This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ **Make non-commercial use of the files** We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.

+ **Refrain from automated querying** Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.

+ **Maintain attribution** The Google “watermark” you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.

+ **Keep it legal** Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps readers discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/
The Gift of
WILLIAM H. BUTTS, Ph.D.
A.B. 1878 A.M. 1879
Teacher of Mathematics
1898 to 1922
Assistant Dean, College of Engineering
1908 to 1922
Professor Emeritus
1922
PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA;

AUCTORE ISAACO NEWTONO, EQ. AURATO;
Perpetuis Commentariis illustrata, communi studio
PP. THOMÆ LE SEUR & FRANCISCI JACQUIER,
Ex Gallicand Minimorum Familia,
Matheos Professorum.
Editio altera longè accuratior & emendator.
TOMI TERTII PARS I.

COLONIAE ALLOBROGUM,
Sumptibus CL. & ANT. PHILIBERT Bibliop.

M.D.CCL.LX.
SERENISSIMO PRINCIPI
ARMANDO GASTONI DE ROHAN DE SOUBISE
S. R. E. CARDINALI AMPLISSIMO
EPISCOPO & PRINCIPI ARGENTINO
&c. &c. &c.

COMMENTARIUM PERPETUUM IN HUNC
CELEBERR. IS. NEWTONI TRACTATUM
D. D. D.

Thomas Le Seur & Franciscus Jacquier;
MONITUM.

PRINCIPIORUM MATHEMATICORUM LIBROS TRES TOTIDEM VOLUMINIBUS COMPLECTI MEDITABAMUR, IDQUE JAM IN ALTERA OPERIS NOSTRI PARTE FUERAMUS POLliciti. CUR TERTIUM NEWTONI LIBRUM IN DUAS DIVIDAMUS PARTES DATAMQUE SIC DEM NON LIBEREMUS, IN CAUSA SUNT PRÆCLARA DE FLUXU & REFLEXU MARIS OPERA QUE ANNO 1740 À Celeberrimâ PARISIENSI ACADemiâ PRÆMIO FURE RE CONDECORATA. TOT & TAM EXIMIA IN HISCE OPERIBUS CONTIENUNTUR, QUE NON AD FLUXUM REFLUXU MARIS DUNTAXAT, SED ETIAM AD GENERALES ATTRACTIOÆ LEGES UNIVERASAMQUE ASTRONOMIAM REFERUNTUR, UT Clariss. VIR D. J. L. CALANDRinus cujus consilia impensè veneramur, nos optimè facturos judicaverit, si prœdicta opuscula iis adjungeremus propositionibus quas de fluxu & refluxu maris habet NEWTONUS; quod quidem commodè fieri non poterat, nisi tertium librum in duas partes divideremus. Quamvis eam religiosè servemus legem, sine quâ honestus scriptor nempe esse potest, ut scilicet nihil insignis ex aliquo AUTORE IN USUM NOSTRUM CONVERTAMUS, quin et quod suum est, dûm locus occurrit, tribuatūr, specielem nihilominus grati animi significationem profiteri volumus Clarissimis omnique
MONITUM.

laude nostrâ majoribus Viris DD. Cassini, De Mairan, De Maupertuis, quorum præclaris inventis plurimum debent haec nostra Commentaria. Sed tanta sunt in universum hocce nostrum opus prælaudati Clarissimi D. J. L. Calandrini beneficia, ut huic Doctissimo Viro pares meritis gratias referre non possimus.

Jam sub praelo est altera & ultima Commentariorum nostrorum pars; quia verò nullus est tam mediocris ingenii, quem usus & exercitatio non edoceant, hinc factum est ut aliqua nobis in mentem venerint quæ brevi collecta appendice simul cum reliquâ tertii Libri parte juxta voluminis molem component.

Datum Romæ
in Concl. SSæ. Trinitatis
Anno 1742.
PP. LE SEUR ET JACQUIER

DECLARATIO.

EDITORIS
MONITUM.

Intelleximus quosdam malignè interpretari notulas quas adiacimus Commentariis PP. Le Seur & Jacquier, quasi seeplus Newtoni memem non attigisseut; ne autem ipsis vitio vertatur quod concesserunt ob ipsorum absentiam ab urbe in quâ liber edebatur, ut nempe quæcumque viderentur corrigenda, ab Editore ipso mutarentur, sive levia sive gravia forent, monendum putò, me Authorum diligentiam & Doctrinam nusquam desiderasse, corrections quas feci levissimi esse momenti, nec esse tales ut propter ipsas quidquam ex debitâ Authoribus gloriam tollatur quod meæ opellæ tribuatur, & asterisco notatas fuisset, non quod aliquid laudis exinde speravere, sed quia si illic aliquid vitii irepserit, eum est ut in Editorem, non in Autores ea culpa transfe-
ratur; Ne similibus cavillationibus occasio in poste-
rum detur, tales distinctionis notulæ non adhibebuntur in IIa hujus Voluminis parte, in quâ speramus calculos Newtonianos circa Lunam potissimum satis intricatos, in apertam lucem expositum iri.
INTRODUCTIO

AD

TERTIUM LIBRUM

Philosophiae Naturalis

I. Newtoni.

CAPUT PRIMUM.

Quale oculo nudo appareat mundi systema, paucis exponitur; & prima Astronomiae Elementa breviter revocantur.

1. FIGURA telluris est propemodum sphærica, & idem gravium directio (ut pote quæ aquirum stagnantium superficiem perpendicularis est) ad centrum terræ tendit quam proximè. Patet per Eclipser Lunares in quibus umbra terrestris, in quamcumque coeli plagam vergat, est semper ad senrum circularis.

2. Spectator terrestris quærum superficies sphærica concava, stellis plures distinxta, cujus ipse spectat cuiuscentrum occupat, quæque circum puncta fixa cei cardines ab ortu ad occasum æquabiliter convertitur, & 24 circiter horis integram revolutionem absolvit. Puncta illa opposita P & p circâ quæ rotari videtur. Phæra, Poli mundi dicuntur, quorum is qui nobis conspicius est, ut p, arcticus vel borealis dicitur, ipse vero oppositus P antarcticus seu australis appellatur. Rectâ linea P p utrimum punctum connectens Axim mundi vocatur.

Æquator sive æquinoctialis est circulus sphæreæ célebris maximus cujus poli idem sunt cum polis mundi; proindeque sphæram mundam dividit in duo hemisphærias, Boreale AEPQ, in quo est polus borealis P; & australis AEPQ, in quo est polus australis p.

Tom. III.
INTRODUCTIO

CAP. I. terr quo eandem inter se locatiam perpetuò servat; Erratica vero
etiam Planae vocant quae distantias suas à fixis in dies mutant & mo-
tus proprius ferri conspiciuntur. Planetae sunt septem suis propriis signis
notati, videlicet Sol ☉, Luna ☾, Mercurius ☽, Venus ☉, Mars ☽,
Jupiter ☼ & Saturni ☼; Terra vero signum est hoc ☾.

4. Elliptica est circulus sphærae maximus quem centrum solis motu
proprio ab occasui ad ortum singulis annis describere videtur. Hic cir-
culus Æquatoris oblique interfectus inter angulo inclinationis Æ T C, graduum
23½ circiter. Puncta duo opposita in
quibus æquator & ecliptica se lege mutuo
secat, Æquinoctialis dicuntur quod sole
in iis positum dies ubique terrarum nocti
æqualis sit, & indè tempus quo Sol pun-
tum alterutrum æquinocitiali attingit
vocatur æquinoctium. Punctum æquino-
citiali vernale est undè Sol motu proprio
versus polaris borealem ascendit in E-
ciplatica, autunnale vero undè Sol versus
polum australi descenit, id est æqui-
ñoctium est vernale vel autunnale. Puncta Solstitialia sunt Eclipticae
puncta duo opposita quæ æ quibus æquinocitialibus toto circuli quarant-
te distant, quæque proinde maximè recedunt ab æquatorem & in quibus
ascensus Solis suprâ æquatorem & descensus infrâ eundem terminatur.
Horum punctorum prius ætitutum appellatur quo nimirum terminatur
Solis ascensus suprâ æquatorem; posterius brumalis vel hybernus. Dis-
cuntur solstitialia quod sole in iis vertante, per aliquot dies ex eodem
Horizontis puncto oriri, & è regione, in eodem puncto occidere vi-
deatur. Tempus quo Sol puncta solstitialia ingrediunt, vocatur Solsti-
tium, quod id est æstimum vel brumale est.

Signum celeste est duodecima pars eclipticae & in 30 gradus rursu
dividitur. Primi Signi principium est in puncto æquinocitiali vernali &
quo signa ab occasu in ortum juxta motum proprium Solis numerantur. Sex
sunt borealia per borealem ecliptica parrem distributa, hisque no-
minibus ac characteristicibus designata: Aries ♒, Taurus ☼, Gemini ☽,
Cancer ☿, Leo ♌, Virgin ☽. Sex etiam australia, videlicet Libra ♍,
Scorpius ♏, Sagittarius ☐, Capricornus ♐ vel ♐, Aquarius ☐;
Pisces ♒. Aries, Taurus ac Gemini, quæ inter punctum æquinocitiali
vernæ & punctum solstitiali æstivum continentur, dicuntur signa vernae-
lia; Cancer, Leo, Virgin æstivæ æstivum ad æquinocitiali autunnale
numerata appellantur æstiva; Libra, Scorpius & Sagittarius autumna-
lia;
AD TERTIUM LIBRUM.

5. Zodiacus est sphærae celestis portio seu zona duobus circulis Eclipticæ parallelos & gradibus 8 vel 9 hinc inde ab Eclipticâ diffinibus terminata, sub quâ planetae omnès motus suos absolvunt. Dum planeta ab occafo in ortum seu secundum ordinem signorum, aut quod idem font, in signa consequentia, nimirum ab ariete ad tauro, a tauro ad geminos &c., motu proprio fertur, ille planeta tunc temporis directus vocatur; cum ipsius motus proprius cessare videtur, seu dum planeta in eodem coeli puncto moratur per aliquot diem cernitur, eundem situm fixarum respectu servans, stationarius dicitur; retrogradus tandem appelleretur ubi contrà signorum ordinem seu in antecedentia, ut à tauro ad arietem, ab ariete ad pisces &c. proprio motu incedit.

I N T R O D U C T I O N

Circulus verticalis est circulus quilibet maximus ZNX per Zenith atque Nadir & per aliud quodcumque punctum in sphææ mundanæ transiens, idœque horizonti perpendicularis.

Meridia-
AD TERTIUM LIBRUM.

9. Distantia horizontis apparentis ab horizonte vero fīve telluris semidiameter S T, sensibilis non est, si conferatur cum stellarem (Lunā ferè solò excepta) distantis, & idcirco terra respectu sphærae stellarum tanquam punctum, et quilibet terræ locus tanquam hujus sphærae centrum considerari potest. Nam omnes ferè Astronomorum observationes id supponunt, & computa indi inita cum phænomenis caelestibus quadrant. Porro quemadmodum fingula terræ loco pro centro sphærae stellarum ueturum possunt, ita fingi potest in spatii caelestibus sphærica superficies cujus tanta sit diameter ut illius respectu evanescat Solis vel stellæ datae a Tellure distantia, & hujus sphærae centrum poterit collocari in differenter vel in terræ vel in sole aut in spatii intermedio.

11. Jam verò quæ ratione phænomena quæ suprà retulimus, & alia quæ deinceps referamus, oblevari potuerint, paucis exponemus; & quidem ab observatione altitudinis apparentis siderum quæ praecipuum totius
totius Astronomiae fundamentum est, initium ducemus. Circuli quadrans SAB cujus limbus ACB in gradus & minuta divisus est, ita statuitur ut filum SCD pondere D tensum ideoque verticali, lignum illius tangat, deinde ita vertitur ut sidus L cujus altitude observanda est, per dioptras aut per telescopium lateri SB affixum videatur in eodem latere SB producto. Quo facto, habetur arcus AC, mensura altitudinis apparentis LS; nam cum filum est quadrantis centro S pendens fit semper in plano verticali, quadrans ASB erit etiam in eodem plano, (Eucl. 18. XI.) ideoque hi ad SD perpendicularis, exit intersecion.
AD TERTIUM LIBRUM.

occidentem versūs à meridiano æquidistantia, ea puncta erunt suprà horizontem senibilem æquè alta, & contrà si æquè alta sint, à meridianno hinc indè æquidistantabunt. Quare si stellæ fixæ meridiano vicinæ altitude obseruetur versūs orientem, & deinde quadrans circū filum verticale imnotum ceu circa axem convertatur versūs occidentem & expectetur donec stella eandem altitudinem habeat, recta quæ bīfariam dividet angulum inter duos quadrantis cum horizonte intersectiones comprehensus, erit linea meridiana.

13. Datis per observationes duabus ejusdem stellae nunquam occidentis altitudinis meridianæ SR, s R, dantur poli P & æquatoris AEQ altitudines PR & E H suprà horizontem HR. Nam datis arcubus SR & s R datur eorum differentia S S; & quia stella S circulum describit æquatori parallelum (3) cujus P est polus, erit SP = s P; unde datur PS, cui si addatur s R, habebitur arcus PR alto modo poli. Eft autem HAE æqualis arcui ZP feu complemento altitudinis poli ad rectum (10), datur ergò HAE altitude æquatoris.

14. Datâ stella S altitudine meridianæ SR cum æquatoris vel poli altitudine, datur illius declinatio SÆ; est enim arcus SÆ æqualis differentiae arcuum ÆPR & SR. Sic observando quotidiē altitudinem meridianam centri Solis, & indè eraeo ipius declinationem, determinatum est planum eclipticæ & ejus ad æquatorem inclinatione seu maxima ab æquetore declinatio quà inventa est 23½ grad. aut verius 23° 29'. Datâ autem inclinatione eclipticæ ad æquatorem cum folis declinatione, datur ascensione rectâ Solis ac longitudo. Sic enim P polus mundi, γÆ æquator, γL æcliptica, & PLE, circuli quadrans æquatioris perpendicularis in Æ, & dati in triangulo sphærico Æ γL rectâgulo in Æ, latere seu declinatione Solis LE, & angulo ΩL, 23° 29', dantur latus γÆ ascensionis rectâ folis, seu puncti L, & latus γL quod est ejusdem longitudo, imd datur etiam angulus ÆL γL quem circulus declinationis efficit cum Eclipticâ; Cum vero praeter angulum ÆL, data fuerit longitudo γL, dabitur tum γÆ ascensionis rectâ tum ÆL declinatio.

15. Si
15. Si quotidiem observetur meridiana Solis altitudo, atque indé eruantur ipsius declinatio, acfenio recta & longitudo, dabantur motus Solis in Eclipticā, motus puncti declinationis in Æquatore & temporis momenta quibus declinatio vel nulla est vel maxima, seu dabantur Æquinocītorum & Solstītorum momenta (4). Porrō observatum est nec longitudinem nec acfenionem rectā Solis uniformiter crescere & proinde dēe Solares esse inæquales. Nam dies Solares est tempus unius revolutionis diurnae Solis à meridiano ad eundem meridianum; dies sidéreæ seu primi mobilis (qui semper idem manet) est tempus revolutionis diurnae stellæ fixæ à meridiano ad eundem. Unde cum Sol motu proprio ab occaʃū in ortum feratur, stella fixa & Sol in eodem meridiano simul observetur, stella ad eundem meridianum prīus redibit quàm Sol qui motu proprio versus orientem tendit. Attamen si acfenio recta Solis ex ipsius motu proprio in Eclipticā uniformiter cresceret, dies Solares, licet diebus sidéreis longiores, effent tamen inter se inæquales; Quare cūm Solis acfenio recta non augeatur uniformiter, necesse est ut diæ Solares inæquales sint. Simili modo collatis inter se Æquinocītorum & Solstītorum observationibus deprehensus est Solem intervallo 8 ferè dierum diuitius morari in signis borealis quàm in signis australibus; ac tandem comparando antiquas observationes ad determinandum momenta æquinocītorum vel solstītorum cum recentioribus, definita est quantitas annō æquinocītialis, fīve tempus quo Sol motu proprio ab uno æquinocīcio ad idem æquinocītium, vel ab uno solstīcio ad idem solstītium progradit, & ab Authoribus Calendarii Gregoriani La Hirio, Cafine & Blanchino inventa est 365 dier. 5 hor. 49'.

16. Datā quantitate annō æquinocītialis, datur motus Solis mediūs pro quolibet dato tempore, hoc est motus qui Soli competeret si uniformiter in Eclipticā ferretur. Est enim ut 365 d. 5 h. 49' ad tempus datum, ita 360° quos Sol annō æquinocītialis tempore describit proprio motu ad arcum eclipticæ dato tempore conficiendum. Hāc proportione arcus eclipticæ anno communi 365 dier. describendus est XI Signorum 29°. 45' 40", die uno est 59' 8" 20", horā unà est 2' 28", minūto uno est 2' 28".

Arcus æquatoris qui dato tempore sub Meridiano transit, simili modo inventetur; nam quæratur arcus æquatoris dato tempore sidereo sub meridiano transiens, dicendum est: ut 24 horæ sidereæ ad tempus datum, ita 360 grad. ad arcum quaæritum, is ergo horā unà erit 15°; minuto uno primo 15', minuto secundo 15". Cūm autem Sol die uno describat motu proprio medio ad Æquatorem revoluto arcum 59' 8" 20" ab occaʃū ad ortum, ut inventatur arcus æquatoris dato tempore Solari medio sub Meridiano transiens, dicatur ut 24 horæ Solares ad datum tempus Solare, ita 560° 59'
AD TERTIUM LIBRUM.

CAP.

17. Si observetur altitudo meridiana Solis & dato ante vel post meridiem tempore observetur etiam altitudo meridiana stellae alijus, stellae hujus damatur declinatio & ascensio recta. Nam ex datâ altitudine meridiana Solis datur ejus ascensio recta (14) & tempore quod inter duas observationes intercedit in arcum æquatoris convertio (16) datur arcus æquatoris qui tempore inter duas observationes elapso per Meridianum transit; hic arcus addatur vel subducatur ascensioni rectâ Solis, & summa vel differentia erit ascensio rectâ stellæ. Declinatio autem stellæ ex ipsâ altitudine ejus meridianæ eruitur (14). Quod si centrum Solis & centrum stellae in meridiano simul reperiantur, eadem est utriusque ascensio rectâ.

19. Ex hujusmodi observationibus & calculis inventum est, fixa-

Tom. III L.
C. A. P. L.

rum latitudines immutabiles esse, longitudines vero per singulos annos \(\omega \) secundis, & per annos 72 gradu uno quamproximè augeri. Unde manifestum sit stellas fixas motu proprio sed lentissimo in circulis eclip
cæ parallelis progradi in consequentia, aut si stellæ fixæ omni proprio
motu priventur, puncta æquinocitialia singulis annis in antecedentia mo-
veri per arcum 50", atque hæc est praecessio æquinocialium ex quæ
fit ut Sol motu proprio ab æquinocchio ad idem æquinocciuem citius
vertatur quæm à stellæ fixæ ad eandem. Annus igitur Solaris æquinoci-
tialis brevior est annu Solari fidere, hoc est brevior est tempore unius
revolutionis Solis à stellæ fixæ ad eandem fixam; differentia est 20\(^\circ\) 17"'
quo tempore Sol motu proprio arcum 50" conicit. Est ergò annus li-
dereus 365 dier. 6 hor. 9\(^\circ\) 17".

20. Stellarum distantiam dicitus arcum circuli maximi inter stella-
rum centra comprehensum aut, quod eodem re
dit, angulum quem re-
cit à centris stellarum ad oculum spectatoris ductæ efficuit. Sì igit
semitem circuli vel quadrantis observantur distantiae stellæ alicujus ab alius
dubus stellis quadrum longitudo &
latitudo notæ sunt, illius quoque
longitudo & latitudo dabuntur. Nam
esto eclipstca E.L, polus ejus M,
stellæ notæ longitudinis & latitudi-
nis S & F, tertia stella D. Du-
cantur tres circuli latitudinis M D E,
M S B & M F A, sintque date di-
fiantiae D S & D F. Qua dantur
latitudines S B & F A stellorum S
& F, dabuntur earum complementa
S M & F M cum angulo B M A,
cujus mensura est arcus B A, differe
in longitudinis stellorum S & F, & ideò in triangulo S F M, dabiu-
tur S F, cum angulo M S F. Datis in triangulo D S F, tribus late
ribus dabitur angulus D S F, & si ex 360° seu quatuor angulis rectis
subducatur summâ angulorum datorum D S F & F S M, dabitur an-
gulus D S M, cum quo & notis lateribus D S & S M, reperientur la-
tus M D complementum quasiæ latitudinis stellæ D, & angulus E M B
cujus mensura est arcus E B, differentia longitudinum stellorum D &
S; haæ autem observationes distantiarum Aëtrorum inter se propter A-
ëtrorum continuam conversionem non facilè ad summan acribeiam per-
ducuntur.

21. Sit \(\pi \) æ ñ q telluris globus per cujus centrum T transit axis
mundi P p. Loci æ fit horizon sensibilis h r, horizon rationalis H R,
AD TERTIUM LIBRUM.

& meridianus PZH N. His ita constitutis, axis telluris dicitur pars \(\pi \), axis mundi \(Pp \) telluris superficie terminata in punctis \(\pi \) & \(\tau \), quae poli terrae vocantur. Polus \(\pi \) polo celesti \(P \) nobis conspicuo subiectus borealis vel arcticus, alter \(\tau \) australis vel antarcticus appellatur. Intersectio plani æquatoris celestis cujus est diameter \(AEQ \), cum telluris superficie, sit circulus maximus \(s q x \) cujus poli sunt \(\pi \) & \(\tau \), dicitur æquatotor tertius aut etiam circulus æquinocitialis vel \(\omega l \) linea. Latitudo loci cujusvis \(z \) in superficie terræ est distantia ejus ab æquatore, \(\ell \).

\[\begin{align*}
\text{V} & \quad \text{G} \\
\text{Z} & \quad \text{S} \\
\text{P} & \quad \text{H} \\
\text{T} & \quad \text{R} \\
\text{N} & \quad \text{Q}
\end{align*} \]

\(\ell \) est meridiani terrestris arcus \(z \) æ inter locum \(z \) & æquatorem \(z q x \) interceptus. Unde patet latitudinem loci \(z \) in superficie terræ numero graduum æqualem esse declinationi celestis verticis \(Z \) ejsdem loci, seu elevationi poli \(PR \). Nam arcus \(PR \) & \(ZE \), sunt æquales (10) & arcus \(ZE \) & \(z \) æ similes; Per locum in superficie terræ pro arbitrio determinatum ducatur meridianus \(\pi \tau \) æquatorem \(s q x \) secans in \(r \); dicaturque \(\pi \tau \) primus meridianus, \& loci cujusvis alterius \(z \) longitudo dicitur æquatoris arcus \(r \) æ inter meridianum primum \(\pi \tau \) & meridiam.
CAP. I.
ridianum \(\pi \) loci \(\pi \) interceptus atque ab occasu ad ortum

\[\text{\textit{Introductio}} \]

22. Si per trigonometriam mensuretur distantia \(z \) duorum locorum \(z \) & \(l \) sub eodem meridiano sitorum \& ope quadrantis circuli ex ita
dem locis observentur distantiae \(S \pi \) & \(SV \), stella\(S \) a locorum
verticibus \(Z \) & \(V \), dabitur telluris semidiameter \(z \) \(T \). Nam datis arc
\(\text{\textit{cubus}} \) \(SV \) & \(S \pi \), dabitur eorum differentia vel summa \(V \pi \), & hinc

datur arcus \(I \pi \) qui arcui \(V \pi \) similis est. Quare per observationes a-
\(\text{\textit{straronimicas}} \) notum erit quot gradus vel minute in arcu \(\pi \) contineant-
tur, \& per trigonometricas mensuras ejusdem arcus longitudo hexapedis
vel pedibus aut \(\text{\textit{allis mensuris}} \) notis data erit, \& indè inferendo ut nu-
merus minitorum in arcu \(I \pi \) contentorum ad \(360^\circ \) seu ad \(21600' \);
\(\pi \) longitudo \(I \pi \) mensuris notis expressa ad circulum telluris maximum,
dabitur hic circulus ex quo invenietur semidiameter \(z \) \(T \).

\textit{Caput}
CAPUT II.

Siderum refractio & parallaxis breviter explicantur.

Sit MN plana superficies quâ aer rarior MOPN aerem densiorem contingit. Radius lucis per rectam AC propagatus ex aere rariori in densiorem oblique transiet per punctum C & inde feratur per CE, per C ducatur BF ad MN perpendicularis, experimenta certum est radium AC in aere densiori non propagari per rectam continuam AC D, sed in puncto C ita refrangi per CE accedendo ad perpendiculararem BCF, ut sinus anguli cuiusvis ACB sit semper ad librum anguli ECF in datâ ratione. AC dicitur radius incidens, CE punctum incidentiae, CE radius refractus, ACB angulus inclinationis, ECF angulus refractus, & DCE angulus refractionis.
CAP. 14. 24. Si atmosphaera CXFOMA terræ ADM circumfusa, divisa siltelligatur in innumeris superficiis sphæricas telluris superficie concentri-
cas CXFO, BVEN aër inter duas hujusmodi superficies contentus
& aeris superioris pondere compressus ed denflor erit quà minus à tellu-
ris centro T diffabit. Sit ZSH circulus verticalis ex centro telluris
T descriptus, arcus SH altitudo sideris S suprà
horizontem rationalem
TH, & ZS distantiasideris à vertice Z. Si
radius lucis SX et side-
re S propagatus incidat
in atmosphaeram in X,
is refringetur in X per
XV accedendo ad fe-
midiametrum TX superfici-
ecæ CXFO perpendicularüm (23)
& quoniam aëris den-
titas in V major est
quàm in X, radius in
puncto V, superficiæ
BV E rursus refringe-
tur accedendo ad TV,
atque ità continuò in-
curvabitur & in lineam
XVA versus T cavam flektetur. Hanc curvam tangat in A recta As,
circulo verticali ZH occurrent in s, & quoniam radius lucis SXVA
oculum spectatoris in A ingreditur secundum directionem tangens A,S,
fidus, quod est revera in S, videbitur in s, in loco nempe altiore; no-
tum enim est ex optica objectum videri in eà reçta secundum quam fit
directió radiorum oculos ingredientium.

25. Producatur TX ad L, ut sit SX L angulus inclinationis radii
SX in atmosphaeram incidentis, & VXT angulus refractus, data erit
ratio findis anguli SX L ad finum anguli VXT (23) ac proindè fi-
nus angulorum inclinationis erunt femper ut finus angulorum refracto-
rum. Quare sideris in vertice Z constituti, ubi nullus est angulus in-
clinationis, nulla erit refractio, & siderum in æqualibus à vertice di-
stantiis fitorum, ubi æquales sunt inclinationum anguli, æquales erunt
refractiones. Solis igitur, Lunæ, fixarum ac siderum omnium extra
terrestrem atmosphaeram constitutorum, in paribus à vertice distantii
refractions sunt æquales.

26. Si-
26. Siderum refractio ad singulos altitudinis gradus, observatione definiri potest. Efto HR horizontem, P polus mundi, AE equator, PZH Meridianus, ZSV circulus verticalis, PSD & PSD, circuli declinationis. Stellæ fixæ F prop. Zenith confitatae observetur altitudo meridiana HF, quæ ad refractione libera est, & inde eruatur ejus declinatio F E (14). Deinde observetur ejusdem stellæ in S positæ altitudo quælibet SV, & ope horologii oscillatorii notetur tempus quod inter primam & secundam observationem intercedit, & inventatur arcus æquatoris ED qui eo tempore per meridianum transit (16). Stellæ quæ ob refractione in loco altiori s apparat sit revera in S, erit PSD circulus declinationis stellæ in S confitatae, & in triangulo PZS, dabitur angulus ZPS, cujus menfura est arcus ED cum latere PZ quod est distantia poli à vertice & latere PS, quod est declinationis DS feu AF complementum, unde inventur latus ZS cum altitudine SV, complemento lateris ZS. Si ergo ex altitudine observata SV, subducta altitudo inventa SV, quæ ad refractione libera est, dabitur arcus SS, refractio stellæ in quolibet gradu altitudinis. Hoc modo D. De la Hire in tabulis Astronomicis observavit refractiones siderum diversis annis tempellatibus, in pari altitudine eadem esse, exceptis refractis circit horizontem quas nonnullis inconstantis obnoxias exemptus est, a quæ hinc unicum tabulam refractorum ex ipsis observationibus deductam constituit, quam postea corriguit D. Cuffianus, & eæ corrigita utuntur Astronomi. Quoniam vero radiorum lucis in atmosphaeram incidentium obliquitas cum sideris à vertice distantia crecit, idem observationibus inventit refractiones siderum à vertice ad horizontem uquæ ubi maximæ sunt, continuò augeri; at quod ex alienis observationibus supponebat, videlicet refractiones horis regionum ipsa etiam æsta-tæ, longè maiores esse quam in zonis temperatis, id minimè verum esse offendunt accuriores observationes ab Academicis Parissiisbus ad circulam polarem habitæ, quibus refractiones etiam horizontales Parissiisbus æquales invenerunt. Vide Domini De Maupertuis nobilissimum opus de figurâ telluris per observationes ad circulum polarem definità.

27. Refractio sideris declinationem, ascensionem rectam, longitudinem ac latitudinem efficit; & arcus circuli maximi quo sideris declinatio, ascension recta, longitudo & latitudo minuitur vel auge tur per refractio-
fractionem, dicitur refractio declinationis vel ascensionis rectae &c.; at ex datâ altitudinis refractione aliae refractionum species inventi possunt. Nam in figurâ superiori dantur in triangulo s Z P latera Z s & Z P cum angulo Z P & indê reperitur latus s P cum angulo s P Z cujus mensura est arcus E d, unde cùm detur arcus E D, dabitur arcus d D refractio ascensionis; rectae sideris S; & quia dantur arcus d s & D S, dabitur etiam horum arcuum differentia, quae est refractio declinationis. Sed datis declinatione & ascensione rectâ puncti cujusvis in sphæra mundanâ, dantur ipsius latitude & longitudo (18); patet igitur quomodo latitudinis & longitudinis refractiones possint inventi.

28. Jam de Parallaxis pausa nobis delibanda sunt. Cætera, ubi opus fuerit, suis locis exponemus. Itaque diffantia locorum in sphæra caelestis ad quæ sidus vel phæno menon quodvis est superficie telluris & ex ejus centro spectatum refertur, sive arcus circuli maximi inter illa duo loca interceptus, ipsius sideris aut phæno meni parallaxis appellatur, quæ proinde nulla est nisi terræ semidiameter sensibilem habeat rationem ad distantiam sideris à terrâ. Sit T centrum telluris ac coeli; A oculus in superficie terrae; Z zenith loci A; Q sidus vel phæno menon quodvis; C Q P verticalis per Q transiens; Z S X H verticalis in superficie sphæ ræ caelestis; A B E verticalis in superficie terræ; T H horizon rationalis & A h horizon sensibilis. His ītā constitutis, locus physis sidereal Q, est punctum illud in quo sideris centrum hæret. Locus opticus apparet seu viscus est punctum V in superficie sphæ ræ caelestis, in quo recta ex oculo A per centrum sideris Q duâ terminatur. Locus opticus verus est punctum S in superficie sphæ ræ caelestis in quo terminatur recta linea T Q S ex terræ centro T per Q duâ. Parallaxis est arcus S V sive differentia duorum locorum opticorum. Angulus parallacticus qui plerunque etiam Parallaxis vocatur, est angulus A Q T quem in centro sideris efficient rectæ A Q & T Q ex oculo A & ex centro terræ T ad sideris centrum Q duâ. Parallaxis altitudinis quae & parallaxis simpliciter dicitur, est differentia inter distantiam Z V à zenith Z ex loco A visam & distantiam veram Z S, sive est arcus S V in circulo verticali Z S V H, unde manifestum est altitudinem sideris veram per parallaxim minùs & ejus à vertice distantiam augeri, atque idem parallaxis esse refractioni contrarium. Parallaxis horizontalis est parallaxis X h, sideris P in horizonte sensibili A h apparentis. 29.
29. Parallaxis SV est mensura anguli parallactici AQT. Jungatur TV, & angulus externus AQT equalis erit duobus internis oppositis QTV & QVT; sed angulus QVT fivè AVT, evanescente AT respectu TV, nullus est (9), ergo angulus parallacticus AQT equalis est angulo QTV, seu STV, cuius mensura est arcus SV.

30. Manente sideris à centro terræ distantia, sinus parallaceos est ad sinum distantiae visæ sideris à vertice in ratione datae semidiametri telluris ad distantiam sideris à centro terræ. Nam in triangulo AQT, est AT ad QT, in ratione finitis anguli parallactici AQT sed finitus parallaceos ad finum anguli TAO fivè ad finum distantiae visæ ZV à vertice, & ideò, dati AT & QT, data est ratio finium illorum. Hinc vèrò sequitur sideris in vertice Z, constitui parallaxim esse nullam, eandem crecere cum distantia à vertice & in horizonte fieri maxîmam. Sequitur quoque sinus parallacium in paribus sideris à centro terræ distantis esse ut sinus distantiarum visarum à vertice, & ideò si detur parallaxis sideris in aliqua à vertice distantia, dabitur in alia quàvis distantia à vertice.

31. Datâ sideris Q, parallaxi AQT, cum angulo ZAV seu distantia apparente à vertice, datur in semidiametris terræ tum distantia QT, sideris Q à centro terræ, tum distantia ejus AQ à loco A. Data enim angulo ZAQ datur TAO complementum illius ad duos re-

32. Cosp.
32. Sinus parallaxeon siderum Q & q in aequalibus distantibus apparentibus est vertex, sunt in ratione reciproce distantiarum siderum ad centro terrae. Etenim ut sinus parallaxeos AQT, ad summum anguli ZAV; ita est A T ad Q T, & ut sinus anguli ZAV, ad sinus parallaxeos A q T, ita q T ad A T, idemque ex aequo, sinus parallaxeos AQT est ad summum parallaxeos A q T ut q T ad QT. Ex quo etiam sequitur siderum in eadem altitudine apparente existentium, hujus maiorem esse parallaxim quod minus diffat ad centro terrae.

33. Parallaxis altitutinis, uti de refractione dictum est, sideris declinationem; ascensionem rectam, longitudinem & latitudinem mutat; & eodem modo quo ex refractione altitudinis inveniuntur alias refractio-
num species, sic ex datâ parallaxi altitudinis eruantur parallaxes declinationis, ascensionis rectae, longitudinis & latitudinis; illud quoque observandum est, sideris in meridiano existentis nullam esse ascensionis rectae refractio-
num nec parallaxim; cum enim altitudinis refractio sidus attollat, & altitudinis parallaxis illud deprimat, in eodem meridiano
AD TERTIUM LIBRUM.

feu circulo declinationis (per hyp.) ascenso recta indè non mutatur. Similiter si circulus verticalis in quo sidus repercatur, fit ad eclipticam perpendicularis, nulla erit longitudeis refractio nullaque parallaxis; nam in hoc casu circulus verticalis est simul circulus latitudinis, et fiderum in eodem latitudinis circulo existentium longitudo est eadem.

INTRODUCTIO

motu diurno ac proprio agitatorum parallelas potest determinare. De his, ubi est vifum fuerit, dicemus. Vide, Reill. in Introduzione ad veram Astronomiam.

CAPUT III.

De Telescopii ac Micrometri usu & Phenomenis borum Instrumentorum beneficio observatis paucis.

35. Sit Telescopium Astronomicum DFGE, vitrum objectivum DE, oculare FG; objectum AC; ita remotum ut radii qui ex singulo illius puncto in totam vitri objectivi superficiem incident, pro parallelis possint usurpari. Radii illi ex eodem puncto v. gr. A propagati, a vitro objectivo ita franguntur ut post vitrum DE coeant in unum punctum a, quod est puncti A imago, & similiter punctum C pingitur in c, totemque objectum AC in a c, sive inverso, siveque a c a foci locus in quo proinde oculus O, trans vitrum oculare FG, videt objectum AC, seu ipsius imaginem a c. Hinc si in foci loco c a positum sit corpus aliquod opacum, oculus illud diffinde videbit tanquam objecto AC, seu potius imaginem ejus a c contiguum.

36. Sit BO Radius ad AC normalis & per centra H & M vitrorum transiens, idemque irrefractus. Junctor recta AO, & objectum AB, occulo nudo videntur sub angulo AOB, siveque proinde angulus AOB, magnitudo apparentis objecti AB. Quoniam vero radii ex punctis imaginibus b & a parallelè propagati colliduntur a vitro oculari FG in ejus foci O ubi oculus veratur, pars objecti AB, seu ejus imago a b, videtur sub angulo MOL, & (per probl. 31. Element. Dioptr. Claris. Wolf.) distantia foci lentis objectivae H b, est ad distantiam foci lentis ocularis b M, ut angulus MOL ad angulum AOB, seu ut magnitudo apparentis imaginis a b ad magnitudinem apparentem objecti AB nudo oculo visi, ex quo pa-
AD TERTIUM LIBRUM.

tet quod in eodem Telecopio magnitudines apparentes objectorum sunt proportionales magnitudinibus imaginum in foco posticurum & trans vitrum oculare viñaram.

37. His positis, facile est micrometrum ufmum intelligere. Est aum micrometrum instrumentum quod in foco lentis objectivae telecopii aptatur ad magnitudines apparentes quae gradum unum vel gradum cum semijisse non superant, dimetiendas. Illius constructionem quam D. De-la-Hire in tabulis Astronomicis notavit uibus Astronomicis accommodatores deduct, referentes. Constat ex duobus quadrivit angulis quorum alterum ABCD, ut plurimum longitudinem habet duorum pollicis cum semisfe & latitudinem unus pollicus cum semisse. Hujus quadr, latera longa AD, CB, in partes aequales & tertia parte unus pollicus inter se distantias dividuntur, ita tamen ut linea duæ per fungi-

las divisiones sit ad latera AD, CB, perpendiculares. His divisionibus filæ serica benè tensa applicatur, glutinanturque ceræ. Additur filum sericum KL, dictum transversale, quod ad angulos rectos fila parallela modo descripta a b, c d, e f, &c. sect & in medio laterum AC, BD glutinatur. Alterum quadrum EFGH cujus longitududo EF non superat unum pollicum cum semisfe, ita priori accommodatur ut ejus latera EF, GH, moveantur super latera AD, CB, alterius quadr, nec ab ipso separentur. Facies hujus secundi quadr, quam dividam faciem prioris respicit, filo etiam serico & tenso h L, ins truitur, quod, cum movetur quadrum ubique prioris quadr filis parallelium maneau, eaque superlabitur quam proxime, nec tamen eis occurrit. Cochlea deinde MN, lateri BD, longioris quadr affigitur, cuius striatum receptaculum lateri FH alterius adhaeret & in foramine rotundo circumvolvitur. Cochlea ejusque receptaculum auriculis S, S instructum ita inter se aptati debent ut receptaculum & quadrum EH. ut minimum quidem moveri possit, nisi receptaculi motu conversionis.
Quadrum ABCD, telescopii cuiusvis longitudinis tubo in distantiam foci objectivæ lentis ita aptatur ut ipsius quadræ planum perpendicularè fit ad telescopii axem. His ita constitutis, telescope in coelum convertatur & ita dispositur ut duæ stellæ fixæ quarum distantia apparens in minutis secundís aliunde nota sit, fint in filo transversali KL, potetæ, vereturque cochlea donec filum mobile hL, per centrum x, stellæ unius transeat, alterius stellæ centro m, vel n, existente in alió filo ab, vel cd. Hæc observatione notum erit cuinam distantiam apparenti respondeat longitudo mx, vel nx, in lineis & lineæ partibus data, & indè per proportionis regulam, observata qualibet aliis siderum distantia

nq, dabitur angulus sub quo hæc distantia nudo oculo videretur, inferendo sic: ut mx vel nx ad nq, ita distantia apparens stellorum duorum m, vel n, & x ad distantiam apparentem punctorum n & q. Moveatur jam quadrum EFGH ope receptaculi striati donec filum ejus fericum h1, exactè conveniat cuilibet ex filis parallelis alterius quadræ, noteturque positio auricularum receptaculi & iterum moveatur receptaculum donec idem filum quadræ EFGH proximo filo alterius congruat, vel, quod idem est, moveatur quadrum EFGH, per spatium quatuor linearum, numerenturque revolutiones receptaculi & partes unius revolutionis quæ filorum intervallo linearum quattor conveniunt. Condatur tandem tabula revolutionum receptaculi & partium ejus quæ singulis minutis primis & secundis ex noto superiūs toto intervallo debentur.

38. Ubì diameter planetae erit observanda, directo telecopio cum micrometro ad planetam ita dispositur filæ movendo telescope linæum ut sideris limbus unum ex filis parallelis immobilibus percurrat; deinde receptaculum convertatur, donec filum mobile limbus alterum Planetae contingat. Manifestum est, ex distantia cognita inter filæ micrometri quæ
AD TERTIUM LIBRUM.

39. Datâ declinatione & ascensione rectâ stellæ fixæ, inveniri potest alterius stellæ declinatio & ascensio rectâ, modò tamen duæ illæ stellæ transire vicissim possint per campum telescopii immoti. Ita enim dissipantur fila parallela micrometri, ut motus diurnus stellæ, quæ alteram praecedit, fiat super unum ex illis V G. Super a b, in quo fitum c d, exponet portionem exguam paralleli quam stella describit, & fitum K L illud ad angulos rectòs interfécans, circumulum aliquem declinationis. Notetur temporis momentum quo stella praecedens filo transversali occurrît in m. Similiter immoto telescopio observetur tempus appulsus alterius seu sequentis sideris ad idem filum transversale seu circumulum declinationis, & si interæ filum parallellum mobile h L, sideri huic apparet, immoto manente micrometro ope distantis m x, filorum a b & h L, distantiam apparentem inter parallelos siderum duorum quae est differentia declinationis siderum, obtinebimus. Sed si differentia temporis inter utriusque sideris transiit per filum transversale in minuta tam primâ quansecundâ gradus convertatur (16) differentiam ascensionalem siderum habebimus.

40. Haec observationis supponit nullum esse sideris motum proprium multumque parallaxim. Si fides motum proprium habeat, illum oportet ex observationibus determinare quod declinationem & ascensionem rectam, illiæque rationem habere. Quo peracio, si aliqua sit sideris parallaxis, poterit ita reperiri. Observetur sideris ad meridianum appellationis ascensio recta quæ parallaxi obnoxia non est (33), & differentia inter hanc ascensionem rectam sideris in meridiano existentis, & ascensionem rectam ejusdem sideris alibi existentis observatum, erit parallaxis ascensionis rectæ, ex quâ parallaxis altitudinis inveniri poterit. Sit enim H R horizon, H Z R meridianus, Z zenith, P polus mundi, Z S E V circulus verticalis, S fides observatum in loco S & deinde in meridiano, E locus sideris visus, S locus verus, & idem S E parallaxis altitudinis; S P & P E circuli declinationis. Datur, (per hyp.) angulos S P E, cujus mensura est parallaxis ascensionis rectæ sideris observata. Datur etiam punctum illud quod est interectio æquatoris & meridiani tempore observationis sideris in E, apparentis, unde habetur arcus æquatoris inter meridianum R Z H & circulum declinationis P E interceptus qui est mensura anguli Z P E. Quare in triangulo Z P E, dantur latus Z P distantia poli à vertice, & latus Z E distantia via sideris
INTRODUCTIO

fideris à vertice cum angulo ZPE. Innotet igitur angulus PZP
ab angulo ZPE, subducatur datus SPE, &
dabitur angulus EPS. Denique in triangulo ZPS, ex datis angulis PZS & ZPS,
cum latere ZP, dabitur latus ZS, vera
fideris à vertice distantia quae ex via ZE,
ablatu relinquuet SE parallæmix altitudinis.

41. Telecopium maculas quamplurimas variabilis quae super corpus Solis incidere videntur ostendit, ex earum
motu solem circu proprium axem 25; diebus revolvi in tertiam. In Venere
pro variis ejus ad Solem & Terram positione phasae diversae conspicuntur
phasibus Lunaribus similes ita ut partem illuminatam Soli constanter
obvertat. Praeterea Mercurius & Venus tanquam maculas nigrae &
rotundæ dicunt Solis trajecte rvi sunt. Unde notum faciunt eft, Plan-
etas illos esse corpora opaca à Sole illuminata. In Jove, Marte ac Ver-
enre maculas observata fuerunt quorum motus rotationem illorum plan-
etarum circa proprium axem probat. Circa Jovem quatuor revolvi vis-
dentur lunulae, Jovis corpus perpetuò comitantur. Sunt omnes, ut &
Jupiter ipse, corpora opaca lumen suum à Sole mutuatæ; nam Jove
inter ipsas & Solem diametraliter interposito, lumine privatæ & caelo
sereno evanescunt; ubi vero aliaquam Jovialis Lunula inter Solem & Jovem
transit, ejus umbra infir maculas nigrae & rotundæ observatur in ipsa
Jovis disco. Quinque pariter Lunulae Saturni comitantur & circa eum
revolutiones suas agunt lumineque privatæ, dum radii Solares à Sa-
turni corpore opaco interciuntur. Hugeniæ ex propriis observationibus
intuit Saturnum cingit annulo tenui, plano, nufquam coherente
cum corpore Saturni & ad Eclipticam inclinato; quæ hypothesis, si ita
nunc potest appellari, non solum Phænomenis ab Hugonio observatis,
sed & aliis plurimis quaé magnà diligentia à Cassino & Malardò obser-
vatæ fuèt, satisfacit. Tandum per telecopium stellæ longè plures quam
oculò nudo cognoscuntur; Stellae illæ quas nebulosas dicunt, & integra via
lacææ, nihil aliud sunt quam plurimarum stellærum, quæ oculo non distin-
guenter, congeries. Novæ quoque in céalis stellæ apparent, & quæ ant-
tè videbantur, nonnunc in conspicue fiant, illarum quædam apparri-
ptiones & disparationis periodos habent quæ quamdam regularitatem obti-
nere videantur, earumque magnitudine sub initio apparitionis crecit & sub
finem decrecit.

