the Gomul, which bounds them on the south. From the south side, the valleys of Fisheen, Bursheer, and Zhokh, connect themselves with the Gomul. Many other subordinate districts diversify the face of this unequal country.

Climate. | The north-eastern part of Afghanistan participates in the Indian monsoons or rainy season, but greatly modified and very distinct from that incessant and drenching rain which prevails in the southern parts of India, where the precipitation of the moisture begins on the ocean, and extends interiorly, gradually losing its decided character. The monsoon commences on the Malabar coast in May, and reaches Delhi by the end of June. It prevails more among the mountains than in the flats of the eastern tributaries of the Indus called the Punjab. The hills and valleys of Cashmere have their share of the rains. They diminish as they go west, and in the valley of Peshawer the monsoon only appears in some eclouds and showers. In the valley of Caubul it does not extend beyond Lughman, but, in the southerly projection of Hindoo Coosh, called the Coond, it forms the principal rains of the year. In the south of Afghanistan the influence of the monsoon is felt as far west as the western boundary of Mekran. There are other rains or snows which fall about Christmas, which, in the greater part of the country, are of more importance to husbandry, especially that portion which is in form of snow. The rains, strictly so called, are less important than those of spring, which are said to come from the west. The climate varies greatly in different parts. Mr. Elphinstone found that of the plain of Peshawar in February, where the mission from India arrived in 1809, to be cold in the night, but agreeable during the day. There was frequent hoarfrost as late as the 8th of March, but by the middle of the month the sun was disagreeably hot as early as eight in the morning. The approach of spring was very rapid. Some violent hot winds blow in June, at least in the countries adjoining on the east, where the mission had now come. The cold even of winter is not very severe, and some of the Indian plants are in leaf all the year. At Caubul and Kandahar the summers are cooler, and the inhabitants exclaim against the heat of Peshawar. The inequality of the elevation is accompanied throughout with a corresponding inequality of climate. The winter of Darun, on the west of the Indus, is agreeable, being colder than in any part of Indoostan. But the summer is insupportably hot. In the higher table land on the south, as Pishen and the west part of the Caukir country, it is cool, and in winter thin films of ice are formed on water in the night. Kandahar has a hot climate. No snow falls there in winter, and the little ice that is formed on the edges of streams melts before mid-day. The samoon winds are not unknown in that quarter. To the north and to the east of Kandahar the cold increases. At Ghiznou, which is the coldest part of the plain country in the Afghan dominions, the severity of the temperature is sometimes excessive; and there are traditions of that city having been twice destroyed by falls of snow in which all the inhabitants were buried. The prevailing winds of Afghanistan are from the west.

Wild animals. | Of animals, the lion is very rare, though common both in Persia and in the adjoining parts of India. Tigers and leopards are common to the east of the Soliman range, and the former are found in all parts of the kingdom. Wolves abound everywhere, and forming into troops, are formidable to cattle, and sometimes to men. Hyenas, jackalls, foxes, and hares, are also abundant. The bears are common in the woody mountains, but seldom quit their haunts except when tempted by sugar-cane plantations. Wild boars are rare, though common in Persia and India. The wild ass is confined to the Dooranee country, in the basin of the Helmund. Wild sheep and goats are common in the eastern hills. There are also porcupines,
hedge-hogs, and monkeys, the last only in the north-east parts. Molos are only found in Cashmere. The king has a few elephants, but they are brought from India. The breed of horses is generally indifferent, the best that are used in the country being brought from India, but some excellent ones are bred at Herat and Balk. Dromedaries are the principal beasts of burden. The Bactrian camel is comparatively rare. Buffaloes, though rather rare, are found in many parts. The ox is everywhere used for ploughing except in Balk. It has a hump like that of India. No herds of oxen are kept except round the lake Seistan. The live stock of the pastoral tribes consists chiefly of sheep of the Persian kind, called Doomba, distinguished by their broad flat tails composed of fat. Goats are very common, and some breeds have long and curiously twisted horns. There are excellent grey-hounds and pointers, exactly resembling those of England. There are two or three sorts of eagles, and many kinds of hawks, some of which are used in falconry. Herons, cranes, storks, wild ducks, geese, swans, partridges, quails, and other winged game, are in great abundance. The serpents are mostly harmless; there are no crocodiles; turtles and tortoises are common. Flights of locusts have been known to occasion famines, but they are rare. Bees abound, but are only domesticated in Cashmere.

Most of our European trees are found everywhere. Few species peculiar to India grow to the east of the Soliman range, and none to the west. Pines are the most common species in the mountains, one of which, called the Jelgouzeh, is remarkable for cones larger than artichokes, and containing seeds like pistachio nuts. Two kinds of oaks, cedars, a gigantic cypress, walnuts, and wild olives, are among the natives of the mountains. Birch, holly and hazel are known, also the mastic and the pistacbi tree in the mountains. The mulberry, the tamarisk, and the willow, are the most common wild trees of the plains. The barberry, and other berry-bearing bushes are common, and a plant called Aghrawaun, which is a sort of neron, but so tall as to be almost entitled to the appellation of a tree. Roses, jessamines, poppies, narcissuses, hyacinths, tuberoses, stock, and others of our common flowers, are cultivated in gardens, and many of them grow wild. Gold is only found in the streams which flow from the Hindoo Coosh. Silver is found in small quantities in the country of the Causirs, north of that range. There are mines of lead and antimony in the Paropamisus, and of lead in the southern mountains, bordering on Beloochistan.

The character of the Afghan nation differs from that of all their Asia- tic neighbours, being distinguished by a manly spirit of independence. In order to give a picture of the nation in a manner both striking and impartial, Mr. Elphinstone exhibits them in two points of view; first, as they would appear to a person transported to them from England, without having had his habits of feeling at all modified by the intervention of Turkey, Persia, or Tartary, and then as they appear to an Englishman directly from India. The former would discover a wild assemblage of hills and wastes, unmarked by inclosures, and destitute of all the elaborate productions of human industry and refinement. He would find the towns few, and far distant from each other, and would look in vain for inns and other conveniences which a traveller would meet with in the wildest parts of Britain. Yet he would be delighted with the fertility and populousness of particular plains and valleys, where he would see the productions of Europe mingled in profusion with those of the torrid zone, and the land laboured with an industry and a judgment no where surpassed. He would see the inhabitants following their flocks in tents, or assembled in villages, to which the terraced roofs and mud walls would give an appearance entirely new. He would be struck at first with the high and somewhat harsh features of the people, their sun-burned countenances, their long beards, loose garments, and shaggy mantles of skins. He would notice the absence of our courts of justice and an organized police. He would be surprised at the fluctuation and instability of the civil institutions. He would find it difficult to comprehend how a native could subsist in such disorder, and would pity those who were compelled to pass their days in such a scene, and whose minds were trained by their unhappy situation to fraud and violence, rapine, deceit, and revenge. Yet he would scarcely fail to admire their mar.
tial and lofty spirit, their hospitality, and their bold and simple manners, equally removed from the supleness of a citizen, and the awkward rusticity of a clown; and would probably, before long, discover among so many qualities that excited his disgust, the rudiments of many virtues.

But an English traveller from India would view them with a more favourable eye. He would be pleased with the cold climate, elevated by the wild and novel scenery, and delighted by meeting with many of the productions of his native land. He would be struck with the thinness of the fixed population, and then with the appearance of the people; not fluttering, like the Indians, in white muslins, while half their bodies are naked, but soberly and decently attired in dark-coloured woollen clothes, and wrapt up in brown mantles, or large sheep-skin cloaks. He would admire their strong and active forms, fair complexions, and European features; their industry and enterprise; the hospitality, sobriety, and contempt of pleasure, which appear in all their habits; and, above all, the energy and independence of their character. In India, he would have left a country where every movement originates in the government or its agents, and where the people absolutely go for nothing; and he would now find himself among a nation where the control of the government is scarcely felt, and where every man appears to pursue his own inclinations, undirected and unrestrained.

Amidst the stormy independence of this mode of life, he would regret the ease and security in which the state of India, and even the indolence and timidity of its inhabitants, enable most parts of that country to repose. He would meet with many productions of art and nature, which do not exist in India; but, in general, he would find the arts of life less advanced, and many of the luxuries of Indoostan unknown. His impression of his new acquaintances would be on the whole favourable; although he would feel that without having lost the ruggedness of a barbarous nation, they were tainted with the vices common to all Asiatics. Yet he would reckon them virtuous compared with the people to whom he had been accustomed; would be inclined to regard them with interest and kindness, and could scarcely deny them a portion of his esteem. Both these descriptions of travellers, when they began to investigate their political constitution, would be alike perplexed with its apparent inconsistencies and contradictions, and with the union which it exhibits of turbulent independence and gross oppression. But the former would perhaps be most struck with the despotic pretensions of the general government; and the latter with the democratic licence which prevails in the government of the tribes.

The origin of the name Afghan is uncertain. It is only through the Persian that it is known to the people themselves; and it is probably modern. Their own name for their nation is Pooshtanoon, in the plural Pooshtanneh, pronounced Poosttaneh by the Boroodooranee tribes, whence probably the name Pa-tan, by which they are known in India. They were very early in possession of the Soliman mountaine, and, in the ninth century, those which form the north-east part of their present territory. During the government of the descendants of Genghis and of Tamerlane, they retained their independence, when Bauber came among them, and beginning his career by the conquest of Caubul, laid the foundation of the Mogul empire, which after his death was transferred to Delhi. In the beginning of the 18th century, the Aghán tribe of the Ghiljie founded an empire which included all Persia. This was overthrown by Nadir Shah, who annexed the greater part of Afghanistan to Persia. On his death, the present monarchy was founded. The Afghans consider themselves as descended from Afghaun, the son of Irmin or Berkia, son of Saul king of Israel; and their national histories begin with relating the transactions of the Jews from Abraham down to the captivity. This part of their history agrees with that given by other Mahometans, and differs but little from that of Scripture, only that it is interspersed with some wild fables. After the captivity, they allege that a part of the children of Afgân withdrew to the mountains of Ghore, or Gaaoor, (Paropamisus,) and part to the neighbourhood of Mecca in Arabia. All this, however, rests on vague tradition. Their race always preserved the knowledge of the unity of God; and on the appearance of Mahomet his greatest prophet, obeyed his invitation, and marched to the aid of the true faith, under Kyse, afterwards surnamed Abdoolreeshid. The Arabian historians, however, give no countenance to any part
of this narrative. The Afghan historians themselves furnish proofs of their inaccuracy, by making Saul the forty-fifth in descent from Abraham, which is inconsistent with the sacred writings, and Kyse only the thirty-seventh from Abraham, in a period of 1600 years.

The Afghans have many subdivisions of tribes, and numerous chiefs | Political state. called Khauns: their attachments are rather to their clan and the public good, than to the chief. He presides in the Jeergas, or deliberative councils of his tribe or clan. In the administration of justice, the Mahometan law is adhered to, but private revenge is much practised and countenanced by general usage, although the Moollahs, or ministers of religion, who assist at the regular tribunals, declaim against it. The king is the natural head of the Dooranee tribe, the greatest, bravest, and most civilized of the whole; he levies fixed proportions of troops, or money, or both, from each tribe, for the common defence. The whole nation, however, is seldom unanimous on any general plan of movements, the particular interest of each oolooes, or tribe, occupying its chief attention. The king's authority is greater over the plains, and about towns, principally inhabited by a class of people called Tajiiks, who are not considered as of Afghan descent, and are not numbered among the tribes. The foreign provinces are also under greater subjection; and from these quarters he is enabled to raise a revenue and maintain an army independent of the tribes. There are some points of strong resemblance between the situation of the Afghan country and that of Scotland in former times; the clans nearest to the royal residence yield a precarious submission, while the remote ones are independent; and the nobility most connected with the court are powerful and factious. The only point of difference is, that the Scottish chiefs were despotic, while the Afghan tribes are generally under a republican government. The king appoints some judges under the name of Cauzees, who share with the jeergas of the tribes in the administration of justice, although without any concert or mutual connection.

The Afghans purchase their wives; consequently women, though | Marriages. generally well treated, are in some measure considered as property. Courtships are conducted through the medium of the relations of the parties; and the marriage contract is drawn up by the Cauzee. In the country the women generally go unveiled, the intercourse between the sexes is less distant, and marriages more frequently originate in the attachment of the parties. The women of the upper classes are completely secluded, but have all the comforts and luxuries provided for them that can be afforded. Those of the poor do the work of the house, but they do not engage indiscriminately in the labours of the men, like the Indian women, who even labour among masons and bricklayers. The sentiment of love in all its | Love. fervour and fidelity is frequent among the Afghans. Besides numerous eloishments, it is common for a man to plight his faith to a particular girl, and then set off to a remote town, or to India, to acquire the money which must be paid to obtain her from her friends, and which, however favourably disposed, they cannot in honour dispense with. Many of the Afghan songs and tales relate to love.

The mollahs, or officers of religion, are the regular instructors of the | Education. youth. Some learn no more than their set forms of prayer, and other ceremonies of their religion, with some passages of the Koran. The next step is to learn Arabic, or at least to read the Koran, but often without understanding it. There is a teacher in every village or camp, who is maintained by certain allotments of land. In towns, there are regular schools, in which the teacher is maintained by his scholars alone. People of decent fortune learn the Persian classics, and Arabic grammar. This last is taught in a very complicated manner, involving many other subjects, and sometimes occupies several years. A young Mollah, when sufficiently proficient in this study, goes to Peshawer, Hushtnuggur, or some other place famous for its Mollahs, and enters on logic, law, and theology. Some push their researches into ethics, metaphysics, and the system of natural philosophy known in the east, as well as history, poetry, and medicine, which last is a fashionable study for men of all professions. These often travel to distant places, and even to Bokhara, which is a great seat of Mahometan learning; but Peshawer seems, on the whole, to be the most learned city in these countries, and many more students come thither for
Bokhara, than repair to that city from Peshawer. India has, in this respect, no great reputation, and Persia is avoided on account of the religious heresy of Sheesiam, which is professed in that country, the Afghans being orthodox Sonnites. The language of the Afghans is called Pushtoo; its origin has not been well investigated, and probably is not easily discovered. Of a large proportion of the words composing it, the roots are unknown; yet some of the words which must have been used in the earliest stages of society, or others by which they have been supplanted, belong to the Zend and Pehlewè, such as the terms for father and mother, sister and brother, and the numerals. The words connected with religion, government, and science, are mostly introduced from the Arabic, through the Persian. The Afghans use the Persian alphabet, and generally write in the Nushk character. Having some sounds which are not represented by any Persian letters, they express them by adding particular points, or other marks to the Persian letters which come nearest to them. The language is rough but manly, and not unpleasing to an ear accustomed to oriental tongues. None of the Pushtoo authors of celebrity are more than a century and a half old, and probably none at all more than three centuries. They have many translations from the Persian. They have some original poetry, particularly on the subjects of their national wars. Their prose authors are chiefly on theology and law; but the Persian is still their learned language. Their plans of study are strictly methodical, partaking in no degree of a miscellaneous character. A book, if read at all, must be preceded by certain others.

Religion. The Afghan system of Islamism is the Sonnite, which is distinguished by the acknowledgment of the three first caliphs as the true successors of Mahomet. They entertain a great horror against heretics, infidels, and idolaters. Some instances have occurred of capital punishments, inflicted at the instance of the Mollahs, on individuals of the Sheeite sect for blasphemy. But they are on the whole tolerant to those whom they reckon infidels, in their own country. The Hindoos enjoy the free exercise of their religion; their temples are unmolested, though they are forbidden all public processions, and all exhibitions of their idols. They are employed in offices of trust, and are as much at their ease as most of the other inhabitants. The Sikhs praise the Afghans for their tolerant conduct towards them; while they are treated with contempt and aversion by the Persians. Mr. Foster, as an individual Christian, was treated rather contemptuously. The Sheeabs, or Sheeites, are more discountenanced than any other sect, as is often the case in matters of religion; those who are nearest to us in their belief are least willingly forgiven for not going the whole length of our particular creed. There is a sect called Soolfees, who are a sort of enthusiastic religious philosophers, resembling Platonists or Pantheists. There is another called that of Mollah Zookee, the adherents of which renounce all belief in prophecy and revelation, and have the character of being dissolve and profligate in their lives. The Afghans, in general, have much personal religion, and seem to be habitually occupied with pious reflections. They are very regular in performing their devotions. Their toleration does not arise from indifference, but from their considering religion as a personal concern; and they are often sufficiently capable of giving credit to others for firmness of profession. Regularity in observance of the prayers and fasts is often enforced by the municipal law, and the breach of them punished by the Moohitesib, a regular officer appointed for the purpose, whose office, however, is very unpopular, and exposed to the continual reproach of corruption and partiality. The mollahs inculcate austerity of life; they often break such instruments of music as are not deemed warlike, such as lutes and fiddles; sparing drums, trumpets, and hautboys. They are in possession of the greater part of the learning of the country, and many of them are sensible and agreeable men. They are actuated by a strong corporation spirit, and often avail themselves of the prevalent superstitious respect in which they are held, to raise mobs in their own cause. Their formal curses are much dreaded. This body of men is useful in repressing many lawless passions; at the same time it prevents the advancement of society to a better state, which can only be effected by the introduction of a desire and opportunities of information, independent of their influence. There are likewise some recluse persons, esteemed under the names of Dervissos,
Fuheers, &c. who are treated with still greater reverence, though they do not in the least interfere with civil or secular matters. These sometimes lay claim to supernatural powers or communications. The Afghans believe in alchemy, magic, astrology, and the prophetic character of dreams; and they seek for direction in weighty concerns by turning up the Koran at random, after fasting and prayer. Sometimes, with less solemnity, they make a similar use of the poems of Hafiz, and other books, to peep into futurity.

The Afghans are remarkably hospitable. They have a peculiar custom called Namaeause, (meaning, "I have come in,") by which a person who has a favour to ask goes to the house or tent of the man on whom it depends, and refrains from sitting on his carpet, or partake of his hospitality, till he grants the required boon. This is felt as an irresistible tie, in opposition to very strong contrary motives. A still stronger appeal is made, though not connected with the law of hospitality, when a woman sends her veil to an Afghan, and implores his assistance for herself or her family. The protection conferred by the rights of hospitality ceases when the object of it is beyond the lands of the village or tribe, and in this situation the same individual is reckoned a fair object of plunder. They attend much more, on all occasions, to the conferring of favours than to the respecting of rights. Plunder among themselves is chiefly repressed by the defensive exertions of the injured tribe. Strangers are sure to be plundered, unless they obtain a protecting escort from the tribe through whose territories they pass. Some tribes are in this particular more infamous than others. In times of political confusion, travelling is not safe on any terms, or in any part of the country. But their robberies are never aggravated by murder. A man may be killed in defence of his property, but his life is in no danger when he ceases to resist.

The houses are made of unburned brick, one story high. Their only furniture is pieces of carpets or felt, for sitting and sleeping on. Sometimes the room is surrounded with broad raised benches, called sopha or sufé. They sit cross-legged when at their ease. Their ordinary employment, when seated, is conversation; a kaloon for smoking, is passed round occasionally, and after a whiff or two, is sent away. They are not great smokers, but much addicted to sniff, which they keep in round or oval boxes, formed of a sort of nut-shell called balaguehnoo without a lid, but having a hole at one end for pouring out the sniff. At first meeting, some ceremonious words, with solemn gestures are passed, after which they are quite unrestrained and social. They delight in tales of kings, genii, and fairies. Their favourite amusement is the chase. Their dress is various, partaking of the Persian in the western, and of the Indian in the eastern parts of the country. Their mode of travelling is on horseback, at a walking pace. The women are carried in a sort of hampers, called cudjawas, slung over the animal's back. For women of distinction they are carried between two. The Afghans, like the other Mahometans, have slaves brought from Africa, through Arabia; some Persians, bought from the Belooches, who have kidnapped them; and some purchased or carried off from their northern neighbours the Cauhrs. The Afghans are not so frivolous nor so habitually false as the Indians; and are perhaps more sincere, though less polished, than the Persians. The attachment which subsists in families and clans is strong and faithful; the royal families are almost the only exceptions, being frequently scenes of frequent and sometimes merciless rivalry. They are proud of their descent, and fond of genealogies; grateful for favours, though irritable in cases of slights. They will do any thing that is wanted of them with much more zeal if a present is made in advance, than if it is withheld in the hope of quickening them by expectancy. No Afghan ever keeps a shop, or exercises any handcraft trade. Prohibited by their religion from taking interest for money, they are dependent on resident Hindoos as bankers. Their artisans are of the same nation, or Persians or Taуjets. These are subjected to some hardships and grievances in the towns, from the strictness of the police, which is in the hands of the Mollahs, and in some degree inquisitorial. In summer the inhabitants of the towns rise at half past three, then go to the mosque to prayer, then take a light breakfast, after which they repair to their shops. They take a luncheon-
at eleven, and then sleep for two hours. Their great meal is after the last prayers, and called Shaw maes. The food of the common people is leavened bread, rice, flesh, vegetables, sometimes cheese, and always a sort of dried curd called koroot. One of their great amusements arises from their passion for pleasure parties, in gardens, or on distant rural excursions to some of the most pleasing scenery of the country. They have often singing and playing in their houses, and delight in fighting cocks and quails. They have some forms of bodily exercise which they employ even in their houses, which contribute powerfully to their muscular vigour. On the whole, a degree of happiness and ease is enjoyed by the inhabitants of the towns which might appear altogether inconceivable when we consider the external circumstances in which they are placed.

The great. | The houses of the great are very magnificent and spacious; surrounded with high walls containing several courts. The halls are supported by tall wooden pillars, and Moorish arches, carved, painted, and ornamented with figures of flowers. These are often enlivened with paintings, executed in Persia. Their dress is on the Persian model. The place of honour is the corner of the room at the end opposite the entrance, and there the master sits. One side of the room is open to a garden or court, and a row of servants is drawn up out of doors, immediately below. The servants are remarkable for activity and fidelity, and are often entrusted with important secrets. Their masters send them with the most confidential messages, without taking any precaution, except that of providing for their being believed. For this purpose a ring is given, or some indifferent occurrence is referred to which is known only to the master and the person to whom the messenger is sent. The great do not get out of bed till sunrise. They read and pray for about an hour, then breakfast; after which they repair to court, where they transact business. Their amusements are hunting and hawking. They keep about them persons whose profession it is to read to them; the favourite book being the Shah Naumeh, the great heroic poem of Ferdosooi. Chess, backgammon, and cards, are also resorted to. Their entertainments are served up with great neatness, as well as magnificence. The servants, however, snuff the candles into a tea-cup with a pair of scissors. They separate the joints of the meat with penknives, and, tearing it to pieces with their hands, which have been washed immediately before, lay it on the plates before the guests. The conduct of the great has a much more favourable aspect when among the people of their tribe than at court, where corruption usually prevails.

Trade. | The exports from the Afghan country to India are principally horses and ponies, furs, shaws, Moottan chintz, madder, assafedtis, tobacco, almonds, pistachio nuts, walnuts, hazle-nuts, and fruits. The fruits are generally dried, but a great quantity fresh, being pulled before they are ripe, and carefully packed up in boxes with cotton. The imports from India are coarse cotton cloths, worn by the common people in every part; muslins, silk stuffs, and brocade, indigo in great quantities, ivory, chalk, bamboo, wax, tin, sandal-wood, sugar, spices, and cowries. The exports to Independent Tartary consist of articles previously imported from India, or made in the Indian provinces of the kingdom. The principal imports from that country are horses, and gold and silver in the form of coin or of Chinese ingots. Cochineal, broad cloth, pots, and hardware, come from Bokhara, being originally brought from Russia; also Russian leather, tin beads, spectacles, and other European articles. Ormuk, a fine cloth of camel's wool, cotton, and some lamb skins, are imported from Bokhara itself; and a few of the two humped camels from the Kuzzaau country. With Persia, an interchange of manufactures is the chief trade; they also receive from that country quantities of raw silk, corn, and bullion, and some Indian chintz, which is brought from Coromandel to Abusahr in the Persian Gulf, and then carried across the country to Afghanistan.

Mr. Elphinstone gives a minute delineation of the characters and manners of the Afghan tribes, for which we must refer to his work. The eastern tribes are in general called Berdooranees; the most conspicuous among them is that of the Yoosofyees, who are remarkably quarrelsome both towards their neighbours and among themselves. They live on the north side of the river Caubul. An-
other division consists of the tribes of the Soliman range, the Kheiberees, Vizerees, and others; and the third that of the western Afghans, the most conspicuous of whom are the Dooranees and the Ghilijees. These two are a sort of rivals; the former being the ruling tribe, and that to which the present king belongs; the latter formerly enjoyed that honour, and under them the Afghans once subjugated the whole of Persia. The Ghilijees are ferocious and vindictive to their enemies; while the Dooranees are mild as well as manly, and the most respectable of the whole Afghan nation. Some of them lead an agricultural and others a pastoral life. The former live chiefly in villages, a common form of which is that of four streets leading into a square in the centre. There is sometimes a pond, and always some trees in this space, where the young men assemble in the evenings to pursue their sports, while the old men look on and converse. The houses are of brick burned or unburned, cemented with mud mixed with chopt straw. The roofs are sometimes in the form of terraces laid on beams, but more frequently composed of three or four low domes of brick. A house generally consists of only one apartment; and is surrounded by a few out-houses. The villages are, for the most part, close by the castle of a khan. Many, even of the agricultural Dooranees, live in tents of black blankets or thick felt. The common ones are low, but those of the khans are comparatively spacious, and high enough to admit a camel. The pastoral tribes, for the most part, lead an easy and peaceful life, to which they are very much attached, but those on the confines of Persia are fierce and active in their border wars.