42. Si evpius observetur tum motus Solis in Eclipticâ (15) tum
ipius diameter apparentes (39) quæm fieri potest accuratissime, circu
datum punctum in plano describi poterit curva similis orbitæ quam Sol
circu terræ percurrit videtur. Nam cum diametri Solis apparentes
fuit
AD TERTIUM LIBRUM.

fint reciprocè ut ipsius à tellure distantiae, ex datis diametris apparentibus dantur distantiarum rationes, & ex dato Solis motu in Ecliptica dantur anguli inter illas distantias contenti. Si verò ex hujusmodi observationibus conferantur diametri apparentes Solis cum ipsius angulares velocitatem circuitae terram, apparat aræas quas Sol radius ad terram ducto vetrir, esse temporibus proportionales; Solisque orbitam non multum differre à circulo & haberi posse pro ellipsi cujus umbilicum alterum occupat terra. Est autem Solis diameter apparentis maxima \(32^\circ 40'\), & minima \(31^\circ 36'\) juxta D. Cassini in Tabulis Astronomicis; & ideò maxima distantia Solis à terrâ est ad distantiam minimam ut \(32^8\) \(40'\) od \(31^9\) \(36'\), fīve ut \(1950\) ad \(1896\) circiter, fīve \(245\) ad \(237\). Ex similibus observationibus, tum diametri apparentis Lunæ, tum velocitatis ipsius in unà revolutione colligitur hunc planetam radius ad centrum terræ ducto aræas describère temporibus circiter proportionales.

43. Si itaque observetur locus Solis in Ecliptica quando tum ipsius velocitas tum diameter apparentis minima est, dabitur tempore dato locus Apogæi Solis, & collatis plurium annorum observationibus innotationes Apogæi motus annuus qui juxta D. Cassini est \(1^\circ 2''\) & inde per proportionis regulam habetur motus Apogæi pro quolibet dato tempore. Hinc si tempore quovis observetur Solis longitudo vera, dabitur eodem tempore locus Apogæi Solis & ipsius anomalia vera ex qua eruetur ejußdem anomalia media (per schol. ad prop. 31. lib. 1.) ac proindè longitudo media habebitur tempore observationis. Hac longitudo media assumatur tanquam radix seu principium motuum mediorum Solis, & tempus observationis tanquam epocha temporum mediorum computandorum, & dato quolibet alio tempore medio inveni poterit medius Solis motus huic temporis proportionalis, & indè habebitur ipsius longitudo media, & distantia ejus media ab Apogæo seu anomalia media dabitur, ex quà deinde eruetur anomalia coæquata, ac proindè longitudo vera Solis habebitur.

44. Quia vero dies Solares sunt inæquales (15), necesse est ut tempus apparentis quod diebus solaribus confatat, fluat etiam inæquabiliter. Differentia quæ est inter tempus apparentis seu verum, & tempus æquabile seu medium, dicitur æquatio temporis quà indigemus ut temporis medium convertatur in tempus apparentis & viceversè, ideòque ut invento loco Solis pro tempore medio, inveniatur etiam pro tempore vero &c contrà.
Cap. III.
45. Sit T, Celi & Terra centrum T Z, planum immobile circuli alicujus horarii. \(\gamma\) M \(\equiv\) N aequator, \(\gamma\) S \(\equiv\) N Equilica, S Sol. \(\gamma\) S Solis longitudo vera, \(\gamma\) S ejusdem longitude media, cui aequalis capiatur ar- cres aequatoris \(\gamma\) M, & \(\gamma\) D sit Solis ascensus recta vera. Ducantur ad puncta mobilia M & D radii aequatoris TM & TD qui temper moveantur cum punctis M & D, in consequentia. Quoniam aequator per circulum horar- rium T Z, motu aequabili diurno nempè quod fit ab oriente in occidentem, tran- fit; si punctum D ascensionis rectae Solis etiam aequabiler progrede- retur in aequatore ab occidente in orientem, dies Solares seu revolu- tiones singulae puncti D à circulo horario T Z ad eundem, effent aequales, & tempus apparens à medio non differret. Sed cum motus ascensionis rectae D, inaequalis sit, dies & horæ Solares sunt quo- què inaequalis. At punctum M, aequabler progrederit in aequatore ab occasum ad ortum, & idem motus illius constituit potest pro mensura temporis medii. Itaque longitudo Solis media \(\gamma\) S vel aequalis est ascensionis rectae \(\gamma\) D vel ea major est aut minor. In primo cæsi- punctum M coincidit cum puncto D, in secundo cæsi est utral D, versus orientem, & in tertio cæsi est citræ D, versus occidentem. Temperis aboliuti momentum quo punctum M coincidit cum puncto D, sumatur tanquam principium à quo tempus apparens & tempus medium incipit computari & quo simul coincidunt; & in aliis cæsis tempus apparens à medio differet pro quantitate arcus M D in tempus solare converti (16). Nam dum punctum D, est sub meridiano T Z, hora 12a computatur in loco cujus meridianus est T Z, & ubi punctum M diffiat à puncto D, arcus MD, in tempus solare convertit, debit differ- rentiam inter meridiem apparentem & meridiem medium qui contingit quando punctum M est in meridiano T Z.
46. Itaque tempus medium in apparens sic convertitur. Quaeritur longitudo Solis tum media, tum vera temporis dato respondens (44) indè eruitur longitudinis vera ascensio recta (14); si hæc major est mediæ Solis longitudine, differentia in tempus solare conversa subtrahitur ex tempore medio ut fiat apparens, additur si minor est. At tempus apparens in medium ità mutatur. Tempus apparens tanquam medium consideratur, & inquiritur pro dato tempore longitudo Solis tum media, tum vera, & indè eruitur longitudinis vera ascensio recta; si hæc mediam Solis longitudinem superat, differentia in tempus solare conversa additur tempori apparenti ut fiat medium. Si vero longitudinis vera ascensio recta minor est mediæ Solis longitudine, differentia in tempus solare conversa à tempore apparente subducitur. Quod si media Solis longitudo æqualis sit ascensioni rectæ longitudinis verae, tempus apparens congruit cum medio, nullâque eget æquatione. Hæc omnia ex modò dictis (46) manifesta sunt; si enim punctum D est orientalius puncto M, hoc citius ad meridianum T Z pervenit quàm illud, ac proinde hora 12. temporis mediæ computatur, cum nondum est meridies temporis apparentis, & contrarium continget, si punctum D puncto M fuerit occidentalius. Ubì tempus apparens in medium oportet converti, tempore apparente utimur tanquam medio ad locum Solis inveniendum; cum enim tempus apparens non multum differat à tempore medio, differentia inter ascensionem rectam & longitudinem mediam Solis est quàm proximè eadem, fìve per tempus medium, fìve per tempus apparens inquiratur.

47. Jam vero si tempore quovis apparente observetur Solis ascensio & longitudo vera, indèque eruatur ipius longitudo media (44) ac tempus apparens convertatur in tempus medium (47) habebimus locum Solis medium pro dato temporis mediæ momento, & hic locus erit radix motuum Solis, momentum vero temporis mediæ datum epocha temporum computandorum; quibus semel consistitis ad quodlibet aliud datum tempus medium vel apparens inveniri poterit locus Solis versus vel mediæ in Eclipticâ & contrâ. Exposuimus jam (44) quomodo locus Solis dato tempore medio inquiratur. Si datum sit tempus apparens, hoc tanquam tempus medium uetur & quaeratur locus Solis versus huic correspondens (44); Deinde longitudini Solis sic inventæ tantum longitudinis addatur vel dematur quantum temporis æquationi debetur, & ita prohibit locus Solis tempori apparenti respondens. Facile est ex dictis problema inversum solvere, feu ex dato loco Solis medio aut vero tempus medium aut apparens huic Solis loco respondens invenire.
INTRODUCTIO

48. Nec opus est ut moneamus easdem esse motum caelestium apparentias, sive coelum orna cum stellis circà tellurem motu diurno revolvat ab oriente in occidentem, sive terra circà proprium axem eodem tempore ab occidente in orientem converti supponatur immoto coelo; sive etiam terra immota maneat & Sol proprio motu ad occasu ad ortum feratur, seu circa Solem immotum terra motu annuo circumvolvat in Eclipticâ. Nam in utrâque suppositione diametri apparentes & velocitates relative sunt easdem.
DE MUNDI SYSTEMATE.
LIBER TERTIUS.

IN Libris præcedentibus Principia Philosophiæ tradidi, non tamen Philosophica sed Mathematica tantum, ex quibus videlicet in rebus Philosophicis disputari possit. Hæc sunt motuum & virium leges & conditiones, quæ ad Philosophiam maximè spectant. Eadem tamen, ne sterilia videantur, illustravi scholiis quibusdam philosophicis, ea tractans quæ generalia sunt, & in quibus Philosophia maximè fundari videtur, uti corporum densitatem & reliquitiam, spatio corporibus vacua, motumque lucis & sonorum. Superest ut ex iisdem principiis doceamus constitutionem systematis mundani. De hoc argumento composituram librum tertium methodo populari, ut à pluribus legeretur. Sed quibus principia posita fatis intellecta non fuerint, ii virum consequentiarum minimè percipient, neque præjudicia deponent, quibus à multis retro annis infuеve- sunt: & propterea ne res in disputaciones trahatur, summam libri illius transtuli in propositiones, more mathematico, ut ab iis folis legantur quæ principia prius evolverint. Verumtamen quoniam propositiones ibi quàm plurimæ occurrant, quæ lectoribus etiam mathematicè docés moram nimiam injicere possint, auctor esse nolo ut quium eas omnes evolvat; suffecerit si quis definitiones, leges motuum & sectiones tres priores libri primum sedulo legat, dein transeat ad hunc librum de mumi systemate, & reliquas librorum priorum propositiones hic citatas pro lubitu consulat.
Philosophia Naturalis

Regulae Philosphandi.

Regula I. (a).

Caussas rerum naturalium non plurès administ debere, quàm quá
et vera sint et earum phenomenis explicandis sufficit.

Dicunt utique philosophi: Natura nihil agit frustra, & frus-
tra fit per plura quod fieri potest per pauciora. Natură
enim simplex est & rerum causis superfluis non luxuriat.

Regula II.

Ideoque effectuum naturalium ejusdēm generis eadem assignanda
sunt causae, quatenus fieri potest.

Utis respirationis in homine & in bestiā; descesibus lapidum
in Europā & in Americā; lucis in igne culinari & in Sole; re-
flexionis lucis in terrā & in planetis.

(a) 49. * Regula prima. Hae regu-
lae duas habet partes; prima est, de Philo-
osophia in vano abeat opinionem com-
menta, cause rerum naturalium non aliás
administrā debent quàm quàm quæ rerà existant
et quæ phænomenis explicandis sufficiant;
undè fi velimus cum evidentia ac certitudi-
dine philosophari, omnes hypothesēs ne-
gligendae nobis sunt; hypothesēs enim fi
legentia est; causa quidem possibilitatem,
minimè vero existentiam addimit, cum
effectūs idem plures modis producē potē
sit. Verumtenen ubi certitudinis obti-
nendi ab Experimentis & indē Matha-
maticā via procedendo spes non adeflet,
hypothesēs quibusdam particularibus uti
licet ab variētatem novis experimentis ins-
dagandâ, quemadmodum Astronomi var-
ias adhibuērunt hypothesēs ut phænomen-
ae celestiae prædicerē & accurātius obser-
vāre, arque ita verius eorum causas con-
jectando investigare possint. Altera pars
regulāe, ea ficturae quæ præscriptum non pla-
res administrāndas esse rerum naturalium
causas quàm quae eorum phænomenis ex-
pliandis sufficiat, manifesta est; nam
cum vera effectūs causâ per experimentiām
femel inventa est, & matheēsōs opē præ-
fertim demonstrātum est causa illius non
efficit, quamquam aliam quælibet causam
esse inutiliēm.
Qualitates corporum quae intendi & remissi nequeunt; quaeque corporibis omnibus competunt in quibus experimenta instituere licet; pro qualitatisibus corporum universorum habenda sunt.

Nam qualitates corporum non nisi per experimenta innotescunt; ideoque generales statuendas sunt quotquot cum experimentis generaliter quadrant; & quae minui non possunt, non possunt auferri. Certè contra experimentorum tenorem omnium temerè contingenda non sunt, nec à naturae analogia recedendum est, cum ea simplex esse soleat & sibi semper consone. Extensio corporum non nisi per sensus innotescit, nec in omnibus sentitur: sed quia sensibilibus omnibus competit, de universis affirmatur. Corpora plura dura esse experimur. Oritur autem duritias totius ad duritie partium, & inde non horum tantum corporum quæ sentiuntur, sed aliorum etiam omnium particulâs indivisâs esse duras merito concludimus. Corpora omnia impenetrabilia esse, non ratione, sed sensu colligimus. Quæ tractamus, impenetrabilia inveniuntur, & inde concludimus impenetrabilitatem esse proprietatem corporum universorum. Corpora omnia mobilia esse, & viribus quibusdam (quas vires inertiae vocambilis) perseverare in motu vel quieta, ex hisce corporum visorum proprietatibus colligimus. Extensio, duritiae, impenetrabilitas, mobilitas & vis inertiae totius oritur ab extensione, duritie, impenetrabilitate, mobilitate & viribus inertiae partium: & inde concludimus omnes omnium corporum partes minimas extendi & duras esse & impenetrabiles & mobiles & viribus inertiae praditas. Et hoc est fundamentum philosophiae totius. Porro corporum partes divisas & sibi mutuo contingas ab invicem separari posse, ex phænomenis novimus, & partes indivisas in partes minores ratione distinguiri posse (b) ex mathematicâ certum est. Utrum vero partes illæ distinctæ

(b) 50. * Ex mathematicâ certum est. Demonstraitiones paupem receptumur apud eos autorem qui de materie divinabilitatiæ tractant; ut ex incommensurabilitate lateris quadrati & ejus Diagonalis &c.
PHILOSOPHIAE NATURALIS

De Mundo Systemate

De Mundo Systemate

4

Philosophiae Naturalis

De Mundo Systemate

At si vel unico constaret experimentum quod particula aliqua indivisa, frangendo corpus durum & solidum, divisionem patetur: (c) concluderemus vi hujus regulae, quod non solum partes divisa separabiles effent, sed etiam quod indivisa in infinitum divisi possent.

Denique si corpora omnia in circuitu terrae gravia esse in terram, idque pro quantitate materie in singulis, & lunam gravem esse in terram pro quantitate materiae sue, & viiciim mare nostrum grave esse in lunam, & planetas omnes graves esse in se mutuo, & cometarum similem esse gravitatem in Solem, per experimenta & observationes astronomicas universaliter confit: dicendum erit per hanc regulam quod corpora omnia in se mutuo gravitant. Nam & fortius erit argumentum ex phaenomenis de gravitate universalis, quam de corporum impenetrabilitate: de qua utique in corporibus celestibus nullum experimentum, nullam profus observationem habemus, Attamen gravitatem corporibus essentiales esse minimè affirme. Per vim insitam intelligenti solam vim inertiae. Hae immutabilis est. (d) Gravitas recedendo à terrâ, diminuitur.

Philosophiae Naturalis

De Mundo Systemate

(c) *Concluderemus vi hujus regulae, seu ex analogiâ naturae que simplex esse solet & sibi semper confixa.* *Hinc patet differentia Newtonianismi & hypotheos Aramorum; Atomistae necessarii & Metaphysice aequos esse indivisibles volunt, ut sint corporum Unitates; Metaphysicam hanc questionem mihi facit Newtonus, & hunc redit ejus sententia: Sist ilia partes quas Deus condidit individias, quaque ideo sunt corporum Physica Elementa seu Physica Monades, frangendo dividerentur; tunc exinde edoci, fiatueramus eas posse dividiri, ideoque ulterius ulteriorque fine sine divisibles esse diceremus; omne hae de re Theoriam Metaphysicam experimenti facile postponentes. Hac etiam fluunt ex Lockii, de ratione quae aggregatius qualitates essentiales; Dogmata; Ignoramus plane, inquit ille, quam qualitates cum subjicit natura sint coniunctae si rem Metaphysicâ spectemus; sed fit ut experiencit Magistrà, has aliæque qualitates ad univera subjectae quae ad eamdem Clasiem referimur, pertinere deprehendamus, aut sitem ad omnia in quae experimenta instituere licuit, & eas essentiales dicere libuit. Hinc inquit Newtonus, eadem sita regulâ quæ utimur vulgo ad agoendas eae qualitates, eadem etiam regulâ in rebus Philosophicis uti debemus ubi experientia quidem, sed minus obviatis vulgari, similem Inductionem instituire dabitur. Adjungit quidem præter eam Inductionem, caracterem hunc Metaphysicum, ut illæ qualitates intendi ac remitent nequeant, etiam qualitates quae remitterentur, gradatim eadem ratione quæ remitteruntur, aboleri possible, quæque Universorum corporum qualitates non amplius forent.

(d) *Gravitas recedendo à terra domis minus, ut infra demonstrabitur.*
PRINCIPIA MATHEMATICA.

REGULA IV.

In Philosophiâ experimentalî, propositiones ex phænomenis per inductionem collectæ, non obstantibus contrariis hypothesibus, pro veris aut accuratè aut quamproximè haberi debent, donec alia occurrerint phænomena, per quæ aut accuratiorem reddantur aut exceptionibus obnoxia.

(c) Hoc fieri debet ne argumentum inductionis tollatur per hypotheces.

(e) * Hoc fieri debet. Hanc regulam in questionibus opticis hoc serè modo exponit Newtonus. In Physicis non fæcatur ac in Mathematicis Scientiis, ad res difficiles inquirendas methodus analytica prius est utilissima quàm synthetica methodus in auxilio vocetur. Hæc prima methodus in eo posita est ut adhibeantur experimenta atqué observationes ex quibus deinde per inductionem conclusions generales deducantur, non obstantibus contrariis hypothesibus, nisi eis aliquo experimento aut certâ aliqua veritate niæx esse contingat. Nam quod hypothetâres specier, eæ in Philosophiâ experimentali locum habère non debent. Quamvis ratiocinia ab experimentis & observationibus per inductionem deducæ ad stabiliem-

das modo demonstratîvâ conclusiones generales satis non sint, hic tamen ratio-
inândi modus est omnium quos rerum naturam admittere potest optimus, íñque eò tuitor reputari debet quò generalior est inducîtio; Si autem nulla repugnâ-
rînt phænomena, generalem conclusionem deducere licebit. Sin verò deinceps con-
trariâ occurrant phænomena, exceptionibus necessariae mitigatione erit atque ref-
tringânda conclusio. Hujus analyticos auxilios à compositis ad simplicità, à moti-
ibus ad vires producentes, & generatim ab essentibus ad eorum causâs perveniri po-
tet. Quod ad synthetâm pertinent, hæc causas cogniæres atqué probatas tanquam principia assumît quorum òpe phænomena indè nota explicîtur.
(f) Planetas circumjoviales, radiis ad centrum jovis ductis, areas describere temporibus proportionales, eorumque tempora periodica, stellis fixis quiescentibus, esse in ratione sesquiplicatis distantiarum ab ipsius centro.

(f) 51. * Planetas circumjoviales.
Lemma..... Satellitum Jovis & Saturni orbis ac mensuram determinare.
Sit HFGH Sol, cujus centrum S, T Terra; KQO Jupiter vel Saturnus circâ Solem S describens orbitam MNP, ACDL orbita satellitii; radii Solis extremi GO, HR paulo plurum di-midium planetæ P illutorum, & produci umbrae conicam RACO terminantur, cù-jus axis est recta SB per Solis & Planetæ centra transtans. Dam satelles illius orbitâ fiunt LCDE irans, conum umbrosum attingit in A, in umbrae immersur & cœlum videri; deinde ex umbra emergens in C rursus apparat. At tamen satellitum Saturni, ob nimirum il-lorum à Sole & Tellure distantiam, eclipses observari huc uquod non poterunt, sed omnium satellitum Jovis eclipses è terrâ confici possunt, cum hoc tamen discrimine quod immersiones & emer- siones quarti & tertii & nonnumquam secundii in eadem eclipsi cernantur, primi ve-rò immersum tantum vel emergit observa-ris posit. Sit jam satelles in L, & ductis è terrâ rectâ TP, TL, angulus PTL, dicitur elongatio seu digressionem geocentricam satellitii L ad Planetæ primarii P. Ducatur etiam rectâ TK dicum primarii Planetae tangens in K, & angulus PTG erat semidiameter primarii è tellure visa seu apparent, ideoque elongatio geocentrica erit ad semidiametrum apparentem ut angulus PTL ad angulum PTG. Observa-tias pluribus hujusmodi elongationibus geocentricis & semidiametris apparentibus, aliqua inter se collatis, inveniuntur elongationes maxime ubi ratio anguli PTL ad angulum PTK maxima est; & hoc modo observatum est elongationes maximas geocentricas ejusdem satellitii in varias orbis fuses locis æquales esse inter se quam proximè, idèque satellitiae describitur circulus Planetæ primario concentricos. Quia ergò, ubi elongario maxima est, P K est quamproximum ad PL, ut angulus PTK ad angulum PTL, ob datam rationem horum angulorum & datam quod femidiametrum PK, datur & PL, seu distantia satellitii à centro primarii. Angulus PSL sub quo è centro Solis S videtur distans satellitii à centro primarii P, dicitur ejus elongatio heliocentrica quod maxima est, cum angulus SPL reactus est. Quia verò PL data est, elongationes maxime heliocentricæ & geocentricæ æquales sunt, uti Planetæ P à Sole, & terræ æquæ distant.

Cognitius orbitarum diametris, tempora periodica satellitum inventi possunt per eorum eclipses maxime durationis, acque etiam per transitum satellitii aut umbrae illius per medium dicum Planetæ primarii. Nam cum radius circuli fit æqualis arcum grad. 57. 29' 57'' (lib. 1. cap. 372.) & data fit ratio radii PL ad diametrum Planetæ primarii OR, erit quamproximum ut PL ad OR, ita gradus 57. 29' 57'' ad numerum graduum arcus exigui CA, qui erit æquales est diametro OR, ob parallelas OC, RA. Fiat deinde ut numerus graduum aut partium gradus CA vel OR ad gradum 360, ita tempus quo describitur CA vel OR ad tempus periodicum satellitii, quod ita dabitur. Suppoxit...
De Mun-Theoria primarii Planetae per observationes di Systematae determinata, tempora periodica inventum; tur mensurando intervalla temporis inter duas satellitium conjunctiones; vel etiam inter duas digressiones maximas.

Principia Mathematica.

Confut ex observationibus astronomicis. (5) Orbis horum planetarum non differunt sensibiliter a circulis jovi concentricis, & motus eorum in his circulis uniformes deprehendi duntur. Tempora vero periodica esse in sesquiplicata ratione semidiametrorum orbium continentur astronomi; & idem ex tabulâ frequente manifestum est.

(h) Satellitum jovialium tempora periodica.

1d. 18h. 27m. 34s. 3d. 13h. 13m. 42s. 7d. 3h. 42m. 36s. 16d. 16h. 32m. 9s.

(i) Distantiae satellitum a centro Jovis.

<table>
<thead>
<tr>
<th>Ex observationibus</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borelli</td>
<td>5 7/5</td>
<td>8 7/8</td>
<td>14</td>
<td>24 3/7</td>
</tr>
<tr>
<td>Townsle per microm.</td>
<td>5 5/2</td>
<td>8 7/8</td>
<td>13 47/120</td>
<td>24 7/120</td>
</tr>
<tr>
<td>Caffini per telecop.</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Caffini per eclip. satell.</td>
<td>5 7/5</td>
<td>9</td>
<td>14 7/120</td>
<td>25 7/120</td>
</tr>
</tbody>
</table>

(1) Ex temporibus periodicis. 5 667 9 017 14 284 25 299

Elon.

Quod Saturnum spectat, solis oculis: Telecopio adjunct distantias satellitum a centro Saturni cum diametro annuli comparare potent Astronomi.

(g) * Orbis horum planetarum (52).

(h) * Satellitum jovialium tempora periodica (ibid.).

* In novissimo Caffini Opera supra handato tempora Periodica paulo majora continuntur; silihce, primus Satelles, 6 2/3, 1m. Sat., 4 9/12, 5 9/12. Sat., 17 1/3, 4 9/12. Sat., 1 h, 32 1/3, 5 8/9 tardius revolutiones suas absolvvere statuuntur, ilia autem differentis totius temporis Periodici respectu minimas sunt, maxime enim differentias non excedunt recensissentam partem durantiam totius revolutionis.

(i) * Distantiae satellitum a centro Jovis (52).

(1) * Ex temporibus periodicis. Newtowus computum init hoc modo: Assumpsit distantiam observatam primi Satellitius 5 7/3, seu 5 667, & deinde per tempora periodi-
IO PHILosophiae Naturalis

Elongationes satellitum jovis & diametrum ejus D. Pourn micrometrīs optimis determinavit ut sequitur. (m) Elongatio maxima heliocentrica satellitūs quarti a centro jovis micrometro in tubo quindecim pedes longo capta fuit, & prodīt in mediocrī jovis a terrā distantīā 8°. 16\". circiter. Ea satellitis tertii micrometro in telescópio pedes 123 longo capta fuit, & prodīt in eādem jovis a terrā distantīā 4°. 42\". Elongationes maximæ reliquorum satellitum in eādem jovis a terrā distantīā ex temporibus periodīcis prodeunt 2°. 56\". 47\". & 1°. 51\". 6\".

Diameter jovis micrometro in telescópio pedes 123 longo capta fuit, & (n) ad mediocrēm jovis a sole vel terrā

Si eōdēmicam observātus quasīvit aliorum Satellītūm distantīās, supponēndo quadrāta temporūm periodīcorum cubīs distantīarum proportionālia. Nam si Logarithmi temporūm periodīcorum primi & secundi Satellites dicantur 1, L, & Logarithmi distantiarum d, D, erit 2l ad 2L, arithmetica ut 3 d ad 3 D, idēque 2l + 3 D = 2L + 3 d, unde inventur D = d + \frac{2}{3} L. Est autem d = 0, 753 3 3522.

\frac{2}{3} L = 2, 324591, & 2l = 2, 138512, quāre habetur D = 0, 955993, cui respondet numerus 9, 07, ut Newtonus inventīt; & ità inventiītur caeōrum Satellites distantiae per eōrum tempora periodicīa.

(m) 53. Elongatio maxima heliocentrica satellitūs in mediocrē Jovis a Sole distantīā aequalis est ipsius elongationīs maximīs geocentīcri in mediocrē distantīā eōdem Jovis a terrā. Sit enim ABPG orbita Jovis, Sol in S, A aphelium Jovis, P perihelium, T terrā, erit AS maxima distantia Jovis a Sole, SP minima; A T vero maxima distantia Jovis a terrā, PT minima, & idē mediocrēs distantīae Jovis a Sole feu \frac{1}{2} AP = \frac{1}{2} AS + \frac{1}{2} SP, & mediocrēs distantiae Jovis a terrā erit \frac{1}{2} A T + \frac{1}{2} TP = \frac{1}{2} A P. Quaer dux illæ mediocrēs distantiae sunt aequalis, idēque elongationes maximae heliocentīcriae & geocentīcriae in mediocrībus illis distantīis sunt eōdīm aequalīs.

(n) 54. Est ad mediocrēm Jovis a sole. Datur postiō lineae ducta ab oculo spectantoris ad Jovem tempore observatiōnis.
PRINCIPIA MATHEMATICA. II

tā distantiam reduci, semper minor proditi quàm 40°, nuncūm minor quàm 38°, fæpius 39°. In telescopis brevioribus hac
diameter est 40'' vel 41''. (9) Nam lux Jovis per inæqualem
refrangibilitatem nonnihil dilatatur, & hac dilatatio minorem
habet rationem ad diametrum Jovis in longioribus & perfectio-
tribus telescopii quàm in brevioribus & minus perfectis. Tem-
pera

ais, & per theoriam Solis, datur etiam
pośito lineæ ductae ab oculo ad Solem
(47) eodem tempore; unde datur angu-
lus his duabus lineis interceptus, seu elonga-
gatio Jovis à Sole. Infuper datur, per
theoriam Jovis, locus ejus in propriā orbi-
tā, & ideō notus est angulus quem com-
prehendunt duas lineae à centro Solis du-
cta ad Jovem & ad Terram seu oculum
obseruatoris. In triangulo igitur ex tri-
bus illis lineis facta cujus angulus unus
est in oculo spectatoris seu in Terrā, al-
ter in Sole & tertius in Jove, datur an-
guli omnes, & exinde datur ratio laterum
feu ratio distantiae Jovis à Sole ad distant-
tiam Jovis à Terrā tempore observationi-
nis. Datur vero, per theoriam Jovis ex
observationibus constitutam, ratio distant-
tiae Jovis à Sole tempore observationis
ad ilium distantiam mediocrēm à Sole vel à
Terrā. Quārē datur ratio distantiae Jo-
vis à Terrā tempore observationis, ad di-
sistantiam ejus mediocrēm à Sole vel à
Terrā. Sed diametri apparentes Jovis è Ter-
rā visī sunt inter se inversē ut distantiae
Jovis à Terrā, debitur igitur ratio diam-
metri apparentis tempore observationis ad
diametrum apparentem in mediocrē dis-
sistanti Jovis à Terrā vel Sole.

(9) 55. * Nam Lux Jovis. Newtonus
prop. 7. lib. 1. Optics, experimentis &
calculo invenit quod, si ex puncto luci-
do in axem telescophi postr ad ingentem
distantiam, radii in virtrum objectivum inci-
dant axi paralleli, dilinēta & minima
hujus puncti imago in virtri foco depīcta,
vit circulus, non verò punctum ut effe
deret, obstante nimium non tanum
virtri sphæricitate, sed præcīpue radiorum
inequali refrangibilitate qui Lux ea dilat-
atur. Nam in vitro plano convexo cu-
jus convexitas puncto lucido obvertitur,
cujusque sphæricitas diametrum habet 100
ped. seu 1200 digit. apertura verò 4 di-
git. diameter circelli qui ex virti sphæ-
ricitate oriatur ert ad diametrum ejus

dem circelli maximō dilinēt qui ex

inaequali refrangibilitate provenit ut

\[
\frac{961}{72000000} \approx \frac{1}{250}
\]

cē aquidem ejus punctī lucidi imago & ma-

ximē splendida continet partem 250°,
apertura virtri objectivi optimē elaborati,

neglectā luce debili & subobscurā que ima-
ginem illum circumdet. Unde in Telecso-
pio cujus apertura est 4 digit. & longitudo
100 ped. hujus imaginis diameter trans

vītum ocularē viola occupat 2" 4" vel 3", &
in Telecsopio cujus apertura est duorum
digitorūm & longitudo 20 aut 30 ped. occu-

pabit imago 5" vel 6". Iraque in Te-

lecsopio optimo Hugeniano 133 ped. erro

rēt erit circiter 2" in minoribus major.

* In Telecsoipi autem rectē constituit

five secundum Theoriam Prop. 56. Diop-

trices Hugennii, id curatur ut aberratio

lucis circ-a imaginem punctī lucidi aequā-

le occupet spatum super retinā, fed

imago iphus objecti in Telecsoipi ma-

joribus majus occupat spatum in reti-

nā, idque secundum rationem Radicum

quāt in minoribus, in ratione nempe

inversō Radicum quadrarum longitudini-

nis Telecsoiporum.

Hac omnia ex Doctīnā Newtonianā

circa colores ita jātā sunt cognitā ut ea

sufficiēt & accuratissimē demonstrare necessā-

rium non judicēmus.
Porae quibus satellite duo, primus ac tertius, transibant per corpus jovis, ab initio ingreffus ad initium exitus, & ab ingreffu completo ad exitum completum, observata sunt ope telescopii ejusdem longioris. Et (p) diameter jovis in mediocris ejus a terrâ distantiat prodiiit per transitum primi satellitis 37$^{1/2}$, & per transitum tertii 37$^{1/2}$. Tempus etiam quo umbra primi satellitis transit per corpus jovis, observatum fuit, & inde diameter jovis in mediocris ejus a terrâ distantiat prodiiit 37$^{1/2}$ circiter. Assumamus diametrum ejus esse 37$^{1/2}''$, quamproxime; & elongationes maxime satellitis primi, secundi, tertii, & quarti æquales erunt semidiametris jovis 5,965, 9,494, 15,141, & 26,63 respectivē.

56. *Hugenius* planetarum lucem obstatu quoqam interciipiens majores invenit planetarum diametros quàm ab aliis micrometro definitum est; nam lux erratica, ubi tegitur planeta, vividioribus radiis minus extenuatur, ideoque latius propagari videtur. Contrariam ob causam fit quod planetæ in Sole visī, dilatata luce non parum atenuentur. Mercurius in Sole, Hevelio, Galileio & Hallejo observantibus, non superavit 12'' vel 15'', & Venus Crario folium 1'' 3'', Horoxio 1'' 12'' occupare visī est, quam tamen juxta mensuras Hevelii & Hugenii extra disum Solis captas implere debuitisset 84'' ad minimum. Sic & Lunae diameter apparens quæ anno 1681, paucis diebus anteq & post Eclipēm Solis mensurata fuit in observatorio Parifenisi 31'' 30'', in ipsa Eclipē non superabat 30'' vel 30'' 30''. Quare pater diametros planetarum extra Solem minuendas esse, & intrà Solem augendās minutis aliquot secundis.

Principia Mathematica.
Liber Tertius.
Phænomenon II.

Planetas circumsaturnos, radiis ad saturnum ductis, areas descriptae temporibus proportionales, & eorum tempora periodica, tellis fixis quiescentibus, esse in ratione sesquiplicata distantiarum ab ipsius centro.

(†) Cassinus utique ex observationibus suis distantias eorum à centro Saturni & periodica tempora hujusmodi esse statuit.

Satellitum saturniorum tempora periodica.

\[1^d. 21^h. 18^m. 27^s. \quad 2^d. 17^h. 41^m. 22^s. \quad 4^d. 12^h. 25^m. 12^s. \quad 15^d. 22^h. 41^m. 14^s. \quad 79^d. 7^h. 48^m. 00^s. \]

Distantiae satellitum à centro Saturni in semidiametris annuli.

\[\text{Ex observationibus} \quad 1\frac{2}{6}. \quad 2\frac{3}{4}. \quad 3\frac{1}{3}. \quad 8. \quad 24. \]

\[\text{Ex temporibus periodicis.} \quad 1,93 \quad 2,47. \quad 3,45. \quad 8. \quad 23,35. \]

Quarti satellitis elongatio maxima à centro Saturni ex observationibus colligi solet esse semidiametrorum octo quamproximem.

gationes maximas satellitum à centro Jovis in mediocrì Jovis à Tellure distantia; quàre si fiat A B ad P C ut duplus sinus anguli dari F C H, ad sinus totum, dabitur (ex trig.) diameter apparentis Jovis feu angulos A T B, ub quod videtur in mediocrì ejus à Tellure distantia. Eodem modo patet determinari diametrum Jovis per tranitum umbrae hanc diametrum percurrentis.

(†) Cassinus utique &c. Hac ex Philosophicis Transactibus n. 187. sunt demopta: Exigui quedam est horum differentia à numeris quos in Elementis Astronomiae assignat Cassinus filius; ille ita determinat satellitum Sat. Tempora Periodica, & distantias.

Primi 16. 21h. 18m. 27s. 1. 93. &c.

Secundi 24. 17h. 44m. 23s. 2. 5.

Terti 44. 12h. 23m. 12s. 3. 5.

Quarti 154. 22h. 34m. 38s. 8.

Quinti 794. 7h. 47m. 0s. 23. paulo plus.

Observat autem primi & secundi satellitis distantias à Saturno affirmatione ignams immittisse determinari; motibus verò eorum fatis accuratè nunc cogniti ex unitus nempet quae cognit æ distantia 8 semi-Diametrorum annuli per Regulam Kepleri reliquorum distantias possit exquiri, atque ita inveniri.

Distantia primit 1. 93.

Secundi 2. 47.

Terti 3. 45.

Quarti (ex observatione) 8.

Q quinti 23. 23.

PHILOSOPHIAE NATURALIS

mē. At elongatio maxima satellitis hujus à centro saturni, micrometro optimo in telescopio Hugeniano pedes 123 longo capta, prodid semidiametorum octo cum septem decimis partibus semidiametri. Et ex hac observatione & temporibus periodicis, distantiae satellitum à centro saturni in semidiametris annuli sunt 2, 1, 2, 69, 3, 75, 8, 7, &c 2, 5, 35. Saturni diameter in eodem telescopio erat ad diametrum annuli ut 3 ad 7, &c diameter annuli diebus Maii 28 & 29 anno 1719. prodidit 43". Et (9) inde diameter annuli im mediocris saturni à terrâ distantia est 42", & diameter saturni 18". (10) Hæc ita sunt in telescopiis longissimis & optimis, propertea quod magnitudines apparentes cor:orum celestium in longioribus telescopiis majorem habebat proportionem ad dilatationem lucis in terminis illorum corporum quàm in brevioribus. Si rejiciatur lux omnis erratica, manebit diameter saturni haud major quàm 16".

PHÆ-

37. (q) Et indē diametrum annuli. Quia diametri apparentes sunt in distantiarum ratione reciproca, datis diametro annuli diebus Maii 28 & 29 anno 1719, & distantia Saturni à terrâ idem diebus data (per theoriam planétæ) dabitur quoque diametrum annuli in data mediocris distantia Saturni à terrâ: hæc autem diametrum prodit 42"; sed Saturni diameter erat ad diametrum annuli ut 3, ad 7 (per obs.) quærum diameter Saturni in mediocris à terrâ distantia est 18".

(10) Hæc ita sunt (35). Si in hoc Telescopio Lux erratica subdenda angulum duorum secundorum, est diametrum annuli 40" & Saturni 16" et revera fut in ratione 5 ad 1. hinc autem ut id obtineatur nec non, cum Parallaxis Solis in distantia terræ medio ri à Sole sic vinī fit 20", distantia vero mediocris terræ à Sole fit ad mediocrim distantiam Saturni à Terrâ vel à Sole, quod idem est (n 33.) ut 100 ad 914, hinc Diameter terræ erit ad Diametrum annuli ut 100 ad 1908, sive ut 1 ad 19 & ad Diametrum ipsius Saturni ut 1 ad 72.

Pariter, cum Diameter Jovis in mediocris ejus à Sole distantia fit 37", ex quo mediocris distantia terræ ad mediocrum distantiam Jovis à Sole ut 10 ad 32; erit Diameter terræ ad Diametrum Jovis ut 1 ad 52 x 37 1/2. Sive ut 1 ad 9, 685 1/200. Sicque Diameter Jovis est circiter dimidia l'iametri annuli Saturni, & erit ad ipsius Saturni Diameterum ut 5 ad 4. Solis autem Diameter vera est circiter Decupla Diametri Jovis.
Planetas quinque primarios, mercurium, venerem, martem, jovem et Saturnum orbibus suis solem cingere.

Mercurium & venerem circa solem revolvi ex (f) eorum phasibus lunaris demonstratur. Plenā facie lucentes ultra solem siti sunt; dimidiatā est regione solis; falcatā cisc solemn, per discum

(f) * Ex eorum phasibus Lunaris.
Si venерis faciem telescope comprehendunt, in una ejus conjunctione cum Solis plena facie fulgere cernitur, deinē phasēs habere phasibus Lunaris finissimās partemque illuminant Solis constantem obvertere videtur. Dum vero ad alteram conjunctionem cum Sole perveniit, tenebris obvolvitur, & nonnuncum per difficum Solis ad modum maculae nigrae & rotunda transii, nuncam vero Soli opponitur, neque ab eo digreditur utraque gradus 47. Eadem ferē de Mercurio observator quantum licet per ejus exiguatatem, cum hoc tamen discrimine quod ejus elongationes maximae ad Soli 18 gradus nuncam supereat. Sunt igitur Venus & Mercurius corpora opaca & rotunda quorum pars circiter dimidia Solis obvertera illuminatur, & pars altera a Sole aversa lumen privatur. Unde cum Venus & Mercurius in una conjunctione in E vel M hemisphærium obcurum telluris T obverterat, hemisphærium verum illuminatur Soli S, necesse est ut in illâ conjunctione inter solem & tellurem constituantur; et contrā ubi in altera proximè sequenti conjunctione in A vel K versatur, totam faciem illuminat & Soli obvertam & tellure T, observamus, hinc necesse est ut tunc temporis Soli S, inter ipsos arque tellurem T positus sit. Ubi vero Venus aut Mercurius a Sole digreditur, primum gibbosa apparat, tum dimidiatā facie lucrative, postea falcata sit & demetique tota obscuratur ut in locis B, C, D, F, & contrā ratione splendescere in locis F, G, H, videtur. Si vero ex tellure T, ad Venetris centrum ducatur linea recta ad quam ducatur planum perpendicularia a b, per centrum Veneris transiens; ea pars tunc apparat que est inter planum a c & planum c d, unde cum projecto plani C d, sit ellipta, hinc gibbofall apparat planetae pars viva in B, in C dimidiatā, & in D, falcata & c c, quia a puncto A, C 2 cons.
PHILOSOPHIAE NATURALIS

discum ejus ad modum macularum nonnunquam transeuntes. Ex martis quoque plenâ facie prope solis conjunctiomem, & gibbosâ in quadraturis, certum est, quod is solem ambit. De jove etiam & saturno idem ex eorum phasisbus semper plenis demonstratur: hos enim luce à sole mututâ splendere ex umbris satellitum in ipsos projectis manifestum est.

PHAE-

Mars, Jupiter & Saturnus Soli S oppositis, est tellure M in E plenâ facie lucentes conspiciuntur, idêque tellus tum temporis inter solem & planetas inos collocat.
PRINCIPIA MATHEMATICA.

Liber Terius. Phænomenon IV.

Planetarum quinque primariorum, & vel solis circa terram vel terræ circa solem tempora periodica, stellis fixis quiescentibus, esse in ratione sequepiasticà medioctrium distantiarum à sole.

Hæc à Keplero inventa ratio in confessò est apud omnes. (*) Eadem utique sunt tempora periodica, eademque orbium dimensiones, five sol circa terram, five terra circa solem revolvatur. Ac de mensurâ quidem temporum periodicorum convenit inter astro-

locatur. At verò in conjunctione ut in A, idem planetæ pleno orbe fulgent, proindeque partem illumtratam soli ac terræ obverterentes, sunt ultri solem positi ; adeo verò digrediuntur à Sole, & Mars quidem in quadrato cum Sole appext ut in C, aliquanum gibusus apparat, quod hemisphærium ipsius illuminatur & soli obverteram non positut tumra sensibiliter obverteri, quia non satis magna est ejus à tellure distantia. At Jupiter & Saturnus cum longitūd à Sole & tellure differt, hemisphærium illumınatum Soli & teliurum temper obverterunt sensibiliter, nam cum (ex ob.) Mars Jovem, & Jupiter Saturnum, nonnauquam tegunt, necesse est ut orbita Saturni orbitam Jovis, & hæc orbitam Maris complectatur, tres verò orbitae æquar terram & solem ambiunt. Quia verò diametri apparentes planetarum superiorum multò minores videmur in oppositionibus quàm in conjunctionibus planetarum, & distantia à terræ sunt ut diametri apparentes inversè, necesse est ut orbita Maris, Jovis & Saturni sint telluri admodum excentrice.

(t) 58. * Eadem utique sunt tempora periodica. Tempora periodica planetarum circa solêm hoc modo posunt inveniur. Observationem planetarum oppositiones & conjunctiones cum So le, tunc enim planetae à Sole videtur in loco qui oppositus est lóco Solis è terræ visib, unde dixero Solis locu dato planetae locus in eo est. Jam verò observationum plerumque oppositionibus cum temporum intervallis inter sunt gulas oppositiones interceptis, datar tempus quo planèa circa solêm motu vero describit angulos ad solêm inter oppositiones contentos, & per regulam proportionis habetur tempus quo planeta 360 gradus seu revolutionem unam absolvit. Tempore periodico ita cæsat determinato, habetur numeros revolutionum planetarum tempore fatis longo perpetuarum. Si autem capiantur duæ oppositiones valdè diffusae, sique addatur arcus necessarius ut planeta ad idem orbitem punctum revocaret, totumque tempus dividatur per numeros revolutionum, habebitur tempus periodicum accuratius, supponendo quod aphelia planetae non aliter moveantur quàm fixæ. Sufficit verò in his NEWTONI Phænomenis ut hæc tempora, neglectis minutissimis, definiantur.