The city of Kandahar is in the Dooranees country. It is large and populous; and superior to most Asiatic cities, having the advantage of being built on a plan, but not at all magnificent. The most of it is built of brick cemented with mud. Its external appearance is not remarkable. The greater part of its inhabitants are Afghans, which is not the case with the other large towns. The Ghilijees possess the country situated between that of the Dooranees and the city of Caubul. It contains the city of Ghiznee, which was the capital of Afghanistan, when at its height of power, and holding all Persia in subjection. This was in the beginning of the last century. It is now reduced to a town of 1500 houses, besides suburbs without the walls. It contains two lofty minarets. The tomb of the great Sultan Mahmood is about three miles from the city, a spacious but not a magnificent building, covered with a cupola. The tomb-stone is of white marble, it has some verses of the Koran inscribed on it; and some Mollahs are still maintained, who incessantly read the Koran aloud over the grave. There are a few other antiquities, one of the most useful of which is an embankment across a stream, by means of which the city and the fields are supplied with water.

The city of Caubul, the present capital, is handsome, but not extensive. The houses are of wood; Mr. Foster praises the abundance and arrangement of its bazaars. On the top of a hill, over the city, is the tomb of the celebrated emperor and historian Bauber. The climate and local scenery of that place are delightful.

We now proceed to give a short account of the dependencies of the Afghan government. The only one which they possess in Turkestan is the town and district of Balkh, or Bulkhh, a tract which has the Oxus on the north, the mountains of Hindoo Coosh and Paropamisus on the south, Budukshann on the east, and a desert on the west. This country lies lower than Afghanistan, the descent from the mountains on the north being much greater and more rapid than on the south. The city of Balkh is of the most remote antiquity; it was known to the Greeks in Alexander’s time, under the name of Bactra. It had been the capital of Persia at a much earlier period, being fixed on as the royal residence, by Ky Koosoo, supposed to be the same with Cyrus the Great. All the Asiaties are impressed with the idea of its being the oldest city in the world. It is now insignificant, but has extensive ruins. The surrounding country is flat, fertile, and well cultivated. It is said to contain 360 villages, and is watered by eighteen canals, drawn from a celebrated reservoir in the Paropamisian mountains. One of them was reckoned to produce an annual revenue of 9000L Sterling. The people of this district resemble the rest of the Uzbek Tartars, being uncommonly strict as Sorne
Mahometans, and regulating their conduct entirely by the Koran, which is their only rule, both in private life and in the administration of justice.

The Paropamisian range of mountains is inhabited by two races, which, though subject to the Afghan government, are not of Afghan descent, and differ from them entirely in language, appearance, and manners. Their language is a dialect of the Persian. They seem to be of the same race, but divided by difference of religion, the Eimauks being rigid Sonnees, and the Hazaurehs violent Sheeeahs. The governments of both are despotic, whereas those of the Afghan tribes are remarkably the reverse. The country of the Eimauks is the farthest west, and the least mountainous, but the hills are lofty and steep towards Herat. The Eimauk chiefs sometimes inhabit spacious palaces in strong castles, where they maintain little courts, and are attended by splendid retinues. They levy taxes on their tribes, and keep troops in their own pay, and mounted on their own horses. The administration of justice, and the right of life and death are in their hands. These people keep many sheep, and rear a small but hardy breed of horses. They eat horse flesh. In other respects they resemble the Afghans, but their despotic governments give them an appearance of greater order and quiet. In war they show a degree of ferocity not known among the Afghans, sometimes throwing their prisoners over precipices, at others shooting them with arrows, drinking the warm blood of their enemies, and rubbing it over their faces and beards. Two tribes of Eimauks, situated to the west of Herat, are subject to Persia. The number of the Eimauks may amount to 400 or 450,000.

The term Hazaureh has been differently applied. There is a subordinate tribe of the Eimauks, called the Hazaureh. The regiments into which the Tartar armies were divided used to be called Hazaurehs: but the Hauzreh nation is not to be confounded with either of these, although it may be conjectured to have owed its origin to the armies now mentioned, which were left to occupy part of the conquered country. The country of the Hazaurehs is more rugged than that of the Eimauks. It is unfavourable to the culture of grain; and hence animal food, including horse flesh and the productions of the dairy, are, with that people, more important articles of diet. They live in thatched houses, half sunk in the slopes of the hills. The inhabitants twist rolls of cloth round their legs, instead of stockings, a custom common to them with the Uzbekis. The women wear long frocks of woollen stuff, and boots of soft deer-skin as high as the knees. Their cap sits close to the head, and a slip of cloth hangs down behind half way to the ground. They have strong Tartar features, but their habit of body is stouter and plumper than that of the Tartars. The women are often handsome, and have an ascendancy unexampled in the neighbouring countries. The wife manages the house, takes care of the property, does her share of the honours, and is much consulted in all her husband's measures. Women are never beaten; they have no concealment, but are said to be indifferent in their character for chastity. Both sexes spend much of their time in the house, sitting round a stove. They are all great singers and players on the guitar, and many of them poets. Lovers and their mistresses sing verses to one another of their own composing, and men often sit for hours raving at each other in extemporaneous satire. Their amusements out of doors are hunting, shooting deer, and racing. They are good archers, and every man has a match. They are passionate, exceedingly fickle, and often engaged in broils among themselves; yet a merry, conversable, good natured and hospitable race. An extreme simplicity prevails among them. It is said that they believe the king of Caubul to be as high as the tower of a castle. They are not exempt from falsehood. They live in villages of from twenty to a hundred houses, each village having a high tower for defence, in which a sentinel constantly watches, and if necessary, sounds the kettle drum; when the sound is taken from hill to hill, and two or three thousand men are in a short time assembled at the point of attack. They are divided into tribes, each of which has a Sultan, who lives in considerable state, and is armed with high powers. They have, however, some democratic tribes. They are all enthusiastic followers of Ali, hold in detestation the Afghans, Eimauks, and Uzbekis for following the sect of the Sonnees, and insult, if they do not.
persecute, every Sunni who enters their country. They even distrust such of their own countrymen as have been much among the Afghans, suspecting them of a degree of deterioration. They have little intercourse with the rest of mankind. The little trade they have is carried on by barter; sugar and salt are the foreign commodities most in request. Their country, though more extensive, is less peopled than that of the Eimausks, and their number probably does not exceed from 300 to 350,000 souls. The country of the Hazaurehs contains two idols, representing a man and a woman, the former twenty yards high, and the latter fourteen. The man has a turban on his head, one hand is held up to his mouth, and the other across his breast. These are thought to be relics of the worship of Boodh, and resemble the colossal statues at the entrance of the temples consecrated to that religion.

Harat, though within the limits of the Dooranee country, forms a distinct government, and is in little subjection to the general government of the kingdom. The city of this name is one of the most ancient and renowned in the east. It was formerly called Heri, and gave its name to an extensive province in the time of Alexander. It was long the capital of Tamerlane's empire. From his descendants it passed into the hands of the Sophi Kings of Persia, from whom it was taken by the Dooranee in 1715; it was taken again by Nadir Shah in 1731, and retaken by the Afghan king, Ahmed Shah, in 1749. It surpasses the other Afghan cities in magnificence. It has a very spacious and elegant mosque, surrounded by domes and minarets, and ornamented with the shining painted tile which is so much used in all the Persian buildings. It is surrounded by a broad wet ditch, covers a great space, and contains about 100,000 inhabitants. Two-thirds consist of ancient inhabitants who are all Sheeas, a tenth Dooranee, and the rest Eimausks and Moguls, together with the same mixture as the other towns of the kingdom. The inhabitants of the surrounding country are mostly Tauriks, who, like the rest of that race, bear a very respectable character. The revenue of Harat is reckoned at a million of rupees, one half of which is applied to the maintenance of local troops, and the payment of salaries, while the other passes into the royal treasury. The government is generally held by a son of the King of Caubul. The present is Feeroz Ooeden, brother of the king, a mild and respectable, though rather a timid character. It is less subject to the Afghan kingdom than its other dependencies, being occasionally attacked or threatened by the Persian power, and obliged to purchase its peace on the condition of payments, which constitute a sort of irregular tribute. Mr. Kinneir represents it as subject to the king of Persia, but the family to which the governor belongs appears decisive of its subjection to the Afghans.

The province of Seistan exhibits a scene of deplorable degeneracy, both in its physical and moral character. The numerous ruins which it still contains testify it to have been once a fertile country, full of cities scarcely surpassed by any in Asia. These reverses are the effects of the perpetual encroachments of the sands of the deserts by which it is surrounded on all sides except the north, where it joins the Dooranee country. Every wind brings clouds of a light drifting sand, which destroys the fertility of the fields, and gradually overthrows the villages. The only parts which retain their fertility are the immediate banks of the rivers Helmund and Furra-Rood, and of the lake of Durra into which they flow. This lake is about 150 miles in circumference. The water is not salt, but brackish, and scarcely fit for drinking. In the centre there is an island called Copee Zoor, or "the hill of strength," sometimes the fort of Roostum. It is still an occasional place of refuge for the inhabitants of the shores. The miry banks are occupied by a rank and irregular vegetation of rushes and reeds, frequented by herds of oxen kept by a set of persons who seem to form a distinct race. Exterior to these a stripe of land produces grass, grain, and tamarisks. The rest of the country is almost a desert, producing some forage for camels, and here and there a well for the wandering Belooches, to whom these animals belong. The original inhabitants of Seistan are Tauriks, to which have been added two other tribes from Persian Irak, all of whom resemble the Persians in character and manners. The Belooches have extended into this country, and are commanded by Jehaan Khan, who is a terror to the caravans, and to the neighbouring countries. The lineal descendant of the ancient chief.
Seistan, Mulik Behran Khaneh, assumes the title and state of royalty, but has scarcely a thousand men at his disposal.

Beloochistan, occupying the greatest part of Mekran, extends from Afghanistan on the north to the Indian ocean on the south. It has Kerman in Persia on the west, and Sind on the east. It is the ancient Gedrosia. It is an hundred miles long, and three hundred and fifty broad. The largest division belongs to the Khan of Kaliat, comprehending the table land, which is cold, rugged, and barren, but resembles the Afghan country, and the low parts called Sewestan, which are not to be confounded with Seistan already described, but lying on the south and on the east. These tracts are hot, and generally dry, but, round Gundawa, Dauder, and other towns, well watered and cultivated. It is mostly inhabited by Juts. The inhabitants of the table land are Brahoo Belooches, mixed with Taujiks. The former are a hospitable and honest people, but deprived of the advantages of civilization, and have a general resemblance to the Afghans. The plains are inhabited by another race, distinct in language and most other particulars, who are called Rind. These are determined and sanguinary robbers. Plunder on a small scale is held by them in contempt. When they intend to make a Chepau, or foray, they set out on camels, each man having the charge of ten or twelve, and ride eighty miles a day, till they approach the destined scene of operations, lurk in some unfrequented jungle in the neighbourhood, rush out at midnight, set the devoted village on fire, and kill or carry off men, women, children, and flocks. The captives are blind-folded, and tied on camels, that they may never know the road back to their native spot. Messrs. Pottinger and Christie, in a perilous journey which they undertook across this region, found to the west of the Belooches, in Mekran Proper, Loories, and other tribes of a meaner and more brutal class, who are abandoned to every species of depravity, plunder in every shape, and murder in cold blood on the slightest resentment. They scarcely rear any children, and keep up their communities chiefly by manslaughter.

Lower Sind is a country justly compared to the Delta of Egypt in all its physical characters. The former capital was Tatta, the ancient Pattala; the present is Hyderabad. It is rather barbarously governed by three brothers called Ameers, in the name of the Afghan kings, and a revenue of sixty-one lacks of rupees (787,000L.) is raised by every sort of extortion and oppression. They ought to pay 1,500,000 rupees, (fifteen lacks,) annually to the king, but have generally withheld it, unless when in immediate fear of the royal armies. They maintain a force of 38,000 irregular cavalry. The Sindces are a handsome race, blacker than most of the people of India, but have the character of being treacherous, cruel, licentious, and very deficient in intelligence.

Shirkapoor, in Upper Sind, is bounded by the Indus on the east, and the Beloochi country on the west. The town is of considerable size, surrounded with a mud wall. It contains several wealthy bankers; and Shirkapoorree bankers are found in all the towns of Afghanistan and Turkestan. It is governed by a Hakim, who keeps very few troops, and pays a revenue of three lacks of rupees. The country of the Mozaarees to the north is inhabited chiefly by Belooches. Bahawulpoor includes for a certain distance, the banks of the Indus, and its two tributaries, the Hyaspes and the Acesines. Above this is Mooltan, which is exposed to many revolutions, being sometimes in the hands of the Maharratas, and recently threatened by the Sikhs.

Cashmere. The valley of Cashmere is surrounded by lofty mountains, which on the north divide it from little Thibet, from Ladauk on the east, from the Punjab on the south, and from Pukhlee on the west. On the north-west a branch of the Speen (or white) Cauflirs, comes in contact with it. The Cashmiorians are a distinct race of Hindoos, peculiar in language and manners. The men are stout, active, and industrious, much addicted to pleasure, and notorious for falsehood and cunning. They are chiefly Mussulmans. In the year 742 of the Hegira, the Hindoo kings were succeeded by a Mahometan dynasty. This, after reigning nearly 300 years, was dethroned by the son of Bauber, and Cashmere remained in the hands of the Moguls, at the time of Ahmed Shah, when it was taken by the Dooranee Afghans. It is
governed with a strong hand, no natives being allowed the use of arms within the
city. The administration is tyrannical, and numerous spies are employed. The city
of Cashmere is the largest in the Afghan dominions, and contains from 150 to 200,000
inhabitants. The gross revenue of the provinces is said to be 4,626,300 rupees (or
nearly 500,000L). The governor has constantly at his disposal a force of 5400 horse,
and 3200 infantry. The most remarkable production of Cashmere is its shawls, which
are said to occupy sixteen thousand looms.

The royal power is subjected to greater control among the Afghans than in most other Asiatic countries, as the power of the Dooranee aristocracy, and the organization of the other tribes are permanent; and notwithstanding the division into tribes, and the rivalry which sometimes exists among them, there is a general sentiment of regard for the public interest, and the honour of the Afghan name. There is no regular or well matured constitution, yet there are some established customs and practical opinions respecting the government. There is no fixed rule for the crown descending to the eldest son. When a king dies, it has been usual for the great Dooranee Sirdars present at the court, to meet and consider which of his sons is to succeed. Their voice secures the possession of the capital; but the practice of conferring the different great governments on the king's sons generally leads to a contest. The whole of the royal family, except those whom the king particularly favours, are closely confined in the upper citadel of Caubul, where they are well treated. Those who remain at large are appointed to the government of provinces or the command of armies. The king has the exclusive privilege of coining, and the right of war and peace; all appointments are in his gift, though, in many cases, his choice is confined to particular families; of this description are the chieftains of tribes. Some offices of the state, and many even of the king's household, are also hereditary. He has the entire control of the revenue both in collection and expenditure, but he cannot increase the settlement of the land revenue fixed by Ahmed Shah, which is extremely easy. The only means by which he can increase his resources derived from the Afghans are fines, compositions for military service, and sometimes arbitrary valuations of the productions of the land. He has the control of military levies, and the command of the army; he has the direction of religious affairs, but has little room for interference. His general policy is to keep the Dooranee tribe in subjection to himself, while he exalts them over the other Afghans. Therefore he protects the Tuijiks, or townsmen not belonging to the clans, and all others whose power he can use to depress the nobles. His men are got from the western, and money chiefly from the eastern tribes. The Afghan views of conquest are directed rather to the east than to the west of their present territory. The riches of the Indian provinces are the chief temptations. They threatened India of late years during the wars of Buonaparte; and one object of the diplomatic intercourse opened between Great Britain and Persia was, to induce the latter power to form a diversion on the west in case of their attempting to invade India. The mission was attended with the desired effect of preventing such a movement on the part of the Afghans.—The punishments inflicted on offenders among the Afghans are lenient, compared with the severity of the Persians. The practice of maiming or blinding the common people is unknown. But the government often resorts to perfidious measures to seize offenders, and employs torture, especially on the rich, for extorting money. The chief minister is called Vizier-Azem, as in Turkey; he manages the revenue, and controls the other departments. Next to him are the Moonshee-Baushee, or chief secretary, who manages the king's correspondence; and the Hircarrah-Baushee, who is at the head of the intelligence department. The officers of the court and household are very numerous, being formed on the model of Nadir Shah's; each of the branches belonging to it is distinguished by a particular dress. The appearance of the court is regular and decorous. Each of the eighteen most important provinces of the kingdom is governed by a Hakim, to collect the revenue and command the militia, and a Sirdar to command the regular troops and preserve public tranquillity. These act through the medium of the heads of tribes where the latter are powerful; where the tribes are weak, they send their orders directly to the heads of subdivisions. The principal source of the king's income is
the land revenue. Some payments in kind are appropriated to the maintenance of the king's household. These are from particular lands. The real revenue falls within two crores of rupees, or two millions sterling. The Dooranee clans are obliged to furnish 12,000 men as the condition on which they hold their tekools, or rent-free lands, granted them by Ahmed-Shah and Nadir. The establishment of the Ghollaum-Kauneh, a force formed by Ahmed Shah from the foreigners found in the Dooranee country, and recruited afterwards from the Tavuiks of Cauful, is upwards of 15,000 men. The interest of these troops secures their fidelity to the king. He has also 700 or 800 Shaheenchees, or men mounted on camels which carry large swivels. The troops kept by the governors of provinces can seldom be employed except in wars carried on in their neighbourhood. Another division of the army is called Karra-Nokur, furnished by the owners of land; the numbers vary in the different localities. Their number taken together is less than that of either of the first two branches. These troops are all cavalry, except a corps not exceeding 2000, furnished by the Cohistan of Cauful. There is a militia called Eeljauree, raised on extraordinary occasions, generally understood to be a tenth part of the population, though that proportion is seldom realised. These are paid by the chiefs of the tribes. They are almost all infantry. Compulsion is generally necessary to bring them out, their pay being small, except when the army is bound for India, where they will even go without pay in hopes of plunder. In foreign invasions the people may be raised en masse; this is called oolosee from ooloo, the Afghan term for a tribe. The regular troops are almost all cavalry. The horses belong to the men, except those on which 500 personal servants of the king are mounted. A Persian sword and a matchlock are the usual arms. They are unacquainted with regular tactics, although expert in the use of arms and the management of their horses; and, were it not for the nature of their country, they would make a very indifferent resistance to a regular army, though their courage is respectable, and their military habits are kept in exercise by the unsettled state of their political society.

BOOK XXXVI.

INDEPENDENT TARTARY.

Comprehending Great Bukharia, Kovaresmia, Turcomania, Turkestan, and the Kirguiz country.

The countries lying to the east of the Caspian Sea, which are watered by the Oxus and the Iaxartes, went under the name of Asiatic Scythia among the Greeks. It is possible, and even probable, that the true Scythians of Europe, the Finnish tribes of which we shall speak in their proper place, occupied this country at a very remote epoch; but the nations known in history as inhabitants of Scythia in Asia appear to have had one common origin with the modern Tartars or Tatars. The Tartar names of rivers, of mountains, and of provinces, are recognised in the midst of the Persian names introduced into Grecian geography since the time of Alexander, and no trace of the Finnish languages is to be discovered among them. Besides, no history from the age of Alexander down to the fourth or fifth century gives any certain account of a great migration of people, that could have brought new colonies into these countries. But warlike and nomade tribes must often have changed their degree of consequence, their name, and their situation. Between the second and fourth centuries,

the Saces and Massagetas disappeared from the map. Persia and Byzantium became acquainted with the formidable names of the Turks of Transoxiana, and the White Huns, or Ephthalites. But these last, so named because they lived upon the Oxus, called in Persian Apitelah, were probably Turks, and perhaps the very same as the Uzes or Uzebecks, who after many revolutions, became ultimate masters of Great Bukharia. The Turks, whose capital at one time was Taraz, and afterwards Otrar, gave the name of Turkestan to a great extent of country. All the nations whom we denominate Tartars, acknowledge the appellation of Turks as belonging to them in common. It occurs in Pomponius Mela and in Pliny; and there is no reason why we should erase it from their works.† If it is retained, its antiquity is at least anterior to the age of these compilers. This celebrated name has found its way into the sagas of the Icelanders,‡ which seem to indicate some ancient connection between the Goths and Turkish nations; traces of such a connection being at the same time found in their languages.

It was not till the twelfth century that the name of Tartars, or more correctly Tartars, became famous in Europe. Abul-Ghazi affirms that there was among the Turkish hordes a tribe called Tatars, and he speaks of them as forming one considerable division of the great Turkish nation. He says, again, that the Tatars were divided into several tribes; and that one of them maintained some bloody wars with the Chinese; an account which corresponds with the Chinese annals.§ Some, however, consider the name Tatar as unknown to the Turkish nations, and as having been given to them by the Chinese; it appears that the latter gave the name of Tata to the nomade nations of central Asia.|| Another opinion is maintained and some arguments offered in proof of it by Mr. Stephen Quatremerere, that the Tatars were a Mongol, and not a Turkish tribe.

Whatever the case may be, the name of Tatars, changed into Tatars notwithstanding the remonstrances of the learned,‡‡ had so much fame in the fourteenth, fifteenth, and sixteenth centuries, that it invaded the whole of central and northern Asia. It absorbed that of the Mongols, although the latter held the Tatars in subjection. The cause of this fact may perhaps be found even in the victories of Genghis Khan. The Tatars subjugated by him were enlisted in his armies, and in those of his successors. They greatly exceeded in number those who were the original subjects and countrymen of these princes, and, in the end, caused the name of the Mongols, their conquerors, to be forgotten. This view of the subject is confirmed by the adoption of the Tatar language in all the countries conquered by the Genghissides; the inhabitants of such countries having previously used particular idioms which were neither Mongol nor Tatar. That preference of the Tatar to the Mongol would not have been general and constant, had not the Tartar nation been much more numerous than the other whose military glories it shared.

The Tatars differ as much from the Mongols in their features, physical constitution, and language, as the Moors do from the negroes. A slender figure, a European visage, though somewhat yellow in complexion, curled hair, and a long beard, distinguish the Tatar from the squat, shapeless monster, with flat nose, prominent cheeks, almost beardless chin, and lank hair, who inhabits the deserts of Mongolia. The countries of these two races of men constitute two distinct physical regions. The Mongols, of whom the Kalmuks are a branch, occupy all the central plateau from lake Palcati and the Beloor mountains to the great wall of China, and to the Solik mountains which separate them from the Mantchoos, a tribe of the great race of the Tongooses. The Tartars are the possessors of that extensive country which lies between the Beloor mountains on the

* Rytshchow, Orenburgskaisa Topographia, t. i. ch. 1. Fischer, Questiones Petropolitanae, p. 58.

† D'Anville, Mém. de l'Acad. des Inscriptions, t. ii. p. 201.

§ Sonner, Heimakringla, i. p. 2. Herwarth Sagens, p. i. cap. 1. Langfeldtatal etc.

|| Histoire Généalogique des Tatars, p. 167; Histoire de l'Empire des Mogols, p. 5.

Teunclavius, Pandect. histor. Turc. Langlès, Pallas, etc.
one side, and the lake Aral and the Caspian Sea on the other, and which may be called either Tartary or Turkestan.

The Tartars have indeed inhabited, and even reigned over Little Bukharia; but there they have been subdued by the Kalmuks. On the other side, the Tartars once had possession of the khanats of Sibir, or kingdoms of Siberia, called also Tura, Kasan, Astrakan, and the Crimea; but these four states have fallen under the Russian dominion. A number of Tartars remain in these countries; some on the Tobol and the Irtysh, as far as the river Yenisei; others in the neighbourhood of Kasan. A small number live in the Crimea, and some tribes have taken refuge in Caucasus, where they settle round those posts which are protected by the Russian arms from the lawlessness of the native mountaineers. Tartary is thus very extensive in an ethnographic sense, as denoting the country inhabited by Tartars. But the independent Tartar nations are confined within narrower limits. They occupy only the physical region bounded on the north by the Algydim-Shalo mountains, or the course of the Irtysh; on the west by the course of the Ural and the Caspian Sea; on the south by Khorasan and the mountains of Gaoor or Paropanisus, and on the east by the chain of Beloor.