Potest etiam tempus periodicum determinari per observationes latitudinum planetarum. Nam dum latitu du nullâ est, planeta versatur in plano Eclipticae, seu in nodo orbîtes fixae; inventur autem tempus, ubi latitu du nulla est, observando illam arqueam nulla sit & ubi decrecet, aut postquam nulla fuit & ubi crecit, aquæ per regulam proportionis ex incrementis vel decrementis, determinatur tempus, quando nulla fuit. Si itaque observationem hoc modo tempus elapsum inter appallium planetæ ad nodum, & redimm ejusdem ad eandem nodum, hoc erit tempus periodicum planetæ; conflat enim planetarum nodos vix in una revolutione planetæ moveri.

59. Longitudo ac latitudo planetæ ob-
PHILOSOPHIAE NATURALIS

astronomos universos. Magnitudines autem orbium Keplerus & Bullialdus omnium diligentissimè ex observationibus determinaverunt: & distantiae mediocres, quae temporibus periodicis respondent, non differrent senfibiliter a distantis quas illi invennerunt, suntque inter ipsas ut plurimum intermedia; uti in tabulâ frequent videre licet.

Planetarum ac telluris tempora periodica circa solem respectu fixarum, in diebus & partibus decimalibus diei.

\[\begin{array}{cccccc}
\hline
\text{h} & \text{d} & \text{f} & \text{v} & \text{v} & \text{v} \\
10719.275 & 438.514 & 686.9785 & 365.5565 & 244.6176 & 87.9692 \\
\hline
\end{array} \]

Planetarum ac telluris distantiae (a) mediocres à sole.

Secundum Keplerum

Secundum Bullialdum

Secundum tempora periodica

De

servari possunt (per mos 17, 18, 20.) & indè determinatur tempus Syzygiorum, cum videlicit longitudine planetæ non differet à longitudine solis quo tempore sit conjunctionio, vel differet semicirculo ut in oppositione. Quod Mercurium spectat, determinatur ipius conjunctionio inferior cum sole per ipius transitum in disco solis qui vicibus octo observatus fuit, dum transitus Venerei semel tantum viisus est, in his verò non supponitur telluris motus nec quiet. Determinato tempore periodico planetae, habetur motus ejus medius in orbitâ, & ex observationibus pluribus locis planetæ e Sole viis per oppositiones vel conjunctiones aut per digressiones, dantur etiam ipius motus veri, ac prindè dantur differentiae inter motus vero & motus medius. Indè verò determinatur aphelia & perihelia planetarum cum ipso lengthicius, arque confinir possunt tabulæ per quas tempore quolibet inventi potest eorum locus in propriâ orbitâ. Quae omnia quoniam ab observationibus determinari possint independenter ab hypothetibus, Tom. I. Element. Astronom. exposuit celeberrimus Cassinius.

(a) 60. Distantiae mediocres à Sole.

Planetarum distantiae à Sole per observationes possunt definiri. Hic autem non quoties etiam absolutas distantias planetarum à Sole, sed sublimissimè rationes illarum distantiarum ad distantias solis à telluribus. Itaque sit Sol in S, terra quiescens vel mota in T, planeta in P; observetur locus planetae in coelo, & per theorem Solis; dabitur locus Solis tempore observationis seu positionis lineæ T S; unde datur angulus ST P. Quzratur etiam locus planetae.
De distantiiis Mercurii & Veneris ad Sole disputationi non est locus, cum hæ per eorum elongationes ad Sole determinentur. De distantiiis etiam superiorum planetarum ad Sole tollitur.

De distantii Mercurii & Veneris. Sum ABP orbis Veneris, S Sol, Terra T, Venus P in maxima sua elongatione. Quia orbita Veneris est feræ circularis, linea TP tangens orb remotum in P, idest angulus SP T, rectus. Unde est ut finus totus ad finum elongationis maximæ seu anguli observati S P T, ita distantia Solis a Terræ ST ad distantiam SP, Veneris a Sole. Supponimus autem orbitam circularis, quia Venus nuncuquam digreditur ad Sole ulterius 45° 30' & ejus elongationes maximæ nuncuquam singulis gradibus 45° 30'. Quare angulus SP T est feræ rectus. Si vèrò considerare velimus inclinationem orbis Veneris, sit latitudinem Veneris ex tellure observavi PTE, est Solis viæ PSE, E punctum in Ejicientia, erit ut PS ad PT, idem angulus latitudinis PTE, ad tangentem latitudinis PSE. Nam ob angulis EPT & EPS rectos, est PT ad PE ut finus totus ad tangentem anguli PTE; & similiter PS ad PE ut finus totus ad tangentem anguli PSE, idest que ut PS ad PT, idem angulus PTE ad tangentem anguli PSE, quare dabitur angulus sit cum recto EPS, & idem erit SP ad SE ut finus anguli SEP, complementi PSE ad rectum ad finum anguli PSE, dabitur ergo SE, seu ratio ejus ad ST, sicque observavi variis distantii SP, dabitur medioris; quia vèrò datur ratio ST ad mediocrem distantiam Solis a terræ tempore observationis, dabitur ratio distantia mediocris Veneris ad distantiam mediocrem Solis a terræ. Mercurii distantia a terræ determinatur etiam per elongationes ejus maximas ad Sole, sed quia orbita Mercurii est admodum excentrica, si Mercurius sit in P, in maxima digressione, per observationem notus sit oportet angulus STP & per Theoriam motuum Mercurii angulus PSE unde deductur angulus TPS, quia angulus ille rectus non est, unde tandem cetera determinatur ut in Veneris, neglectus minimus.
tur omnis disputatio per eclipses satellitum Jovis. (v) Etenim per eclipses illas determinatur positio umbra quam Jovis pro-
jicit, & eo nomine habitur Jovis longitudo heliocentrica. Ex
longitudinibus autem heliocentricâ & geocentricâ inter se colla-
tis determinatur distantia Jovis.

PHÆ-
PRINCIPIA MATHEMATICA.

PHÆNOMENO N V.

Planetas primarios, radiis ad terram ductis, areas describere temporibus minime proportionales; at radiis ad solem ductis, areas temporibus proportionales percurrere.

Nam respectu terrae nunc prograduntur, nunc stationarii sunt, nunc etiam regrediuntur: At solis respectu semper prograduntur, idque propemodum uniformi cum motu, sed paulo celerius tamen in periheliis ac tardiis in apheliiis, sic ut aequalis sit descriptio. Propositio est astronomis notissima, & (2) in jove apprimè demonstratur per eclipses satellitum, quibus eclipsibus heliocentricis planetae hujus longitudines & distantias à sole determinati diximus.

PHÆNOMENON VI.

Lunam radio ad centrum terrae ducto, aream temporis proportionalem describere.

Paret ex luna motu apparence cum ipsius diametro apparente collato. Perturbatur autem motus lunaris aliquidum à vi solis, sed errorum insensibilium minutias in hisce phænomenis negligo.

(2) Es in jove apprimè demonstratur: Nam per eclipses satellitum determinatur locus Jovis sit Sole visus ejusque à Sole distantia, & ideò collatis pluribus eclipsium observationibus, habetur motus versus Jovis in propriâ orbitâ circa Solem; & orbita ipsa describi potest; undé quemadmodum de Sole diximus (43) paret Jovem describere areas temporibus proportionales circa Solem.
PROPOSITIONES.

PROPOSITIO I. THEOREMA I.

Vires, quibus planetae circumjoviales perpetuo retrahuntur a motibus rectilineis & in orbibus suis retinentur, respicere centrum jovis, & esse reciproce ut quadrata distantiarum locorum ab eodem centro.

Patet pars prior propositionis per phænomenon primum, & propositionem secundam vel tertiam libri primi: & pars posterior per phænomenon primum, & corollarium sextum propositionis quartae ejusdem libri.

Idem intellige de planetis qui Saturnum comitantur, per phænomenon secundum.

PROPOSITIO II. THEOREMA. II.

Vires, quibus planetae primariae perpetuo retrahuntur a motibus rectilineis, & in orbibus suis retinentur, respicere solem, & esse reciproce ut quadrata distantiarum ab ipsius centro.

Patet pars prior propositionis per phænomenon quintum, & propositionem secundam libri prumi: & pars posterior per phænomenon quartum, & propositionem quartam ejusdem libri. Accuratissimè autem demonstratur hæc pars propositionis per (a) quietem apheliorum. Nam aberratia quam minima à ratione duplicatâ (per corol. i. prop. XLV. lib. i.) motum apsidum.

(a) * Per quietem apheliorum. * Altronomi motus coelestes calculant reperendo Astra ad Eclipticam, cujus initium per intersecctionem æquatoris & Eclipticae determinatur; sed illud initium fixum non est, & propterea axis terræ nutationem intersecctio illa in antecedentia furtur & circiter secundis singulo anno, hinc fixa toridem secundis progradit videntur. Aphelia Planetarum etiam progradit videntur respectu ejus initii Eclipticae, progradientur ergo singulo anno.
Principia Mathematica.

sidum in singulis revolutionibus notabilem, in pluribus enormem efficere deberet.

Proposito III. Theorema III.

Vim, quâ luna retinetur in orbe suo, réspicere terram, & esse reciprocè ut quadraturum distantia locorum ab ipsius centro.

Patet afferentis pars prior per phænomenon sextum, & propositionem secundam vel tertiam libri primi: & pars posterior per motum tardifimum lunaris apogæi. Nam motus ille, qui singulis revolutionibus est graduum tantum trium & minutorum trium in consequentia, contingit potest. Patet enim (per corol. I. prop. xlv. lib. I.) quod si distantia lunæ ad centro terræ sit ad semidiametrum terræ ut D ad 1, vis ad quâ motus talis oriatur sit reciprocè ut D^2 tæ, id est, reciprocè ut ea

Aphelium terræ - - - 62°;
Saturi - - - 78°;
Jovis - - - 57°;
Mars - - - 72°;
Veneris - - - 86°;
Mercurii - - - 80°.

Sed multum abeunt quæm ut ille Aphelium terræ, certum determinetur, & uniformis esse deprehendatur, ex observationibus motus Aphelii terræ nunc plus procedere quam 50° nunc minus deprehenditur, unde quidam Astronomi non alium esse ejus motum praeter motum ipsius initii Eclipticae cenfent. Pariter ex observationibus Aphelii Saturni, ejus motus irregularis videetur, aliudque accelerari, aliudque retrocedere, ex gratia, ab anno 1694 ad finem anni 1708, minutis ferè 33 retrocessisse restatur Caffinus. Aphelium Jovis ad motum fixorum proximè accedere videatur, &c. Unde confutat, Aphelium quamproximè quiescite, & eam quasimatem exiguum motus ipsum assignati quæ excedit motum fixum, forte observationum erroribus debetis; forte actioni mutua vicinorum Planetarum inter se; sic cum anno 1703 Saturnus & Jupiter conjuncti fuerint, & cum nonnulli quæque annis nonaginta gradibus à se mutuo discedant, patet quod ab anno 1698 ad annum 1708 Jupiter inter Solem & Saturnum erat verisimilis, ejusque actio in Saturnum adjuncta fuerat actioni Solis in Saturnum; Posito autem quod reverà vis Solis in Saturnum decrementum se quadrata distantiarum, & Jovis interpositione vim qualemcumque illi addì que X indicat, ex Propositione XLV. primi Libri habebitur angulum Apædisiam cum summà esse 180°. & tel. 1+X, 1+X, 1+3X, 1+3X eft fractione idemque ille angulus est minor 180°. regreditur itaque Apæs ex his hypotheseis planè ut observatione confutat. Unde non obscurè colligitur Apheliorum fixarum respectu quies (femotis his accidentibus causis) ac per consequens quod vires quibus Planetæ ad Solem retrahuntur, sunt in duplicatâ distantiarum ratione accuratè, quidem si vel una se xagesimâ parte accedat ratio à duplicatâ ad triplicatam, Apæides tribus ad minimum gradibus progrederentur, ut demonstratum fuit in fine primi Coroll. Prop. 45°. Lib. I.
Philosophiae Naturalis

ea ipsius D dignitas cujus index est 242, hoc est, in ratione distantiae paulo majore quam duplicata inversa, sed quae partibus 592 propriis ad duplicatum quam ad triplicatum accedit. Oritur vero ab actione solis (uti posthac dicetur) & propterea hic negligentius est. (b) Actio solis quatenus lunam diffrahit a terrâ, est (c) ut distantia lunae a terrâ quamproximè; (d) ideoque (per ea quae dicitur in corol. 2, prop. XLV. lib. 1.) est ad lunae vicem centripetam ut 2 ad 357,45 circiter, feu 1 ad 178,45. Et neglecta solis vi tantilla, vis reliqua quae luna
diffrahit a terrâ. (b) Actio Solis quatenus Lunam diffrahit a terrâ. (c) Motus Apogaei Lunaris uniformis non est, sed aliquando procedit, aliquando recedit, aliquando quiescit, sed ita ut omnibus compensatur progressionis, & octavo aut novem annis 360 gr. percurrent; Pariter & actio Solis qua Lunam diffrahit ad terrâ non est continua, actio Solis Lunam ad terrâ diffrahit dum Lunae a Syzygii non plus quam 55 gradibus hinc inde dicitur, circa quadraturas verò actio Solis cum terrâ attractione confinet, Lunamque ad terram attrahit, sed tunc & debilior est & per pulsiones gradus agit, quam circa Syzygias, hinc effecit qui refutat pendent ex actione Solis qua Luna diffrahit. (Lib. I. Prop. LXVI. Cor. 6. 7. 8. cum notis.)

(c) Est ut distantia Luna a Terrâ quam proximè. (c) Propter motum Telluris cum Lunae circa Solem, omnia puncta Lunaris Orbitae successive obv sondern Soli, & verum sanctum in Syzygias, poeeta verò in quadraturâ, & eodem orbite non sit circulus cujus terra sit centrum, patet puncta Syzygiorum & quadraturarum, nunc vicinia nunc remotiora fore terrae Jam verò vis quae Sol diffrahit Lunam ad terrae, in Syzygiis, ficit & vis quae Sol Lunam attrahit terram verius in Quadraturâ, crecit secundum distantias Lunae ad terrae, in eis autem punctis praeceptu est Solis actio ad Apogaeum Lunae movendum, unde effecit resultans pendebit a differentia earum actionum quae erit ficut distantia Lunae ad terrae: Vel ut melius res concipiatur, singatur Orbitam Lunae cingi undique Solibus equaliter a
terrae distantibus, ita ut singulam punctum Orbis Lunaris sit simul in Syzygiâ & quadraturâ; cum actio Solis in Syzygia, ficet & actio Solis in quadraturâ, fit ut distantiae Lunae ad terrae, differentia earum actionum erit etiam ut distantia Lunae ad terrae, sed effecit differentia earum actionum idem ac id quod resultabit ex translatione diciti puncti per Syzygiam. & poeeta per Quadraturam: hinc aut motus Apogaei mediis assumatur, is pendebit ab actione quae erit ut distantia Terræ ad Lunæ; addit autem: Newtonus quan proxime propter actionem in punctis inter Syzygias & quadraturas, sed quæ parum hanc rationem turbant; nam in punctis interimidis ubi actio qua Luna diffrahit ad Terræ magis recedere ab hac ratione, actiones compositæ esse nuncud definitum & in punctis à Syzygiis ad quadraturam non remoent actio Solis, quae est proxima eadem ratione in ipsius Syzygii ac quadraturâ; hic actio Solis quatenus Lunam diffrahit ad terræ, est proximè ut distantia terræ ad Lunæ.

(d) ideoque per ea quae dicitur in Cor. 2. Prop. XLV. Lib. I. Dicitur in eo Corollario, quod si ex vis decrecientis secundum quadrata distantiarum auferatur vis que crescit secundum ipsas distantias; quae fit ad priorem ut 1 ad 377,45, motus progressivus Apogaei erit 1°. 31'. 28". in singulâ revolutione; motus autem progressivus Apogaei Lunaris est circiter duplicum velocior, hic vis illa ablatis debet esse ad vim Lunæ centripetam ut 2 ad 377,45, five ut 1 ad 178,755.
PRINCIPIA MATHEMATICA. 25

luna retinetur in orbe erit reciproce ut \(D^2 \). Id quod etiam plenius constabit conferendo hanc vim cum vi gravitatis, ut fit in propositione sequente.

Corol. Si (e) vis centripeta mediocris quae luna retinetur in orbe augeatur primi in ratione 177\(\frac{2}{3} \) ad 178\(\frac{3}{4} \), deinde etiam in ratione duplicata semidiametri terrae ad mediocrem distantiam centri lune ad centro terrae: habebitur vis centripeta lunaris ad superficiem terrae, posito quod vis illa defeciendo ad superficiem terrae perpetuo augeatur in reciproce altitudinis ratione duplicata.

PROPOSITIO IV. THEOREMA IV.

Lunam gravitate in terram, & vi gravitatis retrahit semper a motu rectilineo, & in orbe suo retinet.

Lunae distantia mediocris a terrae in zyzygis est semidiametrorum terrae trium, secundum Ptolemaeus & plerisque Aftironomorum 59, secundum Vendelinum & Hugenium 60, secundum Copernicum 60\(\frac{3}{4} \), secundum Streetum 60\(\frac{3}{4} \), & secundum Tycho- nem 56\(\frac{3}{4} \). Aet Tycho, & quotquot ejus tabulas refractionum sequuntur, constituens refractiones solis & lunae (omnino (f) contra naturam lucis) majores quam fixarum, idque scrupulis quasi quatuor vel quinque, (g) auxerunt parallaxin lunae scrupulis totidem, hoc est, quasi duodecim vel decimae quintae par-

(e) * Si vis centripeta mediocris. Quo-
stantiam vis ablatitia Solis est ad vim centripetam Lunae ut \(178 \frac{3}{4} \), si vis abla-
tia Solis sit \(x \), erit vis centripeta Lune \(178 \frac{3}{4} \), idque detracta vi ablatitia So-
is, erit vis Lunae quae revera retinetur in orbita sua per vim terrae minuam adicio-
nae Solis 177\(\frac{3}{4} \). Quare si vis mediocris
qua Lunae retinetur in orbe, augeatur in
ratione 177\(\frac{2}{3} \) ad 178\(\frac{3}{4} \), obtinebitur
wera vis Lunae centripetae, quaevis foret si
nulla esse aetio Solis. Hinc posito quod
vis illa defecendo ad superficiem terrae
perpetuo augeatur in reciproce altitudinis
feu distantia ad centro terrae ratione dup-licata, ut habeatur vis centripetar in su-
perficie terrae, dicendum est ut quadratum
semidiametri terrae ad quadratum distantiae mediocris centri Lunae ad centro ter-
rae, ita vis centripeta ad quamvis, quod
exit vis in superficie terrae.

(f) * Omnino contra naturam lucis
(25).

(g) * Auxerunt parallaxim Lunae. Tan-
sum auger parallaxim Lunae quantum au-
getur refraction, patet si determinetur pa-
D 3 ralla
26 PHILOSOPHÆ NATURALIS

totius parallexeos. Corrigatur iste error, & (h) distantia evadet quasi 60° semidiametorum terrae, feret ut ab aliis assignatam est. Assumamus distantiam mediocrem sexaginta semidiametorum in syzygiis; & lunarem periodum respectu fixarum complevi diebus 27, horis 7, minutis primis 43, ut ab astronomis statuitur; atque ambitum terrae esse pedum Parisium 123249600, uti (i) à Gallis mensurantibus definitum est.

ior, nempê PR; quasi Luna est in l; undê tantum augeatur parallaxis quantum refractio ipsa.

(h) Distantia evadet. Sit T centrum terrae & angulus A L T parallaxis horizontalis mediocris. Ob angulum L A T rectum, erit semidiameter terrae A T ad distantiam mediocrem Lune à terræ TL, ut finus parallexeos mediocris ad finum totum. Eft autem parallaxis ita 58' cincta. Jam ducatur T l, quae angulus A I T 63' vel 62', ob refractio malè constitutam, erit T l ad T l feret ut 58 ad 62 vel 61; ideoquidem sit juxta Tychonem T I = 56 ½ semid. terrae, erit ut 58 ad 62 vel 61, ita 56 ½ ad 60 ½ vel 61 ½. Quatè erit corrugatur error qui ex refractione malè constituta oriuntur, distantia mediocris Lune à terræ evadet quasi 60 ½ semid. terrae.

(i) à mensuramibus Gallis, A Pra-
& si luna motu omni privari singatur ac dimittri, ut urgente vi illa omni, quâ (per corol. prop. 111.) in orbis suo retina-
tur, descendat in terram; hæc spatio minuti unius primi ca-
dendo describit pedes Parisiensès 15' 27". (k) Colligitur hoc
ex calculo vel per propositionem xxxvi. libri primi, vel (quod
eodem recidit) per corollarium nonum propositionis quartæ
ejusdem libri, confecto. Nam arcus illius quem luna tempore
minuti

tius minimum inventum est gradus circu-
li maximis terræs respondere hexape-
das 57°60' feu ped. Paris. 323260. Qua-
sè inferatur (22) ut numerus graduum
arcus distantiae duorum locorum ad 360°.
seu peripheriam integrâ, idâ idem arcus
in millisibus aut pedibus expressus ad
ambitum telluris in eadem mensura in-
vendendum, sicque definitum est ambitum
telluris esse ped. Paris. 12749600 ejus-
que prindè diameters est ped. Paris.
39231446.

(k) 63. * Colligitur hoc per pro-
opositionem XXVII lib. I. * In hac
Propositione 36. sit S centrum terræ,
A distantia mediocris Lunæ à Ter-
ræ, SO dimidium ejus distantiae medio-
cris, velocitas quæ corpus revolvi potest
in circulo OKH erit ad velocitatem
Lunæ in propriâ orbitâ ut \(\sqrt{2} \) ad 1, sit
X arcus quem Luna in propriâ orbitâ uno-
munito primo describit, erit \(X \sqrt{2} \) arcus
OK eodem tempore describitus in circulo
OKH & area OKS erit \(\frac{1}{2} SO \times X \sqrt{2} \),
æqualis arcum ASD = \(\frac{1}{2} AS \times CD \) (nam
ab exiguitate arcus AD pro rectâ sumi
potest \(\frac{1}{2} SO \times \sqrt{2} = SO \times CD \)
unde est GD = \(\frac{X}{\sqrt{2}} \) sed est SC ad CD
ut CD ad AC, ergo AC = \(\frac{CD^2 \cdot X^2}{SC} = 2SC \)
sed SC est proximâ æqualis SAz, ergo AC
= \(\frac{2SA}{X^2} \) curvis ut 1 ad \(\frac{p}{\rho} \) ut radius ad
circumferentiam, orbis Lunaris Periph-
æria erit \(\frac{p}{\rho} SA \), & quoniam tota à Luna
describitur tempore 274. 78. 43'. five minu-
tis 39343; erit arcus X = \(\frac{p^2 SA}{39343} \) & AC
\(\frac{\rho^2 SA}{2x139343^2 \times SA} = 3095743^2 \) est ve-
rò \(\frac{\rho^2 S A}{60} \) ambitus terræ qui pedura
123496000 ex Pitaro additum fuit; ideoque \(\rho SA = 739497600 \); unde divi-
sione factâ est AC = 2.38875p; sed Ra-
dius est ad Peripheriam ut 1 ad 6.283185
&c. unde tandem habetur AC = 15.00878
&c. Alter autem calculus ex Cor. 9. Prop.
IV,* deductus ita se habet.
28 Philosopliae Naturalis

minuti unius primi, medio suo motu, ad distantiam sexaginta
semidiametrorum terrestrium descriptam, sinus versus est pedum
Parisiensium $15\frac{2}{2}$ circiter, vel magis accuratè pedum 15, dig.
1, & lin. $\frac{3}{2}$. Unde cum vis illa accedendo ad terram augea-
tur in duplicatâ distantia ratione inversâ, ideoque ad superficiem
terrae major fit partibus 60×60 quàm ad lunam; corpus
vi illâ in regionibus nostris cadendo, describere debet spatii
minuti unius primi pedes Parisienses $60 \times 60 \times 15\frac{2}{2}$, & spatii
minuti unius secundi pedes $15\frac{2}{2}$, vel magis accuratè pedes $15,$
dig. 1, & lin. $\frac{3}{2}$. Et cædum vi gravia reverà descendit in
terram. Nam penduli, in latitudine Lutetiae Parisiiorum ad sin-
gula minuta secunda oscillantis, longitudo est pedum trium Pa-
risien-

Sit RAEA terra; cujus centrum T;
V L orbita Lune cujus pars LM à
Lunâ percurritur minuti unius primi in-
tervallo. Quoniam Luna periodum
suam respecfu fixarum complet diebus
27, hor. 7, minutis primis 43, ut ab
astronomis statuitur, hoc est, minutis pri-
missis $39343,$ erit LM, $\frac{1}{39343}$ totius pe-
ripheriae. Portio ambitus terrae est ped.
Paris. 123349600, unde dabitur oribts Lune
Lunaris circumferentia quae est sexage-
cupula 73949760000, ped. Paris, quæ fi divi-
datur per 39443, quos dabit longitudi-
dinem arcit à Lunâ minuto primo des-
critpt pedibus Parisiensiibus expressam, fé-
liscet 187964, ped. circiter cujus quadra-
to 3530455296 per diametrum dividi,
quæ est pedum 235395976 habebitur fin-
proximè ut priori calculo.

* Sed ex Corollario propositionis pre-
cedens, vis quâ Luna retinetur in orbe
suo augeri debet in ratione $177\frac{2}{5}$ ad
$178\frac{3}{5}$ ut corrigatur vis ejus per Solis
actionem diminutionem, & spatia per di-
versas vires iisdem temporibus percursa
fint ut illæ viæ, ergo linea AC inventa
$177\frac{2}{5}$ est ad spatium quod Luna
demptà vi Solis describeret ut $177\frac{4}{5}$ ad
P R I N C I P I A M A T H E M A T I C A.

risiensium & linearum 84, ut observavit Hugenius. Et (1) al-
titudo, quam grave tempore minuti unius secundii cadendo de-
crit, est ad dimidiam longitudinem penduli hujus in duplica-
tâ ratione circumferentiae circuli ad diametrum ejus (ut indi-
cavit etiam Hugenius)(m)ideoque est pedum Parisiensium 15.
dig. 1. lin. 13. Et propertia vis quà luna in orbe suo rete-
netur, si descendatur in superficiem terræ, æqualis evadit vi
gravitatis apud nos, ideoque (per reg: 1. & 11.) est illa ipfa
vis quam nos gravitatem dicere solemus. Nam si gravitas ab
eà diversa effet, corpora viribus utrisque conjunctis terram pe-
tendo duplo velocius descendenter, & spatio minuti unius se-
cundi cadendo describerent pedes Parisienfes 304; omnino con-
tra experientiam.

(n) Calculus hic fundatur in hypothesi quod terra quiescit.
Nam si terra & luna moveantur circum solem, & interea quo-
que circum commune gravitatis centrum revolvantur: manente
lege gravitatis, distantia centrorum lunæ ac terræ ab invicem
erit 605 femidiametorum terrestrium cicter; uti computatio-
nem ineunti patebit. Computatio autem iniiri potest per prop.
LX. lib. I.

(1) * En altitudo. (471. lib. I.):

(m) * ideoque est ped. Parisi. (ibid.).

(n) 64. * Calculus hic fundatur in hyp-
other quod terræ quiescit. * Undecimâ
Sectione Libri I. qualit Newtonius qua-
lis oriretur differentia inter motus cor-
porum attractor, quando tota vis uni
immo tribuitur, aut quando (sicut res
se habet) attractione mutua in se agunt;
& demonstravit Propositione 58 & 59.
Quod si duo corpora mutuo attrahentibus & circa commune gravitatis
centrum Ellipsis similes describentibus,
alternum sit nonstra sedes, ita ut motum
totum alteri tribuantus quod circa nos
Ellipsum describere videtur; ille aut
e dem vi centripeta eandem Ellipsin circa
nos, si immut revèræ foremus, nonnisi lon-
giori tempore describeret, ita ut tempus
quo mutua actione gravitatis circa nos

Tom. III.

mores revolv. videretur, foret ad tempor
quo circa nos immotor revolueretur, in ra-
tione subduplicata corporis Centralis im-
moti ad summam duorum Corporum re-
volventium; Unde, manente cadem gravi-
tatis Lege, Ellipsisque describenter circa
nos immotor ecodem tempore quo de-
scribitor Ellipsis relativa circa nos motor;
minor foret quàm ea Ellipsis relativa, &
ratio axium inveniatur dicendo, quadratum
temporis quo hec Ellipsis describitor, five
(ex hyp.) quadratum temporis quo de-
scribitor Ellipsis relativa circa nos,
est ad quadratum temporis quo Ellipsis relativa
ellipsi æqualis circa nos vere immotor
describitor, ut Cubus semi Axis Ellipsos
minoris descripsisse circa corpus immotor ad
Cubum semi Axis Ellipsis majoris description
circum etiam immotor, & quæ Ellipsis
relativa est æqualis, sed illa tempora erant
in subduplicata ratione musæ corporis immor

E
Demonstratio propositionis sic fusius explicari potest. Si lunæ plures circum terram revolventur, perinde ut fit in syste-
mate saturni vel jovis: harum tempora periodica (per argu-
mentum inductionis) observarent legem planetarum à Keplers
detected, & propterea harum vires centripetæ forent recipro-
cè ut quadrata distantiarum à centro terræ, per prop. 1. hu-
jus. Et si earum infima est parva, & vertices alcellorum
montium prope tangerent: hujus vis centripeta quæ retinueretur
in orbe, gravitates corporum in verticibus illorum montium
(per computationem precedentem) aestuar quanproximè, ef-
ficeretque ut eadem lunula, si motu omni quo pergit in orbe
suo privaretur, defectu vis centrifugæ quæ in orbe perman-
serat, descenderet in terram, idque eadem cum velocitate quà
gravia cadunt in illorum montium verticibus, propter aequali-
tatem virium quibus descendunt. Et si vis illa quà lunula illa
infima descendit, diversa est effet à gravitate, & lunula illa etiam
gravis est in terram more corporum in verticibus montium,
eadem lunula vi utrâque conjunctâ duplo velocius descendere.

moti ad summam massam duorum corporum, ergo, ut massa corporis immoti
ad summam massam duorum Corporum, sic Cubus semi-Axis Ellipticus minoris de-
scribatur in corpus immotum ad cubum
semi-axis Ellipsæ maioris reversa descripta,
Hinc cùm haec est immersam terræ supposuerimus Lunaque revolvendem tem-
pore, quæ reversa revovitur, & semi axem orbiæ Lunæ in semi Diameterorum ter-
ræ assumfarris, hujus massa terræ a massæ
Lunæ ut 42. ad 1. erit 42. ad 43. ut Cubus 60. ad Cubum semi axis quæ Ellipticos
quam (maen est eadem gravitatis Legis demque temporis Periodico) Luna relativè
describatur circa terram dum ipsa terra mutuæ
Lunæ attractione circa centrum gravitatis
commune severa revolvetur, ills ergo semi

Axis erit \(\frac{43 \times 16000}{42} \) cujus Radix Cubi-
ca est 60,47 fere \(\frac{60}{4} \) ut habet Newtoni-
nus.

65. Eodem modo quo Luna in orbis
stà revolvitur circa tellurem, ita aliud:
quoque grave ex puncto extrà telluris su-
perfìciem secundum rectam horizontalis
fatis validè projectum orbitam describere-
set, & planètæ infra periodum iam com-
plerunt (ib. lib. 1.). Sed quò alius est suprâ
terram punctum illud ex quo grave
projectum, eò minori opus est vii projectilii ut
projectum in planètæ mutetur, & quò hu-
milius est eò majori (ibid.) hoc est, cè-
leritas per vim projectilium impressâ erit in-
versè ut distantia, v.gr. Si Luna eadem
celeri-
PRINCIPIA MATHEMATICA.

Quare cum vires utraque, & haæ corporum gravium, & illæ lunarum, centrum terræ respicient, & sint inter se similes & aequales, eadem (per reg. i. & ii.) eadem habebunt causam. Et propterea vis illa, quæ luna retinetur in orbe suo, ca ipsa erit quam nos gravitatem dicere solemus: idque maximè ne lunula in vertice montis vel gravitate careat, vel duplō velocius cadat quàm corpora gravia solent cadere.

PROPOSITIO V. THEOREMA V.

Planetas circumjoviales gravitare in jovem, circumsaturnios in saturnum, & circumsoleares in solem, & vi gravitatis suæ retrahi semper a motibus rectilineis, & in orbibus curvilineis retinei.

Nam revolutiones planetarum circumjovialium circa jovem, circumsaturniorum circa saturnum, & mercurii ac veneris reliquorumque circumsolearium circa solem, sunt phænomena ejusdem generis cum revolutione lunæ circa terram; & propterea (per reg. ii.) à cauis ejusdem generis dependent: prætermitt cum demonstratum sit quod vires, à quibus revolutiones illæ dependent, respicient centra jovi, saturni ac solis, & recedendo à jove, saturno & solae, decrescunt eadem ratione ac lege, quà vis gravitatis decrescit in recessu à terrâ.

Corol. i. (o) Gravitas igitur datur in planetas univerfios. Nam venerem, mercurium, caeterosque effe corpora ejusdem generis

leritae quà nunc in orbis ēt ēa revolviit
juxta terram, projectetur secundum directionem horizontalem, circà tellurem non giraret, sed terrestrium projictilium mori in terram cadere, antequam * per terram partem minuì esset mota. Nam arcus quem Luna 20 scrupulis secundis horariis in suo circulo percursit est 1' flam accus tellurem accedat & eadem celebritate moveatur, ille arcus erit 1'; sinus versus Arcus 1' est—Radii, qui

Radius cùm fit pedum 19615783 erit si

nas ille versus pedum centum circiter ;
fed grave prope terram viginti iiias scrupulis secundis cadendo percurrit 20 x 20 x 15 — fit v. 6033 ped. Unde Luna in circulo suo non manebit, sed longè prius in terram impegerit quàm 10 secunda elapsa suffert.

(o) 66. * Gravitas igitur datur in Planetas univerfios; * Datur gravitas in terram & eæ gravitatis Luna circa eam revolviit per Prop. IV; datur gravitas in Jovem & Saturnum, nam revoluntiones Planetary circumjovialium circa Jovem, &
Philosophiae Naturalis

generis cum jove & saturno, nemo dubitat. Et cum attractione omnis per motus legem tertiam mutua sit, jupiter in satellites suos omnes, saturnus in suos, terraque in lunam, & sol in planetas omnes primarum gravitabit.

Corol. 2. (p) Gravitatem, qua planetam unumquemque respicit, esse reciprocè ut quadratum distantiae locorum ab ipsius centro.

Corol. 3. Graves sunt planetarum omnes in se mutuo per correlationem. Et (q) hinc jupiter & saturnus prope conjunctionem se invicem attrahendo, sensibiliter perturbant motus mutuos, sol perturbat motus lunares, sol & luna perturbant mare nostrum, ut in sequentibus explicabitur.

Scholium.

Haec est vir illam qua corpora celestia in orbibus suis rientur, centripetam appellavimus. Eandem jam gravitatem esse confitam, & propterea gravitatem in positerum vocabimus. Nam causa vis illius centripetae, qua luna retinetur in orbem, extendi debet ad omnes planetas per reg. i. ii. & iv.

PROj

circumsaturniorum circa Saturnum sunt eiusmod generis cum revolutione Lunae circa terram, pendent ergo (per reg. 2.) ex gravitate eorum Satellitum in eos Planetae; Quamvis autem non sint aut non observati sint Satellites circa Martem, Venerem & Mercurium, attamen Jovi, Saturno, Terra in caelis icta sunt semiles ut dubitandi locus non relinquatur quod si Satellites juxta ipsos collocarentur, idem eveniret illis ac Lunae & circumsaturnis aut circumjovialibus, unde sequitur gravitatem etiam dari in illis Planetae. Patet propter mutuum attractionem, terram esse gravem in Lunam, &c. confabul.

(p) * Coroll. 2. Patet (ex reg. i. & prop. i.).

(q) * Es hinc Jupiter. Hae mutua planetarum perturbatio, ut potè cum sequentibus propositionibus coaequata, deiniceps convenientius explicabitur, * sufinct in praenotantur quæ de ea superioris dictum est, occasione quietis Apheliorum vide notam a ad Prop. 2e.
Corpora omnia in planetas singulos gravitare, & pondera eorum in eundem quemvis planetam, paribus dislantiis ad centro planetae, proportionalia esse quantitati materiae in singulis.

(*) Descensus gravium omnium in terram (dempta faltem inaequali retardatione que ex aëris perexiguâ resistentia oritur) æqualibus temporibus fieri, jamdudum observarunt alii; & accuratissimè quidem notare licet æqualitatem temporum in pendulis. Rem tentavi in auro, argento, plumbo, vitro, arenâ, sale communi, ligno, aquâ, triticó. Comparabam pyxides duas lignas rotundas & æquales. Unam implebam ligno, & idem auri pondus suspendebam (quâm potui exactè) in alterius centro oscillationis. Pyxides ab æqualibus pedum undecim filis pendentes, constituebant pendula; quoad pondus, figuram, & aëris resistentiam omnino paria: & paribus oscillationibus, juxtaposita, ibant unit & redibant diutissimè. (†) Proinde copia materiae in auro (per corol. 1. & 6. prop. xxiv. lib. 11.) erat ad copiam materiae in ligno, ut vis motricis actio in totum aurum ad ejusdem actionem in totum lignum; hoc est, ut pondus ad pondus. Et sic in ceteris. In corporibus ejusdem ponderis differentia materiae, quæ vel minor esset quam pars millesima materiae totius, his experimentis manifestò comprehendi potuit. Jam verò naturam gravitatis in planetas eandem esse atque in terram, non est dubium. Elevarì enim singantur corpora haec terrestria ad usque orbem lunæ, & unà cum lunâ motu omnì privata demittì, ut in terram simul cadant; &

(*) Descensus gravium omnium (3; lib. 1.).

(†) Proinde copia materia. Quantum materiae in medio non resistente est ut pondus comparativum & quadraturam temporis directè & longitudo penduli inversè (per cor. 6. prop. 24. lib. 2.) idemque datis temporis & longitudine penduli ut pondus comparativum directè. Sed pondus comparativum est actio vis motricis (per cor. 6. prop. 24. lib. 2.). Ergo copia materiae in auro erat ad copiam materiae in ligno ut vis motricis actio in totum aurum, ad ejusdem actionem in lignum, hoc est, (per cor. 1. prop. 24. lib. 2.) ut pondus ad pondus.
Philosophiae Naturalis

De Mundo Systemate.

34

(1) per jam ante oftensa certum est quod temporibus æqualibus descriptum æqualia spatia cum lunæ; ideoque quod sunt ad quantitatem materiæ in lunæ, ut pondera sua ad ipsius pondus. Porro quoniam satellites jovis temporibus revolvuntur quæ sunt in ratione sesquiplicata distantiarum ad centrum jovis, (2) erunt eorum gravitates acceleratrices in jovem reciprocè ut quadrata distantiarum ad centrum jovis; & propertea in æqualibus ad jove distantiis, eorum gravitates acceleratrices evaderent æqualiter. Proinde temporibus æqualibus ab æqualibus altitudinibus cadendo, describerent æqualia spatia; perinde ut sit in gravibus in hac terrâ nostrâ. Et (3) eodem argumento planetae circumfocales, ab æqualibus à sole distantiis demissi, descessu suo in solem æqualibus temporibus æqualia spatia describerent. (y) Vires austeri, quibus corpora inæqualia æqualiter accelerantur, sunt ut corpora; hoc est, pondera ut quantitates materie in planetis. Porro jovis & ejus satelles eludere in solem, proportionalia effe quantitatis materie eorum, patet ex motu satelles quam maximè regulari; per corol. 3. prop. lxv. lib. 1. Nam si horum aliquis magis traherentur in solem, pro quantitate materie suæ, quam cæteri; motus satelles (per corol. 2. prop. lxv. lib. i.) ex inæqualitate attractionis perturbarentur. Si, paribus à sole distantiis, satelles aliquis gravior effet in solem pro quantitate materie suæ, quàm jupiter pro quantitate materie suæ, in ratione quàcumque datâ, puta d ad e: distantia inter centrum solis & centrum orbis satelles, major semper foret quàm distantia inter centrum solis & centrum jovis in ratione subduplicata quàm tempore planeta quilibet circumfocalis omni motu revolutionis primum solâ vi centripetâ desideraret & ad solem utque perveniret ex datâ ejus ad Solem distantia innovebit per nov. 401. lib. i. dimidius sit ipsis temporis periodici quo planeta ad distantiam duplò minerem revolvi posset, five tempore quod est ad tempus periodicum planetæ ut 1 ad 4 √ 2, idem planetae cadendo solæ attingeret. (y) Vires austeri quibus corpora inæqualia. (Def. 7. & not. 15. lib. i.)

66. (1) * Per jam antea oftensa (prop. 4. lib. hujus).
(2) * Eorum eorum gravitates acceleratrices. (Per cor. 2. prop. 5.)
(3) * Es eodem argumento. Gravitates acceleratrices planetarum in Solem sunt reciprocè ut quadrata distantiarum à centro Solis (cor. 2. prop. 5.) & propertea in æqualibus à Sole distantiis eorum gravitates acceleratrices evaderent æqualiter, proindeque temporibus æqualibus ab æqualibus altitudinibus cadendo describerent spatia æqualia. Quanto autem tempore planeta quilibet circumfocalis omni motu revolutionis primum solæ vi centripetæ desideraret & ad solæ utque perveniret ex datâ ejus ad Solem distantia innovebit per nov. 401. lib. i. dimidius sit ipsis temporis periodici quo planeta ad distantiam duplò minerem revolvi posset, five tempore quod est ad tempus periodicum planetæ ut 1 ad 4 √ 2, idem planetæ cadendo solæ attingeret.
Principia Mathematica.

quam proxime; \((*) \) uti calculo quodam inito inveni. Et si satelles minus gravis effet in solem in ratione illa \(d \) ad \(e \), distantia centri orbis satellitis a sole minor foret quam distantia centri jovis a sole in ratione illa subduplicata. Ideoque si in æquali-

\[
\frac{1}{\sqrt{d}} \text{ ad } \frac{1}{\sqrt{e}} \quad \text{et quoniam gravitas est inversa ut quadrata distantiarum, gravitas in Solm ad distantiam S I erit ad gravitatem in Solm ad distantiam S i ut } d \text{ ad } e; \text{ unde si gravitas Jovis in I positur futur e, et gravitas satellitis gravior in I est, positur fit ut } d; \text{ ergo} \text{ satellitis gravitas in I positur erit ut } e, \text{ quare erit æqualis gravitati Jovis in I positur.}
\]

Fingatur satelles \(S \) qui Jove nec gravior nec levior sit, qui circa Jovem I circulam describat ACBD, et fingatur in I corpus centrale Jovis sime, circa quod semper Solis actione, satelles gravior \(L \) describere poterit orbitam PQRT priori ACBD æquali; Reffinatur Solis actione, actio ejus in uramque satellitem erit æqualis in simulibus orbitarum punctis; nam propter insinutem puncti \(S \) distantiam erit \(S A \) ad \(S P \), \(S B \) ad \(S R \) ut \(S I \) ad \(S i \), ideoque

\[
\frac{1}{\sqrt{d}} \text{ ad } \frac{1}{\sqrt{e}} \quad \text{gravitatis in iis punctis forent ut } d \text{ ad } e, \text{ ideoque si satellites forent æque graves, paribus in distantias gravitates in iis punctis forent ut } d \text{ ad } e, \text{ sed quia gravitas satellitis } L \text{ est ad gravitatem satellitis } S \text{ ut } e \text{ ad } d, \text{ componantur difficriment gravitatis ex distantia ornam per diffiniment gravitatis ex Hypothesi conflaturarum: mutatio autem quaæ ex actione Solis oritur in orbitam satellitis relativa ad ejus primarium, pendet ex diffiro actiones Solis in satellitem \& in primarium, hoc est in oppositione pendet ex diffusio actionis Solis in primarium dempta actione Solis in satellitem \& in conjunctione ex mutatione pendet ex residue actionis Solis in satellitem dempta Solis actione in primarium: Cum ergo actio Solis in satellites } L \text{ \& } L \text{, fit cadam;}
\]

fed actio Solis in primarium \(i \) est minor quam in primarium \(I \), in oppositione minus est residuum quod mutationem pariet in orbite satellitis \(L \), quam residuum quod mutationem satellitis \(I \) parit in orbite, \& majus \(e \) contra est residuum in conjunctione respectu orbis satellitis \(L \) quam respectu orbis satellitis \(I \) sed illa Residua in oppositione quam in conjunctione via centripetam minuit; Ergo vis centripeta major manet in \(R \) quam in \(B \), \& minor \(e \) contra in \(P \) quam in \(A \), unde patet.
equalibus à sole distantissimis, gravitas acceleratrix satellitis cujuscunque in solem major est et vel minor quam gravitas acceleratrix jovis in solem; parte tantum millelima gravitatis totius, foret distantia centri orbis satellitis à sole major vel minor quam distantia

patet quod ut revolutorium similiter inter orbitam satellitis L, & orbitam satellitis I corpus centrale debeat remexeri à puncto R & accedere versus P, hoc est transferri ex i versus I; ita ut centrum orbitae satellitis L remotius esse debeat à Sole quam ipsum corpus Centrale.