On the north, the steppe of Issim and the over Taik, or Ural, separate Tartary from Russia. The Beloor mountains are its barrier on the side of China. On the west the Caspian Sea furnishes a natural frontier; on the south it has no similar barrier to secure it from the invasions of the Afghans, as that power is in possession of the city and territory of Balk. Still Tartary, geographically considered, must be extended on the south to the Hindoo Coosli mountains, which separate it from Afghanistan.

This country, without including the steppe of Issim which is claimed by the Russians, has more than 460,000 square miles of surface; though it probably does not support six millions of inhabitants.

The leading divisions are, on the north, the country of the Kirghis, with the districts of the Karakalpaks and of the Aralians, and the states of Tashkent and Turkestan; on the west Khowarosma, with the country of the Turcomans or Truchmenes; on the south-east Great Bukharia, with Ferugana and the countries of Sogd, Osrushima, and others.

Tartary, as now defined, may be regarded as the western declivity of the great plateau of central Asia. It is a series of basins, all of which terminate in the Caspian Sea and the lake Aral. A great part of this country must have very little elevation; but it is hemmed in by mountains on the south, on the east, and partly on the north. The principal mountains on the east are those of Beloor, or Beloot-Tag, which constitute a great chain, covered with perpetual snow. On the north-east this chain is continued in the Alak, called also Alak-oolo, a term which signifies in the Kirghis language "The Speckled Mountains," forming the northern boundary of Little Bucharia, and joining the great Bogdo, asserted by the Mongols and Tartars to be the highest mountain of central Asia. The Alak mountains are also named Musart, according to Pallas, and contain glaciers. On the south Great Bukharia is bounded by the Hindoo Coosh, and the mountains of Gaoor, which are merely an extension of the former; at least we know of no interruption, except a narrow gorge on the south of the Anderab. All the east part of the basin of the Gihon is surrounded and filled with mountains, from which the river issues a little way from the city of Termêd; the defile is not more than a hundred paces wide, and the sublime horrors of the place are well expressed by the Persian name given to it, Djani-Sheer, which means "the Lion's throat."* Immediately after this the sandy plains commence. Between the basins of the Gihon and of the Sihon, or Syr-Daria, the chain of Ak-Tau, or "the white mountain," is extended, being a branch detached from the Beloor. The Kisk-Tag, or "little mountain," which rises in the Kirghis country, is probably the extremity of a branch sent in this direction from the great Altaic chain. The Ural chain terminates between the sources of the Tobol

and the Russian post of Orskain. From that point it gives off two chains of elevated land; one to the east, which, traversing the steppe of the Kirguis, is known by the Kirguisian name Ula-Tau, or "the Great mountains," as far as the river | Ula-Tau. Ishim, and from Ishim to Irtish is called in Russian Alginski, and in Kalmuk Algdim-Shalo. Another chain, also of moderate height, takes a direction, under the name of Mogulshar, towards the lake Aral, passing between it and the Caspian Sea, and is supposed to be continued, under the name of the mountains of Mangislak or Turcomania, as far as Khorasan.

A full half of Tartary is occupied with immense steppes or desert plains. These are chiefly the Kirguis country. There is one desert to the north of Great Bukharia, and another to the west. Khowaress or encircled with deserts on all sides. The eastern shores of the Caspian Sea present nothing but a long and gloomy chain of arid downys and rocks. The whole flat country comprehended between the bottoms of the mountains and the valleys in which the rivers flow seems condemned to aridity and barrenness.

Independent Tartary is watered by two large rivers, the Amoo and | Rivers. Syr. To each of these names, the termination daria, the Tartar term for a river, is appended. The oriental geographers call the Amoo, Gihon, and the Syr, Sihon.

The Amoo takes its rise in the Beloor mountains, about 200 miles to | The Amoo, the north-east of Badakshan. At first it has the name of Harrat. After receiving a great number of rivers from Ak-Tau, along the north side of which it flows, and from Hindoo Coosh, which it leaves on the south, it descends near Termend into the plains. Its water, augmented by the addition of the Dehar, or river of Balk, and many small rivers proceeding from the mountains of Gaooor, take a north-west direction, and fall into the sea of Aral, which appears to have been at every epoch its principal termination. The course of this river is longer than that of the Tigris, being in all probability not less than 886 or 900 miles. It abounds with many kinds of fish. Of the tributary rivers, the three principal are the Sogd, or the river of Samarcand, the Mar-gab, which, however, according to some, loses itself in a lake which does not communicate with the Amoo, and, near its mouth the Kisil- Darah, or Red River, the longest and most considerable, and which besides sends off a distinct branch running separately into the lake Aral.

The Syr or river of Sash, rises in like manner in the Beloor mountains, and after a course of 550 miles falls into the Aral at its eastern side. Ibn Haaukal calls this river the Shinjo or Shash. Its first source is the Nair Narin, which arises on the south of the lake Tuseul, in the Akak chain, at the place of its junction with the Beloor, not far from the sources of the river Talas. At Otrar it receives the Taras, which some consider as identical with the Talas, while others are of opinion that the latter as well as the Zouy, are two separate streams, which terminate in a small lake, or are lost in the sand. The Syr, in the remainder of its course, traverses the desert of Buruk. It is possible that by means of a number of small lakes and marshes it may have a sort of communication with the Sarasoo, a river which crosses the Kirguis country. In that country the rivers Irgiz and Turgai also flow, and lose themselves in a lake situated to the north of the lake Aral. Several of these lakes and rivers, now forgotten and unknown, possessed at one time a celebrity from being the scene of the victories of Genghis Khan and his successors, when these conquerors directed the progress of their arms to the north of the Caspian, and laid the great part of European Russia at their feet.

The largest lake of these countries is that called the lake or sea of | Lake of Aral. Aral, i.e. the "Sea of Eagles," and among the writers of the east, the lake of Khowersem and the lake of Oghooz. Its waters having but little saline impregnation, it contains, like the Caspian Sea, sturgeons and seals. If this lake was ever united with the Caspian Sea, it could only be by a very narrow strait, since the plains which lie between them are certainly very high, and, according to some, the intervening land consists of lofty mountains. The eastern shores of this lake are flat and marshy.

The other lakes of Tartary are of no considerable extent, and gene- | Salt lakes-
rally remarkable for their saline nature. Through the whole of the steppe of Kirgis,
such lakes are of frequent occurrence, and all the country situated between the lake
of Aral and the Caspian Sea has an infinite number of brackish marshes. This sort
of lakes has been already considered with a reference to the general laws of physi-
cal geography.* It is rather singular that the mountainous regions in which the Oxus
and Iaxartes take their rise, do not, like Upper Siberia, present a collection of lakes,
generally so common in the neighbourhood of great mountain chains.

Climate. | The climate of Tartary seems, in general, to be healthy. The heat
even in the southern parts is moderated by the neighbourhood of the mountains, the
summits of which are covered with eternal snow, and, though lying in the parallel of
Spain, Greece, and Asiatic Turkey, the summers are rendered cool by the proximity
of the deserts of Siberia, and of the Alps of Thibet. To the north of the Syr the
winters are sometimes very severe. Shereffedyn has left us a dreadful description of
that which the army of Tamerlane encountered, when collected on the banks of that
Winter. | river, to march against China. Some lost their noses and ears; the
feet and hands of others dropped off; the heavens were in one cloud, and the surface
of the earth was one extended mass of snow.†

Productions. | To a travelling naturalist Tartary would probably present the same
variety of productions and of local situations as the Caucasian region. In one place,
the surface of the earth stretches out in plains which present no visible boundary,
cevered either with coarse bent, or with an inundation of moving sand. In another
place, it is intersected with numberless rivers, diversified with smiling hills, and
bounded by steep mountains. Wood is in general scarce, as it is in eastern Persia,
though it is possible that there may be unknown forests on the sides of the Belooch.
On the margins of the rivers the fertility of the soil arrests attention, the grass ex-
ceeding in some places the height of a man. In some cantons, rice and other
species of grain are cultivated with much industry and success. In better hands
these countries might make a flourishing figure. In Bukharia, the vine and other
fruits of the south of Europe succeed. It appears that the mountains of the south-
east, the Belooch and Hindoo Coosh, contain gold, silver, lapis-lazuli, and a peculiar
Minerals. | production, the balais ruby, a crystal of a pale rose colour. It has its
name from a canton called Balascia, the position of which is not well ascertained.‡
In the tenth century, before the industry of the natives was paralysed by a long
series of oppression, sal-ammoniac, vitriol, iron, copper, lead, gold, and turquoise,
were procured from Fergana, a canton situated near the sources of the Syr-Daria.
Mines of mercury have been since discovered. In the mountain of Zarka there
were also springs of naphtha and bitumen, and a stone which "flames and burns,"
which must be mineral coal.§ Countries which are better known will be studied
more in detail. But we may mention here the general observation, that,
according to Strabo whose knowledge extended no farther than the Iax-
artes, the Scythians of these countries were in want of iron and silver, but pos-
essed copper and gold in abundance. These two metals are easily worked. The
ancient mining operations in the Altai and the Ural mountains, ascribed to the Igoors
and to the Fins, were likewise directed to the obtaining of gold and of copper.

Country of the
Kirgiz. | We shall begin our topographical survey of Tartary in the northern
part. It is on this side that a traveller could find means most readily to enter,
along with a Russian caravan from Orenburg, this country, which has been
much neglected by modern travellers. The frontiers between these nomades and their
neighbours the Russians and Chinese, are not determined in a precise manner. The
small Kirguizian horde lives between the Taïk, the sea of Aral, and the environs of
Orenburg. The middle horde of the same people wanders along the north side of the
Aral lake, as far as the river Saras on the south-east. They often pitch their
tents beyond the Algydém-Shalo mountains in the steppe of Isam. The Russians
in their maps include all this space within the limits of their own empire, though
their sovereignty is merely nominal. The great horde extends to the south-east of

* Vol. i. p. 311, 312.
† Shereffedyn, Hist. de Timur-Beg, liy. vi. chap. 29.
‡ Marco Polo.
§ Hadji-Khalfah, p. 866. MS. translation.
the lake of Aral, over the country watered by the Sarasoo and the Syr, as far as the city of Tashkent, perhaps as far as Fergana.

It is from the military expeditions of the Russians that the slight knowledge which we possess of this country has been obtained. It seems to present, in general, a mere succession of sandy downs, and mountains interspersed with hills of a clayey texture, divided by vast plains of sand, where a number of rivers lose themselves in the sand, or in salt lakes. The mountains of Ulu-Tau begin with hills of anguillaceous schists, and sand-stone. We then pass different ranges of lime-stone rock, and in some places granite. Blocks of jasper, and milk-coloured quartz are met with, together with various indications of copper, silver, lead, and false topaz. One insulated mountain is composed of an indifferent ore of magnetic iron, another of talc. The Algynaki mountains are of the same materials, and have on the south a range of hills consisting of gypsum.

During winter a very strong north-wind prevails, accompanied with snow. The cold attending it is extreme, and the violent whirlwinds raise columns of dust to a height of thirty feet. The snow, however, lies a very short time, especially near the shores of the Caspian Sea.

The salt lake of Indersch, near the river Ural, or Yaik, forms, according to the account of Professor Pallas, a sort of natural curiosity. It is a sheet of water fifty miles in circumference, so impregnated with salt as to give the surface a white colour. Salt springs are continually adding to its contents. Stormy winds arise here, which are impregnated with saline particles. The banks present a surprising mixture of clay and marly strata, oyster shells, crystals of alum, and of sulphur.

Saline plants predominate in this barren country; yet along the rivers there are different species of trees. Some of the valleys or low grounds are very agreeable in summer. Without extended pastures the Kirgisians could not support so many horses, camels, black cattle, sheep, and goats, as we know them to possess. Pallas was informed that some individuals of the middle horde had 10,000 horses, 300 camels, 300 or 400 sheep, and more than 2000 goats. Their dromedaries, which they shear annually like sheep, furnish a large quantity of woolly hair, which is purchased by the Russians and Bukharians. Their ordinary food is mutton of the flat-tailed breed. Their lamb is so delicate as to be sent by way of Orenburg to Petersburg for the tables of the palaces. The steppes furnish plenty of game, wolves, foxes, badgers, ermines, weasels, and marmots. In the mountains of the south and east, there are wild sheep, the yak, or Thibet ox, chamois, jackals; also a species of animals which has been taken for tigers; kulans or wild asses, the saiga antelope, and the takia, or wild horse.

The Kirgizians have Tartar features, flat noses, and small eyes, but not oblique like those of the Mongols and Chinese. Their lives being frugal and peaceful, they enjoy a long and healthy old age. Their common diseases are intermittent fevers, colds, and asthma. The venereal disease prevails among them; but the small-pox is what they most of all dread.

The language of the Kirgizians is a dialect of the Tartar, which the other Tartars perfectly understand; but their pronunciation is harsh, and they are fond of the allegorical style. The hereditary princes of the Kirgizians have but

† Pallas, i. 618, 640. N. Rytshckow's Topography of Orenburg, in Busching's Mag. vi.
‡ Pallas, i. 630, &c.
§ Bardanes; N. Rytshckow, l. c. Pallas, Neue nord. Beyträge, ii. 6.

Vol. I. — 3 N
little power, every thing being decided in general assemblies. According to the most modern accounts, the small and middle hordes swear fidelity to the Emperor of Russia by deputies, but they do not acknowledge themselves his subjects, nor pay him any tribute;* Russia, on the contrary, gives them annual presents. The caravans from Bukharia, Khiva, and Tashkent, pay a duty for passing through their territory, and under their escort. Population. The middle and little hordes are reckoned to contain 30,000 families each. If we suppose the great horde to contain 60,000, the population of this wide region may be estimated at 1,200,000 souls. Manors, etc. Depressed by no despotic yoke, and abundantly provided with the necessaries of life, the Kirguisians are much happier than is generally supposed. They live on the flesh of their sheep, and the milk of their cattle. Armed with lances and matchlocks, they pillage all the neighbouring countries. They are not blood-thirsty, but they employ in their marauding excursions an address which gives no small trouble to the Russian garrisons. They delight in carrying off the Kalmuk women, because they have the reputation of preserving their youthful attractions to an advanced period of life. Though indefatigable marauders, they live on the most friendly terms with one another. They keep in their service slaves whom they have carried off from their neighbours. They wear the Tartar dress, with wide drawers and long pointed boots; their heads are shaved, and covered with conical caps. The trappings of their horses are richly ornamented. The women dress their heads with heron's necks so placed as to have the appearance of horns. Valorous and ferocious horsemen, the Kirguisians are fond of games, exercises, and horse-racing. At the funerals of the rich, horse-races are held, and the heir distributes slaves, camels, horses, magnificent harness, and other prizes among the victors. They cross the rivers on bridges formed of rush-mats rolled together, and joined by two-tight ropes. Their white gun-powder, the process for making which they keep secret, is a subject deserving of further investigation.† Superstition. About the beginning of the seventeenth century this people, formerly Shaminians, was converted by the preaching of the priests of Turkestan, and submitted to the Mahometan rite of circumcision. But in 1769, Pallas found them addicted to all the extravagancies of magic. They hold the dead in great honour, and every year celebrate a festival to their memory. Trade. The Kirguisians have some trade with the Russians, of which Orenburg is the emporium. The middle horde goes as far as Omsk in Siberia. They are supposed to take 150,000 sheep every year to Orenburg; and they furnish also a great quantity of horses, cattle, lambs, furs, camels, and camel hair. Sometimes they bring Persian or Turkoman slaves. They take home in exchange various articles of manufacture, particularly cloths and furniture. Being refused any arms or armour in Russia, they obtain these from Bukharia and Khiva in exchange for camels and black cattle. Turkestan. To the south of the Kirguis country we have a labyrinth of minute divisions, generally not well known. The whole country which extends along the two banks of the Iaxartes as far as the Ak-Tau chain of mountains was comprehended under old Turkestan, a division known to Moses de Chorené in the fifth century by the same name and that of Turka, and which perhaps corresponds to the famous Tooran of the Persian and Arabian writers. This western Turkestan was distinguished from another called the eastern, and which seems to have included a part of the Kalmuk country and of little Bukharia. According to the eastern geographers, Turkestan included the province of Fergana, which contains the towns of Andegan, Achaikat, and others on the Upper Sihon; that of Oarushna, with a town of the same name; Ylik, or Ylestan, in which the river Tankat flows and joins the Sihon,† and which contains the scite of Otrar, the ancient capital, not far from the ruins of Iessi, a capital still more ancient, cor-

* Le Nord Littéraire d'Olivarrius, 1799. n. x.
† N. Rytshchow, l. c. 429.
‡ Abulfeda, Descript. Chorasmie et Maweralhara, p. 50, etc. (Geog. Min.)
responding perhaps to the Issedon Scythica of the Greeks;* and lastly, Al-Shash, which was prolonged to the mouth of the river Sihon. In modern accounts these divisions are almost unknown. Turkestan is at present represented as a small country, watered by the river Karasoo, which falls into the Syr. The land is fertile in cotton, millet, wheat, and chestnuts, but indifferently cultivated. Here the venomous spider already mentioned is found, and a species of lizard with legs a quarter of an ell in height.† The town called Turkestan and Taras contains 1000 brick houses. Here a Kirguisian prince lately reigned.‡ The capital of the rest of the country is Tashkent, situated on the banks of the Syr or Sihon, and said to contain 6000 houses. Its inhabitants have a little trade; they cultivate peaches and vines, wheat, cotton, and silk; they have only three months of winter weather; their mountains contain gold. The state is governed by a khan, elected by the people out of the reigning family. This prince is generally a sort of humble vassal to the Kirguisians, whose nomade troops overrun the territory of Tashkent. The canton of Kokani, which has been traversed by the Russian caravans, seems to be identical, with the Kogend of our maps.

The Karakalpaks also inhabit the banks of the Sihon. They call themselves Kara-Kiptchaks, i. e. the black or tributary Kiptchaks. They are a tribe of the Tartars of Kiptchak subjugated by the Kirguisians. They are divided into an upper and a lower oloose or horde. In 1742 the lower horde, consisting at that time of 15,000 families, sought the protection of Russia, or the White Czar, and were almost annihilated by the Kirguisians for calling in foreign aid. The chiefs of the Oloossees pretend to be descendants of Mahomet. They have also a sort of nobility. Their mode of living resembles that of the Bashkeers in the Moslem Russia. They have a fixed place for their winter cabins, while their summer ones are moveable. They cojoin agriculture with the keeping of cattle. Possessing few horses, they employ their horned cattle for the draught and the saddle. They practise several trades with success. They sell knives, sabres, muskets, cooking-pots, and gunpowder, to their neighbours. They are Mahometans, and well instructed in the precepts of their religion. The power of the khan is much limited by the influence of the khodshas or priests.

The Trukmenes, or Turcomans, inhabit all the eastern coast of the Caspian Sea, a sandy and rocky country, labouring under a great deficiency of water. The Mogulshar mountains, or those of Mangishlak, have no great elevation, but are very steep, and intersected with ravines. Near the Caspian Sea they present limestone rocks full of shelves, with strata of chalk, marl, and clay; several springs of naphtha and petroleum, and some indications of lead and copper.§ On the shore conglomered masses are found, consisting of shells and sand cemented by a hardened stony deposition; or by bitumen. At a greater distance from the sea these masses are completely petrified. The waters are salt or brackish. The vegetation of these countries is limited to a few species, among which the Salsola trinervis is distinguished by its stiff and prickly appearance. The Abisnithium ponticum and caper shrub are in abundance. The Rhamnus alpina is employed as fire-wood. Foxes, wild cats, sheep, and camels, are the animals most generally diffused. The ounce, and even the tiger according to some accounts, are now and then seen. The country swarms with insects, particularly butterflies and locusts. In the gulls and bays the Nereis noctiluca is sometimes seen emitting her phosphoric light.

The Turcomans, more swarthy, smaller in size, but more square in the limbs than the other Tartars, live in tents, or in caves of the rocks. They are a set of rude shepherds, who, at times, commit acts of robbery. They are divided into several hordes, under the conduct of Kirguisian chiefs. The Russians divide them into two nations, or rather two parties: that of the Mangishlak, consisting of 2500 or 3000 families, and in which the principal tribe is that of Ab-

dallah. The other is Astrabad, or the Persian party, in which the powerful tribe of the Takeiaumoot is conspicuous. It amounts to 12,000 families, and possesses the territory round the Gulf of Balkan. The Turcomans keep numbers of camels and sheep; their mutton is excellent. They weave a coarse cloth of camel's wool. They raise a little grain and rice, with melons and cucumbers. Their dress, their arms, and their equipage, exhibit a mixture of the Tartar and Persian costume. They live in tents of felt. Their chiefs and elders possess but little authority.

Topography. Mangishlak was once a town, but at present nothing is to be seen at that place but temporary barracks, in which the Russian merchants are lodged. The harbour is one of the best on the Caspian Sea. The bay of Balkan is frequented by Russian vessels; the neighbouring islands produce a little rice and cotton; that of Naphthonia contains a great quantity of naphtha, the vein or stratum of which seems to cross the Sea in a north-west and south-east direction to Baku. These islands, inhabited by Turcomans, possess several harbours, and might be made the site of a trading factory.* Collectively taken, they are called Ogurtschi, which is also the name given to the adjoining coast, and signifies a country of cucumbers.†

Khouarem. To the south of the lake Aral, our eyes, after being fatigued by the view of unvaried deserts, find repose in surveying a country somewhat more fertile, called by the Arabs Khouaresm, Karissim by the Tartars and Russians, and Chorassan by the ancients. It also bears the name of Khiwa, which is that of its chief town. In the twelfth century the Turks of Karissim were in possession of a powerful empire. This state is now almost reduced to the province of Khiwa, which a

Climate. man on horseback may ride over in three days. The eastern geographers speak of Kharizm as a cold country in comparison with Persia. The river Gihon is frozen every year.‡ According to the Russian accounts the air is temperate; the frosts last only a few days; snow seldom falls, and soon melts. In summer there are no oppressive heats, but the autumnal months are rainy.§

Mountains. The Weisiluka mountains, a branch of the Ak-Tau, occupy a part of Khouaresm. They contain gold and silver mines, which were formerly worked, but the traces of which are not at present allowed to be investigated. It is said that emeralds, sardonyxes, and other valuable stones, are found in them. The greater part of the country consists of plains; the soil is generally composed of a reddish clay, and is adapted to all sorts of crops; but the deserts of moving sand which circle the frontier sometimes invade considerable portions of land.

The Gihon. The large river Gihon, or Amoo, which crosses this country, is, according to the historians of Alexander, six or seven stadia broad. It is too deep to be forded.¶ A similar description is of it given by the Arabian geographers; the latter speak of inundations occasioned by it. When it arrives at the base of the

Canals of irrigation. Weisiluka mountains in Khouaresm, the Gihon is separated into several canals of irrigation, preserving two principal branches. The small arm of the Gihon is the only one which contains water. The other, when the water is high, spreads over a marshy flat, through which it passes; and, like all rivers which have indifferent banks, it is sometimes left dry at several parts of its course.

Vegetable productions. Among other articles, this country produces wheat, barley, *Holcus sorghum*, or Bakharian millet, and *tchegwa*, a species of rice; peas, beans, hemp, tobacco, cotton, and the Persian *kuchu*, a plant which yields oil; all sorts of fruits of a most excellent flavour, mulberries, and wines in abundance. The grape ripens well; but they observe their religious precepts too strictly to make any wine. A number of cattle are seen wandering in magnificent meadows; but there is little pasture adapted for horses.¶ Domestick fowls are common, and there are many species of wild birds.

Inhabitants. The inhabitants of the country are Tartars of different tribes, chiefly Uzbeks and Turcomans; together with Bukharians, who are divided, as in Bukhars, into Sarti, or traders, and Tatchik, or common people. The Bukharians are the

real indigenous people of the country.* The Tartars give the Bukharian inhabitants of the state of Khiwa the name of Urgench,† from their ancient capital.

Khouaresm is divided into two states, at present independent, that of Chiwa or Khiwa, and that of Konrat, or of the Arabians.‡

The state of Khiwa reckons, on a territory of about 4600 square miles, a population of 200,000 or 250,000 souls. At the head of the government is a khan, who holds a court splendid enough for a Tartar prince, but possesses a mere semblance of authority, and whose functions consist in affixing the seal of state to all the public acts presented to him. The real power is in the hands of the inak, the | Government, president of the divan, or council of state. This council is formed of the great officers of state, who obtain their places by the suffrages of the people.§ The moolia-bashi, or head of the doctors of the Mahometan law, also exercises great authority; and it is not altogether rare for the khan to suffer by assassination or by poison.|| The indigenous dynasty being extinct for half a century, the inhabitants of Khiwa have elected their khans from the princes of their neighbours the Kirguis. The armed force of Khiwa may amount to 20,000 men, including Turcomans and Uzbeks in the pay of the khan. This army chiefly consists of cavalry; their arms are bows, lances, and sabres. They are rarely seen with muskets, and such as they have are matchlocks.††

The inhabitants of Khiwa, or, as the Russians denominate them, the | Mode of living. Khiwintzes, "live in a tolerable state of civilization. According to Al-Bergendi, they evince more natural genius than the other Tartars. They are fond of poetry, and show, from their earliest age, a turn for music. We are told that there seems to be a musical cadence in the very cries of the infants.** Abul-Ghazi, prince of Khiwa, has given us a history of the Tartars. These people cultivate | Industry, their lands with care; they raise silk worms, and make coarse stuffs of silk, of cotton, and mixtures of the two. These stuffs are weaved by the women in their houses. None of them are made in the European manner.