Jam verò dico illum corpus centrale ad I transferri debere, nam si corpus centrale in I, remota Solis aequazione, satellis L eodem tempore Periodico ac prius descriptum Ellipsum cujus centrum i, focus verò I & axis major R P, (per Cor. Prop. XV. Lib. I.) & in mediocri sua distantia I Q (Cor. 4. Prop. XVI. Lib. I.) velocitatem eamdem habeatis quam habet satelles I in suo circulo, quando v. gr. habet in C ubi velocitatem illarum directionum sunt Parallela tam inter se quam diametro RP, & ob distantiam I Q & I C æqualitatem vires centrales sunt æqualis directionibus obliquitatis paulum differentes: Addatur jam actio Solis, & cùm sit SQ ad SC ut S i ad SI actiones illæ Solis (ex Hyp. & demonstratis) in satellitis diversæ gravitatis, sed postos in Q & C erunt eiam æqualiter; Movebitur ergo satelles L in mediocribus distantissimi Q & T ut satelles I moveret in C & D quam proxime, tam ratione corporis centralis I quam eiam ex adjuncta actione Solis, mutationes verò ex Sole pendentes in A & P, & in R & B æqualiter sunt, quia sunt differentia ejusdem vis Solis in I & virium Solis in A & P, ut & virium Solis in R & P, vires autem in A & P sunt æqualiter ex Hyp. & dem. ut & in R & P. Unde cùm vis Primarii magna cenfenda sit repectu vis S; rationes virium Centripetarum residuariam in P & A, B & R manent interse in eadem ratione ac si nulla foret actio Solis, & ut remota actione Solis curvas suas ædem tempore describere faciebat, celeritate quidem majori in P; minori in R, media

verò in A & B, ita quæ eadem proximè iis in punctis manebeat ratio descriptionis curvarum; cùm ergo demonstratum sit quod in punctis P Q R T, A C B D actio Solis non turbet relationem que interedit inter modum quo curvae illæ P Q R T, A C B D descripturum, cùm virium rationes eadem maneat ac prius quamproximè, idem etiam de punctis intermedia eis intelligenti, Unde sequitur quod satelles L in orbite P Q R T revo vi poterit eodem tempore ædemque proximè Legibus ac Satelles
tania jovis à sole (a) parte \(\frac{1}{2000}\) distantiae totius, id est, parte quintâ distantiae satellitii extimi à centro jovis: quae quidem orbis eccentricitas forat valde sensibilis. Sed orbis satellitum sunt jovis concentrici, & propter gravitates acceleratrices jovis & satellitum in solem æquantur inter se. Et eodem argumento pondera saturni & comitum ejus in solem, in æqualibus à sole distantissimis, sunt ut quantitates materiae in ipsis: & pondera lunæ ac terræ in solem vel nulla sunt, vel earum magnitudo accurata proportionalia. Aliqua autem sunt per corol. \textit{i. \phi.}

3. prop. \textit{v.}

Quinetiam pondera partium singularum planetarum cuiuscumque in alium quemcunque sunt inter se ut materia in partibus singulis. Nam si partes aliquae plus gravitarent, aliæ minus, quàm pro quantitate materiæ, planeta totus, pro genere partium quibus maximè abundet, gravitatem magis vel minus quàm pro quantitate materiae totius. Sed nec refert utrum partes illæ externe sunt vel internæ. Nam si, verbi gratia, corpora terrestria, quae apud nos sunt, in orbem lunæ elevarī fingantur, & conferantur cum corpore

telles \(\text{L.}\) in orbitā fūt \(\text{ACBD}\), si gravior sit Jove paribus in distantia in ratione duplicata distantiae Solis à centro suis orbitis ad distantiam Solis ab ipso Jove.

Q. E. D.

Eamdem demonstrationem applicari posse ad caum ubi tellales supra ponneretur levis Jove paribus in distantia, illumque tum descripserint Ellipsum cujus centrum Sole vicinius erit quàm Jupiter, ita ut sit gravitas satellitii ad gravitatem Jovis in duplicata ratione distantiae Solis à centro Orbiz ad distantiam Solis à Jove. Q. alterum E. D.

Hac ratione facti contente affirmœ Newtoni credimus, idem tamen aliter inveni calcol magis ad mentem Newtoni demonstrari posse non negamus; fed ratio eum calulum ineundi, ex iis quàe posse de motibus Lunarius dicentur, erit deducenda.

\((a)\) \textbf{Parte} \(\frac{1}{2000}\) distantiae totius. Gra-"
De Mund. Syst. Nat.

38 PHILOSOPHIE NATURALIS

Pore lunae: si horum pondera essent ad pondera partium externarum lunae ut quantitates materiae in iisdem, ad pondera verò partium internarum in majori vel minori ratione, forent eadem ad pondus lunae totius in majori vel minori ratione: contra quam supra oftenum est.

Corol. 1. Hinc pondera corporum non pendent ab eorum formis & texturis. Nam si cum formis variari posse, forent majora vel minora, pro varietate formarum, in aequali materiâ: omnino contra experientiam.

Corol. 2. Corpora universa, quæ circa terram sunt, gravia sunt in terram; & pondera omnium, quæ aequaliter à centro terræ distant, sunt ut quantitates materiae in iisdem. Hæc est qualitas omnium in quibus experimenta instituere licet, & propiterea per reg. 111. de universis affirmanda est. Si æther aut corpus alium quocunque vel gravitate omnino defitueretur, vel pro quantitate materiae sua minus gravitaret: quoniam id (ex mente Aristotelis, Cartesii & aliorum) non differt ab aliis corporibus nisi in formâ materiae, posset idem per mutationem formæ gradatim transitutari in corpus ejusdem conditionis cum iis, quæ pro quantitate materiae quam maximè gravitantis, & vicissim corpora maximè gravia, formam illius gradatim inundo, posset gravitatem suam gradatim amittere. Ac proinde pondera penderent à formis corporum, possetque cum formis variari, contra quam probatum est in corollario superiore.

Corol.

66. Jovis autem distantia mediaeors à Sole est ad distantiarum mediocrum terræ à Sole, ut 52 ad 10, ergo ea continebant semi-Diametros Solis 1113.592, ejus numeri bis mille quæ est excentricitas Jovis si satelles sit Jove 100°. pars gravior vel levius paribus in distantiis, ille verò numerus 556296 est quinta pars numeri 278448 paulo major quam 2655 fed distantia extimati satellitiis à Jove continebat Solis semi Diametros 2655; Ergo excentricitas Jovis si satelles sit Jove 100°, parte gravior vel levius paribus in distantiis, est ad minimum quinta pars distantiis satellitiis extimati à Jove. Q. E. D.
P R I N C I P I A M A T H E M A T I C A.

Corol. 3. Spatia omnia non sunt æqualiter plena. Nam si spatia omnia æqualiter plena essent, gravitas specifica fluidi quo regio æris impleetur, ob summam densitatem materiæ, nil cedere graviati specificæ argenti vivi, vel auri, vel corporis alterius cujuscunque densissimi; & propter ea nec aurum neque aliud quodcumque corpus in ære descendere possit. Nam corpora in fluidis, nisi specificè graviora sint, minimæ descendunt. Quod si quantitas materiæ in spatio dato per rarefactionem quacunque diminui possit, quidnisi diminui possit in infinitum?

Corol. 4. Si omnes omnium corporum particulæ solidæ sint ejusdem densitatis, neque sive poris rarefieri possint, (a) vacuum datur. Ejusdem densitatis esse dico, (a) quorum vires inertiae sunt ut magnitude.

Corol. 5. Vis (b) gravitatis diversi est generis à vis magnetica. Nam attractio magnetica non est ut materia attrahat. Corpora

(a) * Vacuum dari. Quibus respon- sionibus hoc Newtoni ratiocinium effu- gigant Carresian , jam diximus (lib. 2. n. 187.

(b) * Quorum vires inertiae. Cum enim vis inertiae sit quantitari materiæ proportionalis, si vires inertiae sunt ut magnitudines, magnitudines sunt ut quantitates materiæ, hoc est, sunt ejusdem densitatis.

(b) * Vis gravitatis diversi est generis. Clarif. Muschenbrock in Disertatio de Magnete plurima aequa accuratissima de huic tali lapide actionem refer experimenta. Ex descrip'ta ad diligentissimo viro experimentorum serie palam quidem sit æqualis non esse magnetis in varia corpora actionem, eamque tempore, vicissitudinibus obnoxiam, & modō remitter modo ivesti. At vim magnetism in ratione multo minori quàm triplicata di- stantiarum decrescere, eadem ostendunt experimenta. Hinc potis transcriptum hoc ipsum Corollarium V., subdit Muschenbrock: "utiam memoriam prodita suident experimentera ex quibus Newtonius hæc collegit; forstan enim vir floridanea sub- sistit in Mathematicis disciplinis methodum invenit separandi attractiones à repulsionibus quorum proportionem in di- stantia ratione triplicata decrescere de- pretendit, sed quia nihil de hac re ulterius determinavit, nec amplecti ejus tertiam possumus."

Ut intelligantur hac Clarif. Muschenbrockii verba, sciem dum est, virum doctissimum suis experimentis in eam inducere suisse suppilicionem, quod si licet magnetis constaret paribus valde heterogeneis, quorum quadam attraherent, quædam repellent, ita ut duas illas vires oppositas vel simplicis repulsionis vel attractionis proportionem turbent. Idque non caret verisimilitudine, cum experimentis notissimum fuisse, magnetes non solum se possunt attrahere, sed etiam alterum magneto in contrariam partem converso, unum ab altero repellere. Uterque magnetis polaris vim repellentem atque attrahentem æqualem ostendit, & idcirco ex eodem polo vis attrahens & repellens emanat. Si amici magnetum poli bi nobis observantur, attractio pprpellet repulsionem, si est contra inimici poli seque invicem rep- piciant, prævalit repulsio. Quamobrem qui solam attractionem vult cognoscere; peripæclam habere debet eorumdem polo- rum vim repellivam, eamque addere vi atrahens experimento cognitae, summa in-
Philosophiae Naturalis

40

De Muni di Systemate.

por a aliqua magis trahuntur, alia minus, plurima non trahuntur. Et vis magnetica in uno & eodem corpore intendi potest & remitti, etque nonnunquam longe major pro quantitate materia

dicabit vim totam attrahentem. Hinc forfan fieri potest ut separatis ab invicem attractionis repulsionisque viribus, constans quam Newtonus reprehendit inter attractiones & distantiis proportio obineret. At vero cùm ex crasis observationibus demonstrat id se animadvertisse factetur Newtonus, non ita longe querenda videtur mens nostrì autori.

* Vim magnetica deprecere in ratione triplicata distantiarum, ab experimentis statuit Wiskbonus in egregio opuscule, De Actis magnetica inclinatione: ipsa autem Muschenbroeckius in Tomo primo Physicis iure, Rationem diminutionis vis magneticae esse fere quadruplicatam distantiarum deduxit ingeniosissimi experimentis, etc. etc. cum magnetem unum alteri linci bilancia appendit, ponderibus in altera lance ad equilibrium inimicendum impulit, tum admoveat magnetem sub eo qui suspensus est, sic vis attractionis magnetis equilibrium tollit, quod adjectis ponderibus restituitur, & pondera illa addentia varia sunt pro varia distantia magnetum inter se, ita ut videantur quibus ratione quadruplicata inveniam spatii vacui inter magnetes intercedi, quod spatium vacuum non est Cylindricum aut Prismaticum, quia magnetis quibus uelabatur Cl. Muschenbroeckius, erat Sphærici; unde hæc ratio non est accurata ratio quadruplicata inveniar distantiarum.

Aliis ratione hæc experientia poenitenti, nempe considerando actionem magnetis in acum magneticae, quantum nempe pro varia magnitatis distantia ad magnetico meridiano acum detorqueat, quod hæc ratione, experimenta a Wiskbono instituta fuisset (nisi memoria fallit) puto, que forte Methodus ei estiam quâ Newtonus utus fuerat, & sane omnibus probe notatis quâ ad efficiationem virium requirunt, vis magneticae diminutionem secundum triplicatam rationem procedere experimentis quàm accuratissime potus instiuitis deprehendi, quæ quidem experien-

centas (cum non sint ad manum ea quæ Wiskbonus hæc de re tradidit) referre nostrùm puto esse instituti.

Sit ergo ACB, meridianus magneticus, NCS acus magnetica ad lineam magnitatis M, extram meridianum magneticum tracta, etque linea C m à centro acus ad centrum magnetis ducta meridiano magnetico perpendicularis, & sitam suspensam distantiam C m à centro acus ad centrum magnetis effici finitam.

Vis magnetica terra terrae acus à S C N ad B C A, sed quia illic situs est obliqua, revolvendi est in duas vires, unam lineam SCN perpendiculararem, alteram ipsi parallelam; hac frutum agit omnimente centro C, illa verò gyrationem acus efficit, itaque si in puncto quovis c, a c representa vim magnetico tantam, a representabim vim quæ convertitur acus, quæ ideo est ad vim magneticae tantam in eo puncto ut sinus anguli a c (declinationis acus à meridiano magnetico) ad Radium; In omnisibus punctis C N vim æquali exercerii supponi potest, fed in parte CS vis ea repulsiæ agit, ideoque consiente cum vis quæ convertit partem CN, & ejus efficaciæ geminatae; Notum est verò quod si vires æqualis in omnibus punctis C N æquali æqualis & perpendicularis eam lineam convertant, earum omnium efficacia eadem erit ac si summa omnium virium perpendiculariarum agetur in puncto P adhibitus tertius partibus acus CN à centro C remoto; hic ergo collecta censeri potest tota vis magnetica convertens partem CN, & eodem ratione vis repulsiæ convertens partem CS, in puncto P, adhibitus tertius acus CS à centro C remoto, collecta censeri potest; & propert æqualitatem lineiæ CN, CS, ideoque partium CP ac CP, tota vis magnetica tam attractiva quam repulsiæ acus convertit in puncto P applicata censeri potest.

Si magnes M ab acu infinitè distaret, partia ratione ostentenderi vim totam quà con-
Principia Mathematica

in ratione distantiae non duplicatae; fed feret triplicatae, quantum ex creatis quibusdam observationibus animadverters possit.

Hinc in causa, in quo acus quietur, vis magnetica terrae convertens acum est aequalis vis magnetis convertentur acum, liquide manet acus in aequilibrio in suo N S C, ceh ergo sit vis magnetica terrae tota, ad vim magneticae terrae converternet acum ut Radius ad finem declinationis acus ad meridianum magnetico; & fit vis magnetis convertens acum (aequalis illi vis magneticae terrae convertentur acum) ad vim totam magnetis ut finum declinationis acus ad magnetem ad Radium; ex quo & per compositionem rationem habebitur vis tota magnetica terrae ad vim totam magnetis M ut finum declinationis acus ad magnetem ad finum declinationis acus ad meridianum magnetico, quod etiam per compositionem virium demonstrari poterit.

Itaque si idem magnes ad aliam distantiam ponatur, ut in X, in illo sit acus continuat, habebitur etiam mis magnetis in X, ad vim totam magneticae terrae, ut finus declinationis acus ad meridianum magnetc ad finum declinationis acus ad magnetem. Quare per compositionem rationem erit vis magnetis in X, ad vim magnetis in M, ut finus declinationis acus ad meridianum magnetico cum magnes est in X divisum per finum declinationis ab eo magnetes in X potior, ad finum declinationes acus ad meridianum magnetico cum magnes est in M dividum per finum declinationis a magnetis, in M potior, hoc est, vis magnetis in diversis distantias (infinitis, respectu magnitudo ac quac) est ut finus declinationis acus ad magnetc meridianum divisum per finum declinationes ejus a magnetis.

Equidem quando magnes statit et vicinus ab acu ut diversa centri possit ejus distantia ad diversa puncta acus, & fortior est ejus vis in puncta viciniora quum in remotiora, timulque actio magnetis ad diversa puncta actus diversa cum obliquitate applicetur, centrum actionis vis magnetis fieri vicinio extremitatis N, atq; ad se habentur vulgares acus magnetc qui aequi inflatur forma circa punctum P laterum est, centrum rotationis acus in puncto P magnete centri potest nisi niam fit magnetis vicinio.

Ideoque distantia magnets ab acus angulus declinationis acus ad magnete determinabuntur dundo lineam ad centro magnetis ad id punctum P utque his Principiis per experimenta mox recentenda vires magnetorum in diversis distantias posito num fierunt altissime.

In his experimentis adhibita fuit acus magnetica trahit pollucion, quae ut foliet, attingebat ura atque extremitate circulum divitum in suis gradus, ductaque lineae perpendiculari in centrum acus cum ipso in meridianum magnetico jacebat, applicabatur magnete Paralleleppedon super eam lineam, ita ut ejus facies Polares perpendiculars esset et lineae, Polulque ejus meridionalis acus spectaret, Borealemque ejus extremitatem ad se haberet, menfurabatur distantia ad centro acus ad centrum magnets in Pollicibus lineisque Parallelibus, & observabatur quantum in angulis magnetics distantias definit, acus ad meridianum magnetico, cum, primo grappheo, postea-calculo Trigonometrico, distantia centri magnete, ad centro Rotationis acus; ut & angulus eius lineae, cum nee determinantur sepulo itaque finis declinationis acus, per finum illius anguli Quaest.
De mun-

di systema.

42 Philosophiae Naturalis

niens exprimit Rationem vis magneticae
in distantia singula inventa, sine Logarithmis utendi, Differentia Logarithrorum
Sinuum angulorum incrementorum ad meridianum magnetico & ad magnete erit Loga-
rithmus vis magneticae, in distantia in quae
anguli illi habentur, & tertia pars ejus
differentiae erit Logarithmus Radicis cubi-
cae vis magneticae, & assumptis illis Rad-
cibus cubicis in numeris, si per eas di-
vidatur numerus aliquis confitans (qui hic
est 57\% Quotientes erunt ipsae distantiae;
Unde licet quod Radices cubicae virium
magnetica sunt inversae ut distantiae, quae
devit vis magnetica sit inversa in ratione
tripletas distantiarum: sequent veri tab-
ella exhibent hanc experimenta magni-
curam instituta, cum calculo inde deducto;
Prima columna designat distantias ad Cen-
тро actis ad Centrum magnetis; Secunda
columna designat distantiam ad Centro ro-
tationis actis ad centrum magnetis; Ter-
tria declinationem actis ad meridiano mag-
netico cum suo Logarithmo & tertia ejus
parte; Quarta, declinationem actis ad li-
nea ducta a centro rotationis actis ad
centrum magnetis cum suo Logarithmo
& tertia parte; Quinta, differentias earum
tertiarum partium, cum suis numeris qui
rationem exprimunt Radicum cubicorum
virium magneticae in diversis distantias;
Sexta denique Quotientes numeri 57\% per
illos numeros divisi, qui Quotientes
ipsas distantias quamproxime aequant.

| Distantia à
Centr. magn. ad Centrum | Distantia à
Centr. magn. ad Centrum | Declin. à
merid. magnetico cum
Logar. & e-
jus tertia par-
tia obser.
vyata. | Declin. à
Logar. cum
ejus tertia par-
tia. | Differencia

tertiar. parti-
num, cum
tuis numeris.
| Quotientes

51.46	-	40	-	754	194.27	0.1541734	n. 1.426	-	40.4
9.9849438	9.5244235								
3.3183746	3.1741412								
60.16	-	50	-	61	31.41	0.2586412	n. 1.144	-	50.4
9.9418193	9.7618957								
3.3193298	3.2552986								
67.49	-	60	-	44.430	53.442	-1.9797885			
8.8456618	8.9062964								
3.1818873	3.3010988								
83	-	80	-	21	7.9.6	-1.8141437	n. 0.7147	-	80.8
9.5143218	9.9888982								
3.1877764	3.2396317								
101	-	100	-	114	85°, 46'	-1.7605951			
9.2805988	9.9988135								
3.0933101	3.3392738								
110.7	-	120	-	6.20	89° 12'	-1.809838			
9.0426149	9.9999735								
3.0143083	3.333247								
150.2	-	150	-	3	91.19	-1.5881049			
8.7645811	9.9989966								
2.9315037	3.3332988								
160.1	-	160	-	24.40	91° 38'	-1.559553			
8.6676832	9.9998135								
2.8892298	3.3332745								
n. 0.3797	-	160.5	Eodem						
Gravitatem in corpora universa fieri, eamque proportionalem esse quantitati materie in singulis.

Planetas omnes in se mutuo graves esse jam ante probavimus, ut & gravitatem in unum quemque feortim spectatum esse reciprocè ut quadratum distantiae locorum a centro planetæ. Et inde consequens est (per prop. lxxix. lib. i. & ejus corollarie) gravitatem in omnes proportionalem esse materie in iisdem.

Porro cum planetæ cujusvis A partes omnes graves sint in planetam quemvis B, & gravitas partis cujusque sit ad gravitatem totius, ut materia partis ad materiam totius; & actioni omni reactio (per motus legem tertiam) aequalis sit; planeta B in partes omnes planetæ A vicissim gravitabit, & erit gravitas sua in partem unamquamque ad gravitatem suam in totum, ut materia partis ad materiam totius. Q. E. D.

Corol. i. Oritur igitur & compositur gravitas in planetam totum ex gravitate in partes singulas. Cujus rei exempla habeamus (c) in attractionibus magnetici & electricis. Oritur enim attractione omnis in totum ex attractionibus in partes singulas.

Res...
Res (d) intelligetur in gravitate, concipiendo planetas plures minores in unum globum coire & planetam majorem componere. Nam vis totius ex viribus partium componentium oriri debet. (e) Si quis objiciat quod corpora omnia, quae apud nos sunt, hac lege gravitare deberent in se mutuò, cum tamen ejusmodi gravitas neutquam sentiatur: respondeo quod gravitas in hæc corpora, cum sit ad gravitatem in terram totam ut sunt hæc corpora ad terram totam, longè minor est quàm quæ sentiri posse.

Corol. 2. Gravitatio in singulas corporis partículas æquales est reciprocè ut quadratum distantiae locorum à particulis. Patet per corol. 3. prop. lxxiv. lib. 1.

(66) * Res intelligetur in gravitate. Viros quæ sunt ut materia in omnium formarum corporibus aequi idem non mutatur cum formis, reperiri debent in corporibus universis singulisque corporum partibus, &c. proportionalis quantitatis materiæ, hinc vis corporis totius ex visibus partium componentium oriri debet. Si itaque conceptum Juovem & Satellitibus ejus ad se invincem accedere ut globum unicum componat, pergent singuli sese mutuò trahere, & viceversa si corpus Jovis revolvretur in globos plures, hi quoque globi, satellitum initar, sese mutuò traheunt.

(67) Globi cuiusque vis absoluta est ut quantitatis materiæ in eodem globò; vis autem motris quæ globus unuisquidem tractabit in alterum, & quæ ponderis nomine vulgo designatur, est ut continuum ibi quantitatis materiæ in globis duobus applicatum ad quadratum distantiae inter centra (per cor. 4. prop. 76. lib. 1.) & huic vis proportionalis est quantitatis motis quæ globis utique dator tempore movebitur in alterum (def. 8. lib. 1.) vis autem acceleratrix quæ globus unuisquidem pro ratione materiæ quæ attrahitur in alterum est ut quantitas materiæ in globo alero applicata ad quadratum distantiae inter centra (per cor. 2. prop. 76. lib. 1.) & huic vis proportionalis est velocitas quæ globus attractus dato tempore movebitur in alte-

rum (def. 7. lib. 1.). Hinc corporum celestium motus inter se possunt facile determinari. Quia vero respectu terrae totius exigua admodum sunt corpora terraetia, patet minimum quod esse mutuam horum corporum attractiorem respectu attractionis in terram totam. Sic sphæra terræ homogenea dietroque pe
dis unius deteripra minus tranget corpusculum juxta superficiem quam quum terra juxta fuerit in ratione diametri sphæræ ad diametrum terræ (prop. 72. lib. 1.) hoc est in ratione s ad 192356655 five s ad 400000000 circiter, qua tantilla vis sentiri non potest.

(e) * Si quis objicias &c. Majores atiam quæ in terræ concipit possunt corpora hæc magnos effectus producunt. Sit enim E M N R, tellus cuius centrum C, saepe ponatur sphærica & homogenea. Sit corpus ubicumque putà in loco B, subla
to omni impedimento, ad telluris superficiem perpendiculariter dirigeretur per rectam B C; in ipsa telluris superficie addatur sphæra T, telluri homogenea trium
que milliam trium fie Leuce unius maris diametro descripta quam tangat recta B E C; designet E C vim gravitatis in ipsa superficie terræ, & designabit B E C gravitatem in ipsa superficie sphærae T (prop. 72. lib. 1.) gravitas in E, in tellurem erit ad gravitatem in B in eandem, ut B C² ad E C² (prop. 74. lib. 1.). Quæ ponen
do
Si globorum duorum in se mutuò gravitantium materia undique in regionibus, quae à centris aequaliter distant, homogeneae sint; erit pondus globi alterius in alterum reciproce ut quadratum distantiae inter centra.

Postquam inveniisset gravitatem in planetam totum oriri & componi ex gravitatisibus in partes; & esse in partes singulas reciprocè proportionalem quadratis distantiarum à partibus: dubitabam an reciproca illa proportio duplicata obtineret accuratè in vi totâ ex viribus pluribus composítæ, an verò quam proxième. Nam fieri posset ut proportio, quae in majoribus distantias accuratè obtineret, prope superficiem planetae ob inaequalles particularum distantias & situs diffimiles, notabiliter erraret.

do BC² ad EC² ut EC ad BD, recta. BD exhibebit gravitatem in terram in loco B, ac proinde completo rectangulo TBAD, gravitatis directio erit per diagonalem BA (41. lib. 1.): Jam in triangulo rectangulo BAD, est BD ad AD ut radius ad tangenem anguli DBA. Quia verò selluris semidiameter mediocris est fere x1/2 femicircumferentiam civitatis Marinum (quam semper viginti gradum complent, uno marino milliari singulo gradus minuto respondenti) poni etiam recta BD aequalis EC, ideoque erit AB, sive BD ad AD ut 2190 ad 1, unde prodict angulus ABD, minuti primi cum dimidio. Si itaque loco sphærae T, intelligatur mons aliquis cujus acutumque figure cujus aequalia equiapolae affectioni ipsiussem sphærae, pendulum ad radicem hujus montis continuerà vis montis aequalis attrahit à perpendicularitate magis quàm minuti unius primi intervallo. Hæc autem aberratio minor fiet, si pendulum in partes contrarias ab alius montibus circumspicitur transitur, si densitas partium internarum terræ, major fit quàm densitas partium montis, denique ex Piramidali montium figura, aliisque forte causis, hinc admodum diff.

Tom. III.
Philosophiae Naturalis

De Muni-

taret. Tandem vero, (f) per prop. lxxv. & lxxvi. libri pri-

mi & ipsarum corollaria, intellecti veritatem propositionis de-
quà hic agitur.

Corol. 1. Hinc inventi & inter se comparati possunt ponde-
ra corporum in diversis planetis. Nam pondera corporum æ-
qualium circum planetas in circulis revolventium sunt (per co-
rol. 2. prop. 1 v. lib. 1.) ut diametri circulorum directè & quadra-
ta temporum periodicorum inversè; & pondera ad superficies
planetarum, aliaque quaquis à centro distantià, majora sunt vei
minora (per hanc propositionem) in duplicata ratione distan-
tiarum inversà. Sic ex temporibus periodicis veneris circu-
folem dierum 224 & horarum 16¾, satellitis extimi circumjo-
vialis circum jovem dierum 16 & horarum 16¾, satellitis Hu-
geniani circum saturnum dierum 15 & horarum 22¾, & lu-
nae circum terram dierum 27. hor. 7. min. 43, collatis cum
distantià mediocrì veteris à sole & cum elongationibus maxi-

mis heliocentricis satellitis extimi circumjoviales à centro jevis 8½,
16¾, satellitis Hugeniani à centro saturni 3¾, 4⅔, & lunae à cen-
tro terræ 10¾, 33½. (g) computum ineundo inveni quod cor-
porum:

(f) * Per prop. 75. & 76. lib. 1:
Ex singularium particullarum viribus com-
ponitur vis planetae totius (cov. 1. prop.
7.) & gravitatio in singulas corporis par-
ticas æquales, est reciprocè ut quadra-
tum distantiæ locorum à particulis (per
cov. 2. prop. ejusdem). Hinc vis plane-
tae totius decrecit in duplicata ratione distan-
tiarum à centro, modò tamen plan-
etae ex uniformi materià confìrare po-
nuntur (prop. 75. lib. 1.) & hujußmodi
planetae duo se mutuò trahent vi decre-
cente in duplicata ratione distantiæ inter
centra (per corollaria ejusdem prop.).
Quamvis autem planetae in progressiò à
centro ad circumferentiam non sint uni-
formes, obtinebit idem decrementum in
raione duplicatæ distantiæ (prop. 76.
lib. 1.) fi fecundum quamquam Legem
aecessat vel decrecit denitias in progressi-
ò à centro ad circumferentiam, & limi-
ter, hujußmodi, planetæ duo, seque inivicem
trahent viribus in ratione duplicatæ dis-
stantiarum inter centra decrecentibus.

(g) 68. * Computum ineundo. * ut:

Rae omnia ad Algebraica signa revoca-
tur; fit S centrum Solis, V. centrum Ve-
neris, P. centrum alterius Planetæ Primæ-
rii, L. satelites maximæ suæ elongatione
heliocentricè quà metitur angulos:
L SP ; unde angulus S LP est rectus.
Dicatur tempus Periodicum Veneris 1 ;
tempus: Periodicum satellitis L. circa pri-
marium P dicatur 4.

Distantia SP qualificatque fit, Alcatur 1 ½ ;
Ratio SP ad SV que datur per Phaino-
nom. LV. exprimatur per rationem a ad:

b, inde erit S V = — 3 ;

(a) & Ratio existente in sinus elongationis max-
imæ heliocentricæ satellitis L, fit sinus
anguli L SP dicatur 1 ;
Hinc in Triangulo S L P Rectangulo, erit:

 fins.
Porum aequalium & a centro solis, jovis, saturni ac terrae aqualiter distantium poudra sint in solem, jovem, saturnum ac terram.

Sed vis Primiarii in satellitem in distantia PL, est ad vim quae in ipsum ageret si tantundem diffaret quantum diffaret Venus a sole, inverso ut quadrata distantiae, fiet ergo \(\frac{1}{e^2a^2} \) ad \(\frac{a^2}{b^2} \) ut \(\frac{a^2 2}{b^2} \) ad \(\frac{e^2 2}{b^2} \) & habeatur tandem quod vis Solis in venerem est ad vim Primarii P in satellitem, si tantundem diffaret ab ipso quantum diffarat Venus a sole ut \(\frac{e^2a^2}{b^2} \) ad \(\frac{a^2}{b^2} \).

Jam vero transferam Venus & Satelles in aliud quacunque distantia, sed ita ut ambito iterum aequaliter differt a Corporis suo Centralli; Vires quidem Centrallium corporum in ipso mutabatur, sed eodem modo atriunque mutabatur; unde manebunt in eadem ratione ac prius, nam erit ut quadratum novae distantiae quod quadratum prioris distantiae, ut vis prior Solis in Venerem ad vim novam, & in eadem ratione erit vis prior Primarii in satellitem ad ejusdem vim novam, unde alterando, vis Prior Solis in Venerem est ad vim Priorum Primiarii in satellitem, ut vis nova Solis in venerem ad vim novam primarii in satellitem, ergo in qualcumque distantiae, si modœ aequaliter differs Venus & Satelles a suo Corporis Centralli, vis Solis erit ad vim Primarii ut \(\frac{\frac{e^2a^2}{b^2}}{\frac{a^2}{b^2}} \).

Denique, cum pondera Corporum sint ut Vires Centrales & quantitates materiarum quae per eam Vires urgentur conjunctim, & in hoc Corollario Newtonus supponat Corpora aqualia & aequaliter a Corporibus centralibus distantia: Fondera talium, Corporum erunt ut Vires Centrales, ideoque pondus in Solem erit ad Pondus in Primarium quacunque ut \(\frac{\frac{e^2a^2}{b^2}}{\frac{a^2}{b^2}} \).

Computus per Logarithmos commodè initiis, exempli gratia sit P centrum Jovis, & L hujus extimus satelles, est \(a \) ad \(b \) ut 71333 ad 510096 quorum Logarithmi sunt 4.8593355 & 5.7160855; en e similius anguli \(\frac{4}{9} \) \& \(\frac{16}{29} \) cujus Logarithmus est \(G \).
terram 3810609 (Radio existente e) hinc Logarithmus \(a_e = 2.378099 \), & Logarithmus \(a_b = 6.7134297 \).

Præterea Logarithmus (sive 234. horar. 26 3, hoc est, horarum 539 2) est 3718103. Logarithmus \(b_e = 15.4.16 76 \) horar. hoc est, horarum 400 89 est 26016384 ideoque Log. \(e \) est 11291719.

& Log. \(b_b = 95 95 \) est 22783438.

Unde tandem Logarithmus \(a_{eb} \times b_b = 4.9717735 \), quæ fraxio in Decimälibus potissit exprimi, sed eam Newtonus expressit unitate divisi per Denominatorem quendam, cujus Logarithmorum obtenitetur hinc Logarithmum \(= 4.9717735 \) ex Logarithmo unitatis nempe 0, tollendo, erit idea 30182265 cujus Logarithmum numerus est 1067 ut eum Newtonus inventit.

(h) * Respetive &c. * In precedentibus Editionibus (anit Londinis in) indicaban Newtonus hic loci elementa ex quibus rationes distantiam Diæmeterorum Jovis, Saturni & Terra determinatae veri, quæ quidem elementa, ex novis observationibus, quibusdam minutissimis immutavit, illa habet esse novem vindicatur.

Primo, Diæmetrum Solis ex mediocris Terræ distantia viam, 32.84 affinitis, qualia etiam Caflinus in novissimis Astronomiis Tabulis eam constituit, quam prius 32. 31 32 viam aequat; cum Diæmetrum Jovis in mediocris ejus à Tellure distantia 37 affinitis qualia eam proditione sub finem primi Phenomeni dictis, cum prius fieret 40°.

Ex his, cum distantia mediocris Solis (sive Telluris n. 53.) à Jove sit ad mediocrem diæmetiam Solis à Terrâ ut 510096 ad 100000 (per Phenom. IV.) & Dubliniæ veris Sphæram sub parvis angulis visarum sicut 600 200 ad 100000 ad 37° & 32000 10000 ad 37° ad 997 ut calculo inventum.

Secundò, Diæmetrum Saturni in mediiocris ejus à Sole five Tellure distantia affinitis 16°, quem 22° in prioribus Edit. factum est; inde cum distantia ejus mediocris à Sole five Tellure, sit ad mediocrem diæmetiam Solis à terrâ ut 95406 (Phen. IV.) ad 100000 erit Diameter vera Solis ad veram Diæmetrum Jovis ut 1928° ad 60000 ad 16° ad 95406, 5 five 10000 ad 791.

Denique Parallaxeos Solis, in distantia ejus mediocris 10° 30° constituit, Parallaxis vero Solis est ipsa semi-Diameter Terræ à Sole visus, ergo Diameter verae Solis & Terræ sunt ut Diameter Solis apparentes ad duplum Parallaxeos Solis, hoc est, 1928, ad 21, five 10000 ad 103 proximè.

(i) * Erunt ur. * Ut insulæ pergamus ei Analyse quæ Newtonus uius esse videbuntur, aequa omnibus ut in Nota 68.

Tangens semi-Diameteri apparentis Solis dicatur \(r \), Radio existente 1.

Sinus Parallaxeos Solis (qua est semidiameteri primarii \(p \) è Sole vis. d) dicatur \(p \).

Vera semi-Diameteri Primariori dicatur \(d \).

Erut aus natura Parallaxea \(p \) ad \(x \) situr ad
Corol. 2. Innotescit etiam quantitas materiæ in planetis singulis. Nam quantitates materiæ in planetis sunt ut eorum vis rerum in æqualibus distantis ab eorum centris, id est, in sole, jove x VIII.

P R I N C I P I A M A T H E M A T I C A.

PROP. VIII. THEOR.

d ad P S quæ dicatur æ, quæaque ideæ dicenda erit

Pariter siccum r ad s, distantia æ fives

ad septadiametrum verum Solis quæ erit

Rursus Parallaxis satellitis L dicatur q.

Ex natura Parallaciae erit q ad r ut
d ad PL, quæ ideo erit d & numerus
femi-Diametrorum Primarii P in ea linea PL continetur erit 1 & cum singula
eemi-Diameter & Sole spectata, videatur
sub angulo quæ totus finit p, proprius
sinuum passus, anguli erunt ut finus
s & singulae elongationis heliocentricæ qui dicentur e continet finum p numero vicium
qui dici poterit 1 ideaque erit e = p.

Si autem singatur Corpus in Solis superficiei positis, quod itaque ab ejus Centro diet ur quantitate æquali ejus versa semi-Diametro, vis Solis in id Corpus erit ad vim P in corpore æquali ad eandem distantiam à Centro ejus Primarii positum ut r ad aïs x 2 per not. 68.

Sed ex quæ Parallaciae in id corpus, erit ad vim ejusdem corporis in superficie Primarii positum inverso ut Quadrata distantiarum, adeo inverso ut Quadrata Diametrorum verarum Solis & Primarii, quæ erit

x æqualis quantitati æ pli x æ

Quantitas expresset vim Primarii in corpus in suæ superficie positis, dum vis Solis in Corpus æquali in suæ superficie etiam positis erit æ Quantitas æ pli x æ

Est æqualis quantitati æ pli x æ

Sed ob æqualitatem corporum vires in Corpora funt ut Pondera Corporum; hinc ergo habetur ratio Ponderis Corpororum æqualium in superficiebus Solis, Jovis, Saturni ac Terræ.

Quare si Logarithmum utamur; Ex Logarithmo p tollatur Logarithmus r, & residui duplicem tollatur ex Logarithmo

G 3 meri
PHILOSOPHIAE NATURALIS

jove, saturno ac terrâ sunt ut \(\frac{1}{1057}, \frac{1}{1057}, \) & \(\frac{1}{97} \) respecti-
vè. Si parallaxis solis statuatut major vel minor quam \(10^\text{II} \), \(30^\text{III} \), (k) debebit quantitas materiæ in terrâ augeri vel dimi-
nui in triplicata ratione.

Corol. 3. Inprofectum etiam densitates planetarum. Nam pondera corporum æqualium & homogeneorum in sphæras ho-
mogeneas sunt in superficiebus sphærarum ut sphærarum dia-
metri, per prop. LXXII. lib. I. ideoque sphærarum heterogeneorum
densitates (l) sunt ut pondera illa applicata ad sphærarum dia-
metros. Erant autem vera Solis, Jovis, Saturni ac terræ dia-
metris invicem ut 10000, 997, 791, & 109, & pondera
in cõdem ut 10000, 943, 529 & 435 respectivè, & prop-
terea densitates sunt ut 100, 941, 67 & 400. (n) Densitas
terræ

meri qui exprimebat vir Primarii in æ-
qualibus diffintis, residuum est Logarith-
mus primarius in Corpora in eus su-
perficie positâ.

Calculus ite respectu Terræ commōdē
fieri potest, quia datur ex observatione
Parallaxis Solis p, & apparens Solis fes-
mide-meter: In Jove & Saturno Parallaxis
ipsum habet æqualis eorum semidiameter
apparenti in mediocris ipso diffintis, &
semidiameter apparret Solis in ipsis est
ad semidiametrum Solis apparentem in
terrâ, inversë ut diffintis eorum & Ter-
ræ à Solæ.

(k) Debes quæsitæ materiæ in terrâ
augeri vel diminui in triplicatæ Parallaxen
rationis. * Nam cum quantitates materiæ
in Planètis singulis, sunt ut eorum vi-
ræ in æqualibus diffintis; Quantitas ma-
terii in Solæ est ad quantitatem materiæ
in terrâ ut \(\frac{a1}{b1} \) æ, manente er-
go ratione \(a \) ad \(b \) diffintarum nempe
Terræ & Veneris à Solæ, manenibus tempóris Periodicis Veneris & Lunæ, &
& \(a1 \), & sum Parallæcos Lunæ \(q \), ille
quod \(a1 \) variatur sinu Parallæcos Solis \(q \)
& ex novis observationibus, puta ex ob-
servationes transmisi Veneris super difcùm
Solis, alia Parallaxis cujus sinu \(a1 \) est dé-
prehendatur, sed eae inveniatur quantitas
materiæ in Solæ ad quantitatem materiæ
in terrâ ut \(\frac{a1}{b1} \) æ, itaque quan-
titas materiæ terræ in precedenti Hypo-
thesi Parallæcos \(p \) repertæ, erat ad eam
quæ tunc invenierut ut \(p \) ad \(q \) : \(q \)
(\(\text{ob exiguïtatem angulorum Parallactico-
rum} \) ut cubi Parallæcos.

(l) Sunus us pondera illa. Nam pondera
corporum æqualium & homogeneorum
in sphæras homogeneas & inæqualaes
sunt in superficiebus sphærarum ut sphæ-
rarum diametri (loco cit.), & pondera
corporum æqualium & homogeneorum in
sphæras heterogeneas & inæqualæs in su-
perficieibus sphærarum sunt ut quantitates ma-
teræ in sphæris, hoc est, ut densitates
sphærarum (2. lib. 1.). Uud pondera

corporum æqualium & homogeneorum in
sphæras heterogeneas & inæqualæs in su-
perficieibus sphærarum sunt in ratione com-
positâ ex ratione densitatum & diametro-
rum sphærarum, consequenter densitates
sphærarum sunt pondera illa directæ &
sphærarum diametri inversæ.

(m) * Densitas terræ quæ producit ex
hoc computo non pendet à parallaxi Solis
&c. * Ratio Ponderum in ipsius superficie-
bus Solis & Terræ exprimebatur numeris
\(\frac{a1 q2}{b1 q} \) æ, (denominationibus illi.

*
PRINCIPIA MATHEMATICA.

teræ quæ profid ex hoc computo non pendet à parallaxi solis, sed determinatur per parallaxin lunæ, & propertea hic reæ definitur. Est igitur Sol paulo densior quàm Jupiter, & Jupiter quàm Saturnus, & terra quadruplò densior quàm Sol. Nam per ingentem suum calorem sol rarescit. Luna vero densior est quàm terra, ut in sequentibus patebit.

Corol. 4. Densiores igitur sunt planetæ qui sunt minores, cæteris paribus. Sic enim vis gravitatis in eorum superficiebus ad equalitatem magis accedit. Sed & densiores sunt planetæ, cæteris paribus, qui sunt Soli propiores; ut Jupiter saturno, & terra Jove. In diversis utique distantis à sole collocandi erant planetæ, ut quilibet pro gradu densitatis calore Solis majore vel minore fruetur. Aqua nostra, si terra locaretur in orbe Saturni, rigeferet; si in orbe Mercurii, in vaporest statim abiret. Nam lux Solis, cui calor proportionalis est, (ø) sep- tumplo densior est in orbe Mercurii quàm apud nos: & thermo-
metro

dem adhíbitis quæ in Notis (g) & (i) assignatur. Densitates vero sunt ut illa pondera applicata adipherarum Diametros vel semi-Diametros, semi-Diameter vera Solis d, & semi-Diameters vera tertw. erat t, Quare densitates Solis & terrae erant ut 1 ad b 1 2 3 x, five ut 1 ad

ø

, in quæ quantitate Parallaxis Solis, quæ dubia est, non amplius adhibetur, sed tantum quantitates de quibus constat apud Astronomos, Parallaxis nempe Lunæ, semi-diameter aparaeris mediocris Solis, Ratio distantiarum terræ & Ven-

eris à Sole, & ratio temporum Periodorum Venær & Lunæ, quæ Æ Den-ñias terræ hic recte definiur.

(ø) * Septumplo densior est. Nam (14 lib. 1.) densitas lucis decrescit in ratione duplicata distantiarum à Sole, sed (phen. 4.) distantia terræ est ad distantiam Mer-
curii ut 1000 ad 387, proximè. Est igitur densitas lucis in Mercurii ad distantiam lucis in terræ ut 100000 ad 149769, seu ut 6,68 ad 1, hoc est serè ut 7 ad 1.

* Addit Newtonus: Thermometro exper-
sus sum quod septumplo Solis attīvi calore aqua ebullit: hoc videntur referri ad n. 370 Transact. Philosophiciarum, qui continet scalam de caloribus, ingeniosè fane constructum, cujus auctor non indicatur: «Constructa fuit hoc Ta-

*bula ope Thermometri & ferri canen-
tis. Per Thermometrum ex oleo lini

*constructun inveni (inquit author) quod

*ò oleum ubi Thermometer in nivisque-
Metro expertus sum quod septuplo solidus æquiviv calore aqua ebulit. Dubium vero non est quin materia mercurii ad calorem accommodetur, & propterea densior sit hac noftra; cum materia omnis densior ad operationes naturales obundas majorem calorem requirat.

Locavit enim ferrum candens in vento uniformiter spirente, ut aer à ferro caelestibus semper abriperetur à vento, & aer frigidus in locum eum uniformi cum motu succederet, si enim æris partes æqualis æqualis temporibus caelestibus sunt & concipiebant calorem corri proporionatam; Hinc si dividatur tempus retragerit ferri in instantia æqualia, erit, ut totus calori ferri initio primi instantis, ad calorem durante eo instanti amissum: sic calori ferri initio secundi instantis ad calorem durante eo secundo instanti amissum, &c. idque singurum lineam rectam ductus cujus abscissæ deferunt tempora; ordinatae in extremis absidentur, qua calores ferri singulis momentis deferunt; differentia earum ordinatarum erunt si ipsa ordinatio proportionales Geometricæ, idque curva per earum ordinatarum verticis transiens erit Logarithmica, crescentibus ergo temporibus Arithmetica, calor ferri Geometricæ decrecit & propterea calorem eorum Geometricæ ratio per Logarithmorum tabulam haberi poterit.

Quo supposito, imponebat Antor cendenti ferro particularis diversorum metallicorum, & aliorum corporum liquitabitum, & notavit tempora refrigeri donec particularis omnes amissæ fluiditate rigeecerent, & tandem calori ferri squararetur calori corporis humani; hinc calores omnem quibus cera, blinthum, stannum, plumbum, Regulus fibibi, eorurnque varie miçelas liquefactum, innotuer, eorum Geometricæ rationes, cuncta calores ita inventi eadem habuerint; inter fe rationem cum caloris per Thermometrum inventis, propterea rectè assumptum fuit, rarefactiones olei ipsi caloris esse proportionales.
Gravitatem perpendo à superficiebus planetarum deorsum decrescere
in ratione distantiarum à centro quam proxime.

Si materia planetae quod densitatem uniformem esset, obtinere
hac propoitione accuratè: per prop. lxxxiii. lib. i. Error igitur
tantus esset, quantus ab inaequabili densitate oriri posset.

PROPOSITIO X. THEOREMA X.

Motus planetarum in calis diutissimè conservari posse.

In scholio propositionis x l. lib. ii. hensum est quod globus
aque congelata, in ære nostro liberè movendo & longitudini
semidiametri fuæ describendo, ex resistenti æris amittit
motus fuì partem æræ. Obtinet autem eadem proportio
quam proxime in globis utcunque magnis & velocibus. Jam
vero globum terræ nostræ densiorem esse, quàm si totus ex a-
quà conficaret, sic colligo. Si globus hicce totus esset aequus,
quæcumque rariorem esset quàm aqua, ob minorem specificam
gravitatem emergerent & supernataret. Eaque de causa glo-
bus terreus aquis undique cooperatus, si rarior esset quàm aqua,
emergeret alicubi, & aqua omnis inde desluens congregaretur
in regione oppositâ. Et par est ratio terræ nostræ maribus
magnâ ex parte circumdatae. Hæc si denfior non esset, emer-
geret ex maribus, & parte fui pro gradu levitatis extaret ex
aquâ, maribus omnibus in regionem oppositam confluentibus.

Eodem argumento (p) maculæ solares leviiores sunt quàm
materia lucida solaris cui supernatant. Et in formatione quali-
cunque planetarum ex aquâ, materia omnis gravior, quo tem-

(p) 69: *Macula Solares.* Si radii Solares telescopio duobus vitris intra
excipiantur, locutique circumpostricti obscura
sae, inverse Solis imago super char-
tum ad axem telescopii normalem pingi-
tur, & maculae conficiuntur; quæ nunc
emergere, nunc evanescere obvérvanter.
Maculas illas in materia Solari supernata-
re vel saltem Soli quàm proximas esse cer-
tum est.
pore massa fluida erat, centrum petebat. Unde cum terra communis suprema quasi duplo gravior sit quæm aqua, & paulo inferior in sodinis quasi triplo vel quadruplo aut etiam quintuplo gravior reperiatur: veritissimè est quod copia materiae totius

Sit enim Sol in S, ex Tellure T vius sub angulo DTC 32°. Si macula orbitam aliquam HEGH extru Solis superficiem describeret, non videtur Solis dicum ingredi antequam ad E pervenisset ubi recta TED ex terræ ducta dicamque Solis tangente, macula orbitam faciat, & ducta TGC Solem quoque tangente, per Solis superficiem tantummodo progrestiti videtur, quantu describeret arcum EG qui semiperipheriæ minor est, idæoque arcus ille tempore quod semiperiodo minus est, percurreretur. Sed ex observationibus nostris est quamplures maculas duas aut tres integras periodos abolvisse 27 diebus spatia atque 13 1/2 dies impendisse ut ad limbo occidentali Solis ad limbum orientalem pervenirent; illarum ergo macularum orbis vel in ipsa superficie Solari exiterunt, vel Soli fuerunt proximæ.

*Newtonus hic loci receptam opinione sem sequitur, maculas Solares ipsi Solari superficie inhærente: quæ opinio his tribus argumentis nititur: 1°. Quod illæ maculas in medio Solis dico latiores videantur quam juxta ejus limbum ubi anguifissimæ apparent; 2° quidem hoc demonstrat maculas eas non esse Planetas rotundos, ut quidam volebant, sed esse corpora lata, non vero ipsa, & à Sole non tumultu diftare: nullomodo tamen exinde probatur eas esse in ipsa superficie Solis: 3° Argumentum est, quod spatium quod macula emeuntur in medio dico Solis diurno spatio, sit proportionatum revolucioni ipfærum, quod majus esse debiuit, si forent cis Solem, sed rursum hoc argumentum proximitatem macularum superficiei Solis, non verò earum ipsi superficie Solis adhærentiam probat.

Denique afferit Keilius (Lection. Aft. V.) observationibus confitare, maculas quæ integram revolutionem 27 diebus abolvisse, tredicem cum semistis dies impendere

re ut ad limbo Occidentali Solis ad Orientalem perveniant, unde merito concludit quod cum dimidium tempus Periodi fuerit in transcurrendo Solis diîco impendente, ipsorum orbita in ipsa superficie Solari exspectat: At Wolfius (Aft. vol. 413.) Quoniam, inquit, maculae Solares tribus circiter diebus duobus post Solem latent quæm Hemisphaerium nobis conspicuum peragrantes confundunt; Soli quidem proximæ sunt, non ipsi tamen superficiei Solari inhereunt, sed aliisnam ab ea distantiam habent.

Et quidem in Astronomorum falsis quotidianis
Principia Mathematica.

in manibus vencerunt, nuncum deprehendi, macalum per tredecim iuper diicam Solis acta viarum suisse, nullam reducem ante dicum quinimum quintum diem observavam; et quodam cum anno 1739 plurimae maculae Solis diicum percurrerant, muliaque ab ingredi ad egressum usque persequer, nulla integros tricem dies in disco perflare mihi visi essent; Cum autem quaslib haec tota, fit de facto, referam observationes duas quae accuratissimae insectoribus: die veterrima altera est Transcriptionibus Philosophicis Anglicanis n. 294, altera est Diario Eruditorum ad annum 1676. 1677.

Tertia Junii & sequentibus diebus ad observationes redidit nonster, ut Telecopio decem & octo pedum tandem diei veterrimi Junii, horae tertiae pommeridianae, eadem maculam (ut postea certior ejus factus est) Solis diicum subuentem visisset; horae quartae decem & octo pedum Telecopio Sole lucidissimo eam distincte visisse, sed temeram admodum & Ellipticam atmospharam instar, sequentibus verò diebus ex via cui instiit, eadem esse quam prius visisset viserat agnovisse, & eam esse pertinaciam sequentibus diebus, donec tandem 18. Junii teneis apparere inceptisset die vero decima nona ab horae 5. matutinae aam oblueri capitis Telecopio decem & octo pedum scera singulis semihoribus; horae duodecima Atmospharam & sensibili latitudine spolietur visisset, & adeo vicinam Solis limbo ut vis inter ipsam & limbum Solis lucis radius perciipereur; horae sequenterae eavalsebant; ita ut horae sequentia cum seminis eavasisset eam fuisse condenda esse.

Ergo 23. Maii horae tertiae pommeridianae ad septimam Junii eadem horae iam maculae per integros diecim quindecim dies ab eo tempore ad 19 diicum perfruevis, per duodecim nempe dies.

Ex quibus sequitur, equaliartem temporum occultationis & apparentis maculae, observationibus non constaret; quin modo recti inexactitudinem temporalium excitare deducit. Ut quidam quantitate ad Solis diicum differe maculas deductur; & quidem quum differentia temporum eorum fit circiter dieum trium, in singulo quadrante erit horarum decem & octo, quo tempore decem gradus circa Solis centrum maculam percurrunt; sed sinus versus decem gradum sunt 15. Cen- tefin a Raddi; hinc tandem deductur quod semin Solis est ad semin Solis Diametrum 2.
Jupiter paulo densior sit quam aqua, hic (2) spatio dierum triginta, quibus longitudinem 459 semidiametorum seu recta describit, (1) amitteret in medio ejusdem densitatis cum aeré nostro motus sui partem ferè decimam. Verum cum resistentia mediorum minuatur in ratione ponderis ac densitatis, sic ut aqua, quam paribus 12 levior est quam argenti vivum, minus resista in cædum ratione; & aer, qui partibus 860 levior est quam aqua, minus resistit in eadem ratione: si ascenderet in caelos ubi pondus medií, in quo planetæ moventur, diminuitur in immensum, resistentia proppe cessabit. Ostendimus utique in scholio ad prop. xxii. lib. ii. quod si ascenderetur ad altitudinem milliarium ducentorum supra terram, (3) æter ibi rarior foret quam ad superficiem terræ in ratione 30 ad 0,000,000,000,000,3998, seu 75,000,000,000,000 ad 1 circiter.

Et

tram circuli quem describant maculae ut 85 ad 100, sive ut 17 ad 20, & macula quindecim circiter semi-Diametris terræ supra Solis superficiem minimeant: Hinc idem Volusius eas esse Nubes in Solis Atmosphæra elatas, conjecturat; quæ quidem fuerat Keplerii fenestentia.

(2) * Spatio dierum triginta. Si arcus quem Jupiter mou diurno medio circu Solem detererit, multiplicetur per 30 & factum dividatur per semidiametrum apparem Jovis in mediocris ejus distantiae ad terræ, quotus erit numero semidiametrorum Jovis quas intervallo 30 dierum describit. Poste etiam idem inversi dendo: ut tempus periodicum Jovis ad 360 gradus, ita 30 dies ad arcum hoc temporis descriptrim, hic arcus dividatur per semidiametrum apparem Jovis, & quotus erit numero semidiametrorum quas Jupiter 30 diebus describit.

(1) * Amitteres in medio ejusdemon densitate. (per schol. prop. 40. lib. 2. circu finem). Si diameter Jovis dictum D, V velocitas ejus sub initio motus, & T tempus quo velocitate V in vacuo descriptum ipatium S quod sit ad ipatium D ut densitas Jovis ad densitatem aeris nostri, hoc ess, ut 860 ad 1 circiter Jupiter in aeré nostro projectus cum velocitate V tempore quovis alio s amitter velocietatis esse partem $\frac{V}{T+S}$. Quoniam igitur Jupiter in intervallo 30 dier. longitudine 459 describit, & densitas Jovis est ad densitatem aeris nostro ut 860 ad 1 circiter, erit $\frac{3}{8}$ $\frac{6880}{D}$ $\frac{860}{3}$ $\frac{D}{\frac{860}{3}+\frac{D}{2}}$. Unde si ponatur $s=30$. dieb. erit $T+s=\frac{152370}{459}$, &

$\frac{\frac{6880}{3}}{\frac{152370}{459}}-\frac{459}{152370}$ = 0,09096 = ferè. Cum autem Jupiter supponatur paulo densior quam aqua, minorem adhibere velocietatis esse partem amitteret in aëre nostro.

(3) 70. * Aër ibi rarior foret. Si gravitates particularus aëris in omnibus à terrâ distantiae eadem fit, finisque distantiae in progressionem arithmetica, demonstratur et (in schol. prop. 22. lib. 2.) denitates fore in progressionem geometric. Hinc pateiet in variis à terrâ distantiae per Logarithmicam exhiberi possit varias aëris densitates. Sit enim FDB Logarithmica, summis abscissis A C, A E, in progressionem arithmetica, ordinate A B, C D, E F.
Et (e) hinc stella Jovis in medio ejusdem densitatis cum acre illo superiore revolvente, tempore annorum 100000, ex resistentia mediī non amitteret motus suī partem decimam centesimam millesimam. In spatiis utique terrae proximis, nihil inventur quod resistentiām creet præter ærem, exhalationes & vapore. His ex vitro cavo cylindrico diligentissimè exhaustis gravia intra vitrum liberîmè & sine omni resistentiā sensibili cadunt; ipsum aurum & plura tenuissima simul demissa æquali cum velocitate cadunt, & caus suō describendo altitudinem pedum quatuor, sex vel octo, simul incidunt in fundum, ut exerien-

E F densitas æris in locis A, C, E, representantur (33. lib. 2.) Quarè daria altitudinisbus A C, A E, & ratione \(\frac{A B}{C D} \),
imnotescet ratio \(\frac{E F}{E F} \). Nam (ex naturā Logarithmico, per cor. 2, theor. 2. de Logarithmico) \(A C : A E = \frac{A B}{C D} : \frac{A B}{E F} \),
idēque \(\frac{A E}{A C} \cdot \frac{A B}{C D} = \frac{A B}{E F} \).

Jam quia altitudines mercurii in barometro sunt ut pressiones atmosphaæ in diversis ab horizonte distantiae (prop. 20. lib. 2.) si æris densitas compressione ponatur proportionalis, daria altitudinisbus mercúri in barometro in locis A, C, datâque altitudine A E, dabitur altitudo mercurii in barometro in loco E, idēque nota erit densitas æris in E. Ut autem hac omnini ad præfentem caæsum transseramus, sit G A H pars superficiei terrestris, altitudo mercúri in barometro in A = 30 poll. distantia A C = 2180 ped. Anglicis & altitudo mercúri in barometro in C = 28 poll. quemadmodum Newtonus experimentum cognitum sufficit. Sit altitudo A E = 100 milliaribus hoc est = 1056000 ped. Anglicis, si milliare sit menitus\(\frac{A E}{A C} \cdot \frac{A B}{C D} = \frac{1056000}{2280} \).

\[L. \frac{A E}{A C} : \frac{A B}{C D} = 13.8750513 \] circiter cui Logarithmo, in tabulis respondet numerus 750000000000 erit ergo densitas æris in A, hoc est, in superficie terræ ad ejusdem densitatei in distantia 100 milliarium seu ped. 105600 ut 7500000000000 ad 1, circiter.

(e) * Hinc stella Jovis. Densitas Jovis est ad densitatem æris illius superioris ut 860 x 750000000000 ad 1. Hinc
Perientia compertum est. Et propertia si in coelos ascendatur aeret & exhalationibus vacuos, planetae & cometae sine omni resistentia sensibili per spatia illa diutissime movebuntur.

HYPOTHESESI.

Centrum systematis mundani quiescere.

Hoc ab omnibus concessum est, dum aliqui terram, alii solem in centro systematis quiescere contendant. Videamus quid inde sequatur.

PROPOSITIO XI. THEOREMA XI.

Commune centrum gravitatis terrae, solis & planetarum omnium quiescere.

Nam centrum illud (per legum corol. iv.) vel quiescet vel progressetur uniformiter in directum. Sed centro illo semper progrescente, centrum mundi quoque movebitur contra hypothesin.

PROPOSITIO XII. THEOREMA XII.

Solem motu perpetuo agitari, sed nunquam longe recedere à commune gravitatis centro planetarum omnium.

Nam cum (per corol. 2. prop. viii.) materia in Sole sit ad materiam in Jove ut 1067 ad 1, & distantia Jovis à Sole sit ad femi-
PRINCIPIA mathematica. 59

* femidiametrum Solis in ratione paulo majore(†); incidet communem centrum gravitatis Jovis & Solis in punctum (u) paulo supra superficiem Solis. Eodem argumento cum materia in Sole fit ad materiam in Saturno ut 3021 ad 1, & distantia Saturni à Sole fit ad femidiametrum Solis in ratione paulo minore: incidet commune centrum gravitatis Saturni & Solis in punctum (z) paulo infra superficiem Solis. (y) Et ejusdem calculi vestigiis insitia, si terra & planetæ omnes ex una Solis parte consistenter, commune omnium centrum gravitatis vix integrà Solis diametro à centro Solis distaret. (z) Aliis in casibus distantia centrorum semper minor est. Et propter cùm centrum illud gravitatis perpetuò quiescit, Sol pro vario planetarum situ in omnes partes movebitur, fed à centro illo nunquam longè recedet.

Corol. Hinc commune gravitatis centrum terræ, Solis & planetarum omnium pro centro mundi habendum est. Nam cum terra, Sol & planetæ omnes gravitent in se mutuò, & propter ea, pro vi gravitatis suæ, secundum leges motús perpetuò agitentur: perspicuum est quod horum centra mobilia pro mundi centro quiescente haberí nequeunt. Si corpus illud in centro locandum esset, in quod corpora omnia maximè gravitant (uti vulgi est opinio) privilegium istud concedendum effet Soli. Cum autem Sol moveatur, eligendum erit punctum quiescens, à quo centrum Solis quam minimè discédit, & à quo idem adhuc minus discéderet, si modò Sol densior effet & major, ut minus moveretur.

PRO-

(†) * Et distantia Jo vis à Sole fit ad femidiametrum Solis in ratione paulo majore, cum ëmi-Diametrum Solis ε tellure víia fit 50° 4' & distantia Terræ à Sole fit ad distantiam Jovis à Sole ut 10 ad 52 circiter, utique anguli sub quod idem objectum videatur est diversis distantibus, reciprocè ut illæ distantiae fere, erit 52 : 10 = 50° 4' : ad semi-Diametrum Solis è Jove vivam, quæ itaque erit 3° 5' circiter: fingatur ergo Triangulum Rectangulum cujus vertex fit in Jove & basis fit Soli semi-Diametre, angulus verticis erit 3° 5'. Ideoque (per Tabulæ Tangentiæ,) basi ejus computatur in ejus altitudine 1115 vicibus, hiæ distantia Jovis à Sole effit ad semi-Diametrum Solis, ut 1115 ad 1, ideoque in ratione paulo majore quam ratio 1067 ad 1, hoc est, quam ratio materiæ in Sole ad materiam in Jove.

(u) * Paulò supra superficiem Solis (c, lib. 1.).

(x) * Paulò infra superficiem Solis (ibid.)

(y) * Et ejusdem calculi vestigiis (61, lib. 1.).

(z) * Aliis in casibus. Si nempe ad diversas Solis partes planetæ confistant, centrum gravitatis modò versus unam partem, modò versus alteram incidit, hinc centrum gravitatis quasi medio loco èi in casibus poni debet, minor itaque fit centrorum distantia.
Philosophiae Naturalis

Proposito XIII. Theorema XIII.

Planetae moventur in ellipsis umbilicum habentibus in centro solis; et radiis ad centrum illud duetis areae descriptae temporibus proportionales.

Disputavimus supra de his motibus ex phænomenis. Jam cognitis motuum principiis, ex his colligimus motus celestes a priori. Quoniam pondera planetarum in solem sunt reciprocè ut quadrata distantiarum a centro Solis; si Sol quiescet & planetae reliqui non agerent in se mutuò, forent orbis eorum elliptici, solem in umbilico communì habentes, & areae describerentur temporibus proportionales (per prop. I. & xii. & corol. i. prop. xiii. lib. i.) actiones autem planetarum in se mutuo perexiguæ sunt (ut poëmint conterni) & motus planetarum in ellipsis circa solem mobilem minus perturbant (per prop. lxvi. lib. i.) quàm si motus isti circa solem quiescentem peragerentur.

Adio quidem Jovis in Saturnum non est omnino contemnenda. Nam gravitas in Jovem est ad gravitatem in solem (paribus distantibus) ut (a) I ad 1067; ideoque in conjunctione Jovis & Saturni, quoniam distantia Saturni a Jove est ad distantiam Saturni a Sole serè ut 4 ad 9, (b) erit gravitas Saturni in Jovem ad gravitatem Saturni in Solem ut 81 ad 16x1067 leu I ad 211 circiter. Et hinc oritur perturbatio orbis Saturni in singulis planetae hujus cum Jove conjunctionibus adeo sensibilis ut ad eandem astronomi hærent. Pro (c) vario situ planetae in his conjunctionibus, eccentricitas ejus nunc augetur, nunc diminuit.

75. 71. Quoniam Sol pro diverso planetarum fueri diversimodé agitatur, motu quodam libratorio lentè temper errabit, dum tum integrà futi diametro a centro quiescente systematis totius recedet. Quia vero Solis & planetarum ponderibus (per cor. i. prop. 8.) inventis, datoque suo omnium ad invectionem, datur commune gravitatis centrum (51. lib. i.) patet quoque dato communì gravitatis centro haberi locum Solis ad temporum propositionem.

(a) * Us I ad 1067 (cor. z. prop. 8.);
(b) * Erir gravitas Saturni in Jovem (prop. 8.)
(c) * Pro vario suo planetae. Saturnum his perturbationibus obvixium esse patet (per corr. 6. 7. 8. 9. prop. 66. lib. i.).
PRINCIPIA MATHEMATICA. 61

minuitur, apheolum nunc promovetur, nunc fortè retrahitur, & mediis motus per vices acceleratur & retardatur. (d) Error tamen omnis in motu ejus circum solem ā tantà vi oriundus (præter quam in motu medio) evitari ferè potest constitutendo umbilicum inferiorum orbis ejus in communis centro gravitatis Jovis & Solis (per prop. LXVII. lib. I.) & propterea ubi maximus est, vix superat minuta duo prima. Et error maximus in motu medio vix superat minuta duo prima annuatim. In (c) conjunctione autem Jovis & Saturni gravitates acceleratrices Solis in Saturnum, Jovis in Saturnum & Jovis in Solem sunt 16 × 81 × 3021 25 = 156609, ideoque differentia gravitatum Solis in Saturnum & Jovis in Saturnum est ad gravitatem Jovis in Solem ut 65 ad 156609 seu 1 ad 2409. Huic autem differentiæ proportionalis est maxima Saturni efficacia ad perturbationum motum Jovis, & propterea perturbatio orbis jovialis longè minor est quàm ea Saturnii. Reliquorum orbium perturbationes sunt adhuc longè minores (f) præter quam quod orbis terræ sensibiliter perturbatur à Lunâ. (g) Commune centrum gravitatis terræ & Lunæ, elliptin circum solem in umbilico positum percurret, & radio ad solem ducto areas in eadem temporibus proportionales describit, terra verò circum hoc centrum commune motu menétruo revolvit.

PRO-

(d) * Error tamen omnis. Si ad evitandum ommem ferè errorem, orbis Saturni umbilicus (per prop. 67. lib. I.) locatum in communis centro gravitatis Jovis & Solis, Theoria Saturni juxta hanc hypothesim constituita fatis accuratè concrute cum phænomenis, ita ut error qui ex hác hypothesi oritur, ubi maximus est, vix superat minuta duo prima, &c error maximus in motu medio vix minutas duo bus primis annuatim major oblargetur. Hinc non parum confirmatur ea quae de mutua planetarum perturbatione hæcæbus dicta sunt.

(c) * In conjunctione autem Jovis. Quoquid in conjunctione Jovis & Saturni, Tom. III.

distancia Saturni à Sole, Saturni à Jove, & Jovis à Sole sunt inter se ut 5, 4 & 5, circiter, gravitates acceleratrices Solis in Saturnum, Jovis in Saturnum & Jovis in Solem erant ut 16, 81 & 3021 25 (per cor. 1)

(prop. 8.) hoc est, ut 16, 81 & 3021

(f) * Praeter quam quod orbis terra. Orbem terræ sensibiliter perturbari à Lunâ ostendetur deinceps ubi vis lunæ definitur.

(g) * Commune centrum gravitatis terræ & lunæ. (prop. 67. lib. I.)
Orbium aphelia & nodi quiescunt.

Aphelia quiescunt, per prop. x1, lib. 1, ut & orbium plana; per ejusdem libri prop. 1, & quiescentibus planis quiescunt nodi. Attamen à planetarum revolventium & (h) cometarum actionibus in se invicem orientur inaequalitates alique, sed quae ob parvitatem hic contenti possunt.

Corol. 1. Quiescunt etiam stellæ fixae, propterea quod datas ad aphelia modisque positiones servant.

Corol. 2. Ideoque (i) cum nulla sit earum parallaxis sensibilis ex terræ motu annuo oriunda, vires earum ob immensam cor-

(h) * Et cometarum actionibus. Eodem prorsus modo quo planæ in se invicem agunt; patēt quoque cometas in alios planetas agere similisque effectibus producere, sed cùm observationes Astronomiae ostendant apheliorum nodorumque motum esse tardissimum, ob parvitate contenti possunt inaequalitates quae est planetarum & cometarum actionibus in se invicem orientur.

(i) * 72. Cum nulla sit earum parallaxis. In hypothesi terræ motæ, quiescentibus Sole & stellis, tellus integrum revolutionem absolviit (spatio 23. hor. 56°, 4', ciciter, & circa solem revolviun unius anni intervallo; circulumque describit qui eclipica vel orbis annus appellatur. Referat S solem, sit F stella fixa in Eclipicae plano ad distantiam quamlibet constitueta; Sit ABCD orbis annus, ponaturque tellus primam in loco A, deinde post sex mensēs perveniat ad locum C in quo distantia a loco A terrae diametro orbis annui; hoc est, 20000 terrae diametris ciciter, ita ut anguli FSA, FSC sint recti; sitella F ex tellure a vita respondebit puncto E, quod ad distantiam infinitam a terræ remotae supponitur. Deinde siem stella ob mo:um terræ ab A versus B, progrede videbitur ab E versus G; donec tellure perveniet ad C stella videtur in H, distantia sitilicer a loco in
PRINCIPIA MATHEMATICA.

corporum distantiâm nullos edent sensibles effectus in regione
sytematis nostræ. Quinimo fixæ in omnes coeli partes æquali-
ter disperse contrares attractionibus vires mutuas desuunt,
per prop. lxx. lib. i.

prope sex mensae verfabatur, toto ar-
cu E H, cujus mensura est angulus E F H
vel A F C. Hujus anguli feminis A F G,
est parallaxis orbis annui ex terra motu
annuo oriunda. Dato autem angulo A F S,
facile inveniur distantiâ fixæ fixæ a
terrâ A F, si fiat, ut finus anguli A F S,
ad finum tumur, ita A S Semidiameter
orbis annui, que est 10000 diametorum
terræ circiter ad A F. Jam vero patet ex
telluris annuo motu quiri debere translati-
sonem fixarum inter se parallaxi duplica-
tae circiter æqualum. At fixæ majores
& propiores respectu remoturum quanti
telecopiorum ope duntaxat confici pos-
sunt, moveri non observantur. Nulla est
itaque fixarum parallaxis sensibilis ex terræ
motu annuo oriunda, ideoque immensâ
est fixarum ad tellure distantiâ. Sive
autem terrâ moveatur, sive quiétat, stel-
las fixas immensis intervalliis ad terrâ diffa-
tæ certissimum est, nam parallaxis an-
nam minuto primo longe minorem esse
confitterunt omnes Atenomen. Fingamus
vero annuam fixæ aliquas proximioris pa-
 rallaxis esse unius minuti primi, ad tellur-
re diffabite stella illa 3437 femini-Diametris
orbis, quam describit terra, quodiam fi-
nus unius minuti est ad Radium ut 1 ad
3437, & si femini-Diameter orbis fix 10000
femini-Diametorum terræ, ad minimum
68740000 terre ipsum femini-Diametris
diffabre fixa ad Tellurum.

73. Chrysianus Hugenius in Cosmoteo-
roi lib. 2. aliam exsequtivit methodum quà
rationem distantiam fixarum ad distantiarum
Solis conceutando inventigaret. Supponit
itaque Sirius, quà stella est inter alias
fulgentissima, Soli circiter æquali esse.
Deinde tentavit quà ratione Solis diamet-
trum ita imminenter posset ut non major
aut splendidior Sirio appareret. Quod ut
affequeretur, tum vacui duodecim circi-
ter pedes longi aperturae alitera occlusi-
fit lamellæ tenuissimæ in cujus medio tam
exiguam erant foramen ut linea partem
duodecimam non excederet; oculoque al-
teri apertura admo, ea videreur Solis
particula cujus diameter erat ad diamet-
rum totius ut 1 ad 182. Cùm vero par-
ticula illa Sirio splendidior adhuc appare-
ret, foramine globulum vitrum egressum
cum foramine diametri objectum, tali que
foci globulorum flegit ut lux Solis ad ocu-
lim transmissa non major aut splendidior
videreur: ét quam à Sirio emisam nubes
oculis intuemur. Quo facto, hujus par-
ticulis Solis diametrum invent partem

1

diametri totius. Quæ Sol inftar
27664
sirius appareret, si-conficua foret pars
diametri totius Solaris taurum
27664
distantia autem Solis à terrâ, in quà
tantillus videreur, foret ad distantiam in
quæ ejus diametrum apparet quantum
ut 27664 ad 1, divisaque apparet Sol-
is diametro medio per 27664, foret
diameter Solis 4\(^{\text{a}}\) circiter. Hinc firiis quœ

distantia à terrâ est ad distantiam Solis
ab eadem ut 27664 ad 1 & diameter
apparens Sirii \(\frac{1}{2}\)\(^{\text{a}}\). Jam distantia Solis à
terrâ, si Parallaxis Solis ponatur 10\(^{\text{a}}\) 30\(^{\text{a}}\)
est ferè 20000 femid. terrestrum, erit
certo distantia Sirii 55320000 femid. ter-
restr. Si vero distantiam medium Saturni
'à terrâ confirueramus 190800 femid. ter-
restr. prodit distantia inter Saturnum &
Sirium 553083200 femid. terrestr.
Philosophiae Naturalis

Scholium.

Cum planetae Soli propiores (nempe Mercurius, Venus, Terra; & Mars) ob corporum parvitatem parum agant in se invicem; horum aphelia & nodi quiescent, nisi quatenus a viribus Jovis, Saturni & corporum superiornrum turbentur. Et (a) inde colle
gi potest per theoriam gravitatis, quod horum aphelia moven
tur aliquantulum in consequentia respectu fixarum, idque in pro
por-

(a) 74. * Et indè colle[i]gi potest. Designa
S Planetam aliquem superiorem, pura Jo
vem, cujus Orbita E S E; ut T Sol, P Planet
a aliquis inferior; ponaturque corporea S,
P, aliorumve plurium sytema; revolvi circæ
corpus T manentibus orbium E S E &
P A B formâ, proportionibus & inclinatione
ad invicem, mutuentur vero utcum
que magnitudines, & per theoriam gravi
tatis colligitur (cor. 15. & x. prop. 65.
& nos. in eadem corollaria) errores an
gulares corporis P in quâvis revolutione
genitor, idquæque & motus aphelii in qualibet revolutione corporis P esse ut quadra
tum temporis periodicij quàm proximè.
Si itaque numerum illi errores, in va
riis Planetis P durante eodem determina
to tempore, per centum v. gr. annos, ut hic affirmatur Newtonus, errores integri eo
tempore descripti erunt ut errores singu
læ revolutione commissi, & ut numerus re
volutionum faculo integro peractarum, ille
numerus revolutionum est inversæ ut tempus
deriodum, & errores (qui sunt, ut dixi
sibi, direcdt ut quadratum temporis Pe-
riodicij) ergo errores Apheliorum duran
tibus centum annis erunt in simplici tem
porum periodorum ratione. Sed tem
pora periodica Planatarum P sunt in ratio
ne feliquiplicata distantiarum à centro T,
(per phæn. 4.). Sunt ergò errores Planeta
tarum inferiornium in hac ratio feliquiplicat
ca distantiarum à centro Solis. Qua
re si ponatur eum fece aphelii Maris pro
gressum ut in annis centum conficiat 33'
acut in consequentia respectu fixarum, in
veniatur motus aphelii aliorum planetar
um qualis à Newtono definitur, dicendo:
ut Radix quadrata cubi distantiae maris
t Radicem quadratam cubi distantiae ter
ræ à Sole, ita 33' acut ad motum Aphelii
teræ annis centum. Quamvis autem ex
ipsâ gravitatis theoria colligatur planetar
um inferiornium aphelia nunc promoveri;
nunc retrahii, medios tamen apheliorum
motus notabili aliquo tempore in confe
quentia fieri, pacto ratiocionio similii illi
quod de Luna factum est in notâ c. p. 14. hu
juce, unde facile constabit revera medium
motum resultantem post centum annos esse
ut
PRINCIPIA MATHEMATICA.

portione sexquiplicata diastantiarum horum planetarum à Sole. Uti
fi aphelium Martis in annis centum, conficiat 33°. 20" in con-
fequentia respectu fixarum, aphelia terræ, venereis, & mercu-
ruii in annis centum conficiet 17°. 40", 10°, 53", & 4°. 16° XIV.
respective. Et hi motus, ob parvitatem, negliguntur in hac
propositione.

PRO-

ut ipsa tempora periodica; ideoque in ra-
tione sexquiplicata diastantiarum à Sole, sec-
cundum ea quæ dicuntur in cor. 16. prop.
66. lib. i., &c. De praeterni scholio
hac dicta sunt. Sed prætermittenda non
sunt verba doctissimi Viri Joanis Bert-
oulili cuius autentoritate maxime ve-
neramur. Sic ferè habet Clariss. Autor
in Differtatione de Systeate Cartesiano
quæ anno 1730. ab Academiæ Regii Scien-
tiarum præmiio condecorata fuit, Paragra-
pho XLII. "(Newtonus hibernon mo-
"nam aphelii Martis in consequentia eum
"esse ut centum annorum spatio 33°. 20°,
"conficiat. Hinc colligit per theoriam
"gravitatis quod aliorum planetarum in
"sferiorum aphelia movetur in consequen-
tia respectu fixarum, idque in propor-
tione sexquiplicata diastantiarum horum
"planetarum à Sole. Nullo fundamento
"merque apparenti nihil videtur New-
tonus in continuandâ hac ratione se-
quiplicata. Neque enim intelligo, ne-
que ut arbitrator, plures aliœ in ipso per-
"picacores intelligunt, quae mutua pla-

netarum gravitatio, etiam concedere-
tur, hanc proportionem postulet. Et
"certè hac eadem gravitatio planè irreg-
"guarem effectum & suæ regulæ contra-
"rium product respectu aphelii Saturni ,
"cùm Newtonus ipse statuat in conjun-
tione Jovis & Saturni aphelium illud
"nunc promoveri, nunc retrahi. Numquid
"de singulis planetis inferioribus idem quou-
"que fluendum videretur. Nam fi talis
"admissenda foret attracio, tellus v. gr.
"ubi in aphelio versatur, Jovemque res-
"pectu zodiaci praecessit, retroheretur, &
"contra promoveretur ubi Jupiter telia-
"rem praecedere. Unde hac gravitatio
"contrariis omnino effectus antè & post
"conjunctionem telluris & Jovis produ-
"ceret. Sed nif tale observatur, idque ex
"siùs hypothesi Newtonus minime colli-
"git, fuit facere debetur. ")

* Ex praedictis autem facile responderi
possi videtur Viri Doctissimi quæfisti.

1o. Enim conceps Planetarum gravita-
tione, motum Apheliorum Planetarum in-
feriorum secundum proportionem sexqui-
pliicatam diastantiarum fieri debere, Mathémi-
caté sequitur cor. 16. Prop. LXVI.
Lib. I. ut supra ostensum est, illud aut-
tem Corollarii 16. tam ex Sectione no-
næ Lib. 1. quàm ex ipsa Prop. LXVI. le-
gitimè deduci, ex ipso Newtono noti-
que illis locis adjectis probatum credi-
mus.

2o. Quod queritur V. D. eadem gra-
vationem contrarium effectum regulæ fuse
producere respectu Aphelii Saturni, id
vixio vertendum non est Systemat Newtoni-
niano, quin è contra egregia procul du-
bio est ejus confirma. Quippe eos ipsi-
"o quod Saturnus cæteris Planetis sit ex-
terior, ex Systemat Newtoniano fluit
viam Solis in Saturnum agentem augeri per
viam Planetarum inferiorum in conjugatione
no, unde Aphelium ejus debet regredi
per Prop. XLV. (quod in Saturno obser-
vari, ex ipso Cassio didicimus, ut super-
rius notè c. pag. 13. retulimus) dum è
contra Aphelii Planetarum inferiorum per
viam exteriorum in conjugatione posteriorum
progrede debent.

3o. Queritur denique quod Aphelii
Planetarum inferiorum nunc retrahi, nunc
promoveri debeat, quod tamen non ob-
servaritur; festicer Newtonus statuit qui-
dem Aphelii Planetarum inferiorum in jù-
zygis promoveri, in Quadruris retardâ-
ri, plus promoveri vero quàm retardari,
unde in totum progredi videntur; Aphelii
autem esse veluti libratio observabilis non
13 eff;
Invenire orbium principales diametros.

Capiendae sunt haec in ratione subsequinpicarata temporum periodicorum, per prop. xv. lib. i. (b) Deinde figillatim augendae in ratione summate massarum Solis & planetarum cujusque revolventis ad primam duarum medié proportionalium inter summam illam & Solem, per prop. l. x. lib. i.

PRO-

eft; etenim qui praxi Astronomicæ operam dam, facili fentient loca Apheliorum ita non determinari, ut nuntio Aphelii in singulis orbitis partibus observatione obiectatur; imo potì plures duntaxat revolutiones satis tamvi Aphelii progressum inventi; ipse Methodi ad eas observationes adhibisse docent; hinc, ad observationes provocare non licet ut illam nutationem vel veram vel fictitiam esse probetur, quidem omnes observationes hæc de re nihil docere nos possint.

Addit verò, tellus ubi in Aphelio versusur Jovem queque Sepulcris Zodiaci praeceps, retroreversa, & contra promoveretur ubi Jupiter tellurem praeceps, unde gravitas meriatis effusis producere ante & post conjunctiorem Telluris & Iovis; si in hoc exemplo agatur de motu Telluris in longum, hæc revera fluent ex gravitationis systemate, & revera in Lunæ inde producitur ea inaequalitas quà Variatio diciatur, Astronomic notissima; similem inaequalitatem in terræ non quidem observatione, ait Orienti quia minima esse debet per ipsum gravitationis naturam, & cum seque urinque compenget, nullum sui reiquiruit Velligium; Quod si in hoc exemplo de motu Aphelii Terræ agatur ut externonis leria qui forte fulpaceaurt res fieri non debet ut hic indicatur, nam in tota syzygia Aphelium Telluris progressi debere, & in quadraturâ duntaxat regredi, igitur per prop. XLV: & LXVI. primi Libri. Quas quidem adnotationes eæ mente non adjungimus ut quidquam derogetur summæ Virtutis isti apud omnes Philamericanis: eorum erat ad eam, earum autem Sermonum brevis sita occasionem de teri V. III. dicendi, eam nihil fundamentum meriæque apparentia proportionem motoris Apheliorum itaturum, hac notis ipfi inuita eam purgare & veritas & Commentatoris officium postulabant.

(b) Deindd figillatim. Jam capiti sunt orbium axes majores in ratione subsequinpicarata temporum periodicorum, tempæ nulliæ habitæ ratione massarum, planetarum spectari sunt tanquam totem punctum ellipticas circius immutum in umbilico Solis centrum revolventia. Qtoniam verò fix ut proper Solis & planetarum actiones mutus, planeta ellipse dicratabit, cujus focus est commune gravitatis centrum planetarum & Solis, major axis ellipticos quæm planeta describit circius Solem qui ipse simul revolvi circius commune centrum gravitatis, est ad axem majorem ellipticos quàm idem planeta circius Solen quiscentem eodem tempore periodico describere posset, in ratione summæ massarum Solis & planetarum ad primam duarum medié proportionalem inter summam illam & Solem (prop. 60. lib. i.) idéque ut axis majoris orbite corrugatur, augendus est in dictâ ratione. Darur autem ratio inter massas Solis & planetarum, ac prônint darur ratio in quà orbitalium axes majores sunt augmenti. Vide de his not. 64. hujus libri.
Invenire orbium eccentricitates & aphelia.

(c) Problema confit per prop. xvili. lib. i.

PRO-

ad Eclipicam reducunt, sive punctum ubi perpendicularis ex planetâ in planam Eclipicæ demissa incidit. Ponatur tellus in T, observeturque planetæ longitudo...
Philosophiae Naturalis

Proposito XVII. Theorema XV.

Planetarum motus diurnos uniformes esse, & librationem Lunae ex ipsius motu diurno oriri.

75.

bitur locus planetæ heliocentricus. Eft autem (ex trigon.) tangens latitudinis geocentricæ planetæ ad tangentes latitudinis heliocentricæ ut distantia planetæ à Sole curvata ad distantiam ejusdem à tellure curvatam, fed per observationem, non est latitudo geocentricæ planetæ, quær innotet et planetæ latitudine heliocentricæ ex qua simil et distantia à Sole curvata elicietur planetæ à Sole vera distantia, & similis modo vera distantia Planetæ à terræ, unde tandem in Triangulo cujus tria puncta sunt Sol, Terra & Planetæ, omnita latera sunt cognita. Hac ratione obtiniri possunt varias loca centrica planetæ, variaque à Sole distantiae.

Ceterum hæc fuisse variisque adhibitis methodis, explicata repeririunt in Introductione ad veram Physicam Ioannis Keil, in Astronomia Physica Davidis Gregorii, & potissimum in Elementis Astronomicis à Clariss. Caffino nuper editis.

rem umbilicum orbis ejus (e) semper respiciet quamproximé; & propterea pro sicu umbilici illius deviait hinc inde à terrā.

Hāc XII.

Theor. XII.

revolutionem 24 diebus 8. horis abfolvi deduxit, circa axem admodum obliquum Eclipscis; in sum autem sementiam Dām. Caffinum filium non adduxit, quia apparentiē à Dām. Bianchino observavit per motum 23 horarum explicari poterant, dum Parentis observationes, cum hypothēsi revolutionis 24 diecrum & 8. horarum consentière non possent; hinc quæstio in medio remanit non facilē solvenda, macula enim Veneris nonnisi Coelo purifico observavi possum, & Lutetiae necidem cum maximis Telecopiis videri potuisse narrat idem III. Caffinus filius.

(e) 76. Semper respiciet quamproximē. Sit orbita lune elliptis A L B A, in cuius umbilico T locatur terra, ductus ex umbilico radius vectores arcus ellipticēs temporibus proportionales describīt (prop. x. lib. i.); demīs autem ē duobus quibusvis in ellipticos peripheriā punctī ad alteram umbilicum F rectīs LF, LF, angulos L F L erit quamproximē ad quattuor rectīs fīcut tempus quo arcus L L ē Luna describītur ē integrum tempus periodicum Lune, si elliptīs fīcit parum excentrīca. Jam referat LM meridianā Lunarīs, hoc est, circuli per axem convergens Lunae planum, quod productum transīt per F, idem planum in quocumque orbita elliptica puncto locutur Luna, productum quoque F per F transtīt. Quoniam enim Luna circa axem fīxit uniformiter revolvit eodem tempore quo circa tellurum periodum fīxum abfolvi, patet meridiani planum quo Lune ēxītente in L sum L M obīnebat, dum Luna centrum alīud quodvis punctum aatigis, ad talem fīsum L E pervenisse, ut posū L M parallelā ē L M, angulos M L E erit ad quattuor rectīs fīcut tempus quo Luna arcum L L ē percurrīt ad integrum tempus periodicum Lune, ideōque (prop. i. lib. s. elem.) angulos M L E erit ad quattuor rectīs fīcut LF LF ad quattuor rectīs, ac prōnīd angulos M L E equalis erit angulo L F L, & ob rectās LF, L M parallelās jacent L E in directūm ipī LF, hoc est, ubi Luna ēterā futurā, ejusdem mēs;

Tom. XLII.

ridianī planum quod in priori fīn L productum etiam transtīt per F. Quare in quocumque Lunarīs orbita puncto centrum Lune occurrat, productum ejusdem meridianī planum transtīt per F.

His prōmissīs patet eandem fīcer Luna facie tempus ad terram converti caelestīque fīcer Lunarīs maculas observavi terræmētrī apparere. Ĉum enim productum ejusdem meridianī planum per aliterum orbita Lunarīs focum F transeaut, itaque Lunarīs orbita parum excentrīca, hoc est, non multum differt umbilici F & T, eadem quamproximē Lune facies terrae obsūrtūr. Si verō accuratē observavi Lunarīs maculas, Luna facies ad terram converīt diligenter consideretur, non eadem prōcītād facilitēs ē nobis videbītur. Quoniam enim ejusdem meridiani planum LM non ad terram T, sed ad aliterum focum F dirigīt, patet Lune in L existentis hemisphērium ē tellure T viūtum, aliquidum esse diversum ab illo quod viētūr, dum Luna reperīrur in 1; nam pars hemisphērium Lunarīs velīs plagam B quae antē occultatūr fit conspicua, & contrā pars hemisphērium alītus versus R quae antē apparēbat, ocūlā evanēcit; motus hic Lune ē terrae appārēt, quod fit ut quasiām μacula
PHILOSOPHIAE NATURALIS

De Mundo Systemate.