The caravans of Khiwa carry to Orenburg wheat, raw cotton, silk | Trade. and cotton stuffs, robes embroidered with gold, ready made and called shalats, lamb's skins, and sometimes Persian and Indian coin.†† In Russia, they buy the products of European manufacture; and from the Turcomans, horses, cattle, and sheep. Khiwa is still a great slave market. The foreign trade of this state is valued at 300,000 rubles, or l.46,000.

The city of Khiwa is on a canal of the Gihon, surrounded with a | Town. ditch, a clay wall, and a rampart. It has three gates, a castle, thirty mosques, and a college. The houses are 8000, built of clay in the manner of the country; the inhabitants are reckoned 10,000. The neighbourhood is filled with orchards, vineyards, and populous villages.†† The whole canton of Khiwa contains a population of 60,000 souls.—The new city of Urgenzech, thirty miles north from Khiwa on the same canal, contains twenty mosques, 1500 houses, 5000 inhabitants; and in the canton belonging to it there is a population of 55,000.—Shabat and Ket are two small towns, the one containing 2000 and the other 1500 inhabitants.—Anbari has only 1000, but its canton 44,000 souls.—The canton of Shanko has 25,000, of whom 2000 belong to the town.—Azaris, probably the Hasarasp of Ibn Haukal, contains 1500 inhabitants, and its canton altogether 11,500. Harlian, a very small place, is a kind of fortress; its canton is very thickly peopleed, and contains 16,000 inhabitants. This population, concentrated within a space of fifty or eighty miles long and broad, would become a powerful state if it were possible for a European colony to establish itself in the midst of people so strongly attached to the Mahometan religion.

The Uzbek Arabians, who possess the plains adjoining lake Aral, take | The Arabians. also the name of the Konrat, after their chief town, which is, more properly speaking, their winter encampment. This camp has a circumference of fourteen miles. It is defended by an earthen rampart twelve Russian ells in height. In case of necessity

the gates are defended by chesueur-de-frise. Manhuf and Kisil-Kosha are on the same plan on a small scale. Koptchak is a sort of fortress, in which a garrison of 1500 men is always kept. The Aralians, governed by two elective beks, are liable to the state of Khiva in an annual tribute of 2000 ducats, (£250.) But they do not pay it except when they are not at war with the Khivintzas, a thing which happens almost every year. Along with those Karakalpaks and Turkomans who live among them, they may form a mass of 100,000 souls. These people, who are half nomadic, have a considerable produce from their flocks, to which they add something by fishing and hunting.

The finest provinces of Tartary remain to be described. They are generally comprehended under the name of Great Bukharia. But the limits of this country on the north and west vary with the power of the Uzbek, who are its masters. It was that part of Great Bukharia which is situated to the north of the Gihon, or Oxus, that was formerly celebrated under the names of Transoxiana and Maweralnahr, names extended to the whole of Turkestan.

The most celebrated and the most fertile of all the provinces is that of Sogd, so named from the river which flows through it. "For eight days," says Ibn Haukal, "we may travel in the country of Sogd and not be out of one delicious garden. On every side, villages, rich corn fields, fruitful orchards, country houses, gardens, meadows intersected by rivulets, reservoirs, and canals, present a most lovely picture of industry and of happiness." The rich valley of Sogd produced so great an abundance of grapes, melons, pears, and apples, that they were exported to Persia, and even to Hindostan.

Samarcand, considered as the capital of Great Bukharia, stands on the south bank of the Sogd. We have no recent description of this celebrated city, which seems to have lost much of its lustre since the days of Timur, when so many fetes animated the imperial palace, the city, and the beautiful surrounding country. It appears that about the beginning of the last century Samarcand was fortified with ramparts of tufa, or soft stone; that the greater part of the houses were built of hardened clay, and some of them of stones found in neighbouring quarries. The Khan of Great Bukharia encamped in the adjoining meadows; and the citadel was almost in ruins. The silk paper made here was peculiarly fine, and in much request all over the east; and it is said that this is the place where paper-making was invented. Ibn Haukal tells us that the manufacture was known about the year 850.

"I have often," says this eastern geographer, "been at Kohendiz, the ancient castle of Bukhara. I have cast my eyes all round, and never have I seen a verdure more fresh or more abundant, or of wider extent. This green carpeting, mingled in the horizon with the azure of the skies. The simple verdure served as a sort of ornamental offset to the towns contained in it. Numerous country seats decorated the simplicity of the fields. Hence I am not surprised that all the inhabitants of Khorasan and Maweralnahr, none attain a more advanced age than those of Bukhara." The city of Bukhara, situated on the same river Sogd, has often disparished with Samarcand the title of capital. When the English commercial agents, in 1741, visited this city, which stands on the side of a hill in the form of an amphitheatre, they found it large, populous, and governed by a Khan. The inhabitants manufactured soap and cotton stuffs; they cultivated rice and bred cattle. From the Kalmuks they received rhubarb and musk; lapis lazuli, and some other precious stones from Badakshan. They had gold and copper money. The people were civilized but deceitful. The soil, says the Turkish geographer, is so fertile, that a field of one or at most two acres, which he calls damen, was amply sufficient to maintain a family.

The eastern part of Bukharia is a very mountainous country. The provinces of Vash, of Kotlan, and of Kilan extend towards the Beloor mountains. Among other towns is that of Badakshan on the Amoo. In the last century, this city belonged to the khan of Great Bukharia, or rather of
Samarcand. Badakshan was small, but well built and populous. Its inhabitants were enriched by the gold, the silver, and the rubies found in the neighbourhood. The mountain streams, which ran when the snow melted in the beginning of summer, carried along with them a large quantity of gold and silver in grains. Many of the caravans, bound for little Bukharia or for China, take this city on their way. Others prefer the road of little Thibet, on the east side of the mountains. Ibn Haukal relates, that the soil of Badakshan not only contained mines of rubies and other valuable stones, but produced a great quantity of musk. Termed is a good town, built of brick.

The provinces of Balk, now in the hands of the Afghans, of Tokarestan, and of Gooor, lie on the south side of the river Amoo.

The interesting country which we have now gone over is the famous Maulerainahr of the Arabian and Tartar history. There stood the throne of Tamerlane. There the ambassadors of all the sovereigns of the world came to pay their respects to the chief of the Mongols. In 1494, Sultan Jaboob, a descendant of Timur, driven with his Mongols from Great Bukharia, penetrated into Hindostan, where he founded the Mogul empire. The victorious Tartars, called the Uzbeks, established a powerful monarchy in Bukharia.

The Uzbeks first crossed the Iaxarites about the beginning of the sixteenth century, and pouring on the possessions of the descendants of Tamerlane, soon drove them from Bukharia, Khoorase, and Fergana.* They now possess this country, and it is said that they are to be found beyond the Belooch mountains, as far east as Koten, if not farther. They belong to the Turkish race. Their government is very different from that of the Afghans. In Bukharia and Fergana at least, everything is in the hands of the sovereign: there is no vestige of popular government, and scarcely any trace of aristocracy. Their division into tribes has no relation to the government, and there are no separate jurisdictions or assemblies even in the wandering hordes. The country is divided into districts and sub-districts, under officers appointed by the sovereign, who collect the revenue and dispense justice. There are however, village governments, in which the heads are appointed by the king, at the recommendation of the richest inhabitants. In the army also, everything depends on the appointment of the government. In Bukhara, the men are said to be arranged in masses of ten each, who have a tent, a boiler, and a camel among them. The Ulama, or members of the church, enjoy, however a considerable influence not derived from the government. The Uzbeks having probably had few institutions of their own at the time of their conversion to Islam, have adopted the provisions of the Mahomedan law in its utmost detail, applying it to every part of their civil government, and even of their private conduct. The revenue is collected exactly in the proportions directed in the Koran, and one-tenth of its produce is applied to the poor. Justice is administered by the Kauzeez in strict conformity to the Shurza, and the use of wine or even of tobacco is as strictly forbidden and almost as severely punished as fraud and robbery. The king of Bukhara's title is Commander of the Faithful. Part of every day is spent by him in teaching the Mahomedan religion, and the greater part of every night in prayers and vigils. He reads prayers in his own mosque, and often performs the funeral service for people of low rank; and Killich Ali Beg, the present ruler of Balk under the king of the Afghans, a prince at this moment celebrated and adored all over the east for the singular excellence of his character, always walks when in the streets, lest, if he rode, his feet should happen to be higher than the heads of other true believers. The present ascendancy of the king of Bukhara over the tribes is the result of a long exertion on the part of the government in dividing and mixing the various tribes, and keeping the great men from all employments which might strengthen the influence derived from their birth. The same power of the government has been promoted by the influence of the Mollahs, and facilitated by the comparatively level nature of the country. Hence the tribes which inhabit the hilly country of Hissar and the marshy one of Shehr Subz, being inaccessible to the cavalry of the king, have defied

* See Elphinstone on the kingdom of Caubul, p. 465, &c.
Appertences of the Uzbeks. | The Uzbeks are generally short and stout men; they have broad foreheads, high cheek bones, thin beards, small eyes, clear and ruddy complexions, and generally black hair. Their beauty, so much dwelt upon by the Persian poets, figures chiefly from a comparison with the aspect of the Mongols; their dress is a shirt and trowsers of cotton, a tunic over it of silken or woollen cloth bound with a girdle, and over this a gown of woollen cloth, paseen, or felt. The head is covered with a turban, worn in general over a calpauk. Both men and women wear boots at all hours, and bandages round their legs instead of stockings, and every man has a knife hanging from his girdle, and a flint and steel for striking fire. The women have a similar dress, but longer, with a silk handkerchief tied over the head, and the hair plaited into a long queue, which hangs down from the middle of the head like those of the Chinese; they wear gold and silver ornaments, and over all throw a sheet of silk or of cotton.

Character. | The opinion commonly entertained of the ferocity and barbarism of the Uzbeks is partly owing to their being confounded with the Kalmucks; the discreditable practice of selling slaves is not confined to them; but their laws of war are certainly most barbarous; they give no quarter to any enemies, except Shocites or infidels, whom they can sell for slaves, (for men are sold in Bukhara like cattle,) but in other respects their character does not appear to disadvantage on a comparison with other Asiaties; they are said to be comparatively sincere and honest; they have few quarrels among individuals, and scarcely any murders; and there are few countries in the east where a stranger would be more at ease. They are far from being savage Tartars, wandering over wild and desolate regions. The city of Bukhara is equal to Peshawer in population, and superior to any town in England, except London. It contains numerous colleges, capable of accommodating from sixty to six hundred students each, and which have professors paid by the king, or by private foundations; it abounds in caravanserias, where merchants of all nations meet with great encouragement, and, though the prince and people are above all others attached to their own belief, they fully tolerate all religions. A Mussulman proselyted by any other sect, is, indeed, never forgiven; hence we are informed in some recent missionary publications, that an Arabian convert to Christianity, denounced by his intimate friend a few years ago, suffered martyrdom in that country.

Aboriginal inhabitants. | The Uzbeks, who probably have lived in this country, though not as conquerors, ever since the third or fourth century, have not however effaced all traces of a more ancient race of inhabitants. These are named the Tuijiks, and are handsomer than the Tartars, both in elegance of form and agreeable expression of countenance. They approach to the people of Little Bukharia, whom they also resemble in their dress. The clothes of persons in easy circumstances are in a great measure of silk and furs. The long robes of the women exhibit wide modes of life. and varied plaitings; they adorn their hair with braids or pearls. The Bukharians lead a frugal life, their food consisting chiefly of rice, wheat, milk, and, above all, fruits, such as melons, grapes, and apples; they are fond of horse flesh, but as it is expensive, beef is more generally used. They use a great deal of the oil of sesame. Tea flavoured with anise, and the juice of grapes, are their favourite drinks. They intoxicate themselves with opium. Their bread is unfermented. The Bukharians carry no arms. The Uzbeks, on the contrary, are not strangers to the use of the musket; and it is even said that -their wives, who in beauty surpass the other Tartar women, follow their husbands in war, and fight by their sides.

Language. | They speak the Zagatayan language, which is the Turkish or Turcoman. But the idiom of the Bukharians, which promises a fund of curious research, has not yet been analyzed; several geographic terms have been observed in it which appear to be of Persian or Gothic origin.

Population. | Our information on the state of the population is higherto vague. This country can probably, in a case of necessity, muster 50,000 armed men. According to Hanway's account of the revenues of Nadir, Khorasan furnished nearly a million of pounds sterling annually; and the revenue of Great Bukharia may be believed
at least equal to that of Khorasan. But the income of the khans is derived more from their estates and their flocks than from any taxes.

Ibn Haukal, the father of the Arabian geography, has given us the following lively picture of the manners of the people of Bukharia in his time.

"Such is the liberality of the inhabitants, that not one of them will decline the duties of hospitality. If a stranger arrives among them, they crowd round him; each one wishes to have him; they dispute for the privilege; and he who obtains it becomes an object of envy. Every one, though possessing nothing more than his own necessities require, will carry to the door of the cabin in which the stranger is received a part of the fruits of his labour. The generosity of their hearts thus finds riches in the very bosom of poverty. When I was in the country of Sogd, I saw a great building like a palace, the gates of which were entirely open, and fixed back to the wall with large nails. I asked the reason, and was answered that that house had not been shut, night or day, for a hundred years. Strangers, in whatever number, may present themselves there at any hour. The master has made abundant provision for the reception of the men and their animals; he is never happier than when his guests stop for some time. Nothing of the kind have I seen in any other country. In every other place the rich and powerful lavish their treasures on the caprices of luxury, or on favourites whose whole merit is to be equally corrupt with themselves. The inhabitants of Maweralnahr make a more rational use of their economical savings. They build caravanseras, bridges, and other works of public utility. In Maweralnahr, you will not arrive at any town in the most gloomy situation, even in a desert, without finding the relief of an inn, or house of entertainment, furnished with every thing that a traveller can require. The glory of Maweralnahr cannot be effaced by that of any other country. It has produced great monarchs and able captains. No people in the Mussulman world excels them in courage. Their number and their discipline give them the advantage above other nations, which, on the defeat of one army, find it impossible, for a long period, to raise another for their defence. If such an event occurs in Maweralnahr, one tribe is always ready to repair the losses of another."

The civilization which was introduced with the Mahometan religion among this people has been somewhat obscured, along with their declining power and their glory.

The reports of the Russians who have penetrated to Khiwa and to Bukhara seem to show that a Christian traveller finds here insurmountable obstacles in the fanatic intolerance of the Mussulmans. But from the more recent accounts of Mr. Elphinstone, it appears that this intolerance has either been exaggerated; or is since mollified. Christians at least visiting that country from India are in no degree ill treated.

BOOK XXXVII.

SIBERIA.

Physical Description of the Country.

The style of our descriptions necessarily varies with the nature of the different countries that come under our view. There are some, as Turkey inAsia, where a great difference of elevation brings together into a narrow compass different climates, productions, and even different races of inhabitants distinct and opposite in their character. There are others where the predominance of the same physical causes over an immense territory creates a continual repetition of the same phenomena. Siberia, or northern Asia, is of this last description. Besides, while we were engaged with Syria and with Asia Minor, we were obliged to direct Vol. I.—30
our attention to cities celebrated in the annals of the world. Even in Persia a small province often presented some historical interest. Here we have no such temptation. In Siberia we are without the limits of history. None of the objects in this region derive an illusory grandeur from the recollection of events long past; nature, savage, rugged, and stubborn, still predominates over the early efforts of civilization. These vast regions may therefore be united in one physical portrait. We can glance rapidly over their topography, which is well known, being completely detailed in German and Russian works.

The ancient Greeks and Romans extended their imaginary Scythian Ocean over the space occupied by Syberia. Ptolemy, better informed, says that a vast unknown region lay to the north-east of the Caspian Sea; but the utmost extent of ancient geography scarcely reached the Uralian mountains. In the middle age, travellers, and among others, Marco Polo, heard the Tartars speak vaguely of a country which was rich in furs, but covered with perpetual darkness. In 1242, the Tartars founded on the banks of the Irtysh and the Obi, a Khamat, which from its capital, took the name of Siber, and from a neighbouring river, that of Tura.

The name Siberia is almost identical in pronunciation with the Russian word Seweria, or country of the north, the letter b in that language being pronounced like w; but the two terms have nothing in common in their actual etymology. The conquest of that kingdom by the Cossacks was followed by a series of discoveries* which extended the Russian power and our geographical knowledge to the eastern extremity of Asia. The name of Siberia was vaguely applied to all the newly discovered countries; it was even extended to the Tartar kingdoms of Astrakan and Kasan, long before incorporated with the Russian empire in Europe. This vague use of the name ought to be banished from geography. On reading with a little reflection the plan of a description of the Russian empire, inserted in the memoirs of the Petersburgh Academy, we shall see that this learned society considered the Uralian mountains both as naturally dividing the Russian dominions into two parts, and as fixing invariably the true boundary of Siberia. Our standard geographical authors, as d’Anville in his beautiful map of Asia, Busching in his Geography, and Georgi in his statistical account of Russia, have concurred in restricting the denomination of Siberia to the countries situated to the east of the Uralian mountains.

Siberia thus defined, is bounded on the north by the Frozen Sea, on the west by the Uralian mountains, which separate it from Europe; on the south-west by the Algdyum-Shalo mountains, which divide it from Independent Tartary; on the south, by the Altaï and Daororian chains, which form the frontier of the Chinese empire; on the east by the Eastern Ocean and Behring's Straits, which separate it from North America. Its length from west to east cannot be reckoned less than 4000 miles, and its breadth from north to south varies from 1100 to 1900. Its surface is about five millions of square miles, which is larger by two-sevenths than the whole of Europe, though this division of the world should be extended to the Caspian Sea. We proceed to describe its chains of mountains, its extensive plains, and its principal rivers.

The Urals, or Uralian mountains, which separate Siberia from European Russia, have a direction from north to south, for a space of eleven hundred miles; their breadth varies from fifty to a hundred. Possessing but little elevation at the north end, between the lower Obi on the east, and the Ossa, which runs into the Petchora on the west, they acquire a considerable height about the 60th or 58th degree of north latitude, near Solikamsk and Werchoturia. They become low and flat in the longitude of Ekaterinburg; but acquire a new elevation in the country of the Bashkeers in latitude 54° and 55°. The Pawdinsko-Kamen has been found by trigonometrical measurement, to be 6819 feet above the level of the Caspian Sea. Several of the summits of the Werchoturian mountains are covered with perpetual snow. We are not certain if this is the case with the Bashkeer mountains.† On the whole, the Urals form a long plateau, 4000 or 5000

* See the Chronological Table of Discoveries in Siberia subjoined to Book xxxviii.
† Georgi, Russie, i. 151.
feet in height, on which mountains are raised 1000 or 1600 feet in height. The structure of the northern part of the chain is little known. Limestone rocks seem to predominate. In Nova Zembla, the surface being covered with no pulverised soil, the structure is every where visible, and it, perhaps, may be regarded as a continuation of the Uralian formation. From 60° to 54° or 52° of latitude, they have been explored in detail in the working of mines. In ascending at Solikamsk, at Perm, or at Oofa, we first cross a chain of hills composed of sand-stone and calcareous breccia; then a chain of pure lime-stone rocks without organic remains; and, lastly, a chain of schistous mountains, principally formed of clay-slate, and hornstone slate, and containing immense quantities of iron ore, sometimes in veins and sometimes in masses. We come at last to the principal chain, which the Russians divide into the Werchoturian Ural, the Ural of Ekaterinburg and that of Bashkeer. Here granite makes its appearance everywhere in a massive strata; sometimes the constituents of that rock, particularly quartz, as at Dchigiga, are found in large masses in a separate state. A thinly stratified granite, which our mineralogists call gneiss,* is frequent on the east side of the chain; here, as on the west, we find as we descend, schistous mountains succeeded by others of limestone, but the respective limits of these strata are less precise, and there is a greater diversity of rocks and of minerals. Iron is always the most abundant metal; the stratum which is worked at Bliagdad is 150 fathoms in thickness; there is one hill entirely composed of magnetic iron, called Magneto visokogora. These mountains also contain large quantities of copper, a little gold and lead, serpentine, jasper, and crystallized marble. The two lime-stone chains of the Ural are penetrated with numerous caverns, but the tunnels† so common and so extensive on the European side, as in the neighbourhood of Koongoor and of Perm, are not found on the Siberian side.‡

The Ural range throws off various small chains at its southern extremity. The Obstchei Syrt, which passes into Europe, falls to be described in another place. The mountains of Guberlnski, a branch detached from the Ural of Bashkeer, join on the east side the mountains of Ulu-Tau and Algydimalshalo, which, as we have formerly seen,§ separate the Kirgins steppe from that of Issim. These high lands form a link of connection between the Ursals and the plateau of central Asia. All the mountains of the south part of Siberia, from the Irtish to the west side of the lake Bajkal, are only promontories or terraces, belonging to the central plateau, and the great chains with which it is crowned.|| We must never lose sight of this leading principle, nor look for a connection between these little chains which has no existence. The little Altau range is a lower terrace of the great Altau; this last is entirely without the limits of Siberia; the former marks its extreme frontier; it extends from the river Irtish to the Yenisei, allowing the Danghakean, which is the beginning of the Obi, to pass across a narrow gorge. On the south, a wide plateau separates it from the great Altau, and on the north a valley comes between it and the metallic mountains of Kolywan. Limestone, rocks predominate in every part of the little Altau that is known; it contains coralline marble. The traveller Schanig, who has seen the summits, found on them stratified granite. The Russian mineralogists have observed in the same quarter rich mines of copper, lead, and silver, which might be worked in the event of the mines of Kolywan being exhausted.** One of the summits measured by the barometer, was found to be 5559 feet above the hill of Schlangenberg, near the lake of Kolywan.

* See p. 113, of this volume.
† See p. 205.
‡ Hermann's Mineral Description of the Uralian mountains, vol. i. p. 41, (in German.) Pallas, Voyages en Russie, iii. p. 13, 15, &c. iv. 244, (trad. in Bro.)
§ See Book xxxv.
†† Georgi, i. 175.
** Renovants, Mineral and Geographical Description of the Altau Mountains, (in German.)
A granitic range given off from the little Altai stretches onward between the Irtysh and the Obi; it rises in peaks 14 or 1,500 feet above the neighbouring plains. This nucleus of granite has its sides all along covered with mountains of slate and limestone, which are rich in copper, with a mixture of silver and of gold; these are the metallic mountains of Kolyvan. The heights which follow the Obi on its left to its junction with the Irtysh are called the Oorman.

Between the Obi and the Yenisei are the mountains of Kutzmnek, in which clay-slate predominates; they contain abundant strata of coal, of which are said to have burned for half a century, after being kindled with lightning. The circumstance of the kindling has probably been misunderstood or imaginary.

The Sayanian mountains, between the Yenisei and the lake Baikal, are not so much a mountain chain as a plateau of rocks. Even the hunters scarcely ever visit this desert. Wachsmann, a surgeon who traversed it in quest of native rhubarb, found it to contain a large quantity of granite.* The plateau is divided into two lines of mountains along the banks of the Yenisei. One of them is named after this river, the other after the town of Krasnoyar. The principal mass consists of a red granite containing copper.

It is on the south-west of the lake Baikal that Siberia really begins to present a connected system of mountains. The great central chain of Asia here enters on the Russian territory, and is continued under various names to Behring's Straits. At its commencement we find a circle of lofty mountains enclosing a valley of great elevation, in which the lake Baikal extends its deep waters over a basin of rock with scarcely any sand, and from the bottom of which pillars of granite shoot up. The Baikalian mountains, very high on the north and west sides of the lake, seem to be principally composed of granite. Among the elements of that rock the mica often presents itself in isolated laminae, which may be used as panes of glass; and entire mountains are formed of the quartz.

A less considerable link passes to the south of the river Onon, and along the Argoon. This branch, of moderate height, but singularly rich in all sorts of minerals, is called the mountains of Nertschinsk. It is rather slaty than granitic.

The principal chain runs without interruption to the north-east, separating the tributary streams of the Lena from those of the Amoor. At first possessing moderate elevation, and confounded with the hilly country surrounding the lake Baikal, it receives the general designation of the mountains of Daoria. All this country, according to M. Patrin, is filled with volcanic tracés; and on the banks of the Shilok there are two craters of extinguished volcanoes.† A little to the west of the sources of the Olekma, the chain takes the name of the Iblannot mountain, or the "mountain of apples," on account of the rounded shape of the blocks composing it. The Mongoles called them Daba, a name rather remarkable, as reminding us of the Tabas, a promontory which according to Pliny and Pomponius Mela bounded Asiatic Scythia on the north-east. Acquiring increased elevation, and approaching to the Eastern Ocean, it begins at the sources of the Aldan to bear the name of the Stannovoı mountains; which afterwards gives place to the vague denomination of the mountains of Okhotsk. All these appear to consist of granite and porphyry. There are also entire mountains of red and green jasper.

A detached branch runs in a line along the Olekma river, and even passes the Lena after the Olekma has joined it. These mountains are of a slaty texture. Mines of alum and of coal are found in them. They form on the banks of the Lena a singular series of pyramidal rocks.

The main chain is very little known beyond the Okhotsk. We are told that it suffers no interruption, and reaches Behring's Straits, though certainly much diminished

* Georgi, i. 197.
† Various Memoirs in the Journal de Physique.
in elevation. Different branches extend between the Lena and the Indighirka and Kowyma. The space left between these branches of mountains and the Frozen Sea is small; yet they do not reach its shore, which according to Billings, is generally lined with low hills. Another more important branch enters the peninsula of Kamchatka, divides this peninsula longitudinally, and is continued in the form of a chain of islands, the Kuriles, to Japan.

These mountains of Kamchatka, covered with perpetual snow, are at the same time full of volcanoes. There are three in an active state, that of Avatcha, that of Tolbatjik, and that of Kamchatka, which is of very great height. Others are known, which have ceased to give out smoke and flame. To compensate this change, there are other two which emit exhalations accompanied with noise, inducing the apprehension that they are about to be transformed into volcanoes. The warm springs, and the abundance of sulphur, which in several places lies in the form of gravel on the shore, afford sufficient testimony to the volcanic nature of the whole chain. These volcanoes are, as has been already observed, connected with those of Japan, of Liqueyo, of Formosa, and the Philippines.

Having thus described the mountains of Siberia, we must turn our attention to the vast plains called steppes, which occupy a large portion of that country. They differ from one another in nature and in aspect. In one place they resemble the American savannahs, consisting of wide pastures covered with abundance of tall grass; in others the soil is saline, the salt appears in the form of an efflorescence mixed with the earth, or is collected in ponds or salt lakes. In general, the steppes contain many lakes, because the waters finding no declivity remain stagnant. We have already described (Book XXV. p. 305.) a steppe between the mouths of the Don and Wolga which resembles the bed of the sea. On the east bank of the Wolga another similar plain extends, called the steppes of the Kalmucks, bounded on the south by the Caspian Sea and the lake Aral, while on the north it is separated by the Ulu-Tau mountains from the steppes of Issim. This last belongs to Siberia. It extends to the banks of the Tobol on the north-west, and to those of the Irysh on the east. At this last extremity it joins the steppe of Baraba. This steppe is prolonged between the rivers Irysh and Obi, which bound it on the west, the north, and the east. It comes in contact with the Little Altaï mountains on the south. It is about 700 miles in length, and from 160 to 190 in breadth. The soil is good, and it is diversified with forests of birch. That of Issim sometimes, though rarely, presents the same aspect; and in both of them many tumuli are found containing the remains of the chiefs of Tartar or Mongolian tribes.

Between the Obi and the Yenisei, a mountainous country separates the river of Tchoulim from the Yenisei, and forces the line of its course towards the Obi.* But this elevation seems to disappear in the neighbourhood of the town of Yenisei; and, though there are some groups of hills in the south-west of the province of Mangaseisk which send some small rivers to the Frozen Sea, these are mere islands in the vast marshy plain which extends between lower Obi and lower Yeniseï; a horrid region, where the soil is of clay almost continually in a frozen state, covered here and there with some stunted plants, and a carpeting of mosses. Yet this plain is not a continued morass. The elevated lands on the margins of the Obi when dry show horizontal beds of argillaceous stones, which, without doubt compose in a great measure the subsoil of the country.

The two islands of Nova Zembla are each divided from north to south by a prolongation of the Uralian mountains, but they consist chiefly of a marshy moss-clad plain. It has been lately found that there are saline lakes in these islands.

The country between the Yeniseï and the Lena is called a steppe by the Russians; the term is vague, and often used to conceal the ignorance of the traveller. There appear to be many flat and marshy places; but there are others which deserve to be considered as hilly countries. The Lena has a continuous elevation on its west bank. This, near to the confluence of the Wilooi, presents

* Pallas, vol. iii. p. 414—416, (French translation in 4to.)
horizontal beds of a sandy calcareous slate and clay mixed with much pyrites. Another elevated country is found on the north-west of the lower Toongooska, and gives origin to the rivers Olenek, Anabana, and Khatanga, which run into the Frozen Sea. The country comprehended between the Yenisei, the Angara, or upper Toongooska, and lower Toongooska, presents an elevation of a remarkable description, viz. the great morass of Lis, almost equalling the Ladoga in extent, suspended as it were in the midst of hills formed of shells.

Rivers.

The rivers of Siberia are among the most considerable in Asia. But they flow across desert plains, from which an eternal winter banishes the arts and social life. Their waters nowhere reflect the resplendent images of celebrated cities; their banks are nowhere adorned with magnificent harbours; nor do they ever receive vessels laden with the spoils of distant climates. A vast sheet of water, sometimes bordered by a forest, sometimes by a dismal morass; some bones of mammoths driven on shore by the floods; some fishing canoes along side of countless flocks of aquatic birds; or the peaceful beaver raising his industrious dwelling without dreading the pursuit of man: this is all the variety that a Siberian river offers to the view. Savage hordes, and their ignorant conquerors have given these great currents names, of the meaning of which we can only form a random guess. The Irtysh, which is really the principal river of the system to which it belongs, has been defrauded of its due rank, and made a tributary to the Obi. The Irtysh wanders a great way on the plateau of the Kalmuk country, crosses the great lake Saisan-Nor, and descends by a gorge of the little Altai mountains. It runs 220 miles before it enters the Russian territory. Navigable from Saisan-Nor, its breadth varies from 220 to 400 yards. The Obi is formed by the junction of the Khatunia and the Bi, which issues from the lake Altan or Teletskoi; but the Tchabekan, which is the only stream that enters the lake, seems entitled to be considered as the source of the Obi. This river is almost doubled by its junction with the Irtysh, which is previously augmented by the waters of the Tobol and the Isaim, the first of which has a course of 330 miles, and a breadth of from 60 to 200 yards. The Obi forms a wide gulf where it falls into the sea; it is navigable almost to the lake Altun; it abounds with fish, but the sturgeon of the Irtysh is the most esteemed, the water of the Irtysh being the most limpid. When the Obi has been for some time frozen, its water becomes dirty and fetid, an effect owing to the sluggishness of its current, and the extensive marshes through which it flows; but in the spring season it is somewhat purified by the melting of the snow.

Yenisei.

Next after the Obi, the Yenisei is entitled to our notice, a broader and more majestic stream, though its course is not so long. It is formed in the mountains, to the south-west of the Baikal, by the junction of the rivers Sisket and Beikem, and then runs almost straight north into the Arctic Ocean. The upper Yenisei might perhaps be considered as a tributary of the Angara, or upper Toongooska, which issuing from the lake Baikal, joins it, but surpasses it in importance and in length, and might appear entitled to give its name to the united river till it reaches the ocean. The other two conspicuous tributaries of the Yenisei are the Podkamennaja Tonguska, i. e. the Toongooska beyond the mountains, and the low Toongooska, a river larger than the Rhine; both of these fall into the Yenisei on the east side.

The Angara.

The Angara is so limpid a river, that the pebbles at the bottom are seen in a depth of several fathoms. When it issues from the Baikal lake, its bed, generally from two to four hundred yards in breadth, is, for the space of a mile, so confined among rocks, that the smallest boats cannot pass along safely without the strictest precaution; and its waters, dashing against the stones, make a noise like the waves of the ocean in a storm.

Selinga.

The Selinga runs into the lake Baikal, after receiving the Orchon and other rivers, among which is the Tula, which is more than 300 yards in breadth, and flows gently over a pavement of rocks.

* Pallas, t. iv. p. 131, (4to)
+ Obi is the Russian name to the Samoid Kolja, the Ostek Jag, the Tartar Oumar.

"uleud Iskhames in Tunggoosa; Kem in Mongolian and Tartar; Guk and Chosek in Ostiak."
The last of the great rivers of these countries is the Lena, which rises to the west of the lake Baïkal, after having received the Witim and the Olema, which come from the Dacoarian mountains; it runs from south-west to north-east, till it approaches to Yakutsk, a very useful direction, as furnishing a secure navigation between very distant countries. From Yakutsk its direction is due north. It receives the Aldan on the east, and the Wilco on the west. Its bed is very broad, and contains a great number of islands. Travellers in passing the Lena, ascend the Aldan, descend the rivers Maia and Yadoma, and thus complete their route to Okhotsk, on the shores of the Eastern ocean.

Among the other rivers which mingle their waters with the Frozen Sea, we may remark the Tas, the Shatanga, and the Olenek, on the west of the Lena; the Indighirka on the east of that river; and the Kowyma, still farther to the east. These rivers have a considerable length of course, but their waters in the end escape our view by the inhospitable nature of the seas in which they terminate.

The northern and southern shores in the east of Siberia drawing nearer to one another, so as to terminate in a sort of angle, do not afford any remarkable river, except the Anadyr, the course of which is not very long.

Siberia is not deficient in lakes. That of Baïkal is, next to the Caspian Sea and the lake Aral, one of the largest in the old continent. It is reckoned 360 miles long, and from 30 to 50 broad. Its depth varies from 20 to 100 fathoms, and is in some places more than 200. In coming to this lake from Irkutsk the view is very striking. The Russians who navigate it speak of it with a respectful awe; they give it the name of the Holy Sea, and even the surrounding mountains are held sacred. The waters are fresh, and extremely transparent. It freezes about November, and thaws again in May. It is subject to extraordinary agitations, being sometimes raised into high waves by a moderate wind, and at others scarcely put in motion by a violent storm in the atmosphere. This fact, sometimes viewed with superstitious admiration, must no doubt depend on the direction and duration of the winds; that is, whether they blow over it longitudinally or transversely, and whether they come from a quarter in which the mountains offer much or little obstruction. It is said to be liable to a species of intestine commotion, or boiling, by means of which the vessels receive rough shocks, even when the surface is perfectly smooth. It is rather a remarkable circumstance, that seals are found in it, although these animals are never known to ascend the Yemeni and Angara. The lake has a particular species of fish, which the Russians call solikomskia, and which, according to Pallas, consists entirely of bones and an oily grease. The waves sometimes throw on shore a species of bitumen called mountain tar.*

The lakes of western Siberia are less remarkable for their size than Lake Tchany for their number. Lake Tchany, more than 80 miles in length, and in some places 50 broad, is in a part of the steppes of Baraba which is filled with lakes almost touching one another. On the map of Siberia accompanying the travels of Pallas, we count 27 lakes between Omsk, Kolywan, and Semipalatnoi, though d'Anville seems scarcely to have known of one or two. The steppe of Issim contains also a great number of lakes, among which that of Karg-Algydim is the largest. The number of small lakes in the provinces of Iset and Katharinenburg is enormous. In a space 280 miles long and 80 broad, from the banks of Ouy to the sources of the Toora, along the eastern base of the Uralian mountains, nothing but lakes is to be seen. In the small map contained in the atlas of Professor Pallas, we count at least a hundred.

Salt lakes do not belong exclusively to the sandy steppes of the southern parts. They are found even in the high and cold mountains of Dacoaria. They are found also among the frozen morasses of the northern shores. What is more remarkable, fresh water lakes are liable to change their qualities and become salt. Of this the lake of Seidishévo, in the province of Iset, between the town of Tom-

* Pallas's Travels in Russia, iv. p. 106—116. v. p. 220. (French translation, 8vo.)
liaak and the fortress of Zverinogolofskainia, is an example. This lake was once filled with fresh water, very shallow, and full of fish. All at once its depth increased; its waters became brackish; the fish with which it abounded died; and one half of a neighbouring forest was swallowed up by it. It is only to be regretted that these phenomena were scarcely observed by any persons except a few Tartars. The learned M. Sokolof has given an interesting description of the salt lakes of the province of Iset. These lakes are scattered in the midst of a great number of fresh water lakes; they are liable to lose their saline impregnation, for several are known in which the salt formerly crystallized, but at present does not. In some of them muriate of soda alone is found, and some of them are impregnated with it to saturation; in others bitter magnesian salts are predominant, and others have a mixture of sulphates. Besides those already mentioned, there is, in the steppe of Iasim, the Lake Ebeloi, the salt lake Ebeloi or Bieilo, which is one of the most abundant, and furnishes the Bashkeers with very good salt. The Kirguisians come to bathe in this lake in summer, and believe that it cures them of several diseases. Between the Tobol and Irtysh, in the district of Iasim, saline and bitter lakes are to be met with. In the middle of the steppe of Barba, there is, among others, the famous lake Yamish, between seven and eight miles in circumference, the salt of which is extremely white, and crystallizes in cubes; the quantity of it, however, gradually diminishes.

In eastern Siberia the salt lakes are somewhat less abundant; yet from Irkutsk to Yakoutka the mountains are filled with salt springs, and these, in more places than one, form lakes. That of Selinginskoi was visited by Professor Pallas; it yields a bitter salt. The streamlets by which it is supplied are fresh, and the salt must have its origin in the blue slime at the bottom, and the subjacent rock.

The soda lake of Daooria, near Zizzaan, is not the only one of its kind. Others are found in different parts of Siberia.

The "Rumbling Lake" is found at a short distance from the little river of Oibat, which falls into the Abakan. Dreadful noises are heard in it, announcing some revolutions in the bosom of the earth, like those which destroyed the dykes by which the lake Goosinoi in Daooria was formerly confined.||

Siberia possesses several mineral waters, especially in the Altai and Daooria mountains. The chain of the Urals, near Katherinenburg, gives rise to some chalybeates. In the neighbourhood of the Sea of Baikal there are springs of naphta and warm springs. | petroleum. This country is full of hot springs, the most celebrated of which are those of Kamchatka, described by Lesseps. The baths which have been built, by the liberality of Mr. Kochelew, for the use of the Kamchadalees, are formed of a rapid cascade, which falls from a height of nearly 300 feet. The current which it forms is about a foot and a half deep, and six or eight broad. The water is extremely hot, and seems to contain a quantity of sulphates and nitrates, mixed with calcareous earth. On the west of Gulf Penjima there is a considerable spring of warm water, which falls into the river Tavatoma, and emits cloudy vapours.

Knowing the situation and nature of the territory of Siberia, we are prepared to find that its physical climate corresponds to its latitude. Three-fourths of this country are in the latitude of Norway and Lapland. A part of the province of Kolywan, and the country round lake Baikal, are in the latitude of London, Berlin, and the north of France. But the temperature of the most favoured parts of Siberia is not to be compared even with that of Norway. The cold in the northern part is extreme cold. | far keener and more constant than that of Lapland, and the same intensity is sometimes experienced in the mountains on the south, in the parallels of 50° and 55°. The winter is nine or ten months long almost through the whole of Siberia. Snow often begins to fall in September, and it is no rare thing to see it in May. The corn crops, when not ripe in August, are considered as lost. They are often covered with the snow before they can be cut down. To the east of the river Yenisei, and

* Pallas, t. iii. p. 32. (4to.)
† Idem. t. ii. p. 491—502, (4to.)
‡ Gmelin, Flora Sibirica, Preface.
§ Pallas, Voyage, tom. iv. p. 400—404.
¶ Idem. t. iv. 491—499.
the north of lake Baikal, agriculture is almost unknown. In the vast morass through which the lower part of the Obi flows, the thaw penetrates only a foot. Eternal ice. Near Yakootsk, under the parallel of 60°, M. Gmelin, having caused the earth to be dug on the 27th of June, found it frozen at a depth of three or four feet. The inhabitants of the fortress of Argunsk, in the parallel of 50°, say that their lands in many places only thaw an ell and a half deep, and that the subjacent frost renders the digging of wells impracticable. At Krasnoiarsk, in latitude 56°, Dr. Pallás found the mercury of the thermometer congealed.

The summer heats of Siberia are short; but they are powerful and sudden. In the neighbourhood of Yakootsk the Tongooses often go naked in summer. The growth of wheat, and other vegetable species, is almost visible to the eye. But in the neighbourhood of the Frozen Ocean it is in vain that the solar rays continue night and day to influence a soil condemned to eternal frost. Climate of the polar regions. In the middle of the long day of the polar circle, a north wind is sufficient to cover the waters with a thin crust of ice, and to give a yellow and red tinge to the leaves of plants. Their vegetation is often limited to a few days; and in that short interval the plants flower and form seed. They sometimes grow in the morasses, where at all times we find ice on raising the moss.

Storms are frequent in the southern parts, among the mountains; but on the banks of the Frozen Ocean thunder is scarcely ever heard, though distant flashes of lightning are seen. In the low countries of the Yenisei, near the sea, much of the aurora borealis is seen, from the beginning of October till Christmas. In no country do these brilliant phenomena appear in greater magnificence.

This rigorous climate, while it banishes luxury and indulgence, does not secure to the Siberians the privilege of the ancient Hyperboreans, who knew nothing of disease, and died only of the exhaustion of old age. It is, on the whole, favourable to the human species, but it does not exclude every cause of disease. The perpetual fogs which cover the eastern and northern coasts of Siberia keep up a scurvy in these countries. We are told that huntsmen preserve themselves by drinking, in its warm state, the blood of the animals which they have taken. Similar fogs prevail in the steppe of Baraba, and the inhabitants have a cæthetical Epidemics. look. In the mountains of Daouria, and all round Nertchinsk, the confined air of the narrow valleys produces fevers, epilepsy, and scurvy. Some ascribe these effects in part to metallic vapours emitted by the mines, or the metallurgical operations to which the ores are subjected. In all the steppes the cattle, and still more the horses, are liable to a species of plague called Yasooy by the Tartars and Russians, which shows itself by buboes, and by which men also are liable to be attacked. It is ascribed to an insect to which Linnaeus gave the name of Furia infernalisa. In 1785 this disease carried off nearly 86,000 horses.

The chief productions of Siberia remain to be considered.—This country is called the Russian Peru. But long before the name of the Russians was known, the Permians, or Biarmians, a people of Finnish, or what the Russians call tchoode origin, had worked extensive mines in the Uralian and Altai mountains, of which traces are still to be seen. It is to a Dane or a Dutchman, that the Russians, under the reign of Alexis Michailowitch, owe the first suggestion for the working of the mines. Peter I. employed German miners to open the mines of Permia and Siberia. His successors opened those of Kolywan and Dacoria. The principal gold mines of Siberia are those of Berezof, in the district of Katherinburg, on the west side of the Uralian mountains. It was in 1754

* Gmelin’s Travels in Siberia, ii. 520—523. (In German.) Georgi, Description de la Russie, i. 88—92.
† Sujew, in Pallás’s Travels, v. 113. (Svo. translation.)
‡ Compare Patrin, Kamond, and others, quoted in page 529 of this volume.
¶ Falk, Mémoires Topographiques.

Vol. I.—3 P
that they were first worked for gold, and did not rise to any importance till the time of Katherine II. From 1754 to 1788 they yielded 1,196,000 roubles, (158,683l.) of which, when the expense was deducted, there remained of clear profit about 800,000 roubles, (£128,660.) The number of workmen employed in the extraction are upwards of 3000, of whom about 1200 are daily engaged.* The ore is an iron pyrites, mixed with quartz which contains gold. After all the refining processes, the gold is not perfectly pure. Twenty or thirty zolotniks, i.e. 34 or 5 English pounds weight of gold are obtained from 500 pooods, or 1250 stone weight of the crude ore. Gold is sometimes found massive, but it is generally mixed with different substances, particularly silver. These are the only mines that are worked for gold. Those of Kolywan and of Nertchinak are considered as silver mines; but their produce in gold is trifling.

Silver mines. | Silver is rarely found in a native state, but often mixed with gold, and in one of the Daororian mountains with lead. The cornose silver ore, Argéns merizhne, is found in Schlangenberg, in the Little Altai, where sulphuret of antimony and silver, and arsenical ore and copper pyrites also abound. From 1745, when possession was taken of these mines by the crown, till 1787, i.e. during forty-two years they produced 24,460 pooods (61,150 stone weight) of silver, and more than 850 pooods, or 2126 stone of pure gold, amounting altogether to a value of 30,000,000 of roubles (or £4,750,000.) The expenses during this time, including the process of refining, which was conducted at Petersburgh, did not exceed 7,000,000 rubles, or £1,109,000, giving thus a profit of 23,000,000 of rubles or £9,641,000, which is still more considerable when we take into account the small value of the copper, money in which the expenses are paid, and which is coined in the places themselves. The silver mines of Nertchinak, which were opened in 1704, are in Daororia, between the rivers Shilka and Argoon. Their number is great. The ore is rich in lead, and contains but little silver, yet the silver, is easily extracted. The workmen are about 2000 in number, and about 18,000 peasants are attached to the concern for the cutting of timber. From 1704 to 1787, that is for eighty-three years, these mines produced 11,644 pooods of silver, (29,110 stone,) from which, after 1752 thirty-two pooods of silver were separated, amounting in value to 10,000,000 of rubles, or £1,167,000.

Copper mines. | Besides the copper mines in the Uralian mountains, there are some in the Altai. Their produce is 15,000 pooods, but is nothing compared to the riches of the Uralians. The richest mines are on the Siberian side, at Turia-Wasibewskoi, Frolewskoi, and Ologowskoi. They are found at the limit which separates the schistose rocks from the pure limestone. There are likewise other important workings, and the whole produce of the Ural is confounded in the statistical accounts. In 1783, 190,752 pooods of copper were melted, and of these 124,963 were in the government of Perm, and probably 150,000 altogether came from the Siberian side of the chain. The copper of Siberia is exceedingly ductile. The prevailing ores in the mines now mentioned, are the red oxide and the blue carbonate. Malachite or stalagmitic copper is found here in the greatest perfection. The iron ores which are diffused over the whole of Siberia are but little worked. The peasantry smelt iron in the neighbourhood of Krasnoiarsk and Yenisieisk; but at Nertchinak and at Kolywan, the other more valuable metals are so productive that this is despised. In the Ural mountains, on the contrary, it is the chief object. The ores are found alike on the European and the Asiatic side. Their produce in 1782, was 3,940,490 pooods (9,851,235 stone weight.

Various minerals. | Siberia undoubtedly produces other metals; in this vast field much room is still left for mineralogical investigation. There seems to be little or no mercury. Laxmann saw crystals of cinnabar thrown on shore by the sea in the Gulf of Penjinsk. The red lead of Siberia, or chromate of lead, is found in the mines of Berezof, in a sandy and micaceous rock.

Precious stones. | Among the valuable stones of Siberia, one of the most conspicuous is the limpid and transparent topaz of the mountain of Adum-Shollin in

* Hermann, Statistische Schilderung, p. 316—328.
Dacoria, and of the mountain Totchilnais, near Murinsin, in the Ural. It has also been found in the Kirgiss steppe, and on the shores of the Frozen Sea. At Murinsk, chrysolite, in small nine-sided prisms, is met with. The Siberian beryl, or the occidental Aquila marina, is common both in the Dacorian and Altai mountains. A prism of it was once found thirty inches long, and five in diameter, but it broke, these large prisms always having fissures.* The beryl and the smoky beryl, topaz are often found in the same matrice. Sometimes one of them passes through another, a phenomenon common in many minerals, and once considered as a proof of the priority of the penetrating individual, the other being formed upon it, but now better explained by the hypothesis of a cotemporeaneous formation, as the crystallizations are often found reciprocally to impress one another. Fine crystals of quartz are not rare. Those of Tiegeruk, in the Altai, are rose-coloured. The pretended emeralds of the Ural were undoubtedly green crystals of this species. The beautiful stones called copilli veneris, are very limpid crystals of quartz, containing green or red capillary schorl: they are found in the Ural. It is doubted whether opals, the opals of Siberia are of the genuine kind, but the Siberian onyxes are very fine: chalcedonies and agates are abundant. The true garnet is scarce and dear. It is polished at Katherburg. The Siberian aventurine is a translucent reddish or brown quartz, containing particles of mica, of a gold or silver colour. It is found in Ural, and when polished, has the appearance of mother of pearl. The rubellite, or ruby-coloured schorl, found at Sarapulka, not far from Murinsk, is a subject of curiosity and discussion among mineralogists; and there are some contradictions in their descriptions of it. Baikalite is amphibole crystallized in prisms. Beautiful green and blue felspar, jasper of various colours, but in very small pieces; black and white granitelle, with green veins; black porphyry, formed on the Tcharysh in the Altai mountains, a wall twenty feet high; very fine lazulite in the Sludenska mountains, near the lake Baikal; the transparent mica or Muscovy glass, found on the Aldon and the Mama, tributary rivers of the Lena, in plates three or four feet square, and the gathering of which forms the object of several little associations among the country people; such are the productions most deserving of mention, though much mineral treasure, no doubt, remains unknown in this vast country.