Hac est libratio lunae in longitudinem: Nam (f) libratio in latitudinem orta est ex latitudine lunae & inclinatione axis ejus ad planum eclipticæ. Hanc librationis lunaris theorianam D. (g) N. Mercator in Astronomia sua, initio anni 1676 edita, ex literis recedit, hoc est, dum in limite australi versatur, Lunæ polus borealis & aliqve utrae polum Lunaris globi partes sole illuduntur, intereadum polus australis & aliqve circumsit hunc polum regiones Lunares in tenebris immersu. Si ergo in hac sit contingat Solem in eadem plagae cum limite australi versari, Luna & conjunctio cum Sole ad nodum ascendentem, hoc est, versus Boream progradens, haec regiones maculaque polo Boreali vicinis ocularibus tundatur, dum interim ab oppositâ plagâ aliqve cum polo australi regiones, e tenebris emergunt; contrariumque accident deinceps Lunæ novâ in limite boreali; borealiore namque Lunæ partes paulatim in lucem e tenebris prorepereunt, dum australiores evanescunt.

(f) 77. * Libratio in latitudinem. Quoniam axis circa quem Luna revolvetur, non est ad Lunarem orbitam normalis, sed ad illam in lineam, manifestum est Lunæ polos per vices ad terram versare; ideoque Lunæ maculas nunc huic nunc illi polo vicinis et terrâ spectari. Quia vero axis Lunæ est serè ad planum Eclipticæ normalis, patet hanc librationem pendere ad Lunæ respectu nodorum orbis Lunaris cum eclipticâ, seu ab ipso latitudine Lunæ. Ex ills libratione oritur, ut dum Luna versus austrum ab eclipticâ maximè maculæ in partem à terrâ avertam se receptant, dum aliqve ex parte aversâ in conspectu prodeunt, libratio Lunæ in longitudinem appellarur. Libratioeum hanc bis in quolibet mense periodico restituendum manifestum est, quando nempé Luna in apogeo A aut perigeo B versatur; in utroque enim situ eijudem meridiani plenam quad protestatum in F incidit, transit etiam per T. Centrum hæc libration omnibus inaequalitatis obscuræ est quæ afferitur motus in longitudinem. (Vid. corollaría prop. 66. lib. 1.)

(g) 78. D. N. Mercator. Hic transcriptus N. Mercatoris verba. "Harum tamen variarum atque implicitarum librationum (Lunæ sibi) causas, hypotetis elegantissimâ explicavit nobis Vir "Cl. Iaac. Newton cujus humanitati "hoc & aliis nominibus plurimum debere "me lubens proficior. Hanc igitur hypothesim Lectori gratissimâ exponam "verbis, ut potero, nam delineationes in "plano vix sufiicient huic negotio. Ita "que reversus ad globum, cognita nunc "illum representatorem in qua mo "veutur Luna cujus centrum occultet tellus; "ipse vero Lunæ globum credito polis "& axe suo instinctum circà quem re "volvati motu sequi semel mente sy "dereos, dum à fixa aliqve digressa ad "eandem revertens, & equator Lunaris "ad firmamentum continuatos intelligatur "congruere plano horizontis lignie, & po "sius aequatoris Lunaris in firmamento im "ministat polo P.-reo globi ad zeniæ elev "vatio. Orbitam vero Lunæ concipio "partim supra horizontem ligniæ atol "li. partim vero infra eundem proprimi "quentidem in hoc siu globi confici..."
Principia Mathematica.

literis meis plenus exposuit. Simili motu (h) extimus Saturni
fateles circa axem suum revolvi videtur, eadem fui facie Sa-
turnum perpetuo respiciens. Nam circum Saturnum revolven-
da.

«picitur ecliprica, licet angulus aquato-
aris Lunaris & ejus orbis non fit forté
«aquae magnus atque hic quem globus exhib-
«it. Deinde finge globulos duos
«aquales quorum uterque polis, aquato-
«re & meridianus unico primario infini-
«tus & uterque filo suspendor aterruri
«polorum alligato. Horum alter referat
«Lunam fictam motu aquabili secund-
«um horizontis lignici circumlatam, aequa-
«tem tempore circb axem suum re-
volutam respectu firmamenti, ita ut pla-
nun meridianum primarii Lunaris per-
«seu transite per centrum terrae. Alter
«verd globulos veram Lunam imitatus in
agraria sua feratur motu inaequali, nunc
«quippe horizontem lignem emergens,
«inclinata eundem descendens, ita ut
«planum aquatoris hujus Luna vera se-
«per parallelum maneat plano horizontis
«ligni, & planum meridianum primarii
«jacentis Lunae verae semper parallelum
«planum meridianum primarii Lunae fictae. Ita
«sit ut Luna ficta eandem nobis facienc ob-
vvertens semper nulli prorsus librationem
«sit obnoxia. At Luna vera, dum a peric-
«geo pergit ad apogaeon procedens Lunam
«exactam, meridianum suum primarium of-
«fendit in medietate sinitrae fui dicit tot
«gradibus aequantem ad medium quo sunt
«inter longitudinem Lunae verae & fictae.

«Ab apogaeo verdo ad perigeo descendens
«Luna vera sequitur fictam, acque tum me-
«ridianum primam Lunae recedit ab
«ejus medio ad dextram, hoc est, macu-
«lae omnes vergunt in occasum, & cumb
«differentia inter medium & veram Lunae
«longitudinem in quadraturis evadat ma-
«jor, proper evectomen lybematis Lu-
naris ac centro telluris, hinc est quod in
«quadraturis librationes in longum cer-
«nuntur maiores. Similiter intelligitur
«causa librationis in laum, quando Lu-
nas superato nodo ascendent, sive secund-
ie horizonti ligni & orbite sua, ten-
dit ad limitem boreum, tum enim nobis
«in centro spherae poluis, polus Lunae

«boreus & que sunt circb suum maculam
«abconduntur, & polus australis cum suis
«maculis in conspectum venit, unde ma-
culae omnes confusae in boream tende-
tur videntur; contrarium accidit, Luna
«ad limis australium accedente. Ab ille-
dem causs procedit macularum ex par-
te lucidis in obscurum transite & vicili-
sim. Nam in limite australi polus Lunae
«boreus ad Sole illuminatur, & quidquid est
«zone frigida arcticus Lunari inclusum,
«dum frigida australis in tenebris veritatur.
«Quod &igitur Solem concipias in eadem
«plaga cum limite australi & lunam post
«conjunctae indi procedere ad novi-
«dum ascendentem, tum maculas superio-
«res apud polum boreum fiue, paulatim
«cum suo polo ad Luna in Tenebras con-
«cidunt, dum inferiores maculas cum po-
«lo australi ex Tenebris in Lucem prore-
«punt. Contrarium eventum semelfr post
«cum Sol accedit ad limitem Lunae bo-
«reum ». Haec est N. Mercator: sed ple-
nior librationum Lunarium expostio ha-
bertur in Elementis Astronomicis Clariss.
Cassini, ubi Vir Doctoris varias harum
librationum apparentias respectu fixarum
&Soli determinat, docereque methodum
qua ad quodlibet tempus dato sit finiri
apparen macularum Lunarium fuso:

(h) * Eximius Saturni satelles, tertio
satellitae septem major apparat, posteaque
decretac ac tandem juxta periodum non-
dum probe notam evanescit; id tamen ut
plurimum coactum dixit in orbis in orbi-
tes orientalis parte respectu Saturni
veritatur, rursus deinde in con pectum re-
dit. Cauta hac esse videtur, quod si licet
hemisphaerii satellitis pars quae ad nos
verita est, maculis obscurata prae luminis
anuitate cerui non positi, revolvente au-
tem circa axem satellitae ad hemispha-
rium oppositum transmisse maculae, iterum-
que satelles fit confusius. Cuncte in
e orbis sui parte qua orientem specitat,
obscuros satelles semper obseruever, ip
aliter verbo parte nuncum, valde proba-

K. bile
do, quoties ad orbis sui partem orientalem accedit, ægerrim
videtur, & plerumque videri cessat: id quod evenire potest per
maculas quaestam in ea corporis parte quæ terræ tunc obverti-
tur, ut Caffinus notavit. Simili etiam motu satelles extimus
jovialis circa axem suum revolvi videtur, propere quod in par-
te corporis Jovi aversa maculam habeat quæ tanquam in corpo-
re Jovis cernitur ubicunque satelles inter Jovem & oculos no-
firos transit.

PROPOSITIO XVIII. THEOREMA XVI.

Axes planetarum diametris quæ ad eodem axes normaliter ducentur
minores esse.

(1) Planetæ sublato omni motu circulare diurno figuram sphæ-
ricam, ob æqualem undique partium gravitatem, affectare de-
berent. (k) Per motum illum circularem fit ut partes ab axe
recedentes juxta æquatorem ascendere continetur. Ideoque ma-
teria si fluida sit, acentu suo ad æquatorem diametros adauge-
bit, axem vero descensu suo ad polos diminuet. Sic Jovis dia-
meter (confentientibus astronomorum observationibus) brevior
deprehenditur inter polos quàm ab oriente in occidentem. Eo-
dem

bile est eandem hujus satellitis faciem
planetæ primario fæter obverti. Idem
quoque simili argumento patet in extimo
jovis satellite, nisi dicatur illas satellitum
maculas fuliginum infar modó nači, mo-
dó dissipari; sed ubi apparentiae aliqua ex
duplici causâ orum habere poßitur, an-
teponendae sunt explicationes quæ ad mo-
to locali repetuntur. Alios Saturni Jovis
que Satellites, Lune infar, Planetis præmi-
ris invariata manifestare faciem ex ana-
logiae lego colligant múlri. Rem aliter
se habere censt Clariss. Daniel Bernoul-
fius in Disquisitionibus Physico-Astrono-
micis an. 1734. ab Academiâ Regiâ Scien-
tiarum præmium condecoratis. Has confütat
Lector.

(1) * Planæ sublato omni motu cir-
culari, Patet (per nov. 1734, lib. 2.). Si
planetarum materia ponatur fluida, ví-
que gravitatis ad unum centrum dirigat-
tur.

(k) * Per motum illum circularem.
Quoniam planetæ circâ axem suum revol-
vuntur, planetarum partes à centris cir-
culorum in quibus moventur, recedere
conantur, eoque major est vis illa centri-
fuga quod majores sunt circulorum quas
describunt peripheriæ (cor. 3. prop. 4;
lib. 1.). Sed æquator est circulus maxí-
mus, circuli autem versus polos continuò
decrecent, quem planetarum partes ma-
gis à centro æquatoris quàm à centris pa-
ralellorum recedere conantur, idèoque si
fluida sit planetarum materia, acentu suo
ad æquatorem diametros adaugebit, axem
vero descensu suo ad polos diminuet.
PRINCIPIA MATHEMATICA.

dem argumento, nisi terra nostra paulo altior esset sub æquatore quàm ad polos, maria ad polos subsiderent, & juxta æquatorem ascendent, ibi omnia inmundarent.

PROPOSITIO XIX. PROBLEMA III.

Invenire proportionem axis planæ ad diametros eodem perpendiculare.

Norwoodus nostrer circa annum 1635 mensurando distantiam pedum Londinensium 905751 inter Londinum & Eboracum, ac observando differentiationem latitudinem 2 gr. 28' collegit mensuram gradús unius esse pedum Londinensium 367196, id est hexapedarum Parisiensi 57300.

(†) Picartus mensurando arcum gradús unius & 22'. 55'' in

I. Cùm mensura Picarti a Malvoïsna ad Sourdouen procedat, & hinc ad Ambianum; Picartus distantiam à Malvoïsna ad Sourdouen per duas Triangulos serie determinat; unam praecipuum vocat quoniam ea ipsa erat quàm uti primum continentur, sed cùm aliquid dabi in ea observaret, alteram instiguit, quam priori antepostit quà inter observationem in ea factorum certior fíbi videbatur, & accuraté conficiens a sum is proxima actu mensurata: III verò Caffinis distantiam inter Parallelos Malvoïsna & Sourdouen ex priori serie determinat 68253'' hex. dum eadem distantiam Picarti, qui III. de Maupertuis suffragatur, facit hex. 68347.

Differunt iterum Picartus & Illustriissimus Caffinis in distantia inter Sourdouen & Ambianum, eam enim distantiam Picarti ex suis mensuris hex. 11161'' invenit, Caffinis verò hex. 11135' : discriminis autem hujus ratio duplex est, nam cùm uterque Triangulos formare incipient in linea quæ intercipient inter Sourdouen & Montem Defiderium, III. Caffinis eam lineam affirmat hex. 7116' juxta prioriorem seriem Triangulorum Picarti, & Picartus alteram seriè verificatam per Basim proximam actu mensurinam antepose, eam lineam 7132'' hex. facit : Cùm verò diversa Triangulis inde ad Ambianum uti sint, in his Triangulis occurrit sensibilis differentia quæ fœl prodat in Angulo Sourdouen facio inter lineas inde ad Ambianum & Montemdefiderium protonfus, nam is Picari est 137°, 50' 10'' angulus autem idem à Caffino determinatur 137° 53', 30'', ex quà differentiá 2' 40'' & ex Basio inter Sourdouen & Montemdefiderium diversitate, oriri potuit discrimen

K 3

I[lud]
ILLUD IN DISTANTIÀ INTER SOURDONEM & AMBIANUM.

In arcu autem Cælesti à Pictarum mensurato, refractionis correctionem adhibet Cauinus quam neglexerat Pictarum; cum ergo invenisset distantiam genu Cauinopo à Zenith loci in quo observabat, & qui erat 18 hex. Malvoisinam meridionalem 90° 56' 5" versus septentrionem, & cum ejus stellæ distantiam à Zenith loci 75 hex. meridionaliori quam ædes Ambiani 80° 36' 10" invenisset, arcum inter Zenith eorum locorum juxta Malvoisinam & Ambianum intercepsm fecit Pictarum 12° 12' 55" ut referet Newtonus.

Verum proper refractionem augendam esse hor distantia à Zenith statuit Cauinus, ita ut prima distantia 10°, altera 8° 11' fiat; cum ergo prior fiat 90° 59' 25". Altera 8° 36' 18½'.

Arcus interceps inter Zenith locorum observatiónis fit 1 - 12 - 56½'.

Ex his ergo correctionibus tantum in arcu Cælesti quam in mensuris terrestribus, à Pictarum obtinuit, deduxit III. Caffinus arcum unius gradus esse 57010 hex.

II. III. de Maupinio menuris terrestris, quas Pictarum adoptavit, admittens, arcum Cælestem mensuravit Instrumulo, à Sollensimo Graham accuratissime constructo; cum autem prioris sectores circa axem immotum, ex quo filum verticale pendet, revolveretur, & divisiones subtiliores in sectores limbro per lineas transferendas figurarentur, in hoc Instrumento Telescioium in sua illuminare duos cylindros adiunctos habet, circa quos cum sectores inferius adfixo revolutur, & ex quorum centro pendet filum verticale quo notentur gradus in limbro sectoris; Divisiones in eo limbro gradus & eorum partes ostavas tenueffinis punctis indicant, nihilque praecipua, & ad observationem faciendam at constituitur instrumentum, ut filum pendulum aliqui e divisionibus accuratè applicetur, idque Microscopio cum lumine juxta limbum collocato agnosciatur; tum cochlæa pellitum instrumentum donec objectum in axe Telescii cernatur, & numerus gyrorum cochlææ partisque singuli gyrī numeratur in limbro circuli horologii infar cochlææ adnexi, ita ut minimi cochlææ progressus maximè sensibilis fiat. Tali iaque instrumento cujus radius est octo pedum una uncia dempta, observationes instituit III. de Maupinio Latitutem in loco 1105 hex. magis septentrionali quam ædes B. Virginis, & Ambiani in loco 92¼ meridionaliori ædes ejus urbis. Inde ex stellis & Persei, & Draconis, arcum caelestem inter Zenith eorum locorum intercetum 10° 12" determinavit, correctionibus praecisissimis Æquinociali & aberrationiis lucis adhibitis. Hinc cum juxta Pictarum inter Parallex Malvoisinæ & Ambiani sint 78907 hex. inter Malvoisinam & ædes B. Virginis Latitutem sint 19376½ hex. manent inter utrumque ædem 5953½ hex. ex quibus deductis 1102½ hex. proper observationem loca, inventur arcum 1° 12" respondere mensura 5827 hex. idemque arcum unius gradus Hexapedas 5728½ in eà latitudine continere.

Verum hic non dissimulandum qualsquamque error observationis Pictarum adscribar, ex hac novissimâ III. de Maupinio observatione & ut illa error rectè æquatur, corrigenda sint ejus observationes caelestes non tantum per refractionem, sed eorum per Æquinocitiorum praecessionem & aberrationem lucis; etiam cum eodem tempore factæ non fuerint observationes à Pictaro Malvoisinæ & Ambiano, sed inter eas mensurum intervallum effluverit, interea per praecessionem Æquinocitiorum augebatur stella genuine Cauinopo declinatio 14½ ut ipsa Pictarum observata, sìmque proper aberrationem lucis 8° circiter ageri eam declinationem nunc confutat, quare stella quæ Ambiani observatur non erat in codem eëli puncto quo fuerat eëm Malvoisinæ observatum, sed erat 10 fe-
Principla Mathematica. 75

gradus unius esse hexapedarum Parisiensem 57060. (§) Caes-
nus senior menfuravit distantiam in meridiano à villâ Collio-
in Rouffillon ad observatorium Parisiense; & filius ejus addidit
distan-

dum ergo observabatur eam feliam diffa-
re à Zenth Ambiani 8°. 35° 18′ (adhi-
hibit refractionis correctione) Punctum fi-
xum quod fuerat Malvoiæ observatum
8°. 36° 8′ à Zenth duxat dita tabat, &
cum id Punctum Malvoiæ 9° 59′ 25″
à Zenth difita, arcus inter duo Zenth
interceptus erat 1°. 23′ 45″ (non 1°. 23′
56″) qui respondet 78850. hex. unde gra-
dus unius mensura hie duxat 56926″
hexapedarum ; five ut conferatur hæc obser-
vario cum observat. II. de Maupert. fiatque
hi 58314″ hex. respondente 1°. 1′ 11″ Quot
gradibus respondebunt 78850. Invenietur
1°. 21′ 45″ expo 1°. 23′ 6″ ; ita ut er-
ror in observatione Caesarii Pisani sit 20″

Singulare quid occurris in ipsâ Pisani
narratione ; postquam enim differentias
inter Zenth Malvoiæ & Soudoni, Mal-
voiæ & Ambiani dedid, addid: "Dif-
ferentia temporis quod effluat inter obser-
"vationes, requireret ut ex priores differen-
"tia 1° demeretur, ex posteriores 1′ 45″ prop-
"ter aquinoctiorum praecessionem ; " fed
"haec correctionem, ne minutias fecari
"videamur, omissus " Si mutatio declina-
tionis per praecessionem aquinoctiorum
orta ex his differentiis demenda foret; mu-
tatio declinationis proper aberrationem
pariter forer demenda luidem sit in eam-
dem partem, itaque cum arcus inter Mal-
voiæm & Ambianum ad hæc observa-
tionem refractionis, fit 1°. 22. 56″ demptā
praecessionis & aberrationis variatione 10″
circiter, maueret is arcus 1°. 22. 45″ ad
unam secundam, quibus secundum Dei, De
Maupersii observationem inventio debuit-

Verum ut correctio praecessionis & ab-
errationis demenda forer, ut vult Pisani,
operator ut observationes primam Am-
biano, postea Malvoiænus sufficient facta
De Mun. di Syst. MAT

76 **Philosophiae Naturalis**

distantiam ab observatorio ad turrem rrbis Dunkirk. Distantia tota erat hexapedarum 486156½ & differentia latitudinis villæ Collioure & urbis Dunkirk erat graduum octo & 31½. 12½. Unde arcus gradus unius prodit hexapedarum Parisiensium 57061.

hex. verificata sunt mensurae in utroque extremo, nec in his gravis error est mensuratus, cum apud conferentiam Triangulorum calculi cum ultimis lineis seu Baebius auctus mensuratus. Error vero qui in observatione Calefet occurrere potest, singuli gradus mensurae parum immutat, quia in sex gradus & ultra distribuitur; cum vero ille annis tempore tamen Lutetiae quæm in villæ Collioure observationes instituere fuerint, aberratio lucis calculi arcus Cælestis non immutavit: Hinc in numeris proximis rotundis gradus in latitudine graduum 45. 57160. Hexapedarum affini potest sati suō.

38. Quod observationes III. Caffini filii, cum inter 15. Iulii & 4. Sept. factae fuerint observationes Calefetis quibus determinatur et arcus inter Zenith urbis Dunkirk & Observatorii intercepta, aberrationis correetio illis est adhibenda quam tunc temporis nondum erat coquita; verum illam correctionem necessariam esse tandem minus dubium est, quod cum is arcus per observationes stellas & Draconis fuerit determinatus, ejus ipius stellae aberratio ab III. Bradieio fuerit observata (vid. Trans. hil. Vol. XXXV. pag. 637.) & nuperimis & D. Le Monnier; immediatis ergo experimentis confirmit ejus stellae declinatione angeri ad mensē Iulio ad Septembrem, iam ut cum Lutetiae ferius observata sit, 11½ secundis Poli tunc vicisior est potius quam cum in urbe Dunkirk observata fuerat, idque totidem secundis Zenith remotior appararet quam punctum fixum quod in urbe Dunkirk fuerat observatum; unde cum ex distantia à Zenith Lutetiae detrahatur distantia ejusdem stellae à Zenith urbis Dunkirk, arcus residuum illis 11½ sec. est mutantus, & cum residuum invenerit III. Caffinis 28. 11' 9½" est reducendus ad 20. 11' 58", & cum is arcus 125454 Hexapedis respondere ab III. Autore latuatur, arcus unius gradus sit Hex. 57038. 5 cur.

Verum minor diversus inter observationes III. Caffini filii & D. de Maupertuis appareris si attendatur, partem illius diversitatis oritii ex eo quod, dum mensuris Picarti uterentur, diversas ejus Triangulorum series adoptaverint; quare ut congruantur eorum invenia, reducendae sunt eorum suppurationes quasi eadem serie Triangulorum Picarti uterentur ambo: v. gr. supponatur utrumque asumptissimum erat serie Triangulorum quam ipsa Picarti admissit, sed ad Sourdonicum utque, & inde (quia III. Caffinis propriis suis Triangulis distantiam à Sourdone ad Ambianum determinavit) assumatur ea distantia quæs ex Triangulis III. Caffini deducetur si modo priori serie utus suisset, & reliqua ejus Triangulâ utque ab urbem Dunkirk in eadem proportione augmentatur; hinc ite emerget calculus.

Primum distantiam inter Parallelos Observatorii & Sourdonicus erit ex Piarto

Secundum: Distantiam inter Parallelos Sourdonicus & Ambianum eit ex Caffino

Tota ergo distantiam inter Parallelos Sourdonicus & Ambiani erit = 60474 - 1

Ter.
PRINCIPIA MATHEMATICA.

57061. Et ex his mensuris colligitur ambitus terræ pedum Parisiensium 123249600, & semidiameter ejus pedum 19615800, ex hypothesi quod terra sit sphaerica.

In latitudine Latetiae Parisiorum corpus grave tempore minimum universi secundi cadendo descript pedes Parisienses 15. dig. 1. lin. 17 ut supra, id est, (++) lineas 2173. Pondus corporis

totals 11 propter correctionem aberrationis Lucis, cui obnoxia est observatio III. Caffini filii, & mensurae tertiales sunt augendae, qua ex observatione Dal. de Maupertuis additur pondus rationibus quibus inter duas series Triangulorum Dal. Picarii ex praeposita centiaria, quam Picarius practulerat, & quam III. Caffinus neglexerat, imo & probable sit errores minimos inevitabiles, eam in partem conspirasse ut arcus Celestis major vero videatur III. Caffini & mensurae tertiales vero minores; Quibus omnibus perpepem, magnitudinem unius gradus in 45. lat. gradu, circa medium mensurae à Caffino Patre infiniebatur numeris satis ut tempore 27100 hex. assumis posse quiet.

Pariter in Observazione Dal. de Maupertuis cum sint inter Parallelum Observationem & edidis Ambiani 60474: 1. & propter observationem Celestium loca 2159 hex, sunt detractae, arcus inter observationes Dal. de Maupertuis observatus, qui est x.11°. respondit hex. 58315: 1.

unde gradus erit 5717: 3.

Ut itaque versus differentes inter observationem III. Caffini & Dal. de Maupertuis habeat, sit punctum 5717: 3 ad 123249600 ita unus gradus ad quattuor, inventum arcus 21. 11°. 45, quem 13° duxit ejus erat ab arcu 20. 11°. 58 quem III. Caffini observavit; Quae differentia inter quatuor observationes Celestes & mensuras tertiales disputant, efficevis conclusiones uniformer: Ergo illae observationes nemum inter se pugnent, iis differentiis tantum differentest, quae inevitabilibus accidentibus debentur.

Interea fatis liquet quod in unam summam coniugantur mensurae III. Caffini patris & filii, diminuendus est; arcus
Philosophiae Naturalis

De Mundis Systemat.

Poris diminuitur per pondus aëris ambientis. (1) Ponamus pondus amissum esse partem undecimam millesimam ponderis totius, & corpus illud grave cadendo in vacuo descriptum altitudinem linearum 2174 tempore minuti unius secundi.

Corpus in circulo ad distantiam pedum 19615600 ad centro, singulis diebus sidereis horarum 23, 56l, 4l, uniformiter revolvens tempore minuti unius secundi (m) describit arcum pedum 1433,46, cujus sinus versus est pedum 0,0523656, seu linearum 7,54064. (n) Ideoque vis, quâ graviora descendent in latitudine Luetiae, est ad vim centrifugam corporum in æquatore à terra motu diurno oriundam, ut 2174 ad 7,54064.

Vis centrifuga corporum in æquatore terræ est ad vim centrifugam, quâ corpora ducuntur tendunt à terrâ in latitudine Luetiae graduum 48, 50l, 10ll, in (o) duplicata ratione radii ad finum

(1) * Ponamus pondus amissum. Quo-niam corpus quodlibet ponderis sui partem amittit in aëre æqualem ponderi paris voluminis aëris, & plumbum est ad aërex gravitatem specificant ut 31,345 ad 1000; aqua vero ad aërem paulo minus quam 1000 ad 1, hinc gravitas plumbi est ad gravitatem aëris feret ut 11000 ad 1, hinc ergo plumbum amittit in aëreo ponderis sui partem undecimam millesimam, itaque in vacuo aëreus pondus plumbi parte undecimam millesimam ponderis totius, hoc est spatia codem tempore describita undecimam millesimam totius spatii descripiti parte aërii debent: fiat ergo 1100 ad 1100 ut 2173 ad quartum, illud quartum erit 2173,966 ergo poni potest quæm proxime spatium tempore minuti unius secundi descriptionem in vacuo à plumbo, ideoque à quovis alio corpore gravi (nam omnia gravia aequales celebatur in vacuo cadunt) linearum 2174.

(m) * Describit arcum ped. Com-putum inuitum codem planè modo ac not. 53.

(n) * Ideoque vis. Vires uniformes sunt ut spatia dato tempore descripsit, fed est spatium vi gravitatis tempore unius minuti secundi descriptionem 2174, lin. spatii autem vi centrifugâ descriptionem ut sinus versus, hoc est, lin. 7, 54064.

(o) 81. * In duplicata ratione radii. Quadrans circuli A E D revolvatur circâ radium A C, ducatur radius C D ad A C normalis, ipsaque parallela agatur ordinata E F, erit vis centrifuga in D secundum directionem D C sine E F, ad vim centrifugam in E secundum directionem E C, in ratione duplicata radii C D, ad ordinatam E F quæ est sinus complementi arcus seu altitudinem E D. Exprimat enim D e vim centrifugam in D secundum directionem D C, & recta E y, exprimant vim centrifugam in E secundum directionem E F, ductâ perpendiculari y e ad rectam E C, exprimant E x, vim centrifugam in E, secundum directionem E x, sed eft, D y : E y = D C : E F (cor. 3. prop. 4. lib. 1.) & ob triangula rec- tangula E x y E F C similis, E y : E x = E C vel
Principia Mathematica

finum complementi latitudinis illius, id est, ut 7,54064 ad 3,267. Addatur hac vis ad vim quæ gravia descendunt in latitudine illæ Lutetiae, & corpus in latitudine illæ vi tota gravitatis cadendo, tempore minute unitus secundii describet lineas 2177,267, seu pedes Parisiensis 15 dig. 1, & lin. 5,267. Et vis tota gravitatis in latitudine illæ erit ad vim centrifugam corporum in æquatore terræ ut 2177,267 ad 7,54064 seu 289 ad 1.

Unde

vel DC: EF. Quare, componendo Dv: Ex = D C², EF², Q. E. D.

* Verò si Meridianus terræ sit alia curva quæm circumvulc; gr. sit Ellipsos, vis centrifuga corporum in æquatore terræ est ad vim centrifugam quæ corpora perpendiculæræ à terræ recedunt in latitudine data; in ratione compositæ ex ratione radii ad finum complementi latitudinis illius, & ex ratione radii Æquatoris, ad ordinam ejus Ellipsos in ea latitudine data; hinc pro Ellipsi ratio vis centrifugæ in Æquatore ad vim centrifugam in latitudine data exprimitur hoc modo: sit m axis major, n axis minor, R Radius, e sinus complementi latitudinis quæstæ, erit vis in Æquatore ad vim in ea latitudine, ut

\[m r \sqrt{m^2 - r^2} - e^2 + n^2 s^2 \text{ ad } n^2 s^2 \text{ ut facile deducetur ex Ellipsos naturalis. Qua-} \]

re si fingatur \(m = 250 \) & \(n = 129 \) junca Newtonus inveniet calculo eas vires esse inter se ut 7,56244 ad 3,09660, ad- datur hac vis ad vim quæ gravia descendunt in latitudine Lutetiae, & vis tota gravitatis (in hyp. assumptis) effeceret ut gravi cadendo describerent lineas 1,763,92558. Unde vis tota gravitatis in latitude Lutetiae erit ad vim Centrifugam corporum in Æquatore terræ ut 2176,92558 ad 7,56244 five ut 187, 86 ad 1.

Hac autem vis gravitatis in latitudine Lutetiae non et vis ipsa gravitatis in Æquatore, de qua agitur in reliquâ hanc propositionem, sed parum ab ea differt; ita ut calculo quodam inito inveniat quod hac vis gravitatis in latitudine Lutetiae sit ad vim gravitatis in Æquatore (terræ uniformiter densæ supposita), ut 1532 ad 1531 idæoque sit vis gravitatis in Æquatore ad vim ejus Centrifugam ut 187, 67 ad 1. Quas quidem variæ correctiones, Newtonianæ numeris adspicamus, ut in- de liceat, quod quamvis numeris ut ita dicam mediocribus sit uestus Newtonus & sipe ex Hypothesi terræ sphærica duæ, parum mutationis tamen adhibiturum sit, etiæ assumantur alii numeri qui ex veritae terræ figurâ deducentur.
PHILOSOPHIE NATURALIS

Unde si $APBQ$ figuram terrae desfignet (p) jam non amplius sphæricam, sed revolutione ellipseos circum axem minorem PQ genitam; sitque $ACQca$ canalis aquæ plena, à polo Qq ad centrum Cc, & inde ad æquatum AA pergens: (q) debeat pondus aquæ in canalis crure $ACca$, esse ad pondus aquæ in crure altero QCq ut 289 ad 288, eo quod vis centrifuga ex circulari motu orta partem unam è ponderibus partibus 289 sustinebit ac detrahet, & pondus 288 in altero crure sustinebit reliquas. Porro (ex propositionis xci. corol. 2. lib. 1.) computationem inundo, invenio quod si terra conficiat ex uniformi materiâ, motuque omni privaretur, (r) & effet ejus axis PQ ad diametrum AB ut 100 ad 101: gravitas in loco Q in terram foret ad gravitatem in eodem loco Q in sphæram centro C radio PC vel QC descriptam, ut

(p) * Jam non amplius sphæricam, sed revolutione Ellipseos circum axem minorem PQ genitam. * Terram non multum à figurâ sphærica discedere ex Ellipseis Lunæ patet; magis adhuc ad formam ejus Ellipseos accedere cujus axes forent aquæs Diametro Equatoris, & distortæ Polibus terræ respectivè, fatis liquet; utrum vero curva illa quæ fingamus Meridianum terræ conficiet & quæ convolutione arctus PAQ circa axem minorem PQ generatur sit Ellipsis Apolloniana, utrum tantum curva ad eam accuris, non determinat Newtonus; Paulò fuisse de hujus curvæ naturalis innumerius differentiam; hic enim ad calculum Newtonianum intellectum, sufficit assumere eam curvam ad ellipsin fasit accedere, ut elliptis pro eâ assumit posit.

(q) * Debeat pondus aquae. * Si fuisse in canale contiensem quietèse suppontur, fluidi partes in canalis crure AC debent esse in æquilibrio cum partibus fluidi in eodem canalis crure QC. Cum igitur vis centrifuga ex circulari motu orta partem unam ponderis detrahat è ponderibus partibus 289, oportet ut pondus in altero crure sit 288 (sive inveniam ut 288 etiam ad 287.67, sic enim pondera in utroque canalis crure erunt æquales.

(r) * Et effet ejus axis PQ ad Diametrum AB ut 100 ad 101, gravitas in loco Q in terram foret ad gravitatem in Sphæram centro C radio QC descriptam, ut 126 ad 125 & eodem argumento gravitas in loco A in sphæroidem circa axem AB descriptam est ad gravitatem in Sphæram centro C radio AC descriptam, ut 125 ad 126.

* Utromque sumi probari postet: Sit $PAQB$, in utraque figurâ, terræ Meridianus; in prima figura sit $QDPQ$ sphæra Centro C radio QC descripta & in secundâ figura $PAQB$ repræsentat sphæroidem quam revolutione meridiani terræ circa æquatorem describit Newtonus & AED sphæram radio AC descriptam, Conditio Corollarìo 2. Prop. XCI. lib. 1. quod si ducentur circuli ad axes revolutio- nis perpendiculars quorum radii sunt FG, FG (in utraque figura) attractione punctorum Q & A, ab illis circulis erit $x - \frac{AF}{AG}$. Qua-

\[
\frac{QF}{QG} \cdot \frac{x}{Qg} = \frac{AF}{AG}.
\]
Principia Mathematica. 81

126 ad 125. Et eodem argumento gravitas in loco A in Liber Tertius, sphæroidem, convolutione ellipsoe $APBQ$ circa axem PQ. AB descriptam, est ad gravitatem in eodem loco A in XIX. sphæram centro C radio AC descriptam, ut 125 ad 126.

Quære si dicatur CQ sine CD, b, & AC sine CE, r, dicaturque abscissa QF, AF; in ursæque figura, x; erit in prima figura $FG^2 = \frac{r^2}{b^2} \times x^2 b x - xx$; $FG^2 = 2 x b - xx$;

$& in secunda figura est FG^2 = \frac{r^2}{b^2} \times 2 x b - xx & FG^2 = 2 x b - xx$, quibus quadratis ad additur quadratum QF^2 vel AF^2 sine xx, habeatur quadrata linearum QG^2, Qg^2, $\frac{AG}{G^2}$, $\frac{Ag}{g^2}$, respectivè, quæ erunt $\frac{r^2}{b^2} \times 2 x b - \frac{r^2}{b^2} b x^2$, $\frac{b^2}{r^2} \times 2 x b + \frac{b^2}{r^2} - x^2$; & $2 x b$; Unde (si compendii gratia loco $r^2 = b^2$ scribatur m) attractiones il小时前 circulorum evadent

$x = \frac{b x}{\sqrt{2 r^2 b x - m x^2}} = \frac{x}{\sqrt{2 b x}} = \frac{x}{\sqrt{2 b^2 r x + m x^2}} = \frac{x}{\sqrt{2 x}}$.

Sit verò $F = dx$ & multiplicetur attractionis singuli circuli per dx habeatur elementa attractionis sphæroidem & sphæram, quæ elementa erunt

$b x dx$, $r x dx$, $2 x b dx$.

Facilè revocabuntur ad fluentes suas ea elementa attractionis sphæram, quippe fluentes quantitatem $d x = \frac{x dx}{\sqrt{2 b x}}$ & $d x = \frac{x dx}{\sqrt{2 x}}$, sunt $x = \frac{x^2}{2 b}$ & $x = \frac{x^2}{2 x}$ & ubi

QF vel AF diametros QP vel AB aequalis, idèque x sit aequalis $2 b$, vel $2 x$;

evadant illæ fluentes $2 b = \frac{b \sqrt{b}}{\sqrt{2 b}}$ & $2 r = \frac{2 r \sqrt{2 r}}{\frac{3}{2}}$, sine $\frac{3}{2} b$ & $\frac{3}{2} r$.

Ut obtineatur fluent quantitatis $d x = \frac{b x dx}{\sqrt{2 r^2 b x - m x^2}}$, quantitas $\frac{b x dx}{\sqrt{2 r^2 b x - m x^2}}$ resolvatur in seriem (eam considerando ut $b x dx \times 2 r^2 b x - m x^2 = \frac{1}{2}$), summatur jam qua formu-
Philosophiae Naturalis

De Mundii Systemate.

78. \[\frac{m}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \]

formulae N[erioniam] quotientes secundi termini \[\frac{m}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Primi termini \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

suumatur dignitas \[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \]

et integrando habetur \[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \]

Quando \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Sive dividendo per \[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \]

Simile modo obtinuitur fluens quantitatis \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

partem considerando ut \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

quantum secundis termini per primam divisi erit \[\frac{m}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

et \[\frac{1}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Calculando secundum formulam tota quantitas \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

et \[\frac{m}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Sive \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Hinc substitutionibus factis prima serie evadit \[\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

et \[\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

hoc est \[\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

sed sphaera attraxit eam \[\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Ergo gravitas in loco \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

ut \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

et \[\frac{r}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Sed sphaera attraxit eam \[\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

et \[\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \]

Hinc substitutionibus factis prima serie evadit.
PARIUM substitutionibus factis in serie secundâ, evadit

$2r \times 1 = \frac{673}{33333} + \frac{0000406010}{-}$

Sive $2r \times 1 = \frac{67337706}{00406077}$ hoc est $2r \times 33063377$; sed spherae attractio est $\frac{1}{2}$, ergo utrumque terminum multiplicando per 3 & dividendo per 2 $\frac{1}{3}$
gravitas in loco A in Ellipsoidem, convolulione circa majorem axem genitam, erit ad gravitatem in spharam radio AC descriptam ut 99205113 ad 1; Multiplicetur utrumque terminus per 1008, & evadent 999.987589 & 1008; proximâ 1000 & 1008 qui numeri sunt ut 125 ad 115. Q. E. D.

79.

Lemme. Sphaeris compressâ convolulione Ellipticos $APBQ$ circa axem minorem PC genitâ, est media proportionalis inter spharam circumscriptam cujus radius est AC, & spharoidem oblongatam convolulione ellipticos circa axem AC genitam. Nam duarum ordinatis ME, mE, infinitâ propinquis, um spharum circumscriptae aum spharoid oblongata dividi intelliguntur in cylindris ordinatarum ME & mE, GE & gE convolulione descriptâs, erit cilindrus $EGgE$ in spharoidiâe ad cilindrum $EMmE$ in spharâ, ut altitudine EE ducta in circulum radio GE rotando descriptum, ad altitudinem Ee, ductam in circulum cujus est radius ME, sive quia circuli sunt ut quadrata radiusorum & utrumque cylindri communis est altitudo, erit cilindrus $EGgE$ ad cylindrum $EMmE$, ut GE^2 ad ME^2. Sed GE^2 ad ME^2 semper est ut PC^2 ad AC^2 vel AC^2, idemque in dato ratione, erit itaque summâ tota cylindrorum in spharioide ad summâ totam cylindrorum.
Philosophiae Naturalis

(1) Est autem gravitas in loco A in terram media proportionalis inter gravitates in dictam sphæroidem & sphæram: propterea quod sphæra, diminuendo diametrum P Q in ratione 101 ad 100, vertitur in figuram terræ; & haec figura diminuendo in eadem ratione diametrum tertiam, quæ diametris duabus A B, P Q perpendiculares est, vertitur in dictam sphæroidem; & gravitas in A, in

lindulorum in sphæra, hoc est, sphæris ipsa ad sphæram ut P C² ad A C². jam vero sphæra radio R C descripta & sphæris compriessæ ellipsoes A G P circa axem P C convolutoe genita, simili modo dividi intelligentur in tubulos innumeró ordinarum M E & m e, G E & g e, circa axem P C convolutione genitos, ob radiorum C E & rectarum E e equalitatem, erunt tubuli illi ut M E, G E, sit: ut A C ad P C, hoc est, in datà ratione; idemque sphæra est ad sphæroidem compriessæ ut A C ad P C. Quare si sphæra dicatur S sphæros compriessi s, & sphæros oblongata e, sitque A C = b, P C = a etiū S² = a² = b²; e², ac proinde S : e = S² : a² unde : e = √S² : a². Q. E. D.

(2) Est autem gravitas. Diameter P Q, in figūrā Newtoni respondet diametrum R N, minuarur diameter illa R N in ratione 101 ad 100 ut fiat P Q = 100, tunc sphæra quæ centro C radio A C descripta erat, vertetur in figuram terræ. Jam vero concipiatur terræ diameter quam in revolutione sphæra duabus diametris A B, P Q, sit perpendicularis, hæcque diameter diminuatur in eadem ratione 101 ad 100, patri figuram terræ verti in sphæroidem oblongaram. Quia vero utraque sphæros vivē compriessæ five oblongata ad sphæram quam proximè ac cedit, sphæroides illæ pro sphæris quæ eandem respectivè continentia materiæ quantitatem, quam proximè haberì possint. Sunt autem attractiones sphærorum in dislantis equalibus ut quantitates materiæ (cor. x. prop. 74. lib. x.) idemque gravitas in utroque caufā prædicto diminuitur in eadem ratione materiæ detractæ quam proximè, ac proinde attractiones sphæras sphæroidis compriessæ & sphæroidis oblongatae sunt respectivè ut quantitates materiæ in illis corporibus contentæ quam proximè. Sed sphæros compriessæ convolutione ellipsoes A B P Q, circa axem P C Q genitae est media proportionalis inter sphæram circumscriptam cujus radius est A C, & sphæroidem oblongaram convolutione ellipsoes circa axem A C Q genitae.
in caetu utroque, diminuitur in eadem ratione quam proxime.\footnote{Estigitur gravitas in A in sphæram centro C radio AC descriptam, ad gravitatem in A in terram ut 126 ad 125½, & gravitas in loco Q in sphæram centro C radio QC descriptam, est ad gravitatem in loco A in sphæram centro C radio AC descriptam, in ratione diametrorum \(\text{per prop. LXXII. lib. I. id est, ut 100 ad 101.}\) Conjugantur jam ha tres rationes, 126 ad 125, 126 ad 125½, & 100 ad 101: & fit gravitas in loco Q in terram ad gravitatem in loco A in terram, ut 126\times126\times100 ad 125\times125½\times101, seu ut 501 ad 500.

Jam cum \(\text{per corol. 3. prop. XCI. lib. I.}\) gravitas in canalis crure utrovis \(ACCA\) vel \(QCEQ\) fit ut distantia locorum \(A\) centro terræ; si crura illa superficiebus transversis \& æquidistantibus distinguantur in partes totis proportionales, erunt pondera partium singulare in crure \(ACCA\) ad pondera partium totidem in crure altero, \(\text{ut magnitudines \& gravitates accelerat.}\)

\(\text{genitam (82.) Quære gravitas in loco A, in terram est media proportionalis inter gravitates in dictam sphæroidem, oblongatam silicet, \& sphæram.}\)

\(\text{(t) * Est igitur gravitas. Gravitas in loco A in terram dicatur G, gravitas in loco Q, in terram fit g, gravitas in loco Q, in sphæram radio PC, descriptam dicatur \(\gamma\), gravitas in loco A, in sphæroidem convolutio ellipsoide ABPQ, circa axem AB genitam dicatur \(V\), ac tandem gravitas in loco A in sphæram radio AC descriptam fit \(\Gamma\), erit (ex dem.).}\)

\[\begin{align*}
g & = 126 \times 125 \\
\Gamma & = 125 : 126 \text{ praeterea} \\
V & = G = \Gamma, \text{ ideoque inter } V \text{ \& } \Gamma, \text{ hoc est, inter } 125 \times 126 \text{ sumpto medio termino proportionali erit} \\
V & = G = \Gamma = 125 : 125 \frac{1}{2} : 126. \end{align*}\]

\(\text{(u) * Conjugantur jam ha tres rationes; silicet}\)

\[\begin{align*}
g & = 126 : 125 \\
\Gamma & = g \times 126 : 125 \frac{1}{2} \\
\gamma & = 100 : 101 \text{ erit per compositionem rationum \& ex æquo.}\end{align*}\]

\(\text{Tom. III.}\)

\(\text{(x) 81. * Ut magnitudines \& gravitates. Crura }AC, QC \text{ ita distinguantur superficiebus transversis \& æquidistantibus ut crura illa æqualem contineant particularum }Ee, HH \text{ numerum, fuisse singula particula in crure }AC \text{ ad singulas particularum in crure }CQ \text{ ut crus }AC \text{ ad crus }M.\)
alterum C Q, sive ut \(101\) ad \(100\); Quoniam gravitas in loco A est \(500\) & gravitas in loco Q, est \(501\) proper figuram spheroidis & omnium particularum in cruribus A C & C Q similia & similiter postitum, gravitates acceleratrices erunt in eadem ratione; eumque Pondera, (five facta gravitatis acceleratricis per Quantitatem materie) erunt in ratione composita \(101\) ad \(100\) & \(500\) ad \(501\) sive \(505\) ad \(501\), & totorum crurum A C & C Q gravitates erunt in eâ ratione \(505\) ad \(501\).