We may remark, as one of the natural curiosities of this country, the mass of native iron found in 1749, between Abakanisk and Karanoinoi. Ostrog, a mass weighing 1680 pounds, and which, according to a tradition of the Tartars, had fallen from the atmosphere. The asbestos of the Ural also deserves mention; of this substance napery, caps, purses, and gloves have been woven, and some years ago, a schoolmaster offered to manufacture from it paper to an extent sufficient to supply all the offices of the Russian national records. We must not omit mentioning the soft and almost fluid clay called lithomarge, or "rock marrow," found on the eastern coasts, and which the Tongooseants eat by itself or with milk, without suffering from it any inconvenience. Near the Ural mountains, powdered gypsum, commonly called "rock meal," is sometimes mixed with bread, but its effects are pernicious. In the whole of Siberia, there is found on the aluminous schistus, an efflorescence called "rock butter," which is employed by the people as a remedy for diarrhoeas and venereal complaints.†

The vegetable kingdom offers less variety. In a climate so rigorous none but the most hardy plants can thrive; the oak, the hazel, the elder, the plane, and the wild apple cannot stand the Siberian winters; they disappear in the neighbourhood of the Uralian mountains, and on the banks of the river Tobol. The oak and hazel appear again, but feebly and languid, on the banks of the Argoon, at the extremity of Dacoria; the lime and the ash cease about the Irysh; the pine, which in Norway reaches the parallel of 70°, does not in this country pass that of 60°. The silver fir goes no farther than 58°. The common gooseberry bush which grows in Greenland, does not succeed farther north than Turukhansk on the Yenisei. Potatoes diminish in size, till, at the latitude of 60° they are no longer than peas, and

* Pulsas, Nordinische beyträge.
† Georgi, iii. 202, 297, v. 126.
here the cabbage acquires no head. Notwithstanding these effects of the climate, we are not to conclude that the great Siberian rivers pass through mere barren wastes; for they are skirted with thick forests of elders, willows, elms, Tartarian maples, white and black poplars, and aspens, besides an immense quantity of different species of the pine tribe, among which we distinguish the Siberian cedar, or the Pinus cembra, which sometimes attains a height of 120 feet, and its rings of branches sometimes indicate an age of 150 or 200 years. It is only as far as the banks of the Yenisei that this tree displays all its magnificence; to the east it diminishes in size, and, beyond the Lena towards the shores of the eastern sea, becomes quite dwarfish, though still preserving its proportions. The balsam-poplar perfumes the air a great way round, and gives out by exudation its odoriferous resin. Siberia neither produces apples nor pears. The Pyrus baccata, or wild pear of Daooria, only yields a tasteless fruit of the size of a cherry. The fruit of the Pyrus prunifolia, or Siberian crab, is also small; but the berry-bearing under-shrubs, the Rubus chamaemorus, the Rubus arcticus, and the different species of vaccinium abound, and agreeable drinks are made from them; the steppes are covered with a kind of cherry-tree, the Prunus fruticosa, the fruit of which is abundant, and is used for making a kind of wine. The Prunus Sibirica, or Siberian apricot, which grows only in Daooria, produces a sourish fruit; the wild cherry grows in every part of Siberia, but the garden cherry becomes languid even in the neighbourhood of Issim.

Flowers. | During their short summer, these wild countries are adorned with a considerable number of beautiful plants; several of the Orchidée, with their curious and brilliant flowers, are indigenous in the forests of Siberia; the Ophrys monorchis, the lily of the valley, black and white hellebore, the Siberian iris, the Anemone nectarisflora, the thalictra, violets, potentillas, the elegant Astragalus montanus, present, in many places, an assemblage of colours, or exhaled a mixture of perfumes for which we should search in vain in some more southern countries. Each region of Siberia possesses some flowers peculiar to itself. The spiræa of the Altai mountains. Altai differs from that of Kamtschatka. The handsome bitter vetch, Robinia caragana, or Siberian pea-tree, the Daphne altaica, the Sophora alpescıoides, the dwarf almond, the Potentilla fruticosa, the Asphodelus altaicus, the Gentiana altaica, the Dianthus superbus, the Valeriana sibirica, are partial to the Altai mountains, at the feet of which the blue aster, the rosa pimpinellifolia, and wild tulipes, of Daooria, variegate the hills and the meadows. It is in Daooria that the most interesting riches of the Siberian flora are united; there the rocks are richly coloured by two rosaceous flowers, red by the Rhododendron dauricum, and of a golden yellow by the Rhododendron chrysanthemum, along with the Lonicera mongolica, the Prunus Sibirica, and the pale stock. With this assemblage of brilliant colours are intermixed spots of dazzling white, produced by the flowers of the wild pear, the sweet briar, elder, and Spiræa chamaedryfolia. At the bases of the same mountains grow the Anemone pulsatilla, the white flowered paony, the yellow and the pink coloured statice, the Astrer sibiricus, and twenty species of potentilla, and of centaurea, while the Gentiana algida displays its fine blue and white flowers at the foot of the icy alps, and the rhodiola rosea adorns the same morasses where the Siberian willow waves its yellow branches.* Eastern Siberia produces a great quantity of lilies; we may particularly remark the Kamtschatkan lily, and another called the Lis savanne, the roots of which are esculent. We may also mention the Heracleum panacea, and the Heracleum sibiricum; by drying the stems of these two plants, the Siberians procure a saccharine matter which is not in sufficient quantity to be of much utility. By subjecting the whole plant to distillation, they manufacture a strong liquor which is not at all agreeable, and only in request in Kamtschatka.†

Medicinal plants. | The true rhubarb has been sought for in Siberia. The Rheum rhaapoticum grows in the southern mountains on the east of the Yenisei.

* Pallas's Travels.
† Georgi, iii. (vol. vii.) p. 849.
There are three plants which may be used instead of tea, the Saxifraga cressifolia, which grows on the Bieoli mountains near the Obi; the Rhododendron davuricum, and the Polytopium flagrants, which grows on the high rocks of Daoaria. The last of them is used as a cure for scurvy and gout.

Gmelin has remarked, in the preface to his Flora Sibirica, that the vegetations changes its character when we pass the Yenisei; but it is not easy to define changes of that kind with precision. It is certain that there are many plants which do not resist the increase of cold which is felt when we pass that river; such are the Convolvulus assenicus, Campanula cervicaria, Convolvulus majolius, Rhumus catharticus, and Dactylis glomerata. Pallas observes that in the vicinity of the Uralian mountains some Hungarian plants are found. In ascending the Irrysh towards the Altai mountains, we begin to observe several species which are peculiar to Siberia, and their number increases when we pass the Yenisei, but they only become abundant to the east of the lake Baikal; Daoaria is their real country; these same plants do not make their appearance in the flat and wooded country between the Yenisei and the lake Baikal. We only find here the plants which are usual in cold climates, and common even in Europe; but on the north-east of the Obi, we find several plants peculiar to the Altai mountains. In western Siberia on the Obi, agriculture disappears about the sixtieth parallel of latitude. In the eastern part of it, grain has not been found to ripen either at Oodoski, which is under 55°, nor in Kamptchatka at 51°. The highest mountains of the southern frontier are too cold and too dry; thus, three-fifths of Siberia are not susceptible of any sort of culture; but the south-west parts possess remarkable fertility. On the north of Kolywan, barley gives a return of twelve, and oats of twenty-fold. Buckwheat is apt to shoot in this black and light soil; but when sown in thinner soil it gives a return of from twelve to twenty fold. The greater part of the natural order of gramineous plants which grow in Europe grow also in the south of Siberia; but only the winter rye, barley, and oats are cultivated. The Tartars who are fond of white bread have great difficulty in rearing a little wheat. Miller thrives in the west of Siberia. The Tartarian buck-wheat (Polygonum Tartaricum) is sown in the steppes which have been recently cleared by means of fire. One of these fields has for three or four successive years given a return of ten or fifteen fold, without requiring to be re-sown, the grain which falls during harvest sufficing for seed for the ensuing crop; but the weeds progressively increase in number. This style of agriculture is perfectly adapted to the indolent Siberians, who thrash the corn on the harvest field, and burn the straw to save themselves the trouble of removing it. If the working of mines, internal navigation, and commercial economy, have received some slight improvements in Siberia under the last three or four reigns, it is but too evident, notwithstanding the Russian panegyrics, that agriculture is in the same state as it was fifty or sixty years ago. Bell of Anternomy, more than half a century back, took notice of the abundance of buck-wheat, rice, barley and oats to the south of Tobolski and on the south side of the lake Baikal; but the obstacles which the climate presents to the extension of agriculture have been but feebly combated. Beyond the 60th parallel of latitude, and the 112th of east longitude, (from London,) the cerealia do not succeed. In the north they are destroyed by the cold; on the east the fogs prevent them from ripening. Thus, two-thirds of Siberia are destitute of grain. The culture of potatoes begins to supply its place.

Common flax grows in several parts of the Ural. The Linum perenne reaches as far as Turukhansk: hemp grows as far north as 55°. At the foot of the Altai mountains some Tartars make thread and cloth of two species of nettles, the Urtica dioica and canadabina. Hops are in great abundance.

The animal kingdom fills a great portion of the picture of this wild region. Among the domestic animals the rein-deer is the most conspicuous. We have seen that the cold zone being more extended in Asia than in Europe; the rein-deer come down to a lower latitude. Pallas and Sokolof saw large flocks

* Pallas, x. iv. p. 445, 456. (translation in quarto.)
† Storch, Tableau de la Russie, t. i. p. 249.
‡ See p. 244.
of them on the mountains bounding Chinese or Mongol Tartary, near the sources of the Onon, between 49 and 50 degrees of latitude. Thus the countries of the rein-deer and camel, which are separated by an interval of twenty or thirty degrees in the western part of our continent, touch one another, and are perhaps mingled in the countries of the east.

In conclusion. | The rein-deer is perhaps the greatest blessing that nature has bestowed on the unfortunate nomads of the arctic regions. He yokes these animals in his sledge, drinks their milk, lives on their flesh, and clothes himself with their skins; their bladder serves him for a bottle, he makes thread of their intestines and their tendons; and he sells their horns for the purposes of pharmacy. Reindeers are not expensive to keep, a moss which they find under the snow being almost their only food. They can dispense with a house or stable in a climate in which other animals of most robust constitution cannot live at all. But this animal does not perform so long journeys as some naturalists have asserted. It is feeble, and apt to get out of breath. A yoking of rein-deers accomplishes only twelve or eighteen miles in a day. A Samoid is reckoned a rich man, who has 100 or 150 rein-deers. An economical Tongoose keeps as many as a thousand; a Koriak several thousand; and we are told that among the Tchoutches there are shepherds who own as many as 50,000.※

Siberian dog. | The Siberian dog, resembling the wolf, is in some measure the companion of the rein-deer. He serves as an animal of draught not only among the Kamtchatdales, but among the Tongooses, the Samoide, and the Ostiaks. He runs with extreme agility; but wild and difficult to guide, he often throws himself with the sledge and his master over dangerous steeps: the equipage of the Kamtchatdales is on the whole very bad. They feed their dogs on dried fish.

It does not appear that grazing is carried to such perfection as it might attain in a country so rich in pastures. Among the Siberian nations the Buriasites and Mongols are distinguished by their numerous flocks.

Horses. | The horses of the Mongols are uncommonly beautiful; sometimes they are striped like the tiger, or spotted like the leopard. The great nomade nations of central Asia are fond of horse flesh, and prefer it to beef. They often dry it in the sun and wind, and then eat it without farther preparation. An aga, or stud of a noble Mongol contains three or four thousand horses or mares. The Tartars of western Siberia have taken along with them in their migration the favourite animal of their nation, the horse. He wanders in the steppe of Barabin in immense droves.

Sheep. | The greater part of the Siberian horses are white. The sheep are of the broad-tailed kind; but the people procure the lambs' skins which are so delicate and so well prepared, only by cruelly opening the bodies of the pregnant ewes. The black cattle of Russia transported to Siberia have diminished in size, but improved in strength. In general, the animals which belong properly to the plateau of central Asia extend more or less into the southern mountains of Siberia. The camel not only comes thither in the caravans, but he lives in Daooria with the Russian Mongols.

Wild animals. | Next to North America and Southern Africa, this country is the most extensive hunting ground in the world. But the Russians have employed this resource with too great eagerness. The animals of chase now get beyond their reach, or diminish in number.†

Tobacco. | The best tobaccos are found at present in the neighbourhood of Yakootsk and of Nertchinsk; but they are in greater numbers in Kamtchatka. Different expedients are employed, but chiefly blunt arrows, for killing these animals without injuring the skin, which is often worth ten pounds on the spot. The skin of the Canis lycæon, or black fox, sells at 1000 rubles, or nearly £160; and one of them often pays the tax due from a whole village. The Canis lagopus, or Isatis, the rock or ice fox,‡

※ Storch, Tableau Statistique de la Russie, t. ii. p. 195.
† Prodromus flora Rossica, par M. Dwigubski, D.M. of the university of Moscow, Gottingen, 1804.
‡ Gmelin, Nov. Comment. Petrop. v. 358.
whose colour is generally white, but sometimes bluish, inhabits the icy zone, Kamtschatka, and the eastern islands. This animal rivals the monkey in the dexterity of his mischievous pranks. The other animals that are hunted for the sake of their skins are the ermines, marmots, martins, squirrels, and others of less of value. The silver-coloured squirrels of the country of the Teleots are much esteemed. The white bear is the most formidable among the wild beasts of Siberia. The hunter nevertheless attacks him with the lance, and the stupid animal, seated on his two hind legs, allows the deadly weapon to approach. The brown bear is also common. He is destroyed by many ingenious devices. The Koriaks succeed in hanging him up on trees by a bait fixed to a strap. In the mountains they watch the path where they are accustomed to pass, and place on it a noose of a rope which has a heavy log tied to its other end. When the animal finds himself caught in this manner, he exhausts himself by dragging the weight along, or he furiously attacks the log, or throws it down a steep, and then is dragged over along with it. The ounce makes his appearance in Daoria; the lynx and the gluton are inhabitants of every part of Siberia.

The elk is diffused over a great part of Siberia, but does not pass the latitude of 65°. It is hunted in March, when the surface of the snow begins to melt. The huntsman glides easily along with his broad wooden pattens, while the elk sinks at every step. We ought also to take notice of the takia, or wild horse, in the steppes of Issim; the koalan, or wild ass; the dekhiatia, or Equus hemionus, a sort of mule; the stag, the roebuck, the antelope-coiga, the antelope-gutturosa, or hydrophoba of Daoria, the argali, or ovis moschata, who extends from Caucasus to Kamchatka; some wild boars on the banks of the Irysh; the musk animal, though rare; and a great number of beavers, particularly in Kamchatka; but as for the civet, or sibeth, of which several authors speak, naturalists do not seem to know it; perhaps the animal intended is a species of musk rat, (sorex moschatus) which lives not in Siberia, but on the banks of Kama, the Samara, the Wolga, and the Don.

Siberia possesses also various small animals worthy of notice, such as the hare of Daoria, (Lepus tolai) the hare of Mongolia, or Lepus ogo-
tons, which extends to the Aleutian islands; the mountain hare, which makes a regular provision of hay; the moles, and several other animals of the rat and mouse kind, among which we may mention the lemming, which often emigrates in colonies, always taking a straight direction, and the species called the Mus economicus, and the Mus socialis, who store up in their holes considerable quantities of onions and other esculent roots, which the Siberian diligently searches out to apply them to his own use.

Both inhabitants and travellers here are tormented with insects; the Blatta indica, or kakerlak, introduced from more southern parts by Kiacha, has spread to the banks of the Wolga. It has not been found possible to propagate the bee in Siberia.

This country abounds in excellent winged game, such as wild ducks, geese, swans, water-bens, wood-cocks, and partridges. Among the birds of passage we distinguish the polar goose and Anas glaciialis. Eastern Siberia and Kamchatka possess a species of goose, the Anas grandis, which lives at sea, and is sometimes thrown on shore in thousands.

It is surprising that the Russians do not attempt any whale fishing in that part of the Frozen Sea which lies east from Nova Zembla, and which is, perhaps, only a long strait. Herring and other fish, as well as the great cetaceous tribes, must abound in that sea. The Samoidees are the only fishers in it; they catch in the Gulfs of Obi, and of Kara particularly, the belouga de mer or Delphinus leucas which measures three fathoms in length, as well as the Delphinus orca. They fish in large quantity the Salmo nairus and the Salmo autumnalis, the last of which ascends from the Frozen Sea into all the rivers with stony beds, as the Yenisei, the Lena, and others to the east, but does not enter the Obi, which has a slimy and earthy bottom; the case is the same with the white trout.

* Storch, t. ii. p. 34.
In compensation for this, the Obi produces very large spartiages, numberless swarms of sturgeons, white salmon, pikes, eels, and eel-pouts; besides many of which we only know the Russian and Ostiak names, requiring from the naturalist long discussions. Many of these fish ascend from the sea; others come down from the lakes and smaller streams; they are almost all obliged to quit the Obi on the approach of winter, before its waters become corrupted under the ice. This putrefaction arises solely from the marshy quality of the soil, and the slowness of its course; some also ascribe it in part to the saline particles brought down by the Irtysch and the Issim; this is not so well substantiated. The waters of rivers which run over a pebbly bed continue pure at their mouths; several species of fish live in these parts alone. The putrid waters disappear in the spring, when the melting of the snow supplies the river with fresher and better water. The waters of the Irtysch being somewhat calcareous, maintain excellent sturgeons. The sterlets and eelpouts of that river are very large. The Yenisei, the Lena, and the other rivers of eastern Siberia, abound in salmon and trout.

Fish of the Eastern sea.

The fisheries of the coast, and among the islands of the ocean, are very rich, and very remarkable even considered as an article of physical geography. The sea between Mantchooria, Siberia, Kamtchatka, and the Kurile islands, is a real Mediterranean. The sea lying between Asia, America, and the Aleutian islands, partakes very much of the same character. In these two ichthyological regions are seen numberless shoals of those singular animals which hold an intermediate place between quadrupeds and fishes, as whales, sea-bears, sea-wolves, manatis, and sea-otters. Our account of these is reserved for the description of Russian America.

Such is the picture which the physical geography of Siberia at the present time presents; but it must have been different at an epoch when large herbivorous animals, similar to those of the torrid zone, occupied rich pastures, which must then have supported them in this country, and which presuppose a very mild temperature. We have already called the attention of our readers to the numerous remains of elephants and rhinoceroses, and other animals of the torrid zone, which have been found in Siberia along the Issim, the Irtysch, the Obi, and the Yenisei, and on the very shores of the Frozen Sea.* The bodies of these quadrupeds are found mixed with sea-shells and bones which appear to be skulls of the largest inhabitants of the ocean;† they are met with along the river sides, and in beds of earth, and seldom if ever, in a pebbly stratum. The Liaikhof islands are composed entirely of sand and the bones of elephants, rhinoceroses, and mammoths or Siberian elephants, quite entire, with part of the skin in a good state of preservation.‡

Hypothesis on these subjects.

These astonishing remains of an animal population foreign to the present climate of Siberia have given rise to various conjectures. It is unnecessary to refute the learned Bayer, who wished to consider them as belonging to elephants which accompanied the Mongolian and Tartar armies. The immense number of bones found is adverse to such a theory, although no admixture of the remains of marine animals had been present. Pallas thinks that they may have been carried to their present situation by a deluge; but they present no trace of having been rolled or dragged along for any length of way. These circumstances concur to make us consider them as the remains of animals which had lived in the very places in which they are found. But how could these animals have subsisted in a country so barren and so cold? For the solution of this problem, it has been supposed that Siberia must have been at one time much more temperate and fertile than now. Was this owing to a different position of the ecliptic, producing a different state of

* See pp. 130, 133, of this volume;
the terrestrial zones? Geometricians and astronomers are not inclined to admit the possibility of any such alteration in the astronomical position of the globe. There is another fact which is worthy of mention, that, though we should not expect in Siberia the wonderful activity of the madrepores which in the equatorial seas rear new islands, yet the lake of Kamyschlowa on the right bank of the Irtysh, not far from Petropaulofsk, is encircled with successive banks of coral, and, according to some authors,* it would appear that the madrepores even still continue to form new banks. A more full investigation of this fact might throw a great light on the physical history of the globe. Perhaps, as these madrepores retain their activity in cold seas, or may belong to species differently constituted in their relations to temperature; so the large quadrupeds may, in like manner, have been different species which were adapted to a Siberian climate, and lived on a vegetation which, though not vigorous, was extended over a wide territory. With regard to the accident which may be supposed to have brought so many to deposit their bones in the same heap, it is a difficult problem, but as a point of conjectural physical history it is not limited to Siberia.

* Georgi, iii. 1041.
TABLES of MATHEMATICAL GEOGRAPHY.

I.

COMPARISON OF FRENCH AND ENGLISH WEIGHTS AND MEASURES.

<table>
<thead>
<tr>
<th>Units which form the Bases of the New French System compared with the Weights and Measures of England.</th>
<th>French</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Metre</td>
<td>3,2809167 feet, or 39,371 inches</td>
<td>English</td>
</tr>
<tr>
<td>Are</td>
<td>1076,441 square feet</td>
<td></td>
</tr>
<tr>
<td>Litre</td>
<td>61,028 cubic inches</td>
<td></td>
</tr>
<tr>
<td>Stere</td>
<td>35,317 cubic feet</td>
<td></td>
</tr>
<tr>
<td>Gramme</td>
<td>15,441 grains troy</td>
<td></td>
</tr>
<tr>
<td>Gramme also</td>
<td>5,6481 drams avoirdupois</td>
<td></td>
</tr>
</tbody>
</table>

New Weights and Measures of France, compared with the Old, and also with English Weights and Measures.

<table>
<thead>
<tr>
<th>Linear Measure.</th>
<th>French Foot.</th>
<th>English Foot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from the Equator to the Pole</td>
<td>30784440</td>
<td>32809167</td>
</tr>
<tr>
<td>Degree (centesimal)</td>
<td>3078444,4</td>
<td>3280916,7</td>
</tr>
<tr>
<td>Myriametre</td>
<td>3078444,4</td>
<td>3280916,7</td>
</tr>
<tr>
<td>Kilometre</td>
<td>3078444</td>
<td>3280916</td>
</tr>
<tr>
<td>Hectometre</td>
<td>3078444</td>
<td>3280916</td>
</tr>
<tr>
<td>Decametre</td>
<td>3078444</td>
<td>3280916</td>
</tr>
<tr>
<td>Metre</td>
<td>3078444</td>
<td>3280916</td>
</tr>
<tr>
<td>Lines French.</td>
<td>44,2396</td>
<td>47,2942</td>
</tr>
<tr>
<td>Lines English.</td>
<td>44,2396</td>
<td>47,2942</td>
</tr>
<tr>
<td>Decimetre</td>
<td>4,42396</td>
<td>4,72942</td>
</tr>
<tr>
<td>Centimetre</td>
<td>4,42396</td>
<td>4,72942</td>
</tr>
<tr>
<td>Millimetre</td>
<td>0,442396</td>
<td>0,472942</td>
</tr>
</tbody>
</table>

Square or Superficial Measure.

<table>
<thead>
<tr>
<th>French Square Feet.</th>
<th>English Square Feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirciare</td>
<td>9476817,46113</td>
</tr>
<tr>
<td>Kiliare</td>
<td>9476817,46113</td>
</tr>
<tr>
<td>Hectarie</td>
<td>9476817,46113</td>
</tr>
<tr>
<td>Deciare</td>
<td>9476817,46113</td>
</tr>
<tr>
<td>Arse</td>
<td>9476817,46113</td>
</tr>
<tr>
<td>Deciare</td>
<td>9476817,46113</td>
</tr>
<tr>
<td>Centiare</td>
<td>9476817,46113</td>
</tr>
</tbody>
</table>

Measure of Capacity.

<table>
<thead>
<tr>
<th>French Cubic Foot.</th>
<th>English Cubic Foot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrialitre</td>
<td>291,738519</td>
</tr>
<tr>
<td>Kilolitre</td>
<td>291,738519</td>
</tr>
<tr>
<td>Metre cube</td>
<td>291,738519</td>
</tr>
<tr>
<td>Hectolitre</td>
<td>291,738519</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>French Cubic Inches.</th>
<th>English Cubic Inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimetre cube</td>
<td>50,4124160</td>
</tr>
<tr>
<td>Decimetre</td>
<td>0,0124160</td>
</tr>
<tr>
<td>Cubic Foot</td>
<td>291,738519</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>French Solid or Cubic Measure.</th>
<th>English Solid or Cubic Measure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decastere</td>
<td>291,738519</td>
</tr>
<tr>
<td>Stera (metre cube)</td>
<td>291,738519</td>
</tr>
</tbody>
</table>

This measure is used for fire-wood, stone, &c. The stere is the same as the kilometre in the preceding measure.

Weights.

<table>
<thead>
<tr>
<th>Poids de Marches.</th>
<th>English Troy weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar or Cubic Metre of water</td>
<td>9042140 0 14</td>
</tr>
</tbody>
</table>

Myriagramme	20 6 6 63,5	26 9 15 1,46
Kilogramme	15 0 35,15	28 3 12,146
Hectogramme	2 0 16,715	3 4 8,414
Decigramme	24 42,715	6 10,441
Gramme	18,927	15,441

| Decigramme | 18,927 | 15,441 |
| Centigramme | 0,1892715 | 0,15444 |

French New Measure of Time compared with the Old or Usual System.

<table>
<thead>
<tr>
<th>New division.</th>
<th>Old value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second</td>
<td>0 0 0,864</td>
</tr>
<tr>
<td>100 seconds, 1 minute</td>
<td>0 1 26,4</td>
</tr>
<tr>
<td>100 minutes, 1 hour</td>
<td>2 24 0</td>
</tr>
<tr>
<td>10 hours, 1 day</td>
<td>24 0 0</td>
</tr>
</tbody>
</table>

Reversed.

<table>
<thead>
<tr>
<th>Old or usual division.</th>
<th>New value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second</td>
<td>0 0 1,1574</td>
</tr>
<tr>
<td>60 seconds, 1 minute</td>
<td>0 69 54,4</td>
</tr>
<tr>
<td>60 minutes, 1 hour</td>
<td>1 15 74</td>
</tr>
<tr>
<td>24 hours, 1 day</td>
<td>10 0 0</td>
</tr>
</tbody>
</table>

French New Measure of the Circle compared with the Old or Common System.

<table>
<thead>
<tr>
<th>New division.</th>
<th>Old value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 seconds, 1 minute of space, 0° 0' 32,32′</td>
<td>0 0 0,54</td>
</tr>
<tr>
<td>100 minutes, 1 degree</td>
<td>0 54 0</td>
</tr>
<tr>
<td>100 degrees, 1 quadrat</td>
<td>90 0 0</td>
</tr>
<tr>
<td>400 degrees, 1 circle</td>
<td>360 0 0</td>
</tr>
</tbody>
</table>
Tables

Reversed.

<table>
<thead>
<tr>
<th>Old division.</th>
<th>New value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 tierces, 1 second, 0° 0’ 30”</td>
<td>7</td>
</tr>
<tr>
<td>60 seconds, 1 minute of space, 0 1 85 17</td>
<td>7</td>
</tr>
<tr>
<td>60 minutes, 1 degree, 1 11 11</td>
<td>7</td>
</tr>
<tr>
<td>90 degrees, 1 quadrant, 100 0 0</td>
<td>0</td>
</tr>
<tr>
<td>4 quadrants, or 360°, 1 circle, 400 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Old Weights and Measures of France.

Long Measure.—The toise or foot of France is equal to six feet French, the foot to 12 inches French, and the inch to 12 lines; 76 French feet are nearly equal to 81 English feet; or, more accurately, 40,600 French feet, inches, or lines, equal 43,638 English feet, inches, or lines. Thus 1 French foot equals 1.06597 English, or 12,78934 English inches; and hence one English foot equals 11,26 French inches. The Paris needle was 6614 English inches.

In the old French road measure, the toise, or toise, is two French miles, each mile 100 toises; hence the French league equals two English miles, three furlongs, and 15 poles.

The French league, however, in different parts of France, has been applied to different distances. The marine league, (20 to a degree,) equals 2853 toises, or 6081 English yards; and the astronomical league, (25 to a degree,) equals 2232 1/4 French toises, or 1865 English yards.

The arpent, or acre of land, contained in general 100 square perches; but the perch varied in different provinces.

The old French weight for gold and silver (called poids de marc,) makes the pound or livre contain 2 marcs, 16 ounces, 128 gros, 384 deniers, or 9216 grains.

The French marc = 3780 grains Troy weight.

For commercial weight, the poids de marc was likewise used, and the quintal of 100 livres = 108 lb. avoirdupois, very nearly.

Weights and measures, however, varied considerably in the different provinces.

Wine measure was the muid of 12 seeters, 24 minces, 48 minots, or 144 busheals.

Wine measure was the muid of 36 seeters, 144 quarters, or 288 pints.

Synoptical Table of the Planetary System.

<table>
<thead>
<tr>
<th></th>
<th>Diameter.</th>
<th>Bulk or Value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Sun</td>
<td>111.45</td>
<td>1,384,462</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.4012</td>
<td>0.06456</td>
</tr>
<tr>
<td>Venus</td>
<td>0.9693</td>
<td>0.0902</td>
</tr>
<tr>
<td>The Earth</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>The Moon</td>
<td>0.2731</td>
<td>0.02036</td>
</tr>
<tr>
<td>Mars</td>
<td>0.5199</td>
<td>0.1406</td>
</tr>
<tr>
<td>Vesta</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Juno</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ceres</td>
<td>0.3076</td>
<td>0.02913</td>
</tr>
<tr>
<td>Pallas</td>
<td>0.154</td>
<td>0.00365</td>
</tr>
</tbody>
</table>

Rotation, or Sidereal Day.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Hrs. Min. Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>24 5 28</td>
</tr>
<tr>
<td>Venus</td>
<td>23 21 0</td>
</tr>
<tr>
<td>The Earth</td>
<td>23 56 4</td>
</tr>
<tr>
<td>Mars</td>
<td>24 39 21</td>
</tr>
<tr>
<td>Jupiter</td>
<td>9 56 0</td>
</tr>
<tr>
<td>Saturn</td>
<td>10 16 0</td>
</tr>
<tr>
<td>Uranus</td>
<td>11 39 0</td>
</tr>
</tbody>
</table>

Flattening at the Poles.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Mercury</th>
<th>Venus</th>
<th>The Earth</th>
<th>Mars</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 5 28</td>
<td>23 21 0</td>
<td>23 56 4</td>
<td>24 39 21</td>
<td>9 56 0</td>
<td>10 16 0</td>
<td>11 39 0</td>
</tr>
</tbody>
</table>

Relativities.

Mercury	87 23 14 32 7
Venus	224 16 41 27 5
The Earth	1 5 48 48
Mars	1 32 12 18 27 4
Vesta	3 240
Juno	4 130
Ceres	4 322
Pallas	4 241 17
Jupiter	11 315 14 39 2
Saturn	29 161 19 16 15 5
Uranus	83 294 8 39

Half of the greater Axis of the Orbits of the Planets, or their mean distances from the Sun, in Myriametres, each containing 32809 English feet.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Myriametres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>5917338</td>
</tr>
<tr>
<td>Venus</td>
<td>11038715</td>
</tr>
<tr>
<td>The Earth</td>
<td>11267872</td>
</tr>
<tr>
<td>Mars</td>
<td>22390921</td>
</tr>
<tr>
<td>Vesta</td>
<td>36278123</td>
</tr>
<tr>
<td>Juno</td>
<td>40619979</td>
</tr>
<tr>
<td>Ceres</td>
<td>42382000</td>
</tr>
<tr>
<td>Pallas</td>
<td>42666000</td>
</tr>
<tr>
<td>Jupiter</td>
<td>79511907</td>
</tr>
<tr>
<td>Saturn</td>
<td>148356700</td>
</tr>
<tr>
<td>Uranus</td>
<td>291730130</td>
</tr>
</tbody>
</table>

The relative proportion of the eccentricity to the half of the greater axis.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Mercury</th>
<th>Venus</th>
<th>The Earth</th>
<th>Mars</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.205523</td>
<td>0.006883</td>
<td>0.016814</td>
<td>0.093088</td>
<td>0.082501</td>
<td>0.2453</td>
<td>0.048077</td>
<td>0.036223</td>
<td>0.046683</td>
</tr>
</tbody>
</table>

Inclination of the Orbit to the Ecliptic.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Mercury</th>
<th>Venus</th>
<th>The Earth</th>
<th>Mars</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 30 30</td>
<td>3 23 10</td>
<td>0 0 0</td>
<td>1 50 47</td>
<td>10 36 57</td>
<td>34 50 40</td>
<td>1 19 38</td>
<td>2 30 40</td>
<td>0 46 12</td>
</tr>
</tbody>
</table>

† The eccentricity of Pallas proves, that, notwithstanding the identity almost of its mean distance with that of Ceres, the orbits of these two planets are very distant from each other at their apsides and perihelia. Between these points, the orbits intersect each other. Pallas sometimes approaches Jupiter, and sometimes Mars.*
III. Table of Climates.

<table>
<thead>
<tr>
<th>Their Number</th>
<th>Hours</th>
<th>Minutes</th>
<th>Degrees</th>
<th>Minutes</th>
<th>Degrees</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>30</td>
<td>8</td>
<td>34</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>0</td>
<td>16</td>
<td>43</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>30</td>
<td>24</td>
<td>10</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0</td>
<td>30</td>
<td>46</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>30</td>
<td>36</td>
<td>28</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>0</td>
<td>41</td>
<td>21</td>
<td>4</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>29</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>0</td>
<td>48</td>
<td>59</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>30</td>
<td>51</td>
<td>57</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>0</td>
<td>54</td>
<td>28</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>30</td>
<td>57</td>
<td>36</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>0</td>
<td>58</td>
<td>25</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>30</td>
<td>59</td>
<td>37</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>0</td>
<td>61</td>
<td>16</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>30</td>
<td>62</td>
<td>24</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>0</td>
<td>63</td>
<td>20</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>30</td>
<td>64</td>
<td>8</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>0</td>
<td>64</td>
<td>48</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>30</td>
<td>65</td>
<td>20</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>0</td>
<td>65</td>
<td>46</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>30</td>
<td>66</td>
<td>6</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>0</td>
<td>66</td>
<td>20</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>30</td>
<td>66</td>
<td>38</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>0</td>
<td>66</td>
<td>32</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

IV. Table of the Decrease of the Degrees of Longitude, according to the ancient or nonagesimal graduation, the Earth being supposed to be spherical.

<table>
<thead>
<tr>
<th>Latitudes</th>
<th>Degree of Longitude.</th>
<th>Latitudes</th>
<th>Degree of Longitude.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>57050 60.00</td>
<td>31</td>
<td>48901 51.43</td>
</tr>
<tr>
<td>1</td>
<td>57041 59.99</td>
<td>32</td>
<td>48381 50.88</td>
</tr>
<tr>
<td>2</td>
<td>57015 59.96</td>
<td>33</td>
<td>47846 50.32</td>
</tr>
<tr>
<td>3</td>
<td>56972 59.92</td>
<td>34</td>
<td>47298 49.74</td>
</tr>
<tr>
<td>4</td>
<td>66911 59.85</td>
<td>35</td>
<td>46732 49.13</td>
</tr>
<tr>
<td>5</td>
<td>56833 59.77</td>
<td>36</td>
<td>46154 48.54</td>
</tr>
<tr>
<td>6</td>
<td>56735 59.67</td>
<td>37</td>
<td>45552 47.92</td>
</tr>
<tr>
<td>7</td>
<td>56695 59.56</td>
<td>38</td>
<td>44956 47.28</td>
</tr>
<tr>
<td>8</td>
<td>56495 59.42</td>
<td>39</td>
<td>44337 46.63</td>
</tr>
<tr>
<td>9</td>
<td>56347 59.36</td>
<td>40</td>
<td>43703 45.96</td>
</tr>
<tr>
<td>10</td>
<td>56103 59.09</td>
<td>41</td>
<td>43056 45.28</td>
</tr>
<tr>
<td>11</td>
<td>56002 58.89</td>
<td>42</td>
<td>42397 44.59</td>
</tr>
<tr>
<td>12</td>
<td>55903 58.69</td>
<td>43</td>
<td>41725 43.63</td>
</tr>
<tr>
<td>13</td>
<td>55807 58.46</td>
<td>44</td>
<td>41038 42.96</td>
</tr>
<tr>
<td>14</td>
<td>55755 58.22</td>
<td>45</td>
<td>40340 42.45</td>
</tr>
<tr>
<td>15</td>
<td>55606 57.95</td>
<td>46</td>
<td>39630 41.86</td>
</tr>
<tr>
<td>16</td>
<td>54640 57.67</td>
<td>47</td>
<td>38908 40.92</td>
</tr>
<tr>
<td>17</td>
<td>54537 57.48</td>
<td>48</td>
<td>38174 40.15</td>
</tr>
<tr>
<td>18</td>
<td>54327 57.06</td>
<td>49</td>
<td>37429 39.36</td>
</tr>
<tr>
<td>19</td>
<td>53941 56.73</td>
<td>50</td>
<td>36671 38.57</td>
</tr>
<tr>
<td>20</td>
<td>53609 56.38</td>
<td>51</td>
<td>35902 37.76</td>
</tr>
<tr>
<td>21</td>
<td>53520 56.01</td>
<td>52</td>
<td>35123 36.94</td>
</tr>
<tr>
<td>22</td>
<td>52895 55.63</td>
<td>53</td>
<td>34333 36.11</td>
</tr>
<tr>
<td>23</td>
<td>52514 55.23</td>
<td>54</td>
<td>33532 35.27</td>
</tr>
<tr>
<td>24</td>
<td>52117 54.81</td>
<td>55</td>
<td>32722 34.41</td>
</tr>
<tr>
<td>25</td>
<td>51705 54.38</td>
<td>56</td>
<td>31902 33.53</td>
</tr>
<tr>
<td>26</td>
<td>51276 53.93</td>
<td>57</td>
<td>31076 32.68</td>
</tr>
<tr>
<td>27</td>
<td>50832 53.46</td>
<td>58</td>
<td>30231 31.79</td>
</tr>
<tr>
<td>28</td>
<td>50279 52.99</td>
<td>59</td>
<td>29394 30.90</td>
</tr>
<tr>
<td>29</td>
<td>49897 52.47</td>
<td>60</td>
<td>28535 30.00</td>
</tr>
<tr>
<td>30</td>
<td>49406 51.96</td>
<td>61</td>
<td>27659 29.09</td>
</tr>
</tbody>
</table>

In Tables: — We do not in these tables take any notice of the effects of the refraction, which increases the duration of the day, particularly towards the poles. Under the fixed points the refraction alone, independent of the twilight, increases the day, which for months long, 67 hours.
<table>
<thead>
<tr>
<th>Degree of Latitude</th>
<th>Degree of Longitude</th>
<th>Distance in Kilometers</th>
<th>Distance in Kilometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

VI. Table of the Degrees of the Latitude, according to the New or Greenwich Meridian, and the Distance in Kilometers Contained Between Each Degree of the same, from the Pole to the Equator.

<table>
<thead>
<tr>
<th>Degree of Latitude</th>
<th>Degree of Longitude</th>
<th>Distance in Kilometers</th>
<th>Distance in Kilometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

VII. Table of the Degrees of the Longitude, according to the New or Greenwich Meridian, and the Distance in Kilometers Contained Between Each Degree of the same, from the Prime Meridian to the 180th Meridian.

<table>
<thead>
<tr>
<th>Degree of Latitude</th>
<th>Degree of Longitude</th>
<th>Distance in Kilometers</th>
<th>Distance in Kilometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Table VII. Of the Decrease of the Degrees of Latitude, according to the New or Centesimal Scale, the Earth being supposed to be a sphere, flattened.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Degree of Latitude</th>
<th>Degree of Latitude</th>
<th>Degree of Latitude</th>
<th>Degree of Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>46.5</td>
<td>46.5</td>
<td>46.5</td>
<td>46.5</td>
</tr>
<tr>
<td>2</td>
<td>93.0</td>
<td>93.0</td>
<td>93.0</td>
<td>93.0</td>
</tr>
<tr>
<td>3</td>
<td>139.5</td>
<td>139.5</td>
<td>139.5</td>
<td>139.5</td>
</tr>
<tr>
<td>4</td>
<td>186.0</td>
<td>186.0</td>
<td>186.0</td>
<td>186.0</td>
</tr>
<tr>
<td>5</td>
<td>232.5</td>
<td>232.5</td>
<td>232.5</td>
<td>232.5</td>
</tr>
<tr>
<td>6</td>
<td>279.0</td>
<td>279.0</td>
<td>279.0</td>
<td>279.0</td>
</tr>
<tr>
<td>7</td>
<td>325.5</td>
<td>325.5</td>
<td>325.5</td>
<td>325.5</td>
</tr>
<tr>
<td>8</td>
<td>372.0</td>
<td>372.0</td>
<td>372.0</td>
<td>372.0</td>
</tr>
<tr>
<td>9</td>
<td>418.5</td>
<td>418.5</td>
<td>418.5</td>
<td>418.5</td>
</tr>
<tr>
<td>10</td>
<td>465.0</td>
<td>465.0</td>
<td>465.0</td>
<td>465.0</td>
</tr>
</tbody>
</table>

Table VIII. Comparative View of linear measures, taken on different Scales.

<table>
<thead>
<tr>
<th>States and Towns</th>
<th>Measures</th>
<th>Lines</th>
<th>Decimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Voet</td>
<td>125.5</td>
<td>2.83</td>
</tr>
<tr>
<td>Augsburg</td>
<td>Stadt, or Werk-Schu</td>
<td>131.3</td>
<td>2.97</td>
</tr>
<tr>
<td>Bâle</td>
<td>Stadt, or Feld-Schu</td>
<td>132.2</td>
<td>2.98</td>
</tr>
<tr>
<td>Batavia</td>
<td>Voet</td>
<td>139.1</td>
<td>3.14</td>
</tr>
<tr>
<td>Berlin</td>
<td>Fuss of Berlin</td>
<td>137.3</td>
<td>3.10</td>
</tr>
<tr>
<td>Brabant</td>
<td>Fuss</td>
<td>139.1</td>
<td>3.14</td>
</tr>
<tr>
<td>Cadiz</td>
<td>Pie</td>
<td>126.6</td>
<td>2.86</td>
</tr>
<tr>
<td>China</td>
<td>Foot of the Merchants</td>
<td>150</td>
<td>3.35</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>Mathematical foot</td>
<td>147.7</td>
<td>3.33</td>
</tr>
<tr>
<td>Cracovia</td>
<td>Ché or Carpenter's foot</td>
<td>143.1</td>
<td>3.25</td>
</tr>
<tr>
<td>Danzig</td>
<td>Land-surveyor's foot</td>
<td>141.7</td>
<td>3.19</td>
</tr>
<tr>
<td>Dantzig</td>
<td>Fuss</td>
<td>137.2</td>
<td>3.10</td>
</tr>
<tr>
<td>Dauphiné</td>
<td>Fuss</td>
<td>151.1</td>
<td>3.41</td>
</tr>
<tr>
<td>Dijon</td>
<td>Fuss</td>
<td>159.2</td>
<td>3.15</td>
</tr>
<tr>
<td>Dresden</td>
<td>Fuss</td>
<td>125.5</td>
<td>2.83</td>
</tr>
<tr>
<td>France</td>
<td>Pied de Boi</td>
<td>144</td>
<td>3.25</td>
</tr>
<tr>
<td>Frankfurt on the Maine</td>
<td>Decimetre</td>
<td>44.33</td>
<td>1</td>
</tr>
<tr>
<td>Genoa</td>
<td>Pies</td>
<td>127</td>
<td>2.86</td>
</tr>
<tr>
<td>Francon Comté</td>
<td>Pied</td>
<td>158.3</td>
<td>3.57</td>
</tr>
<tr>
<td>Hamburg</td>
<td>Fuss of Hamburg</td>
<td>139.1</td>
<td>3.14</td>
</tr>
<tr>
<td>Hambourh</td>
<td>Fuss of the Rhine</td>
<td>139.1</td>
<td>3.14</td>
</tr>
<tr>
<td>Leipzig</td>
<td>Fuss</td>
<td>126.6</td>
<td>2.86</td>
</tr>
<tr>
<td>Lübeck</td>
<td>Fuss</td>
<td>129</td>
<td>2.91</td>
</tr>
<tr>
<td>London</td>
<td>Pies</td>
<td>187.9</td>
<td>4.23</td>
</tr>
<tr>
<td>Lorraine</td>
<td>Pies</td>
<td>125.3</td>
<td>2.83</td>
</tr>
<tr>
<td>Madrid</td>
<td>Palme</td>
<td>93.97</td>
<td>2.11</td>
</tr>
<tr>
<td>Malacca</td>
<td>Palme of small</td>
<td>31.32</td>
<td>0.70</td>
</tr>
<tr>
<td>Milan</td>
<td>Palme</td>
<td>107.3</td>
<td>2.42</td>
</tr>
<tr>
<td>Messina</td>
<td>Palme</td>
<td>176</td>
<td>3.97</td>
</tr>
</tbody>
</table>
VIII. Continued.

<table>
<thead>
<tr>
<th>States and Towns</th>
<th>Measures</th>
<th>Lines</th>
<th>Decimetres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>Fusse</td>
<td>128.2</td>
<td>2.89</td>
</tr>
<tr>
<td>Naples</td>
<td>Palmo</td>
<td>116.5</td>
<td>2.63</td>
</tr>
<tr>
<td>Normandy</td>
<td>Pied</td>
<td>133</td>
<td>2.96</td>
</tr>
<tr>
<td>Norway</td>
<td>Fod</td>
<td>139.1</td>
<td>3.15</td>
</tr>
<tr>
<td>Nuremberg</td>
<td>Stadt-Schu of Carpenters</td>
<td>134.7</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>Werk-Schu of Masons</td>
<td>123.6</td>
<td>2.78</td>
</tr>
<tr>
<td>Padua</td>
<td>Palmo</td>
<td>189.9</td>
<td>4.28</td>
</tr>
<tr>
<td>Paris</td>
<td>Pied-de-Roi</td>
<td>144</td>
<td>3.25</td>
</tr>
<tr>
<td>Palermo</td>
<td>Palmo, ancient</td>
<td>107.3</td>
<td>2.42</td>
</tr>
<tr>
<td>Prague</td>
<td>Fusse of Bohemia</td>
<td>131.4</td>
<td>2.97</td>
</tr>
<tr>
<td></td>
<td>Fusse of Moravia</td>
<td>131.2</td>
<td>2.96</td>
</tr>
<tr>
<td>Riga</td>
<td>Fusse</td>
<td>125.5</td>
<td>2.74</td>
</tr>
<tr>
<td>Rome</td>
<td>Palmo</td>
<td>130.6</td>
<td>2.94</td>
</tr>
<tr>
<td>Russia</td>
<td>Foot</td>
<td>135</td>
<td>3.05</td>
</tr>
<tr>
<td>Sardinia</td>
<td>Palmo</td>
<td>110.1</td>
<td>2.48</td>
</tr>
<tr>
<td>Sweden</td>
<td>Fot</td>
<td>131.6</td>
<td>2.97</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Fusse</td>
<td>133</td>
<td>3.00</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>Fusse</td>
<td>126.8</td>
<td>2.83</td>
</tr>
<tr>
<td>Turin</td>
<td>Palmo</td>
<td>227.7</td>
<td>5.13</td>
</tr>
<tr>
<td>Venice</td>
<td>Palmo</td>
<td>133.7</td>
<td>3.45</td>
</tr>
<tr>
<td>Vienna</td>
<td>Fusse</td>
<td>143</td>
<td>3.23</td>
</tr>
<tr>
<td>Warsaw, duchy of</td>
<td>Fusse</td>
<td>158</td>
<td>3.56</td>
</tr>
</tbody>
</table>

IX. A comparative View of the Agrarian Measures used in the principal States of Europe, in ancient French square Feet, (pieds de roi,) compared with the Arpent fixed by the Government for measuring the Lakes and Forests, and with the Hectare, or New Agrarian Measure of France.

<table>
<thead>
<tr>
<th>States and Places</th>
<th>Square Feet</th>
<th>Arpents</th>
<th>Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alsace, Morgen</td>
<td>19.045</td>
<td>0.39283</td>
<td>0.2009</td>
</tr>
<tr>
<td>Austria, Jochart</td>
<td>36.571</td>
<td>0.7358</td>
<td>0.3773</td>
</tr>
<tr>
<td>Bavaria, Jochart</td>
<td>31.700</td>
<td>0.65495</td>
<td>0.3345</td>
</tr>
<tr>
<td>Denmark, Toende Hartkorn</td>
<td>104.834</td>
<td>2.08640</td>
<td>1.1054</td>
</tr>
<tr>
<td>England, Acre</td>
<td>210.514</td>
<td>4.34946</td>
<td>2.2213</td>
</tr>
<tr>
<td></td>
<td>38.376</td>
<td>0.79289</td>
<td>0.4049</td>
</tr>
<tr>
<td>France, Arpent of lakes & forests*</td>
<td>45.400</td>
<td>1.00000</td>
<td>0.5107</td>
</tr>
<tr>
<td></td>
<td>32.400</td>
<td>0.66941</td>
<td>0.3418</td>
</tr>
<tr>
<td>France, Arpent, common</td>
<td>40.000</td>
<td>0.82643</td>
<td>0.4220</td>
</tr>
<tr>
<td></td>
<td>94.768</td>
<td>1.93801</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>60.947</td>
<td>0.12195</td>
<td>0.0600</td>
</tr>
<tr>
<td></td>
<td>12.326</td>
<td>0.25467</td>
<td>0.1300</td>
</tr>
<tr>
<td>Hanover, Drohn</td>
<td>18.490</td>
<td>0.38202</td>
<td>0.1951</td>
</tr>
<tr>
<td></td>
<td>24.653</td>
<td>0.49935</td>
<td>0.2601</td>
</tr>
<tr>
<td>Holland, Morgen</td>
<td>77.016</td>
<td>1.59124</td>
<td>0.8126</td>
</tr>
<tr>
<td></td>
<td>175.158</td>
<td>3.61837</td>
<td>1.8480</td>
</tr>
<tr>
<td>Italy, Rubbio</td>
<td>43.784</td>
<td>0.90464</td>
<td>0.4620</td>
</tr>
<tr>
<td>Rome, Quarta</td>
<td>23.020</td>
<td>0.46194</td>
<td>0.2369</td>
</tr>
<tr>
<td>Naples, Morigia</td>
<td>31.679</td>
<td>0.65435</td>
<td>0.3342</td>
</tr>
<tr>
<td>Tuscany, Saccate</td>
<td>46.986</td>
<td>0.97078</td>
<td>0.4979</td>
</tr>
<tr>
<td>Venice, 100 Passi</td>
<td>28.456</td>
<td>0.58729</td>
<td>0.3022</td>
</tr>
</tbody>
</table>

*This Arpent contained 100 square perches of 22 feet square, or 484 square feet.
†The Arpent, which is the unity of the new French agrarian measures, is equal to ten metres, or one hundred decimetres, that is, a space containing one hundred square metres. The Hectare is a space containing 100 ares, or a square hectometre.