\((\gamma)\) 82. * Ac proinde si vis centrifuga. Ex motu diurno circâ axem Q C, oritur vis centrifuga quâ fit ut partes quae sunt in crure A C, versus C, vi gravitatis attracta, simul etiam vi centrifugâ repelluntur, * illa autem vi Centrifugâ in singulis punctis crucis A C est in ratione distantiae eorum punctorum à Centro C E (per cor. 3, prop. 4, lib. 1.) sed etiam gravitas acceleratrix in ratione distantiae à Centro (per cor. 3, Prop. XCI, lib. 1.). ergo si alicubi data sit ratio vis gravitatis ad vim centrifugam, eadem erit in omnibus punctis: sic ergo alicubi ut \(505\) ad \(4\) gravitas acceleratrix tota singularum & omnium partium crucis A C erit ad gravitatem residuum in singulis & omnibus partibus ejusdem crucis ut \(505\) ad \(501\), sed in eadem ratione erat tota gravitas crucis A C (absque detractione vis centrifugae ad gravitatem crucis C Q, quod cum sit axis, vim centrifugam nullam habet) ergo residuum vis gravitatis in crure A C ublatâ vi Centrifugâ in æquilibrîo est cum gravitate crucis C Q.
Proporterea dico, secundum regulam auream, quod
si vis centrifuga 2/5 faciat ut altitudo aquæ in crure \(\Delta C_c a \)
superet altitudinem aquæ in crure \(Q_c c q \) parte centésīmā totius
altitudinis: vis centrifuga \(2/5 \) faciet ut excessūs altitudinis
in crure \(\Delta C_c a \) sit altitudinis in crure altero \(Q_c c q \) pars tan-
tum \(2/5 \). Est igitur diameter terræ secundum æquatorem ad
ipfius diametrum per posos ut \(230 \) ad \(229 \). Ideoque cùm ter-
ra

(2) * Et proproperea dico secundum regulam auream. * Vix crediderim Næwto-
num ad applicandam regulam auream hic loci, alio nixum non fuisse fundamento
quam siët confusa notione, quod cùm exce-
cus ponderum in longioribus cruribus
sphæroideum pendants ex inæquali temperatu-
rum, fave ab excessu unius cruris supra alter-
um, idea rationes excessuam crurum
majorum ad minora crura eadem est de-
beant ac ruorum excessuam ponderum ad
pondera minorum crurum, quod quidem ul-
tima rationes (five ipsi proxime rationes
excessuam ponderum ad pondera majo-
rum crurum) equantur rationibus virium
centripetorum ad gravitatem terrae, quia
ille vires centrifugae ex gravitate detræcu-
ere excessuam ponderum accuratam compen-
sant. Sed mihi videtur ipsum deduxisse
hanc proportionem ex ipsi serie ab ipso
adhibita, & quam aestquite fuisse constat in
Nauta (x) proximas quod ut concipiatur,
refutatam quæ in eà Nauta dicta sunt, &
ad ratiociniwm Næwtonianum applicavit.
Nunc posteaque de duobus
sphæroidibus, quorum unus sit assumpta-
us ille cuius Axem fuit ut \(104 \) ad \(100 \)
alterum vero ipsa terræ, ita ut femi-
diameter æquatūs in Sphæroide spheric-
icio in Nauta pendent per \(r \) designabant,
sterem respetcit delignetur per \(\xi \), femi-
axis vero \(P Q \) qui in serie assumpta dicitur
fuerat \(b \) & applicatur sphericzd sphæroidei, ubi
verò ipsum femi-axem terae delignet dictum
\(B \). Assumpsi ergo duobus primis termini-
ism seriérum, sed mutatis \(r \) & \(b \) in \(B \),
ubi aguerter terræ, \(\oplus \). Gravitas in loco
Q in sphæroideum erit ad Gravitatem in
eodem loco in sphæroideum \(b \) descrip-
tam erit ut

\[\frac{6 b r - 4 b^2}{3 b} \quad \text{ad} \quad \frac{2 \xi}{3} \]

dur de terræ, Gravitas in loco Q in ter-
ram erit ad Gravitatem in eodem loco
in Sphæram quæ radio B describeretur ut

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

ideoque Rationes gravitatis in loco Q in Sphæroide vel terram ad Gravitatem in Sphæras radio b &

\[\frac{3 r - 1 \frac{1}{3} b}{3 \xi - 2 B} \]

B descripsit erunt \(\frac{r}{\xi} \). Ideoque rationes gravitatis in sphæras radio FQ descripsit ad gravitates in

\[\frac{3 r - 1 \frac{1}{3} b}{3 \xi - 2 B} \]

sphæras radius AC descriptas erunt \(\frac{r}{\xi} \).

\[\frac{3 r - 1 \frac{1}{3} b}{3 \xi - 2 B} \]

Gravitas in sphæras radius AC descripsit ad Gravitatem in Ellipsoide convolvente Ellipsum A PBQ circa AC
description \(\frac{3 r - 1 \frac{1}{3} b}{3 \xi - 2 B} \), fagante

ter de ficticio Sphæroide, aut ut \(\frac{2 \xi}{3} \)
ad

\[\frac{6 r b - 4 B}{b} \quad \text{ub} \quad \text{agitur de terræ: Et quot-

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

niam attraccio sphæroidis fictiis aut terræ

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

eminat proportionalis inter suas attrac-
tiones, erit gravitas in sphæram ad Gra-

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

vitatem in A in sphæroidem, ut \(\sqrt{\frac{r}{\xi}} \)

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

Gravitatione que est in A terræ ipsum

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

ut \(\frac{2 \xi}{3} \) ad \(\frac{6 \xi b - 4 \xi c}{3 b} \), idemque ra-
tiones gravitatum in sphæras ad gravitates

\[\frac{3 \xi}{2} \quad \text{ad} \quad \frac{2 \xi}{3} \]

in sphæroidem & in terram erunt ut

M & V
PHILOSOPHIAE NATURALIS

De Mun.-ræ semidiameter mediocris, juxta mensuram Picarti, sit pedum Parisiensem annum 16615800, seu milliarium 3923,16 (posito quod milliare sit mensura pedum 5000) terræ altior erit ad aequato-rem quàm ad polos excessu pedum 85472, seu milliarium 1715. Et altitudo ejus ad aequatoarem erit 16658600 pedum circiter, & ad polos 19573000 pedum.

Si

\[\sqrt{\frac{b}{3b-2r}} \text{ ad } \sqrt[3]{\frac{B}{3B-2c}} \text{ reducit} \text{ fractorum} \text{ nibus ad minimos terminos.} \]

Hinc tandem compositis omnibus rationibus, Rationes gravitatis, in quibus Q, tam spheroides (pro quibus, ad gravitates in punctis A eorum, erunt ut)

\[\frac{b}{3b-2r} \times \frac{b}{3b-2r} \text{ ad } \frac{3e-2B}{B} \times \frac{3e-2B}{B}. \]

Rursum in sferica ratio magnitudinis crurum exprimitur per \(\frac{b}{r} \) in

\[\sqrt{\frac{2B-2c}{B}} \]; \text{ Inde cum differentia quinta-}

tur \(r \) & \(b \) & \(B \) non sit magnus, numeratores \(\frac{3e-2B}{B} \) & \(\frac{3e-2B}{B} \) \text{ et denominatores} \(\frac{3b-2r}{3b-2r} \); pro ac \(c \) sumi poss-

\[\frac{b}{3b-2r} \times \frac{b}{3b-2r} \text{ ad } \frac{3e-2B}{B} \times \frac{3e-2B}{B}. \]

\[\sqrt{\frac{2B-2c}{B}} \text{ fuit ut } \frac{2f}{B} \text{ ad } \frac{2g}{B}. \]
Principia Mathematica.

(9) Si planeta major sit vel minor quam terra manente eiusmod
denititate ac tempore periodico revolutionis diurnae, manebit
proportio vis centrifugae ad gravitatem, & propter ea manebit
etiam proportio diametri inter polos ad diametrum secundum
aequatorem. At si motus diurnus in ratione quacunque accelerat
vel retardat, augebitur vel minuetur vis centrifuga in
duplicatâ illâ ratione, & propterea differentia diametrorum au-
gebitur, vel minuetur in eadem duplicatâ ratione quamproximè.
Et si densitas planetâ augeretur vel minueretur in ratione quâvis,
gravitas etiam in ipsum tendens augebitur vel minuetur in eâdem
ratione, & differentia diametrorum viciissim minueretur in
ratione gravitatis 1/2, vel augebitur in ratione gravitatis dî-
minute. Unde cum terra respectu fixarum revolvatur horis
23, 56', jupiter autem horis 9, 56', sintque temporum qua-
drata

(a) 85. Si planeta major sit vel minor quam terra manente eiusmod
denititate ac tempore Periodico revolutionis diurnae, manebit
proportio vis Centrifugae ad gravitatem. Manere Rationem vis Centrifugae ad gravi-
tatem liquet ex notâ 85. vide ex Cor. 7. Prop. IV. Lib. I. nam manente tempô-
re Periodico crecit Vis Centrifugae in ratione disfianfarum, sed crecit etiam
gravitas acceleratîrix in ratione disfianfarum (Cor. 3. Prop. XII. Lib. 1.) ergo in
eâdem ratione crecit vis Centrifugae & gravitas, idestque in eâdem ratione manebat
ac prius.

Propertia manebit proportio diametri in-
ver Polos ad diametrum secundum Equa-
torem; quippe, per notam precedentem z, Ratio vis Centrifugae ad gravitatem est
ut ratio excessivus Diametri æquatoris su-
per longudinem Axës; manente ergo priores ratione per hypothesin manebit &
ita.

Si accelerant vel retardant motus diurn-
us: ut tempus Periodicum sit majus vel
minus, vis centrifuga crecit reciprocè ut
quadra homd Perioecorum manen-
tibus radiis (Cor. 1. Prop. IV. Lib. 1.)
inde manentibus gravitatis & Diametris
majoribus vel minores, liquet (ex notâ
illâ z.) numeratores fractionum f/b & g/B,
nempe excessivus Diametrorum, crecitere le-
cundum rationem virium centrifugorum;
hoc est, ut quadrata temporum Periodico-
rum inversè, aut ut quadrata Celeritatum
directe: hinc ait Newtonus: differentia
diametrorum (quæ differentiam exprimantur
per f & g) augebitur vel minueretur in eâ
dratione duplicatâ celeritatum quamproximè.

Et si densitas planetâ augeretur, gravitas
augebitur in eâdem ratione: hinc ratio vis
Centrifugae manebit radio & celeritate
manente; ad gravitatem minueretur; idê-
que minueretur ratio differentia Diametror-
um ad ipsam Diametros.

Et in genere dicatur Radius terra R, ejus
 densitas D, tempus Periodicum T, in altero Planeta litteris isdem sed mini-

\[\frac{R}{TT} \]

ribus eadem exprimantur, erit \(\frac{1}{TT} \) ad \(\frac{s}{s} \)

\[\frac{1}{25} \]

ad differentiam inter Diametros

\[\frac{D \times TT}{d \times 125} \]
90 Philosophiae Naturalis

...drata ut 29 ad 5, & (b) revolventium denticates ut 400 ad 94: differentia diametrorum jovis erit ad ipsius diametrum minorum ut \(\frac{29 \times 400}{94} \times \frac{1}{229} \) ad 1, seu 1 ad 9\(\frac{1}{2} \) quamproxime. Est igitur diameter jovis ab oriente in occidentem dueta, ad ejus diametrum inter polos ut 10\(\frac{1}{2} \) ad 9\(\frac{1}{2} \) quamproxime. Unde cum ejus diameter major fit 37\(\frac{11}{12} \), ejus diameter minor quae polis interjacet, erit 33\(\frac{9}{12} \), 25\(\frac{11}{12} \). (c) Pro luce erraticâ addantur 3\(\frac{11}{12} \) circiter, & hujus planetæ diametri apparentes evadent 40\(\frac{11}{12} \) & 36\(\frac{11}{12} \), 25\(\frac{11}{12} \); quae sunt ad invicem ut 11\(\frac{1}{2} \) ad 10\(\frac{1}{2} \) quamproxime. Hoc ita se habet ex hypothesi quod corpus jovis sit uniformiter densum. (d) At si corpus ejus sit densius versus planum æquatoris quam versus polos, diametri ejus post

85. (b) * Et revolventium densitatis. (prop. 2, lib. hujus.).

(c) * Pro luce erraticâ. (33).

(d) * At si corpus ejus. Ille enim exceditur densitatis in plano æquatoris facit ut ibi major sit gravitas, ac proinde ibi minor requiratur altitudo ad compensandum vim Centrifugam, unde minuitur diametrorum differentia (ut paret ex nostris preced.).

84. Lubet hic referre formulam quæ, in hypothesi gravitatis proportionalis cuiuslibet dignitatis diffisitiam à centro, simulque quod ejus ædio ad id centrum dirigatur, diametrorum proportio inveniri posset. Sit femidiameter sectandum æquatoarem \(\overline{AC} = a \), radius variabilis \(\overline{CD} = r \), sinus anguli \(\overline{DC} = h \), posto sinus totum = \(t \).

Sic gravitas in loco \(\overline{A} = p \) vis centrifuga in eodem loco = \(f \), ponaturque gravitas versus centrum \(\overline{C} \) tendens dignitati cuiuslibet æquatoarem a centro proportionalis, erit gravitas in \(\overline{A} \) ad gravitatem in \(\overline{D} \) ut \(a : r = \frac{p}{f} \). Quoniam vires centrifuge in locis \(\overline{A} \) & \(\overline{G} \), sunt in ratione diffisitarum \(\overline{CA}, \overline{LG} \), erit vis centrifuga in \(\overline{G} = \frac{f \times \overline{LG}}{\overline{CA}} \); sed \(\overline{LG} : \overline{CG} = h : 1 \); ideoque \(\overline{LG} = \overline{CG} \times h \).

trifuga quæ agit secundum directionem \(\overline{GH} \), non minuit gravitatem versus centrum \(\overline{C} \), nisi in quantum agit secundum directionem \(\overline{DC} \), revolvarum vis centrifuga \(\overline{GH} \) in vires laterales \(\overline{KH}, \overline{GH} \), est.
Prin Cipia Mathematiae. 91

funt esse ad invicem ut 12 ad 11, vel 13 ad 12, vel forte 14 ad 13. Et Cassinus quidem anno 1691 observavit, quod jovis diameter ab oriente in occasentem porrecta diametrum alteram superaret parte sui circiter decima quintâ: Poudus autem noxter telecopio pedum 123 longitudinis & optimo micrometro, diametrom jovis anno 1719 mensuravit ut sequitur.

Tem-

85. Verum hae Hypothese in hæc formulâ inveniendâ assumpse cum rei naturâ & Newtoniano systemate neutiquam quadrant, ideoque locum habere nequeuqu: Primûm enim Gravitatem ad Centrum terræ dirigî verum non est si terra sit sphærosis qualis cumque, quiepe ex ipso facto contum gravitatis directionem esse perpendicularam supercuram curvæ quam meridianus quilibet affectat; sed perpendicularam ad curvam à circulo diveríam ad ejus curvam centrum neutiquam tendant nisi in solâ austio extremitate.

85. Gravitas quantitas in variis punctis superficii solidi ratione curvæ alicuius gentis non sequitur rationem illius dignitatis diametariam à centro, sed ali- am omnino Legem justa formam soli- di, hoc est, justa naturam curvæ illius quam meridianus affectat, & locum in quo corpusculum atraendhum locatur, ut statis liquet ex eo artificio quod Newtonus usus est ad determinandum rationem gravitatis in puncto A ad gravitatem in puncto Q, unde gravitas in variis locis proportio non per dignitatem aliquam donatiam, sed per rationes ferierum, quales eas in Notâ (r) inventibus tant exhibebant; quan- vis ergo verum sit in systemate Newtoniano gravitatem deprehendere ut quadrata diametariam à quocumque corpore collecto in centro fuisse gravitatis quasi in uno puncto; idem verum non est si id corpus figurâ sphærosis non donetur, & corpusculum atraendhum justa diversas partes ejus solidi collocetur; hinc ubi in for- mandà generali formulâ assumitur quod gravitas in A sit ad gravitatem in D ut a^2 ad r^2 ideoque gravitatem in D effe
De Mundis Systemat.

<table>
<thead>
<tr>
<th>Tempora</th>
<th>Diam. max.</th>
<th>Diam. min.</th>
<th>Diamerri ad invicem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dies hor.</td>
<td>part.</td>
<td>12,28</td>
<td>12,28</td>
</tr>
<tr>
<td>Mar. 6 7</td>
<td>13,12</td>
<td>13,12</td>
<td>13,12</td>
</tr>
<tr>
<td>Mar. 9 7</td>
<td>13,12</td>
<td>12,08</td>
<td>12,08</td>
</tr>
<tr>
<td>Apr. 9 0</td>
<td>12,32</td>
<td>11,48</td>
<td>11,48</td>
</tr>
</tbody>
</table>

Congruit igitur theoria cum phænomenis. Nam planetæ magis incalescunt ad lucem folis versùs æquatores suos, & proptcrē paulo magis ibi decoquuntur quàm versùs polos.

Quin gravitas in superficie corporis centralis indicatur P, erit $P : F = \frac{D_1 \cdot R}{R \cdot RTT} = \frac{D_1}{R \cdot TT}$.

90. Distantia D, quæri satellitis jovis à centro planetæ primarii fit 26,63 semid. jovis, prout à Newtono in fine Phænomeni II. determinatur, & tempus periodicum $T = 4 \text{ dieb.} 18 \text{ h.} 5' 4''$ prout à Cassio in noris Elementis Astron. traduntur. Semidiameter jovis $R = 1$, tempus periodicum jovis circa axem $r = 9 \text{ h.}$ $55' 52''$ ponit in formulæ generali (87) $f = -2$, habebatur $CA : CP = 2f + f = 3f$, vel $CA - CP = CP = R \cdot TT = 3 \text{ dieb.}$, erat itaque in hac hypothesi gravitatis pro jove $CA - CP : CP = 2 \cdot \frac{D_1 \cdot 11}{TT}$, qua differentiam inter semidiameterum secundum æquatores jovis & semidiameterum inter polos quamproxime æqualis est differentiam quam Newtonus ex suo methodo derivavit.

Sit mediocris distantia Lune à Terra $D = 30$ semid. terrestr. tempus periodicum Lune $= 27$ dieb. 7 h. $45'$ semid. terræ $= 1$, tempus revolutionis terræ circa axem $= 23\text{ h.} 56' 4''$, erit gravitas ad vim centrifugam us 28 ad 1. Unde pro terræ foet $CA = CP : CP = 1 : 576$: terræ itaque minus compresst foet quàm à
PRINCIPIA MATHEMATICA.

Quinetiam gravitatem per rotationem diurnam terrae notrab
minui sub equatore, atque ideo terram ibi altius surgere quam
ad polos (si materia ejus uniformiter densa sit) patebit per
experimenta pendulorum quae recensentur in propositione se-
quente.

Newtono definitum est, magis tamen quam
determinatum est ab Hugonio, verum ob
actus ejus Solis in Lunam, tempus ejus Pe-
riodicum non respondet accuratè vi cen-
trifugae terreti; alias correctiones hujus cal-
culi invenies Trans. Philos. N. 438 qui-
bus ad Newtonianum proportionem ma-
gis accuratè revocatur. De hac Questio-
ne nobilissimè procul dubio legatur quæ
de telluris figura dederunt Clarissimi Viri
D. De Mairan in Monunenmis Paris. an.
1720. D. De Maupertuis ibidem an. 1733.
1734. 1735. 1736. & in duobus opulcu-
ris quorum unus de figuris corporum ca-
leffium, alterem de figurâ telluris inscri-
biteur. Praeclare quoque de eodem argu-
mento ediderunt D. Clairvois in Monu-
menis Parisiensiis an. 1735. & in Tran-
scibitious Philosopice num. 445. & 449.
D. Bouguer ibid. an. 1736. A. Eulalchii
Manfredii ibid. an. 1734. & D. Stilling
in Transactibus Anglicis an. 1735.

Viam iterum ad determinandam figur-
atum terrae ortam ex necessitate æquilibrii
vis centrifugae & vis gravitatis singularum
 ejus partium, si generalissimè volvant Probl.
XLV. (Prop. XCL. Lib. I.) Newtoni,
nempe, si inveniæ attracțio corporucli
non solun fui in axe solidi rotundti, sed
fut ubivis in ejus superficie, cùs Proble-
mati Analyæ hic in compendium trad-
demus.

PROBLEMA.

Datæ Equatione curvae cujuscumque qua-
eæ axim revolvente solidum describæ,
invenire attracționem corporucli firi in
quocumque puncto superficie ejus soli.

Construë. Fingatur Planum tangens id
solidum in P, & super eo plano, est pau-
ço P ut centro descripta intelligatur sphæ-
ra radii infiniti parvo, dividatur tota su-
perficies hemisphærii versus solidum con-
versi in portionibus æquali; & consi-
piantur Pyramides (quarum vertices sunt
in centro sphærae) illis portionibus insi-
tenses & inde ad soli d̄ ipsius oppositam
superficiem continuæ, puta in Z, Z, ter-
minatur illæ Pyramides in eo solido per
Bales parallelas Bæbæs ipitarum sphæra
circumscriptis; Corpulci in puncto P
fut attracțio ab omnibus illæ Pyramidi-
bus, concipit poterit ut attracțio à totu
solido; exigunt enim ejus solidi portiones,
que in extremitate unius cujusque Pyra-
midis neglignuntur, sunt ubiæ æquiss Py-
ramidis respectu infinité parva.

Attracțio autem corporucli P à singula
Pyramide erit ubique ut axis PZ ejus
Pyramidis; Nam ducatur ubivis in axe,
duo puncta infinitæ proxima, ducanturque
per ea superficies due, paralleloses Basii Py-
ramidis, sive, quod idem est, paralleloses su-
perficiies sphærae circa P descriptas, exiguum
solidum inter eas superficies contentum cre-
cet ut illæ superficies, sive ut quadratum por-
tionis axee æque abscissæ, sed cùm attracțio sin-
gule particulate decrecat ut quadratum di-
stanții à puncto P, sive decrecat ut quadra-
tum abscissæ; ideoque duæ particulate
quantitae ut decrecat sìngula part-
ícules vis, esset ut attracțio ejus solidi
ubivis in axe PZ surpiæ adem semper
fit; æquals erit v. gr. attractioni solidi
di cujus basis foret portio superficie sphæ-
rae.

Tom. III.
Philosophiae Naturalis

De Mundo Systemate.

94

ზზ intra Pyramidem contente, & altius do illa quam minima axes P Z portio assumpta, Hinc attractio totius Pyramidis etrix attractio ejus parvi soli, ut e per repetita quot sunt axes P Z portionum; Cunque postulo superficie ipsae intra Pyramides contenta, sit ubisvis eadem, ex Conil., attractiones singularum Pyramiden erunt ut numerus particularum æqualium in singulo axe P Z assummandarum, quinque idem est ut singuli axes P Z.

His politis: sit MDNE unus et circulas gentis in solido propoito per revolutionem ordinate C M circa axim A B. Dico quod attractio puncti P ab omnibus Pyramidibus quorum axes in circumferentia circuli MDNE terminatur, (qua est ut summam omnium axium P Z ad eam circumferentiam terminatur) est ut linea PC a puncto P ad centrum ejus circuli C duetæ, multiplicata per numerum axium P Z ad circumferentiam MDNE pervenientium, multis nempe singularum, P Z longitinius.

Affirmatur enim in circumferentia MDNE, punctum quodlibet Z, & ducta per centrum C lineæ Z C ζ, ductar P ζ, ex demonstratis attractione Pyramidum ad Z & ζ pervenientium erunt ut P Z ad P ζ. De loco ex P in circulum MDNE perpendicularum PR & per R & centrum C ductar Diameter M R N, sumpsque NR = MR demittatur perpendicular um r p, sique r p = R P, linea MN, PR & rp fuerit in eo plano (per 6. X. I. Elem.) ideoque linea PP secabit lineam MN, & cum Triangula PRC, p r c sit æqua-

lia proper r p = RP, angulos rectos, & angulos per verticem oppositos, utique N r = MR lineæ P p tranfibit per centrum C; erit eterm lineæ l p in plano Trianguli Z P ζ, cum habeat puncta P & C in eo plano; inde si jungantur lineæ Z p, ζ p, tota figura P Z p ζ erit in eodem Plano, & proper æquales PC, p C, Z C, C ζ & angulos interceptos per verticem oppositos lineæ P Z, p ζ erant æquales, ut & lineæ P ζ, p Z, hinc figura P Z p ζ est Parallelogramma cujus PP five a PC est diagonalis; Quare cum Pyramides trahant secundum directiones P Z, P ζ, viribus qua sunt ut P Z ad P ζ, vis inde resultans dirigeretur secundum Diagonalem P p, five a PC, eisque erit proportionalis.

Quod igitur sit de omnibus punctis Z in circumferentia MDNE sumendis, attractio puncti P ab omnibus paribus Pyramidum in circumferentia ejus circuli terminatarum, erit ut Z PC multiplicata per numerum parium earum Pyramidum;
Principia Mathematica.

Numerus eorum linearum erit ut longitudine ejus lineae curvae in superficie Hemisphaerii signatu; huc ergo redit tota quaedam linea, dato puncto P ejusque ordinata P Q ad axem soli circuli, tamquam ut libet abscissa A C, ejus ordinata CM, et circulo MDNE eas ordinata convolutio descripta, inventur longitudine curvae descripse in superficie spherae (cujus radius PS ad librum assumitur) per intersectionem coni inclinationis cujus vertex est P, basta verbo MDNE.

Ut longitudine fuerit rectificationis ejus curvae obviusactus, Ducatur ad punctum P ad duo puncta proxima peripherie MDNE lineas PZ, Pz; Abscissa ciclici secundum Diameteriam ad puncto N remota; ad punctum P futurum, sinque NT & GZ abscissa ordinatae circuli respondentes puncto Z, dicatur N T, x, G Z, y; Z z, d v; tota Diameter MN, f, duplum ordinatae P Q sit g, denique si centro P Radius PS describatur arcus S z, ille arcus S z erit elementum curvae quae est respondens Elemento circuli d v. Ex P, ut prius, deminutur in circulum MDNF perpendiculum PR, erit R C P Q = \frac{g}{2}, ex R Ducatur linea R Z & R z, & centro C radius R Z describatur arcus Z K ut sit R K = R Z, ex centro C ducatur ad Z Radius C Z, & perpendiculum C Y in lineam R Z, Dico \because, quod Triangulus C R Y est similis Triangulo R Z T, ob angulum in & communem, & recta C Y, unde est R Z ad Z T (y) situr RC (\frac{g}{2}) ad CY quod erit ergo \frac{g}{Z R} \because \circ. Triangulus C Z Y est similis Triangulo Z K x; Nam angulus R Z K erit rectus per Contra. quum Triangulus R Z K est Illoceles, Angulus vero C Z z est erit rectus per naturaliter circuli, unde dextro communi C Z K manet aequales anguli C Z Y & K z, praterea anguli in Y & K sunt recti; erit ergo Radius C Z (\frac{f}{2}) ad CY (\frac{g}{Z R} \circ) situr Z z (d v) ad K Z quod erit

\frac{g}{Z x} dv.

Porro, Triangulus K o z est similis triangulo P R z ob angulum communi in z, & Rectis in R & o, sic similis erit

\frac{g}{P Z x} dv.

4o. In Triangulo Z z o, Rectangulo in a rhombus Z z f d v & a z f sit \frac{g}{P Z x} dv erit quadratum Z z = five Z z^2 = d v^2 \frac{g^2 y^2}{P Z x f} dv & rhombus P Z ad PS sit

cum Z ad S erit P Z^2 ad PS^2 situr Z z^2 = five Z z^2, & five \frac{g^2 y^2}{P Z x f} dv & rhombus P Z ad PS^2 situr Z z^2

dvee 1 \frac{g^2 y^2}{P Z x f} dv & rhombus in S erit P Z^2 ad PS^2 situr Z z^2

dex \frac{g^2 y^2}{P Z x f} dv & rhombus in S erit P Z^2 ad PS^2 situr Z z^2

dvee 1 = \frac{g^2 y^2}{P Z x f} dv & rhombus in S erit P Z^2 ad PS^2 situr Z z^2

dex \frac{g^2 y^2}{P Z x f} dv & rhombus in S erit P Z^2 ad PS^2 situr Z z^2

dvee 1 = \frac{g^2 y^2}{P Z x f} dv & rhombus in S erit P Z^2 ad PS^2 situr Z z^2

dex \frac{g^2 y^2}{P Z x f} dv & rhombus in S erit P Z^2 ad PS^2 situr Z z^2

De Mundi Systemate. Ut autem Integretur, primò notandum quod ex Naturæ circulo Elementum $d\psi$ sit æquale Elemento $dx \times \frac{f}{2} \times \frac{g}{2} \times PZ^2 \times$ quadrum Elementi inventum evadet $\frac{f^2}{2} \times \frac{g}{4} \times FZ^2 \times dx^2$. Praeterea est $PZ^2 = PR^2 + RZ^2$, et est $RZ^2 = RG^2 + GZ^2$, et autem, ex constructione, $RG^2 = \frac{g+f}{2} - x$ ideoque $RG^2 = \frac{g+f}{2}$.

$R N - N G = \frac{g+f}{2} - x$ ideoque $RG^2 = \frac{g+f}{2}$.

$PZ^2 = PR^2 + \frac{g+f}{2} = P R^2 + \frac{g+f}{2}$.

$R N^2 = P N^2$, ergo $PZ^2 = PN^2 - g x$, & sì ad compendium tertia proportionalis ad $2 \times P Q$ (five g) & PN dicitur l ut fit $PN^2 = g l$ fit $PZ^2 = g l - g x$ ideoque, quadratum elementi quædici evadet $\frac{P S^2 - \frac{f^2}{2}}{4} \times \frac{g}{4} \times \frac{x^2}{l} \times d x^2$, five cùm y^2 fit $f x - x x, erit illud quadratum $\frac{P S^2 - \frac{f^2}{2}}{4} \times \frac{g}{4} \times \frac{x^2}{l} \times d x^2 - \frac{g}{4}$.

Dividatur autem f^2 per $x \times f - x$ fit $\frac{f}{x} + 1 + \frac{x}{f} + \frac{x^2}{f} + \frac{x^3}{f}$.

Dividatur g per $l - x$ fit $\frac{g}{l} = \frac{g x}{l} - \frac{g x^2}{l} + \frac{g x^3}{l} + \frac{g x^4}{l}$.

Differentia serierum fit $\frac{f}{x} + \frac{g}{l} = \frac{f^2}{x} + \frac{g^2}{l^2} + \frac{f^3}{l^3} + \frac{g^3}{l^4} + \frac{f^4}{l^5} + \frac{g^4}{l^6}$,

Divid. ea differ. per $l - x$ fit $\frac{f}{x^2} + 1 + \frac{x}{f} + \frac{x^2}{f} + \frac{x^3}{f} + \frac{x^4}{f}$.

Unde quadratum elementi $S x$

$PS^2 - \frac{f^2}{2} \times \frac{g}{4} \times \frac{x^2}{l} \times d x^2 + \frac{f^2}{4} \times \frac{g}{4} \times \frac{x^2}{l} \times d x^2 + \frac{f^3}{4} \times \frac{g^3}{4} \times \frac{x^2}{l} \times d x^2 + \frac{g^4}{4} \times \frac{x^2}{l} \times d x^2$,

que seriem ad habundum continuari potest.

Exprimatur autem curvæ quaestio longitudinal per hanc seriem cujus coefficients sunt indetermiati. $A x^2 + B x^3 + C x^4 + D x^5 + E x^6 + & \frac{f^2}{l^2} + \frac{g^2}{l^4} + \frac{f^4}{l^6} + & \frac{g^4}{l^8} + & \frac{f^6}{l^9}$.

ejus fluxio erit $d x \times \frac{1}{2} A x^3 + \frac{1}{2} B x^4 + \frac{1}{2} C x^5 + \frac{1}{2} D x^6 + \frac{1}{2} E x^7 + & \frac{f^2}{l^2} + \frac{g^2}{l^4} + \frac{f^4}{l^6} + & \frac{g^4}{l^8} + & \frac{f^6}{l^9}$.

quadrandum erit $d x^2 \times \frac{1}{2} A x^3 + \frac{1}{2} AB + \frac{1}{2} AC + \frac{1}{2} AD x^2 + \frac{1}{2} AE x^4 + \frac{1}{2} B x^4 + \frac{1}{2} BC x^5 + \frac{1}{2} BD x^6 + \frac{1}{2} BE x^7 + & \frac{f^2}{l^2} + \frac{g^2}{l^4} + \frac{f^4}{l^6} + & \frac{g^4}{l^8} + & \frac{f^6}{l^9}$.

Col.
Collatis vero terminis seriei inventa: cum terminis correspondentibus hujus seriei

\[A = \frac{PS}{\sqrt{g}l} \]

\[B = Ax = \frac{1 + f - \frac{g}{2}}{6l} \]

\[= \frac{3l^2 + 6l + 3f}{2} + 2fg - 6fg \]

\[C = Ax = \frac{2.4.5.1^2f^2}{2} \]

\[\frac{10l^1 + 6l + 6^2 + 10l + 2g}{2} + \frac{2g^2 + 12fg - 36f^2g}{2} + \frac{6g^2 + 10fg}{2} + \frac{2g}{2} \]

\[D = Ax = \frac{2.4.4.7.1^3f}{2} \]

\[\frac{33l^1 + 10l + 18^2 + 20l + 35f^4}{2} + 4g^2 + 12fg + 60^2g + 140fg + \frac{70f^2g}{2} + \frac{10g}{2} - \frac{28g}{2} + \frac{5g}{2} \]

\[E = Ax = \frac{2.4.4.9.1^3f^4}{2} \]

Hinc series quae exprimit longitundinem curvae quaestae est

\[\frac{PS}{\sqrt{g}l} \times x^1 \frac{1 + f - \frac{g}{2}}{2.3l} \]

\[\frac{3l^2 + 6l + 3f}{2} + 2fg - 6fg + \frac{g}{2} \]

\[\frac{2.4.5.1^2f^2}{2} \]

loco \(l \) longitudo \(f \), five Diameter circuli, & habeatur valor dimidii curvae quaestae, quod respondet semicirculo MDN: est ergo ea semi-curva,

\[\frac{PS}{\sqrt{g}l} \times x^1 \frac{1 + f - \frac{g}{2}}{2.3l} \]

\[\frac{3l^2 + 6l + 3f}{2} + 2fg - 6fg + \frac{g}{2} \]

\[\frac{2.4.5.1^2}{2} \]

In hoc autem casu quantitas \(\frac{PN}{g} \) est major quam \(f \), majorem esse quam \(g \) ex hypothesi hujus casus sequitur, cum \(P \) \(N \) supponatur major quam \(g \); majorem autem esse \(f \) quam \(f \) hinc licet, ducta in Trapezio \(P \) \(Q \) \(N \) \(M \) diagonali \(P \) \(N \) sit in \(P \) super \(P \) \(N \) \(K \) parte lineae \(P \) \(M \) angulus \(MNP \) aequalis angulo \(q \); ita ut occurrat \(P \) \(L \) lineae \(N \) \(M \), dico lineam \(N \) \(L \) esse longiores quam \(N \) \(M \), nam anguli \(MPq \) \& \(q \) sunt aequales; sed anguli \(MNP \) aequalis angulo \(q \); ergo angulus \(NPL \) cum angulo \(NPq \) major et angulo \(QPM \), cedit ergo \(L \) utra \(M \); five \(NL \) et major \(N \) \(M \); et autem \(NL \) aequalis \(l \), nam Trianguli \(P \) \(Q \) \(N \) \& \(PNL \) sunt aequales, et tria aliae aequales \(Q \) & \(PNL \) aequalibus ob parallellas \(PQ \), \(MN \), hinc ergo \(PQ \) \& \(PN \) ut \(PN \) \& \(NL \) aliae aequales \(l \) & major quam \(f \).
Philosophiae Naturalis

De Mun. di Syst. Hinc, ut sita serie convergat, debet sita distria termini hujus seriei ut remotares

e primo omanur ii in quibus crecit in Numeratore dimensiones quantitatis f aut

g, & in Denominatore dimensiones quantitatis l, ideoque hanc habet formam.

$$\frac{PS}{PN} \times l\left(\frac{f}{l}+g\right)$$

$$+ \frac{1}{2.3} \times \frac{5}{l^2} + \frac{2}{2.4.5.6} \times \frac{g}{l^2}$$

$$+ \frac{1}{2.4.5.6.7} \times \frac{10}{l^2} + \frac{12}{2.4.5.6.7} \times \frac{g}{l^2} + \frac{10}{2.4.5.6.7} \times \frac{g}{l^2}$$

$$+ \frac{1}{2.4.5.6.7} \times \frac{10}{l^2} + \frac{20}{2.4.5.6.7} \times \frac{g}{l^2} + \frac{20}{2.4.5.6.7} \times \frac{g}{l^2}$$

$$+ \frac{1}{2.4.5.6.7} \times \frac{10}{l^2} + \frac{20}{2.4.5.6.7} \times \frac{g}{l^2} + \frac{20}{2.4.5.6.7} \times \frac{g}{l^2}$$

Ut autem hae formae ad simpliciorem revocetur, notandum quod ubi est $g = 0$ tum

$g = \infty$, ideoque omnes termini hujus seriei praeter primam columnam vanetum, qua

niam continet altrimam dignitatem quantitatis l; sed ubi $g = 0$ sunt Conus PMDNE fere

rectus; & curva inscripta spherae cuius radius est PS, est circulus cujus Diametrum est f

fut PS ad PN, unde est Diametrum $f = \frac{PS}{PN}$; ideoque prima columna seriei qua

eo in casu dimidium cuvæ exprimit, continet rationem semi circuli ad Diametrum l.

Ideo summa tota eis columnar $l + \frac{1}{2.3} + \frac{1}{2.4.5} + \frac{10}{2.4.5.6.7}$, est 1.57079 &c.

idque in quocumque valore quantitatis g, quodem ea quantitas in ea columna eliminatur.

Ad inveniendam summan secundae columnae, ea in duas dividatur partes, quarum

prior multiplicet l, altera l ut habeant summam columnae multiplicatam per l

observandum quod singuli coefficients prime columnae (primo termino in seculo) sunt

ad coefficients singulos secundae columnae ut numeri 1 ad 1, 2 ad 2, 3 ad 3, 4 ad 4, 5 ad 5, 6 ad 6, 7 ad 7, 8 ad 8, 9 ad 9, 10 ad 10, 11 ad 11, 12 ad 12, 13 ad 13, 14 ad 14, 15 ad 15, 16 ad 16, 17 ad 17, 18 ad 18, 19 ad 19, 20 ad 20, 21 ad 21, 22 ad 22, 23 ad 23, 24 ad 24, 25 ad 25, 26 ad 26, 27 ad 27, 28 ad 28, 29 ad 29, 30 ad 30, 31 ad 31, 32 ad 32, 33 ad 33, 34 ad 34, 35 ad 35, 36 ad 36, 37 ad 37, 38 ad 38, 39 ad 39, 40 ad 40, 41 ad 41, 42 ad 42, 43 ad 43, 44 ad 44, 45 ad 45, 46 ad 46, 47 ad 47, 48 ad 48, 49 ad 49, 50 ad 50, 51 ad 51, 52 ad 52, 53 ad 53, 54 ad 54, 55 ad 55, 56 ad 56, 57 ad 57, 58 ad 58, 59 ad 59, 60 ad 60, 61 ad 61, 62 ad 62, 63 ad 63, 64 ad 64, 65 ad 65, 66 ad 66, &c.
qui termini sunt \(0.0333\) \(0.01250\) \(0.00446\) \(0.00217\) \(0.00124\) \(0.00078\) \(0.00053\)

Summa reliquorum \(0.0112\) proximé

dimidia \(0.57079\) \(0.28539\)

\(0.39152\)

Hujus autem partis pars secundae columnae coëfficientes sunt ad coëfficientes alterius partis ut \(1\) ad \(2\), \(3\) ad \(4\), \(5\) ad \(6\), \(7\) ad \(8\), \(9\) ad \(10\) &c. singuli autem erant ad suos excessus supradimidia termini columnae prime ut \(2\) ad \(3\), \(4\) ad \(5\), \(6\) ad \(7\), \(8\) ad \(9\), \(10\) ad \(11\) &c., ergo coëfficientes alterius partis sedit columnae sunt ad eos excessus ut \(2\) ad \(3\), \(4\) ad \(5\), \(6\) ad \(7\), \(8\) ad \(9\), \(10\) ad \(11\) &c. quae ratio tandem ad sequentem definítur; Ergo summa sedit columnae sumatur æqualis differentiolas superimé

\[-1 \frac{1}{2} + 1 \frac{1}{2} + 1 + \frac{1}{2} + 3 + 7 + 18\]

\[2.3 \quad 2.45 \quad 2.444.4 \quad 2.444.4 \quad 2.444.4 \quad 2.444.4 \quad 2.444.4.4.4.4.15\]

Sume reliq. \(1\)

Sume differ. \(1.0613\)

\[-0.0952\]

Termini tertiae columnae summati evadunt \(0.1379\) \(0.0631\) \(0.0057\)

Termini quartae sunt \(0.0746\) \(0.0711\) \(0.0032\)

Termini quintae \(0.0495\) \(0.0444\) \(0.0015\)

Termini sexae \(0.0749\) \(0.0455\) \(0.0038\)

\[\frac{f_g^4}{l} = 0.0038\]

In hoc casu tab. \(l\) est maior quam \(g\) aut \(f\), ex istis terminis sufficiente convergentia obiuenur, ut pro vero valore curvae, hi termini, immo &c. putores assumo possecu reliquis omisso; Quamvis ergo invenimus attractionem puncti \(P\) à circulo \(M D N E\) esse ut \(P\) \(G\) ducum in numerum linearum \(PZ\) in circumferentia \(M D N E\) terminarum, ducum \(P\) \(C\) ducum in curvam que in superficie \(P\) \(C\) inter lineas \(PZ\), \(f\) in singulo puncto \(C\), axos \(A\) \(B\) erigatur ordinata que sit ut \(P\) \(C\)
PHILOSOPHIAE NATURALIS

De mun. di Syst. MATE. 90.

P C \times MN \times 1.57079 + 0.39125 \frac{f}{l} + 0.1379 \frac{f^2}{l^2} + 0.0726 \frac{f^3}{l^3} - 0.0992 \frac{g}{l} - 0.0621 \frac{f g}{l^2} = 0.0711 \frac{f^2 g}{l^3} & \&c.;

+ 0.0017 - \frac{g^2}{l^2} - 0.0032 \frac{f g^2}{l^3} + 0.0035 \frac{g^3}{l^4} & \&c.

& per vertices earum ordinatarum curva ducta intelligatur, exprimit ejus area attractio- nem puncti P, si modd in hoc valore inferatur quantitates ad curvam revolventem pertinen-
tes; abscissa constans A Q dicitur a, ejus ordinata P Q = \frac{g}{z} for c, abscissa A C sit x, or-
dinata CM sit y, erit P N^2 = x - a^2 + y + c^2; ideoque \, l = \frac{x - a^2 + y + c^2}{c}, & \&c.

P C = \sqrt{x - a^2 + c^2}.

Ex his & aequatione curvae, determinari poterit punctum axes in quo tranfibit circu-
lus talis ut attracio cis eum circulum aequalis sit attractioni ultra eum circulum,
five punctum axes ad quod tendit media directio gravitatis; hinc epis obliquitas ad
perpendiculum in curvam obtinebitur.

Sed cum hac duxerat valcant cùm g five P Q q numquam major est quàm P N,
generalior alia est solutio, sed ejus calceus paulo proxior videbitur.

24°. Casus, si talis sit curva ut incertum sit utrum P N numquam sit minor quàm
P Q q five g.

Ducatur per punctum P linea quæ angulum

N P M in duos angulos æquales dividat, & oc-
currat lineæ M N in puncto X, erit (per 3. VI.
Elem.) P N + P M ad N M ut P N ad N X

quod erit ergo \frac{P N \times f}{P N + P M} ; scribatur est valor lo-
co x in serie quæ exprimit longitudinem curvæ

propositœ, ea evadat:

\frac{P S \times f}{\sqrt{P N \times P N + P M}} \times 1 + \frac{l + f - g}{2.5.1 \times P N \times P N + P M} \frac{P N + P N^2}{P N^2} & \&c.

\frac{-\frac{g^2}{2.4.5 \times P N \times P N + P M^2}}{2.4.5 \times P N \times P N + P M^2}

que series in omni casu convergent proper quantitatis P N + P M dignitatis in de-
nominatore positas; quæ quantitas semper major est quàm P N, f & g in numeratore

positas (per 20. 21. Elem.), imo si loco l ponatur ejus valor \frac{g}{g} theaque reducitio,

series evadet:

\frac{P S \times f}{\sqrt{P N \times P N + P M}} \times 1 + \frac{P N^2 + f g - g^2}{2.5.1 \times P N \times P N + P M} \frac{3 P N + 3 P N^2 g f + 3 f g^2}{3 P N + 3 P N^2 g f + 3 f g^2} & \&c.