In converting the new and old measures of France, we may make use of the following approximations.

56 = 47 Arpents of lakes and forests.
57 = 79 Arpents of Park, of 10 feet to the perch.
10 = 48 Arpents, common, of 30 feet to the perch.
67 = 44 Acres of Normandy, of 100 perches of 22 feet each.
<table>
<thead>
<tr>
<th>States and Places</th>
<th>Square Feet</th>
<th>Arpents</th>
<th>Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorraine, Journal</td>
<td>40,328</td>
<td>0.83323</td>
<td>0.4255</td>
</tr>
<tr>
<td>Piedmont, Giornata</td>
<td>36,065</td>
<td>0.74390</td>
<td>0.3799</td>
</tr>
<tr>
<td>Great Hufe</td>
<td>1,613,130</td>
<td>33,32913</td>
<td>17.0218</td>
</tr>
<tr>
<td>Hakenhufe</td>
<td>107,543</td>
<td>2,22195</td>
<td>1.1347</td>
</tr>
<tr>
<td>Prussia { Landhufe }</td>
<td>53,771</td>
<td>1,11097</td>
<td>0.5674</td>
</tr>
<tr>
<td>Morgen { great }</td>
<td>24,197</td>
<td>0.49993</td>
<td>0.2553</td>
</tr>
<tr>
<td>{ small }</td>
<td>0.49993</td>
<td>0.2553</td>
<td></td>
</tr>
<tr>
<td>Russia Dassaetina</td>
<td>109,782</td>
<td>2,26756</td>
<td>1.1584</td>
</tr>
<tr>
<td>Saxon, Acker</td>
<td>52,247</td>
<td>1,07948</td>
<td>0.5513</td>
</tr>
<tr>
<td>Yugada</td>
<td>1,343,032</td>
<td>27,78993</td>
<td>14.1928</td>
</tr>
<tr>
<td>Panega</td>
<td>32,521</td>
<td>0.67191</td>
<td>0.3431</td>
</tr>
<tr>
<td>Cahizada</td>
<td>195,124</td>
<td>4,03149</td>
<td>2.0389</td>
</tr>
<tr>
<td>Aranzada</td>
<td>10,781</td>
<td>0.22274</td>
<td>0.1137</td>
</tr>
<tr>
<td>Swabia, Jouchart</td>
<td>12,299</td>
<td>0.27477</td>
<td>0.1403</td>
</tr>
<tr>
<td>Smeden, Tunna-land</td>
<td>46,773</td>
<td>0.9535</td>
<td>0.4953</td>
</tr>
<tr>
<td>Zürich, Juchart</td>
<td>34,12</td>
<td>0.70495</td>
<td>0.3600</td>
</tr>
<tr>
<td>Berne, Juchart { for woods }</td>
<td>32,592</td>
<td>0.67338</td>
<td>0.3439</td>
</tr>
<tr>
<td>Switzer-land, { for land }</td>
<td>30,711</td>
<td>0.63452</td>
<td>0.3240</td>
</tr>
<tr>
<td>Pyrol, Jach, or Jauchart { for woods }</td>
<td>40,999</td>
<td>0.84707</td>
<td>0.4326</td>
</tr>
</tbody>
</table>

A comparative Table of Itinerary and Topographical Measures, considered, first, as measures of distance in their relation to a degree (meanseamile) of the Equator; to a Geographical French League, of 25 to a degree; and to the Kilometre (1000 Metres); and, secondly, as measures of superficial extent in their relation to Geographical square Leagues of Germany (15 to a degree), of square leagues of France, (25 to a degree,) and to a square Kilometre.

<table>
<thead>
<tr>
<th>ITINERARY PROPORTIONS</th>
<th>LEAGUES of 25 to a degree</th>
<th>Kilometres</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2.08335</td>
<td>9.27083</td>
</tr>
<tr>
<td>15</td>
<td>1.666</td>
<td>7.4166</td>
</tr>
<tr>
<td>17.75</td>
<td>1.4084</td>
<td>6.2676</td>
</tr>
<tr>
<td>69.5</td>
<td>0.3616</td>
<td>1.5694</td>
</tr>
<tr>
<td>60</td>
<td>0.4167</td>
<td>1.8542</td>
</tr>
<tr>
<td>20</td>
<td>1.25</td>
<td>5.5625</td>
</tr>
<tr>
<td>33</td>
<td>0.7576</td>
<td>3.371</td>
</tr>
<tr>
<td>57.125</td>
<td>0.4371</td>
<td>1.9449</td>
</tr>
<tr>
<td>28</td>
<td>0.8929</td>
<td>3.9732</td>
</tr>
<tr>
<td>17.333</td>
<td>1.4423</td>
<td>6.4183</td>
</tr>
<tr>
<td>103.6</td>
<td>0.2367</td>
<td>1.0335</td>
</tr>
<tr>
<td>26.397</td>
<td>0.9471</td>
<td>4.2145</td>
</tr>
<tr>
<td>16.087</td>
<td>1.55405</td>
<td>6.9155</td>
</tr>
<tr>
<td>33</td>
<td>0.7376</td>
<td>3.271</td>
</tr>
<tr>
<td>26</td>
<td>0.9615</td>
<td>4.2788</td>
</tr>
<tr>
<td>16</td>
<td>1.5625</td>
<td>6.925</td>
</tr>
<tr>
<td>21.521</td>
<td>1.1617</td>
<td>5.1693</td>
</tr>
<tr>
<td>20</td>
<td>1.25</td>
<td>5.5625</td>
</tr>
<tr>
<td>17</td>
<td>1.4706</td>
<td>6.5441</td>
</tr>
<tr>
<td>33</td>
<td>0.7576</td>
<td>3.371</td>
</tr>
<tr>
<td>28</td>
<td>0.8929</td>
<td>3.9732</td>
</tr>
<tr>
<td>28.54</td>
<td>0.8739</td>
<td>3.898</td>
</tr>
<tr>
<td>35</td>
<td>0.71429</td>
<td>3.17857</td>
</tr>
<tr>
<td>192.4</td>
<td>0.1299</td>
<td>0.5782</td>
</tr>
<tr>
<td>12</td>
<td>1.2727</td>
<td>10.1136</td>
</tr>
<tr>
<td>14.77</td>
<td>1.6896</td>
<td>7.3391</td>
</tr>
<tr>
<td>12.333</td>
<td>2.0279</td>
<td>9.002</td>
</tr>
<tr>
<td>28.54</td>
<td>0.8739</td>
<td>3.898</td>
</tr>
<tr>
<td>25</td>
<td>1.465</td>
<td>6.516</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOPOGRAPHICAL PROPORTIONS</th>
<th>Square Leagues</th>
<th>Square Kilometres</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to a degree</td>
<td>1.5625</td>
<td>4.3389</td>
</tr>
<tr>
<td>25 to a degree</td>
<td>1.5625</td>
<td>4.3389</td>
</tr>
<tr>
<td>1</td>
<td>3.229</td>
<td>13.977</td>
</tr>
<tr>
<td>1.5</td>
<td>4.2414</td>
<td>17.173</td>
</tr>
<tr>
<td>2</td>
<td>5.5779</td>
<td>21.836</td>
</tr>
<tr>
<td>3</td>
<td>7.085</td>
<td>26.7186</td>
</tr>
<tr>
<td>4</td>
<td>8.780</td>
<td>32.941</td>
</tr>
<tr>
<td>5</td>
<td>10.687</td>
<td>40.3142</td>
</tr>
<tr>
<td>6</td>
<td>12.804</td>
<td>48.344</td>
</tr>
<tr>
<td>7</td>
<td>15.148</td>
<td>56.7186</td>
</tr>
<tr>
<td>8</td>
<td>17.785</td>
<td>66.516</td>
</tr>
<tr>
<td>9</td>
<td>20.625</td>
<td>77.753</td>
</tr>
<tr>
<td>10</td>
<td>23.775</td>
<td>89.344</td>
</tr>
<tr>
<td>11</td>
<td>27.227</td>
<td>102.2856</td>
</tr>
<tr>
<td>12</td>
<td>31.015</td>
<td>116.731</td>
</tr>
<tr>
<td>13</td>
<td>35.147</td>
<td>133.306</td>
</tr>
<tr>
<td>14</td>
<td>39.677</td>
<td>151.944</td>
</tr>
<tr>
<td>15</td>
<td>44.588</td>
<td>172.186</td>
</tr>
<tr>
<td>16</td>
<td>50.003</td>
<td>193.718</td>
</tr>
<tr>
<td>17</td>
<td>55.888</td>
<td>216.525</td>
</tr>
</tbody>
</table>

Vol. I—3 R
TABLES.

ITINERARY PROPORTIONS.

<table>
<thead>
<tr>
<th>To an equatorial degree</th>
<th>Leagues of 24 to a degree</th>
<th>Kilometres.</th>
<th>MEASURES.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.25</td>
<td>1.1236</td>
<td>5</td>
<td>Lieue, mean of ditto, 0.4544</td>
</tr>
<tr>
<td>11.125</td>
<td>2.3472</td>
<td>10</td>
<td>Myriametre, or new great league, 5.818</td>
</tr>
<tr>
<td>11.25</td>
<td>0.2247</td>
<td>1</td>
<td>Kilometre, or new small league, 0.01818</td>
</tr>
<tr>
<td>19.025</td>
<td>1.3139</td>
<td>5.8476</td>
<td>Lieue of Gascony, 0.6216</td>
</tr>
<tr>
<td>26.838</td>
<td>0.9315</td>
<td>4.145</td>
<td>League of Guiana, 0.5124</td>
</tr>
<tr>
<td>13.333</td>
<td>1.3158</td>
<td>5.855</td>
<td>Meile of Holland, 0.6253</td>
</tr>
<tr>
<td>42.73</td>
<td>0.3848</td>
<td>2.6023</td>
<td>Meile of Hungary, 1.2663</td>
</tr>
<tr>
<td>40</td>
<td>0.625</td>
<td>2.78125</td>
<td>Cos or Coru of Hiomlistan, 0.1251</td>
</tr>
<tr>
<td>3</td>
<td>6.333</td>
<td>37.0833303</td>
<td>Mile of Ireland, 0.1416025</td>
</tr>
<tr>
<td>9</td>
<td>2.777</td>
<td>12.3601</td>
<td>Pingmanaelid of Iceland, 2.778</td>
</tr>
<tr>
<td>12</td>
<td>2.0833</td>
<td>9.2708</td>
<td>Mil, marine of ditto, 1.5625</td>
</tr>
<tr>
<td>58.48</td>
<td>0.4275</td>
<td>1.9024</td>
<td>Mil, common of ditto, 0.9057</td>
</tr>
<tr>
<td>67.25</td>
<td>0.5718</td>
<td>1.65427</td>
<td>Lega of Bologna, Italy, 0.04975</td>
</tr>
<tr>
<td>57.71</td>
<td>0.4332</td>
<td>1.9277</td>
<td>Lega of Milan, 0.0466</td>
</tr>
<tr>
<td>74.7</td>
<td>0.3347</td>
<td>1.4719</td>
<td>Lega of Naples, 0.0567</td>
</tr>
<tr>
<td>68.25</td>
<td>0.3663</td>
<td>1.69267</td>
<td>Lega of the Roman States, 0.0403</td>
</tr>
<tr>
<td>60.62</td>
<td>0.4124</td>
<td>1.83132</td>
<td>Lega of Tuscany, 0.0483</td>
</tr>
<tr>
<td>12.44</td>
<td>2.001</td>
<td>8.9429</td>
<td>Meile of Lithuania, 1.4344</td>
</tr>
<tr>
<td>28</td>
<td>0.8929</td>
<td>3.9732</td>
<td>Meile of Luxembourg, 0.2868</td>
</tr>
<tr>
<td>57.1</td>
<td>1.87</td>
<td>8.38965</td>
<td>Meile of Lyons, 0.4253</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>11.125</td>
<td>Gros or Geo of Malabar, 1.24</td>
</tr>
<tr>
<td>17</td>
<td>1.47066</td>
<td>6.5141</td>
<td>League of Mysore, 0.7786</td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
<td>11.125</td>
<td>Mile of Norway, 2.25</td>
</tr>
<tr>
<td>24</td>
<td>1.0417</td>
<td>4.6354</td>
<td>Lieue of Perche, (in France,) 0.3906</td>
</tr>
<tr>
<td>12.5</td>
<td>2</td>
<td>8.9</td>
<td>Parasange of Persia, 1.44</td>
</tr>
<tr>
<td>48</td>
<td>0.5208</td>
<td>2.3177</td>
<td>Lega of Piedmont, 0.09766</td>
</tr>
<tr>
<td>24</td>
<td>1.0417</td>
<td>4.6354</td>
<td>Lieue of Poitou, 0.3906</td>
</tr>
<tr>
<td>20</td>
<td>1.25</td>
<td>5.3625</td>
<td>League of Poland, 0.05625</td>
</tr>
<tr>
<td>18</td>
<td>1.3889</td>
<td>6.18056</td>
<td>Lega of Portugal, 0.6944</td>
</tr>
<tr>
<td>14.37</td>
<td>1.7228</td>
<td>7.7448</td>
<td>Meile of Prussia, 1.089</td>
</tr>
<tr>
<td>19.025</td>
<td>2.3139</td>
<td>11.125</td>
<td>League of Provence, 0.6216</td>
</tr>
<tr>
<td>104.25</td>
<td>0.2396</td>
<td>1.05714</td>
<td>Werste, common of Russia, 0.0207</td>
</tr>
<tr>
<td>104.716</td>
<td>0.23874</td>
<td>1.0624</td>
<td>Werste, fixed of Russia, 0.0205</td>
</tr>
<tr>
<td>110.4</td>
<td>0.22645</td>
<td>1.0077</td>
<td>Werste of M. Trescof of Russia, 0.0192</td>
</tr>
<tr>
<td>117.453</td>
<td>1.43244</td>
<td>6.3744</td>
<td>Mile, geographical of 6 werste, 0.7387</td>
</tr>
<tr>
<td>12.29</td>
<td>2.0342</td>
<td>9.0321</td>
<td>Meile of the Police of Saxony, 1.49</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>2.225</td>
<td>Mile of Scotland, 0.09</td>
</tr>
<tr>
<td>28.942</td>
<td>0.8638</td>
<td>3.8438</td>
<td>Rute-ning of Siarn, 0.2686</td>
</tr>
<tr>
<td>17.18</td>
<td>1.4532</td>
<td>6.473</td>
<td>Meile of Silesia, 0.7623</td>
</tr>
<tr>
<td>16.4</td>
<td>1.55</td>
<td>6.075</td>
<td>Legua nueva of Spain, 0.8117</td>
</tr>
<tr>
<td>20</td>
<td>1.25</td>
<td>5.3625</td>
<td>Legua horaria of Spain, 0.5625</td>
</tr>
<tr>
<td>36.4</td>
<td>0.9375</td>
<td>4.17187</td>
<td>Legua jurdica of Spain, 0.3164</td>
</tr>
<tr>
<td>10.4</td>
<td>2.4038</td>
<td>10.6971</td>
<td>Mile of Sweden, 2.08</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>11.125</td>
<td>Gos, or Gau of Surat, 2.25</td>
</tr>
<tr>
<td>26.838</td>
<td>0.9315</td>
<td>4.1452</td>
<td>League of Surinam, 0.3124</td>
</tr>
<tr>
<td>66.4</td>
<td>0.375</td>
<td>1.6687</td>
<td>Berri of Turkey, 0.05062</td>
</tr>
<tr>
<td>28.372</td>
<td>0.8761</td>
<td>3.8985</td>
<td>Lieue of Touraine, 0.8763</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>11.125</td>
<td>Meile of the Circle of Westphalia, 2.25</td>
</tr>
</tbody>
</table>

TERRESTRIAL PROPORTIONS.

<table>
<thead>
<tr>
<th>Square leagues of 24 to a degree</th>
<th>Kilometres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01818</td>
<td>5</td>
</tr>
<tr>
<td>0.0466</td>
<td>10</td>
</tr>
<tr>
<td>0.05625</td>
<td>25</td>
</tr>
<tr>
<td>0.1251</td>
<td>50</td>
</tr>
<tr>
<td>0.1416025</td>
<td>100</td>
</tr>
<tr>
<td>0.17321</td>
<td>150</td>
</tr>
<tr>
<td>0.2868</td>
<td>200</td>
</tr>
<tr>
<td>0.3906</td>
<td>250</td>
</tr>
<tr>
<td>0.5124</td>
<td>300</td>
</tr>
<tr>
<td>0.6216</td>
<td>350</td>
</tr>
<tr>
<td>0.6944</td>
<td>400</td>
</tr>
<tr>
<td>0.7786</td>
<td>450</td>
</tr>
<tr>
<td>0.8763</td>
<td>500</td>
</tr>
<tr>
<td>0.9741</td>
<td>550</td>
</tr>
<tr>
<td>1.072</td>
<td>600</td>
</tr>
<tr>
<td>1.170</td>
<td>650</td>
</tr>
<tr>
<td>1.268</td>
<td>700</td>
</tr>
<tr>
<td>1.366</td>
<td>750</td>
</tr>
<tr>
<td>1.464</td>
<td>800</td>
</tr>
<tr>
<td>1.562</td>
<td>850</td>
</tr>
<tr>
<td>1.660</td>
<td>900</td>
</tr>
<tr>
<td>1.758</td>
<td>950</td>
</tr>
<tr>
<td>1.856</td>
<td>1000</td>
</tr>
<tr>
<td>1.954</td>
<td>1050</td>
</tr>
</tbody>
</table>

XIV. A Table of the different Measures of Antiquity.

Itinerary Measures.

<table>
<thead>
<tr>
<th>Length</th>
<th>Kilometres</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.166</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

French Measure.

<table>
<thead>
<tr>
<th>Length</th>
<th>Kilometres</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XI. Continued.

<table>
<thead>
<tr>
<th>Itinerary Measures</th>
<th>French Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilometres</td>
<td>Metres</td>
</tr>
<tr>
<td>The mean Stadium, called also the nautical or Persian</td>
<td>166.4</td>
</tr>
<tr>
<td>The great Alexandrian or Egyptian Stadium</td>
<td>222.22</td>
</tr>
<tr>
<td>The Philetorian or Royal Stadium</td>
<td>210.14</td>
</tr>
<tr>
<td>The Grecian Olympic Stadium</td>
<td>185.37</td>
</tr>
<tr>
<td>The Stadium of Eratothenes</td>
<td>159.93</td>
</tr>
<tr>
<td>The Stadium of Clomenes</td>
<td>133.47</td>
</tr>
<tr>
<td>The Stadium of Aristotle, or small Stadium</td>
<td>99.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear Measures</th>
<th>Metres</th>
<th>Millimetres</th>
</tr>
</thead>
<tbody>
<tr>
<td>The royal Cubit of Babylon</td>
<td>458.8</td>
<td></td>
</tr>
<tr>
<td>The mean Cubit</td>
<td>416.66</td>
<td></td>
</tr>
<tr>
<td>The Pygon of Palmipes</td>
<td>347.22</td>
<td></td>
</tr>
<tr>
<td>The Pythian or Delphic foot</td>
<td>277.77</td>
<td></td>
</tr>
<tr>
<td>The Palmus Major</td>
<td>086.8</td>
<td></td>
</tr>
<tr>
<td>The common Palm, or Palestum</td>
<td>069.3</td>
<td></td>
</tr>
<tr>
<td>The Inech, or Uncia of the geometrical foot</td>
<td>023.1482</td>
<td></td>
</tr>
<tr>
<td>The Dactylus or Digit</td>
<td>017.361</td>
<td></td>
</tr>
<tr>
<td>The Olympic Hectopede</td>
<td>30</td>
<td>864</td>
</tr>
<tr>
<td>The Exapode</td>
<td>1</td>
<td>85.1</td>
</tr>
<tr>
<td>The cubit of 18 Olympic inches,</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>The Olympic foot</td>
<td></td>
<td>308.6</td>
</tr>
<tr>
<td>The exapode of six Roman feet,</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>The great pace (&c.) of five Roman feet,</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>The common pace, of two Roman feet,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Roman foot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agrimetric Measures</th>
<th>Square Metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Plethon = 100 square Olympic feet,</td>
<td>9.526</td>
</tr>
<tr>
<td>The Exapode = 36 square Olympic feet</td>
<td>3.429</td>
</tr>
<tr>
<td>The Saltus of four Centuries</td>
<td>22227 16</td>
</tr>
<tr>
<td>The Century of 100 Heredies</td>
<td>50.5679</td>
</tr>
<tr>
<td>The Heredy of two Jugera,</td>
<td>50.5679</td>
</tr>
<tr>
<td>The Jugerum of 800 Exapodes</td>
<td>2528395</td>
</tr>
</tbody>
</table>

XII. Comparative View of the Principal Winds. COMPASS OF FOUR WINDS.

<table>
<thead>
<tr>
<th>Grecian Names.</th>
<th>Modern Names.</th>
<th>Situation upon the Compass.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boreas</td>
<td>North</td>
<td>0°</td>
</tr>
<tr>
<td>Euros</td>
<td>East</td>
<td>See Homer, Odys., B. i. v. 394.</td>
</tr>
<tr>
<td>Notos</td>
<td>South</td>
<td>180</td>
</tr>
<tr>
<td>Zephyrus</td>
<td>West</td>
<td>270</td>
</tr>
</tbody>
</table>

COMPASS OF EIGHT WINDS.

<table>
<thead>
<tr>
<th>Grecian or Roman Names.</th>
<th>Modern Names.</th>
<th>Situation upon the Compass.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boreas; Aarctias; Septentrio</td>
<td>North</td>
<td>0°</td>
</tr>
<tr>
<td>Cassias; Aquilo; (sometimes Boreas)</td>
<td>North-East</td>
<td>45</td>
</tr>
<tr>
<td>Apeliotics; Subsolanus (qu. Euros)</td>
<td>East</td>
<td>90</td>
</tr>
<tr>
<td>Euronotos; Vulturnus (often Euros)</td>
<td>South-East</td>
<td>135</td>
</tr>
<tr>
<td>Notos; Auster</td>
<td>South</td>
<td>180</td>
</tr>
<tr>
<td>Libs; Africus</td>
<td>South-West</td>
<td>225</td>
</tr>
<tr>
<td>Zephyrus; Favorius</td>
<td>West</td>
<td>270</td>
</tr>
<tr>
<td>Corus; Skiron; Argestes</td>
<td>North-West</td>
<td>315</td>
</tr>
<tr>
<td>Boreas, &c.</td>
<td>North</td>
<td>360</td>
</tr>
</tbody>
</table>

COMPASS OF TWELVE WINDS.

<table>
<thead>
<tr>
<th>Ancient Names.</th>
<th>Modern names nearly.</th>
<th>Situation upon the Compass.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aarctias; Septentrio (Boreas)</td>
<td>North</td>
<td>0°</td>
</tr>
<tr>
<td>Meses (often Boreas and Aquilo)</td>
<td>N.E. 4 N.-30°</td>
<td>30</td>
</tr>
<tr>
<td>Cassias</td>
<td>N.E. 4 E.+30°</td>
<td>60</td>
</tr>
<tr>
<td>Apeliotics; Subsolanus</td>
<td>East</td>
<td>90</td>
</tr>
<tr>
<td>Euros; Vulturnus</td>
<td>S.E. 4 E.-30°</td>
<td>120</td>
</tr>
<tr>
<td>Phorcis; Euronotus</td>
<td>S.E. 4 S.-30°</td>
<td>150</td>
</tr>
<tr>
<td>Notos; Auster</td>
<td>South</td>
<td>180</td>
</tr>
</tbody>
</table>

In reckoning from the north round the compass, we can thus better understand the arrangement. Navigators reckon by quarters of circles only; in going from the north to east, or to west, and the same from the south to east, or to west.