\frac{2.4.5 \times P N^2 \times P N + P M^2}{2.4.5 \times P N^2 \times P N + P M^2}

Chu.
Principia Mathematica. 101

Cum autem in Triangulo PNq vel in Triangulo PMN, PN + MN sit summa libera laterum & PN numquam ut minimum latus, demonstrantur facile quod Rectangulum Tentius, PN per PM + PN, est majus Rectanguli aut quadrati factis ex reliquis lateribis Prop. PN, Pq vel MN, unde in quoscumque caelo hæc serie numquam respectu littoralium quam XIX, statum quam respectu numerorum coefficientium erit convergens, idque fuit prompte, quod quidem quibus gradibus crescant dimensiones ab uno termino ad alterum.

III.

Portio autem curvae quaestit, quæ respondens rali abscissæ, est accuratè quarta pars totius curvae, quaestit, tum quas enim â puncto P secundum lineas PM, PN longitudinibus PS, PZ æqualibus radio sphære, duæque SE & lege Cono PMDE secundum lineam SE per planum perpendiculari Planum PM, recto erit Ellipsis & S E unum ex eis Ellipsis axibus; quia verò Triangulæ NP S & est ex osculato & linea PX angulorum SP E bifariam dividit, ea linea PX secabit axem Ellipsis SE in ipso centro K Ellipsis; quoniam autem aliter axis K A est perpendicularis in axem SE, & est in plano ad Planum PM perpendiculari, erit axis KA perpendicularis in lineam PX & K D exinde erit Quamvis ordinatæ XZ, & linea PX transibit per punctum A; Ergo unus Ellipsis quadrans intercipientur inter lineas PN, PZ, hoc est respondere portio NDZ semicirculi NZD, alter verò quadrans Ellipsis respondet reliqua portioni MZ semi-circuli ejusdem; Jam verò evident est quod si habebatur Conus festus cujus basis est Ellipsis quaestit, & ab ejus Vertice ut Centrum, radio quovis describatur curva in ejus Coni superficie, portiones ejus curvas æqualis quadransibus Ellipsis respondentes erit inter se æqualis; Ergo portio curvae respondens abscissæ x = PN.

PN + PM f est accuratè quarta pars totius curvas' quaestit.

Ergo ex prius inventis, cum attrahere P à Pyramidibus in peripheriam MDNE definentibus, expressi debeant per PC ductum in numerum linearum PZ, quæ à puncto P æqualibus angulis precedentibus ad peripheriam MDNE definent, est verò numerum linearum PZ fit ut curva quæ intercipientur in superficie sphærae descriptione radii quocumque PS inter eae lineas PZ, eaque curva in quatuor æqualis quadransibus dividatur, erit etiam in numerum linearum PZ ut unus ex eis quadransibus; expressum verò is quadrans per seriæ suprà inventam: ergo (posito PS = 1) attrahit Punctur P à solidi

\[f = \frac{PC \times f}{y/PN \times PN + PM} \times 1 + \frac{PN^2 + f^2 - \gamma^2}{0} + \frac{3PN + 3PN^2 f + 3f^2 + \gamma^2}{23PN \times PN + PM} \]

Hæc serie tunc minimum convergent cùm ex solis coefficientibus numeris convertit; cùm nêmpe punctum M coincidit cum puncto P, nêmque quantitates omnes N M, f live f; P q live g, PN & PN + PM sunt inter se æqualis & PC = \gamma \; \text{tunc ergo}

series redit ad PC \times 1 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} \quad &c.

Eo autem in caelo, ex ipsa constructione licet, portionem curvae sphærae inscriptæ esse quadransem circuli cujus radius est 1, eunque quadransem, expressi intèr serie 3 hinc tauram hanc seriæ æquipollère quantitiæ 1.7079 \times PC.

Faciliore paulo evader calculus, si loco summæ linearum PM + PN, adhibeatur quantitas \(\frac{f g}{PN + PM} \) ipse æquipollens. Prolixior tamen est, quæm ut illum applicare suprimerimus ad ulteriores consequiæ.

Dixi ex his viam iter à determinationem curvae quam affectat Meridianos Telluris; nam si ex Æquatione generali \(y = Ax^2 + Bx^3 + Cx^4 \) &c. & ex serie inventa determinatur attrahit puncti P à quovis circulo, & erigatur in puncto axis, quod ejus circuli est centrum, ordinata quæ ejus circuli attractionem repræsentat & Æquatione generali 2um. III.
intelligatur curva per earum ordinatarum verticis transfusum, quae curvam area
per vulgatas methodos, habebiturque gravitas puncti P in solidum; quae curvam prior
regione punctum ances Y in quo erigeretur ordinatis illi curvae quae gravitatem puncti
P exprimit, ejus curvae area bifariam dividere, erit Y punctum ances ad quod at-
tracito puncti P dirigetur.

Pariter ex Equazione generali curvae habebitur punctum ances Z ad quod perinter perpendicular in cur-
ve punctum P, habebatur ergo intervallo ZY e YZ, ex Z ducatur ZV parallela PQ quae concurrit cum PY pro-
ducti in V, producatur PQ in F ut fiat $PF = ZV$, ducata-
que FZ, quoniam curva circa axem se solvit, curvae direc-
rio ex centrifuga agentis in puncto P, PV directio gra-
avitatis, PZ vero curvae perpendicularis est directio media
nata ex utriusque vis compositione (ut confar facto eam agatur de tellure ipsa); sed quia habebatur Z, Y, Q, PQ e PY habebatur ZV e VY, ideoque habebitur VP,
ergo habebatur latera Q e Diagonalis Parallelogrammi $FPVZ$
sive habebatur ratio, es vis centrifuga puncti P, vis ejus
gravitatis e vis media PZ ex utriculis resultanti, fiat ergo
ut PV ad PZ ita gravitas puncti P e atraicione solidi nata e per aream curvae in-
venta ad residuum ejus gravitatis, dempta vi Centrifuga.

Tandem initiariius intelligatur in curva quaquorsum, alia curva ipsi omnino simili,
ita ut earum sit idem centrum, & axes supra fere
mutuo jacent, Equatoris prioris curvae semi-Diam-
eter dicitur m, & differentia ejus a semi-Diametro al-
ternium, quae quaniam minimae assumi potest, dicitur dm, ab-
scepta CQ prioris curvae sit x, erit ejus differentia ab
"$x dm$
ordinata PQ sit y, ejus differentia ab ordinata cor-
respondenti erit $y dm$
$= P P$; quoniam t potest sumi ut portio tangens curvae, trian-
gulum t eit similium Triangulo fluxionali in puncto P
ob similitudinem curvarum & abscissarum erit ergo:
$dz: dy = t: P P$ $= \left(\frac{z dm}{m}\right): t = \frac{z dy}{m} x dm$
ergo $P P + pt = yt + \frac{z dy}{m}$ sed si ducatur P e perpendicularis
ad curvam in P est eisam Triang. $P P$ est simile Triang. $P t$ ideoque Triang. fluxionalis; nam
ob similitudinem curvarum, tangens t est parallela curvae in P; ideoque angulus t est
"$x dm$
rectus, est ergo dv ad dx ut $P t$ simile curvae t eit
dx ad dm ut $P t$ quod erit ergo $y dz + x dy$
$= dm$
$five deleta ratione $\frac{dm}{m}$ quae data est, perpendiculari portio inter duas curvas sit-
miles intercepti erit ut $\frac{y dz + x dy}{dv}$, multiplicetur id perpendicularum per y e v, factum erit
ut annulus solidus inter curvas interceptus tandem ergo multiplicetur $y^2 dz$ e $x y dy$, per
valorem gravitatis acceleracriac secundum $P Z$ quae prima inventa fuit, factum erit ut
Pondo fluidi inter curvas similares intercepti in puncto P, sumatur ejus facta fluxiones
facta $x dz$ econstans, & nihilum sequentur illae fluxiones, sic pondera omnium partium
inter duas curvas contenterunt fente aquae, & habebitur aquae fluxionalis curvae
quam Meridianus tertio affectat.
Invenire & inter se comparare pondera corporum in terrâ hujus regionibus diversis.

(*) Quoniam pondera inæqualium cururum canalis aquæ

\[ACQ \quad qca \] æqualia sunt; & pondera partium, cruribus totis proportionalium & similiæ in totis sitarum, sunt ad invicem

Alia etiam est in hoc Problemate conditio quæ brevius aquarionem suppeditare posset, nempe (fig. præced.) cum sit \(PQ \) ad \(ZV \) ut \(ZY \) ad \(YQ \), & \(ZV \) sit ubique ut vis centrifuga punct \(P \) quæ est semper proportionalis ordinatæ \(PQ \), ratio \(ZY \) ad \(YQ \) confians esse debet. Bene ergo res se habet si utroque modo eadem oblineatur curva, sin minus, oportet ut inter has hypoheæ aliqua sit repugnantia, nempe dari solidum, uniformiter despsum, rotans circa axim & in æquilibrîo consistat in, quo media actio inter gravitatem & viv Centrifugam sit perpendicularis ad curvam; Quæ quidem dicta non poterunt ut præcipiam palmar & tandem illi qui majori patientiam ut industria determinabiis generalissimæ Meridianæ figuram ex genuinis Newtonianis principiis, nullâ praæposita ad circulum, Elliptiam, aliæve curvam affinitate, huius calculi ipsius felicius tractatis fui alii.

(a) Quoniam pondera. Concipiatur (us suùra prop. 19.) canalis aquæ plena à polo \(Q \) ad centrum \(C \), & inde ad equirarem \(A \) a pergæs. Quia oportet fluidum quiescere (ex hyp.) erit fluidum in canalis crure \(AC \) in æquilibrîo cum fluido in ejusdem canalis crure \(QC \), & portio qualibet fluidi in crure \(CA \) consistet in æquilibrîo cum simili & similiæ portio fluidi portione in crure \(CQ \); (ex demonstratis (in prop. præs.) idem quæque simili argumento colligitur de corporibus quibulsvis homogeneis etiam fluida portant. Quæ corpora homogenea que
Philosophiae Naturalis

ut pondera totorum, ideoque etiam aequalium inter se; erunt pondera aequalium & in cruribus similitur sitarum partium reciprocè ut crura, id est, reciprocè ut 230 ad 229. Et par est ratio homogeneorum & aequalium quorumvis & in canalis cruribus similitur sitarum corporum. Horum pondera sunt reciprocè ut crura, id est, reciprocè ut distantiae corporum à centro terræ. Proinde si corpora in suprems canaliis partibus, sive in superficie terræ consistant, erunt pondera eorum ad invicem reciprocè ut distantiae eorum à centro. Et eodem argumento pondera, in aliis quibuscunque per totem terræ superficiem regioinibus, sunt reciprocè ut distantiae locorum à centro: & (b) propter ea, ex hypothesi quod terra sphæros sit, dantur proportiones.

Un-
Principia Mathematica

Unde tale confit theorem, quod incrementum ponderis
pergendo ab æqualore ad polos, sit quam proximè ut sinus
verius latitudinis duplicatae, vel quod perinde est, ut quadra-
tum sinus recti latitudinis. Et (c) in cædem circiter ratione
augen-

Latitudinis. Sit enim A P B A, ellipsis quæ
seferat meridianum terræ & A R B L A,
circulus radio C A descriptus, ad quem
Ellipsis A P B A proximè accedit, utque
radius C A semidiameter æqualis terre-
fris, erit (ex naturâ ellipsis 247, lib. 1.)
R P : M G = C R : E M, idèaque M G =
R P x E M. Sed propter triangula D M G,
E M C, similia, ubi ellipsis ad circulum
proximè accedit (tunc enim O est po-
tem pro rectâ tangente Ellipsis in pun-
culo D, & ea tangens est quam proximè
perpendicularis radius D C) est M G : M D =
M C : M E ac proinde M G =
M E
ergó

M G / C R

M E

M D =
R P x M E
C R

Jam vírò ex pun-
culo M, ducatur perpendicularis M m ad
rectam F e, erit e m sinus verius arcus
duplicati A M, hoc est, arcus M e, sive
quia A M exhibet latitudinem (10) erit
e m, sinus verius latitudinis duplicatae;
sed est e m x e F = M 2 (ex proprietate
circuli). Quærim ob datam e F, est e m
et e M 2 , vel etiam ut M E 2 , idèaque M D,
R P x e m
R P

est ut
C R 2

vel ob datas C R 2 , fit
M D , ut e m, sive ut M E 2 . Quia vírò
pondera in locis A & D sint ut distantiam
locorum æ centro reciproce (ex dem.)
erit incrementum ponderis in D, ut

1

C D x C A

hoc est, ut C A = C D, vel
ut C M = C D idèaque ut M D. Quæræ
incrementum ponderis & c.

(c) 92. * Et in cædem circiter radiae

Minimus arcus circuli curvam aliquam

in dato puncto osculantis pro arca infini-
testimo curvæ, in hoc puncto ulterius po-
tet (113, lib. 1.). Sed integri gradus
sunt ut minimi arcus similis, arcus autem
ili sunt ut radii circulorum curvam osculan-
tum, quàrum gradus integri sunt ut idem
radii. Erit ita ut gradus in loco D, ut ra-
dius circuli ellipsis ibidem osculantis, &
gradus in loco A, utidem ut radius circuli
ellipsis osculantis in codem puncto A. Jam
vírò ductâ perpendiculari C N, ad tangentem
D N, tumque D r, pro radius oscu-
latoris in D, erit D r ut D k s, sive quia
eft C P 2 = C N x D K (ibid.) ob datam
C P 2 erit D k ut

1

C N

idèaque radius
circulæ, qui est ut D k s, erit ut

1

C N

hoc
est, radius circuli ellipsis osculantis eff

O 3

sec.
augentur arcus graduum latitudinis in meridiano. Ideoque dim latitudo Lutetiae Pariforum sit 48°, 50', ea locorum sub æquatore 90°, 00', & ea locorum ad polos 90°. & duplorum

figurat terram. Semiellipsis P A P, referat meridianum sphæroidis cujus est axis P P, diameter vero secundum æquatorem A A. Ponatur CA = t, CP = m, CO = x, EN = y erit (ex naturæ ellipses per lem.4.

de Conicis) \(E N^2 : CP^2 = AN \times NA \)

\[AC^2, \] ideoque \(\frac{1}{x} = m \times (1 - x) \) & \(y = m \sqrt{1 - x} \).

Sit GE, radius circulii elliptici osculantis in E, erit (214. lib. 1.)

\[y = \frac{m}{m} \left(1 - x + m^2 x^2 \right)^{\frac{1}{2}}. \]

Quia

\[\text{verd} EK = \frac{EG \times PC}{AC^2} \] (239. lib. 1.)

erit \(EK = m \sqrt{1 - x^2 + m^2 x^2} \). Jam \(x \) non anguli latitudinis \(AKE, \) dictur \(x, \) postulo \(\text{sine} \) tunc \(r \), erit \(r = m \sqrt{1 - x^2 + m^2 x^2} \).

\[m = m \sqrt{1 - x^2 + m^2 x^2} \]

ac \(x = \frac{1 - r + m x}{1 - r + m x} \).

Quo valore substituto, loco \(x \) in expressione \(\text{radii osculatris}, \) est \(E \) \(G = \left(\frac{m}{1 + m x} \right)^{\frac{1}{2}} \).

Nunc conferantur simul duo gradus meridiani \(AD, \) \(EF, \) quorum unus incipiat ab æquatore, alter...
P R I N C I P I A M A T H E M A T I C A.

107

sinus versi sint 1134, 00000 & 20000, existente radio 10000, & gravitas ad polum fit ad gravitatem sub æquatore ut 230 & 229. & excessus gravitatis ad polum ad gravitatem sub æquator.

PROB. XX.

quam.

vero sumatur ubivis in arco AB, summum AB, pro radio circuli ellipsis ostulatis in A, erit (92) \(AD : EF = AB : EG \),

sed \(AB = \frac{PC^2}{AC} \) (121 lib. i.), \(\frac{AB}{AC} = m \),

quare si gradus AD dicatur A & gradus EF dicatur E, fecit \(A : E = m : \frac{m}{(1 - m + mm)} \).

ac proinde \(E = \frac{A \times (1 - m + mm)}{m} \)

Hae formula exprimint relationem inter primum gradum latitudinis & alium quemlibet gradum, quae inter diametrum & azem.

94. Si quantitas \(\frac{1}{m} - m - ss \), evenit

et alit in digastriter cujus exponens \(\frac{1}{2} \),

et alit in superiori formula negat locationem in quibus quantitas \(m - 1 \),

ad aliter summae equitae subenit, unde sit procellare \(A = E \times \frac{m}{(mm - 1)} = \frac{m}{m - 1} \)

et \(A \times S = 3 \times (1 - m) \).

Quare iterum pateat quod si ipse \(E = A \times S \), sique produxir \(E = A \times S = 3 \times (1 - m) \).

Hinc \(A = \frac{m}{m - 1} \).

Iste \(A \) sit \(\frac{mm}{1 - ss + mm} \).

ideoque \(E = \frac{m}{m - 1} \).

ac proinde \(E = \frac{m}{1 - ss + mm} \),

qui

(1 + m) \(\frac{1}{2} = A \times (1 - SS + mmSS) \).

San vero evenit terminis ut supra ad digastratem cujus exponens \(\frac{1}{2} \), neglecto quantitate evanescientibus \((95)\), fecit \(\frac{1}{m} - m \).

\(E - A \)

\(E \times (s - S) \).

Si gradus unus ab æquatore, alter ab polo numeretur, erit \(ss \) & \(S = 0 \), idemque formula praecedens abit in hanc

\(\frac{3}{E} (E - A) \)...

96. Si loco semidiameterum C A, C P, & sinus latitudinis \(ss \), in æquatione

\(x = \frac{x}{1 - ss + mm} \), (93) substituantur expressiones quibus id est determinatae, æquatio praecedens quates constantes bit variables, quorum tribus cognito qua re inveniatur. Quare data semidimetro æquatorialis C A, semidiameter paralleli N C vel E Q, & aut quod idem est, datae gradus æquatoris & gradus paralleli (sunt enim gradus illi ut ipse circuli, idemque ut radii) & firma cognitione latitudine, cuius sinus \(ss \), dabitur axis ellipsoidis. Simili praetatis modo ducet quàlibet alia ordinata E Q, quæ sit alterius paralleli semidiameter, & mutatis æquatione etiam poterit alia æquatio quattuor variabiles continens, ac proinde duplum obtinietur æquatio. Jam vero quaæ unque æquatio duæ constantes indeterminatas communem, nempe semidiemeteris ellipsis, parat data duorum parallelorum gradibus, datifique latitudinibus, per vulgares algebrae regulas collatæ simul utraque solutione, determinari posset semidiameterum rationem. Ceterum hæc omnia constructionibus geometricis facilis aboliui posse, verum in praebenti materiâ praebet calculum adhibere.
De Mundi Systemate.

Philosophiae Naturalis

quatorum ut i ad 229: (d) erit excessus gravitatis in latitudine Lutetiae ad gravitatem sub æquatore, ut i \[\frac{11114}{12000}\] ad 229, seu 5667 ad 2290000. Et propterea gravitates totæ in his locis erunt ad invicem ut 2295667 ad 2290000. (e) Quare cum longitundine pendulorum æqualibus temporibus oscillantium sint ut gravitates, & in latitudine Lutetiae Parisiorum longitudo penduli singulis minutis secundis oscillantis sit pedum trium Parisiensium & linearum \(\frac{8}{2}\), vel potius (f) ob pondus æris \(\frac{8}{2}\); longitudo penduli sub æquatore superabitur à longitudinali synchroni penduli Parisiensis, (g) excessu lineæ unius & \(\frac{8}{7}\) partium millefimmarum lineae, Et similis computo conquit tabula seruens.

(d) * Erit excessus gravitatis. Excessus gravitatis ad pulorem dicatur \(E\), excessus gravitatis in latitudine Lutetiae dicatur \(e\), inque \(G\) gravitas sub æquatore, erit \(E : G = i : 229\)

\(e : E = \frac{11114}{20000}\), idemque per compositionem rationum & ex æquo

\(e : G = 1 \times \frac{11114}{20000} = \frac{11114}{20000} = 229\), hoc est, excessus gravitatis in latitudine Lutetiae est ad gravitatem sub æquatore \(\frac{11114}{20000}\) & propterea addendo 5667 num. 2290000, gravitates totæ in his locis erunt ad invicem ut 2295667 ad 2290000.

(e) * Quare cum longitundines pendulorum. (Cqr. 4. Prop. 24. Lib. 2.)

(f) * Ob pondus æris. Corpus oscillans in aëre ponderis sui partem amissis æqualis ponderis pariis voluminis æris; quare si idem corpus ponar moveri in vacuo, paululum augeri debet ilius pondus, ideoque celeritas vibrabit, & ut ad Iochroneitatem reductur, augeri debebit longitudo penduli cædot ratione quæ augeret gravitas: hinc cum \(\frac{1}{1000}\) parte plum-bi pondus in vacuo augeatur, tantumdem augeri debet penduli longitudo qua erit inger al \(\frac{440}{2}\) ut \(\frac{11001}{1000}\) ad \(\frac{11000}{1000}\), inveniaturque \(\frac{440}{2}\) (289. lib. 2.). Hinc in latitudine Lutetiae Parisiorum longitudo penduli ad minuta secunda oscillantis in vacuo hic ponitur pedum trium Paris. & lin. \(\frac{8}{2}\), proximè.

(g) * Excessu lineæ unius & \(\frac{8}{7}\) partium millefimmarum. Cum longitundines pendulorum æqualibus temporibus oscillantium sunt ut gravitates, erit 2295667 ad 2290000 ut longitudo penduli in latitudine Lutetiae, hoc est, ut \(\frac{3}{2}\) ped. \(\frac{8}{2}\) lin. vel ut \(\frac{3965}{9}\) ad quantum proportionalem \(\frac{207985000}{20661003}\)

\[= 439.48\], qui est penduli longitudo sub æquatore. Hac autem dempta ex longitundine penduli in latitudine Lutetiae ped. 3. & \(\frac{8}{2}\) lin. seu lin. \(\frac{440}{555}\), remanet excessus lineæ unius & \(\frac{8}{7}\) partium millefimmarum lineæ.
Principia Mathematica

<table>
<thead>
<tr>
<th>Latitude loci.</th>
<th>Longitudo penduli.</th>
<th>Mensura gradus unius in meridiano.</th>
</tr>
</thead>
<tbody>
<tr>
<td>grad.</td>
<td>ped.</td>
<td>lin.</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>7,468</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7,482</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>7,526</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>7,596</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>7,692</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>7,812</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>7,948</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>8,099</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>8,261</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8,294</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8,327</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8,361</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>8,394</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>8,428</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8,461</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8,494</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>8,528</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>8,561</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td>8,594</td>
</tr>
<tr>
<td>55</td>
<td>3</td>
<td>8,756</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>8,907</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td>9,044</td>
</tr>
<tr>
<td>70</td>
<td>3</td>
<td>9,162</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
<td>9,258</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>9,329</td>
</tr>
<tr>
<td>85</td>
<td>3</td>
<td>9,372</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>9,387</td>
</tr>
</tbody>
</table>

Constat autem per hanc tabulum, quod graduum inaequalitas tam parva sit, ut in rebus geographicis figura terrae pro sphæ-

Tom. III.
Helieus nostrer circa annum 1677 ad insulam Sancta Helenae navigans, reperit horologium suum oscillatorium ibi tardius moveri quam Londini, sed differentiam non notavit. Pendulum verò brevius reddidit plurquam octavam parte digiti, seu lineæ una cum semiisse. Et ad hoc efficiendum, cum longitudo cochleae in ima parte penduli non sufficeret, annulum ligneum thecae cochleae & ponderi pendulo interposuit.

Deinde anno 1682. D. Varin & D. Des Hayes invenerunt longitudinem penduli singulis minuis secundis oscillantis in observatorio regio Parisiensis esse ped. 3. lin. 83. Et in insula Gorreda eadem methodo longitudinem penduli synchroni invenerunt esse ped. 3. lin. 63, existente longitudinum differentia lin. 2. Et eodem anno ad insulas Guadaloupan & Martinicam navigantes, invenerunt longitudinem penduli synchroni in his insulis esse ped. 3. lin. 63.

Posthac

\(h \) * Præsertim si terra paulò densior sit versus planum aquatoris quàm versus polos.

Jam vero Astronomi aliqui in longinquas regiones ad observationes astronomicas faciendas missi, observarunt quod horologia oscillatoria tardiùs moverentur prope aquatorem quàm in regionibus nostris. Et primò quidem D. Richer hoc observavit anno 1672. in insulâ Cayenna. Nam dum observaret transitum fixarum per meridianum mense Augusto, reperit horologium suum tardiùs moveri quàm pro medio motu Solis, existente differentia 21. 28'' singulis diebus. Deinde faciendo ut pendulum simplex ad minuta singula secunda per horologium optimum mensurata oscillaret, notavit longitudinem penduli simplicis, & hoc fecit sepium singulis septimaniis per menses decem. Tum in Galliam redux contulit longitudinem hujus penduli cum longitudine penduli Parisiensis (quæ erat trium pedum Parisiensium, & octo linearum cum tribus quintis partibus lineæ) & reperit breviorem esse, existente differentia lineæ unius cum quadrante.
PRINCIPIA MATHEMATICA. III

Posthac D. Couples filius anno 1697 mense Julio, horologium fuum oscillatorium ad motum solis medium in observatorio regio Parisiensis sic aptavit, ut tempore satis longo horologium cum motu Solis congrueret. Deinde Ulysfponem navigans in IV.

Annis proximis (1699 & 1700) D. Des Hayes ad Americam denuo navigans determinavit quod in insulis Cayenne & Granadae longitudo penduli ad minuta secunda oscillantis, effet paulo minor quam ped. 3. lin. 6¼, quodque in insula S. Christophori longitudo illa effet ped. 3. lin. 6¾, & quod in insula S. Dominici eadem effet ped. 3. lin. 7.

Annoque 1704. P. Feuilleus invenit in Porto-belo in America longitudinem penduli ad minuta secunda oscillantis, effe pedum trium Parisiensium & linearum tantum 5½, id est, tribus feré

(1) Reclitus posuisset. Horologium tardius ibat Ulysfponi quam Parisis, existente differentia 2' 13½, effe 133½, id est, quodque horologium illud Parisis conficiens 24. hor. (spatio 86400", Ulysfponi conficiens tantum 86400" — 233½") hoc effe, 86267". Sed est longitudo penduli Parisis ad minuta secunda oscillantis lin. 3965. Quare si longitudo penduli ad minuta secunda Ulysfponie oscillantis dicatur L, erit (corr. A. prop. 24. lib. 2.) (86400")² : 3965 = L, est 67186460000 : 9

2950749132885 = 13434352885
67186460000

Philosophiae Naturalis

De Mun. De Systemate.

112 re lineis breviorem quam Lutetiae Pariforum, sed (k) errante observatione. Nam deinde ad insulam Martinicam navigans, inventit longitudinem penduli isochroni esse pedum tantum trium Parisiensium & linearum 5 $\frac{10}{11}$. Latitudo autem Paraiba est 69\circ. 38' ad austrum, & ea Portobeli 95\circ. 33' ad boream, & latitudines insularum Cayennae, Goreae, Guadaloupae, Martinicae, Granadæ, Sancti Christophori, & Sancti Dominici sunt respectivi 48\circ. 55'$14'$. 40'$14'$. 40\circ. 00', 14\circ. 44'$12'$. 6'$17'$. 19'$19'$$. 48\circ. ad boream. Et excessit longitudinis penduli Parisiensis supera longitudines pendulorum isochronorum in his latitudinibus observataris sunt paulo majores quam pro tabulâ longitundinum penduli superius computata. Et propter hoc (1) terra aliquanto altior est sub æquatore quàm pro superiore calculo, & densior ad centrum quàm in fudinis prope superficiem, nisi forte calores in zonâ torridâ longitudinum pendulorum aliquantulum auxerint.

Ob-

(k) * Sed errante observatione. Latitudo Portobeli est 95$. 33'$ ad boream, & latitudo Martinicæ est 14\circ. 44'$; Hinc differentialia latitudinum est 5$\frac{10}{11}$. Ert autem latitudo Lutetiae 48\circ. 55'$, quare differentialia latitudinum Lutetiae & Portobeli est 39\circ. 17'$; Sed præterquam quod observationes Feuillea tabulâ Newtonianâ maximè dispersam, secum invicem non fatis contentire videntur. Cum enim differentialia latitudinum 39\circ. 17'$, ex illibem observationibus, præbuerit longitundinem penduli minorem Portobeli quàm Paribus, tribus fere lincis, differentialia latitudinum Martinicae & Portobeli quæ est 5$\frac{10}{11}$$. 21'$, majorem in hifice latitudinibus præbere debuisse penduli differentialiam quàm $\frac{10}{11}$' lin. qualem inventi Feuillea. Hunc cetero quin diligentissimum observatorem non fatis hæc in re accuratum suisse confirmant observationes an. 1735. Portobeli habiæ à Clariss. Viris DD. Godin & Bouguer, quorum prior penduli longitundinem Portobeli inventi 16 poll. 7 lin. 56$, posterior vero eandem longitudinem summò contentio determinavit 56; poll. 2 lin. 78$.
Prinicipia Mathematica. II

Observavit utique D. Picartus quod virga ferrea, quae tempore hyberno, ubi gelabant frigora, erat pedis unius longitudine, ad ignem caelestia evasit pedis unius cum quartâ parte lineæ.

Deinde D. De la Hire observavit quod virga ferrea quae tempore confiniri hyberno sex erat pedum longitudinis, ubi Soli æstivo exponebatur, evasit sex pedum longitudinis cum duas tertiiis partibus lineæ. In priore usu calor major fuit quàm in posteriore, in hoc vero major fuit quàm calor externarum partium corporis humani. Nam metalla ad solem æstivum valde incalescunt. At virga penduli in horologio oscillatorio non quam exponi solet calori Solis æstivi, nuncuam calorem concipit calori externæ superficiæ corporis humanæ æqualem. Et propterea virga penduli in horologio tres pedes longa, paulo quidem longior erit tempore æstivo quàm hyberno, sed excedit quartam partem lineæ unius vix superante. Proinde differentia tota longitudinis pendulorum quàm in diversis regionibus isochrona sunt, diverso calori attribui non potest. Sed neque erroribus astronomorum est Galliæ missorum tribuenda est hac differentia. Nam quamvis eorum observationes non perfecte congruant inter se, tamen errores sunt adeo parvi ut conternini possint.

centro ad æquatoris semidiametrum, & hodie ob minorem hanc gravitatem in æquatore respectu gravitatis ad polos tellus magis ad æquatorem elevabitur quàm pro superiori calculo, ac proinde longitudo pendulorum quàm gravitati acceleratrici proportionalis est (Cor. 4. prop. 14. lib. 2.) paulo major esse debet quàm pro tabulis longitūdinum computātā in caelestes uniformiter denās.

PHILOSOPHIAE NATURALIS

De Mundo Systemate.

possint. Et in hoc concordant omnes, quod isochna pendula sunt breviora sub æquatore quàm in observatorio regio Parisiensi; existente differenti non minore quàm lineæ unius cum quadrante, non majore quàm linearum 2\frac{1}{2}. Per observationes D. Richeri in Cayenna factas differentia fuit lineæ unius cum quadrante. Per eas D. Des Hayes differentia illa correcta prodiit lineæ unius cum semisse, vel unius cum tribus quartis partibus lineæ. Per eas aliorum minus accuratas prodit eadem quasi duarum linearum. Et haec discrepantia partim ab erroribus observationum, (n) partim à diffimilitudine partium interinarum terræ & altitudine montium, & partim à diversis æris caloribus, oriri potuit.

Virga ferrea pedes tres longa, tempore hybero in Anglia, brevior est quàm tempore æstivo, sexta parte lineæ unius, quantum siento. Ob calores sub æquatore atferatur hæc quantitas de differenti linea unius cum quadrante à Richero observatur, & manebit linea \(\frac{1}{12} \): quæ cum lineâ \(\frac{33}{120} \) per theoriam jam ante collectâ probe congruit. Richerus autem observationes in Cayenna factas, singulis septimannis per menses decem iteravit, & longitudines penduli in virga ferreà ibi notatas cum longitudinis ejus in Gallia simuliter notatis contulit. Quæ diligentia & cautela in aliis observatoribus defuisse videtur. Si hujus observationibus fidendum est, (o) terra altior erit ad æquatum quàm ad polos excessu milliarium septendecim circiter, ut supra per theoriam prodit.

n * Partim à diffimilitudine. Quæ de pendulorum longitudinis dicta sunt in hac propositione, supponunt homogeneam esse telluris materiam; si vero homogenea non sit ubique, sed aliqua sit in partibus internis terræ diffimilitudo, patet (96) hinc quasdam oriri posse in pendulorum longitudinibus irregularitatis. Similem ob cauam, ex montium altitudine, vallium cavitate inaequalitates aliqua nauci poterunt, pro excessu enim vel defectu materiar augebatur vel minuatur gravitas. Observationum discrepantia repeti etiam posse à diversis æris caloribus manifestum est ex observationibus Picaris, La Hirii, & ex notâ precedent.\n
o * Terra altior erit. Si hujus observationibus fidendum est, longitudo penduli sub æquatore superabitur à longitudine penduli synchroni Parifenis excessu lineæ unius & \(\frac{87}{90} \) partium millefimarum lineæ, ideoque longitudo penduli sub æquatore erit 3. ped. 17. lin. fen 3. [ped. 9000 7. 468. lin. proximè, est enim longitudo penduli Paris. 3. ped. 8 \frac{5}{2} lin. fed est incrementum ponderis, sin incrementum longitidinis penduli pergingo ab æquatore ad pola]
Principia Mathematica. II§

D. De Maupertuis inventa est 57437,9 hexaped. & longitudinalin gradus in Gallia Tertiis, in 45° 57100. hexaped. probabiliter aut Prop. XX., mi poste ostendimus. Hinc gradus ut interf., que differentia est 233 hexaped. aut ad IV. minimum 300. hex. sed ex tabulâ Newtoniana differentia inter 45 gr. & 65. est 240. hexapedarum, cuncta itaque gradus latitudinis perpendo ab æquatore ad polos magis quam juxta tabulam Newtoniam, ac proinde non solum terra est elata ab æquatore (94), sed etiam diametrorum differentia ex observationibus major quæm ex ipœ theoriam colligimus. Consular observationem ferier quam Transactionibus Anglicis an. 1734. in eruit Autor Versionis Gallicae.

Philosophiae Naturalis

De Munin di Systemate.

I 1 6

-- suspensionis & punctum globi infimum interponemus perpendiculariter ad plana horizontalia, maximeque cavebamus ne in hac mensura error aliquid irreperet. Plura idcirco negleximus experimenta in quibus illum extendebat observationis tempore, aliique rejecimus facta cum illo ferico vel cum globo eburneo qui nimiam in aere resistentiam patiebat. Sex igitur tantum quae nobis uterquae visa sunt describemus: facta sunt cum globo cupreo auris quaelibet semidiameter inventa est partium digit, Londiniensis milessimarum 603, pondus vero unciarum 4 3/4 feu grana- tum 2320. Illum suspendebamus et filo ex foliis aloes parato, quod gallice dicitur, fil de pinz; hujusmodi filum 2 1/2 ped. Londin. longum, equiponderat granis 5, & propor- tera pondus fili 44 digit, erat ad pondus globi ut 1 ad 2915; pondus vero 35 digit, ad pondus ejusdem globi ut 1 ad 2715. Hinc per ea quae D. De Mairan loco citato demonstravit, si distantia puncti suspensionis ad centro globi sit 44 digit, Lond. circiter, ex longitudinalae observationis fe intercessae inter punctum suspensionis & punctum inferiorum globi subtrahenda erit longitudinal 0,6023 digit, ut habeatur vera longitudinal penduli simplicis pendulo observationis ito- chroni. Si vero distantia puncti suspensionis ad centro globi sit 35 digit, circiter, autore- renda erit longitudinal 0,6004 digit.

Longitudo observata 45.145 dig. Lond.
Longitudo subtrahenda. 0.6023
Longitudo vera 44.5427.

Numeravimus oscillationum globi 3261 eo tempore quo horologium oscillatorium 3479 abolvit, hoc est, intervallo 3480.69 secundorum temporis medihi. Horologio enim tardius movebatur quam pro medio motu Solis, & differentia erat 42 secundo- rum pro horis 24, est igitur 3480.69 ad 3261 2 ad 44.5427 ad 39.09736 digit. Lond.
quaestio longitudo penduli simplicis ad sanguina minuta temporis medihi oscillantis.

2. Experimentum eadem die veis per.
Longitudo observata 45.18. digit. Lond.
Longitudo vera 44.5777. Numerus oscillationum globi 3387 tempore medio 3616.75 secund, unde habetur longitudo penduli simplicis ad singula minuta secundae oscillantis 39.0941 digit. Londin.

Principia Mathematica.

Propositio XXI. Theorema XVII.

Puncta equinoctialia regredi, ac axem terrae singulis revolutionibus annuis nutando bis (1) inclinari in eclipticam & bis redire ad positionem priorem.

Patet per corol. 20. prop. L X V I. lib. 1. Motus tamen iste nutandi

Num productum; per Solem pridem transibis quum telluris centrum ad S perveneris, sed tunc contingit equinoctium dum nuper Sol in plano aequatoris terrestrius vertitur (4) illaque puncta pro equinoctialibus habentur in quibus Sol videtur tempore aequinoctiorum. Quare patet, tellis fixis quiescentibus, puncta equinoctialia omniaque Ecliptica puncta que a punctis equinoctialibus numerantur, regredi inaequale moveri. Hic punctorum aequinoctialium regressus pendet ab actione Solis in materiam at partes aequatoris redundantem, sed & Lunae etiam non levem vires esse possunt; cum enim Luna in Ecliptica plano aut non procul ab eo jacent, aut eundem cum Sole effectum concurret. Sed infra computabuntur motus aequinoctiorum ab utraque vi, Solis scilicet & Lunae oriusdum:

(1) Bis inclinati in eclipticam: In semirevolutione telluris circa Solem a Q...
nutandi perexiguus esse debet, & vix aut ne vix quidem sen-

gitudinem, plurimumque amorum decoris sensibilior non evadit, at regresus pun-
citimum, Ecliptica continuo sit in antec-

104. Cùm stellæ, fixæ quicquaque & re-
scefas communis lechio aquatoris & Ecliptica, necefìs òt ut mutassil à fix-
arum à punctis æquinoctialibus distantia & stellæ ab illisdem punctis versus orien-
tem quotidie progreedi videantur, unde

ius æquationis æquationem veralem Ecliptica & aquatoris computari solent,

continuò crescant, & fixæ omnes videantur

moveri in consequentia signorum. Hinc

sit quod constellationes omnes antiquam

sedem mutaverint. Sic constellatio ærie-

ris quam tempore Hipparchi propè in-

tersecntionem veralem Eclipticæ & aquato-

ris visa fuit, nunc ab eadem digresser in

signo Tauri moratur, sicut & Tauri con-

stellatio in geminorum locum transvit,

geminique in Cancrum promotori sunt, ità

ut unaquæque constellatio è suo in proxi-

mum locum succederit. * Cùm autem hic,
dum de inclinatione egrimus, nec ad mo-
tum ipsum nodorum, nec ad Excentrici-
tatem orbitarum quas terra aut Luna de-

cribunt, nec ad Apudum motus, nec ad

irregularitatem molis terræ attendantemus,

nec denique ad allorum Planetarum actio-

nes, quaedam eam Ecliptica inclinatione

mutatio afferri potest, quæ forte per-

feverabit fatis ut sensibilis evadat: incli-
nationis angulum 1° centum annis decre-
cere volebat, Lowiiliaeus, cui non repugnaut

causas in Astronomiae Elementis, ex

vavii Astronomorum aphilatione inclinationis Eclipticae retulit. Sed de ìa plura

in posterum erat dicenda.
Principia Mathematica.

Proposito XXII. Theorema XVIII.

Motus omnes lunares, omnesque motuum inaequalitates ex allatis principiis consequi.

Planetas majores, interea dum circa solem feruntur, posse alios minores circum se revolventes planetas defere, & minores illos in ellipsibus, umbilicos in centris majorum habentibus, revolvi debere patet per prop. LXV. lib. I. Actione autem Solis perturbabuntur eorum motus multimode, ipsisque adficientur inaequalitatibus quae in Lunâ nostra notantur. Hæc utique (per corol. 2, 3, 4, & 5. prop. LXVI.) velocius movetur, ac radio ad terram ducto describit aream pro tempore majorem, orbemque habet minus curvum, atque ideo propius accedit ad terram, in fyzghiis quàm in quadraturis, nisi quâtenus impedit motus eccentricitatis. Eccentricitas enim maxima est (per corol. 9. prop. LXVI.) ubi apogaeum Lunæ in fyzghiis versatur, & minima ubi idem in quadraturis consitit & inde Lunâ in perimeter velocior est & nobis propius, in apogeo autem tardior, & remotior in fyzghiis quàm in quadraturis: Progræditur insuper apogæum, & regrediuntur nodi, sed motu inæquabili. Et apogæum quidem (per corol. 7. & 8. prop. LXVI.) velocius progræditur in fyzghiis suis, tardius regrediit in quadraturis, & exceitus progræditus supra regressum annuatim fertur in consequentia. Nodi autem (per corol. 2. prop. LXVI.) quiescunt in fyzghiis suis & velocissimè regrediuntur in quadraturis. Sed & major est Lunæ latitudo maxima in ipsius quadraturis (per corol. 10. prop. LXVI.) quàm in fyzghiis: & motus medius tardior in perihelio terræ (per corol. 6. prop. LXVI.) quàm in ipsius aphanio. Atque hæ, sunt inæqualitates insigniores ab astronomis notatae.

Sunt etiam alii quædam à (a) prioribus astronomis non observatae.

(a) * A prioribus Astronomis non observatae. Inæqualitates illæ quas hic per transcendam enumerat Newtonus, æquationesque omnes seu correctiones deinceps com-
servatae inæqualitates, quibus motus lunares adeo perturbantur; ut nullâ hac tenus lege ad regulam aliquam reduci potuerint. Velocitates enim seu motus horaríi apogæi & nodorum Lunæ, & eorum æquationes, ut & differentia inter eccentricitatem maximam in sylvis & minimam in quadraturis, & inæqualitates quæ variatio dicitur, augmentur ac diminuuntur annuatim (per corol. 14. prop. lxvi.) in triplicatâ ratione diametri apparentis solaris. Et variatio praeterea augetur vel diminuitur in duplicatâ ratione temporis inter quadraturas quam proximè (per corol. 3. & 2. lem. x. & corol. 16. prop. lxvi. lib. 1.) sed hæc inæqualitas in calculo astronomico ad prosthaphæarefin Lunæ referri solet, & cum eâ confundi.

PROPOSITIO XXIII. PROBLEMA V.

Motus inæquaales satellitum Jovis & Saturni à motibus lunaribus derivare.

Ex motibus Lunæ nostræ motus analogi lunarum seu satelli- tum Jovis sic derivantur. Motus medius nodorum satellitis externi jovialis, est ad motum medium nodorum Lunæ nostræ, in ratione composita ex ratione duplicatâ temporis periodici terræ circa Solem ad tempus periodicum jovis circa Solem, & ratione simplici tempora periodici satellitis circa jöven ad tempus periodicum Lunæ circa terram (per corol. 16. prop. lxvi. lib. 1.) ideoque (b) annis centum conficit nodus iste 8 gr. 24'. in antecedentia. Motus medii nodorum satellitum interiorum sunt ad motum hujus, ut illorum tempora periodica ad tempus periodicum hujus (per idem corollarium) & inde dantur. Motus au-

 commodius explicabatur; & quomodo variatio Lunæ ad prosthaphæaram in calculo Astronomico referri solet, exponeatur. Variatio autem dicitur inæqualitas illa qui sit ut motus Lunæ in primo mensis quadrante, sine pergena Lunæ à conjunctione ad quadraturam proximam retardatur, in secundo acceleratur dum tendit à quadraturâ ad oppositionem; in tertiio retardatur nulis & in quarto iterim acceleratur.

(b.) * Ideoque annis centum. Tempus periodicum terræ circa solem est dierum 365.2563. tempus periodicum jowis circa solem est dierum 4332.514 (perpham. 4.) tempus periodicum satellitis circa jöven est
autem augis satellitis cujusque in consequentia est ad motum nosterum ipsius in antecedentia, ut motus apogæi Lunæ nostra ad hujus motum nosterum, (per idem corol.) & inde datur. Diminui tamen debet motus augis sic inventus in ratione 5 ad 9 vel 1 ad 2 circiter, ob (c) causam quam hic exponere non vacat.

Cui respondet numerus 230, 38. Quære ex hoc calculo & Analogiam Newtoni pastet motum nosterum satellitis extimis jovis est partem circiter 230, 38. modis nosterum Lunæ, sed est motus annuum nosterum Lunæ 19°, 12', 21", ut dictur potest. Huic si multiplicetur motus idem annum per 100, suscitatur dividatur per 120, probabis motus nosterum satellitis intervallo annorum centum 8°, 24'. Ab hac usque calculi initio nullo in nodis satellitum jovicium sensibilem motum suscitatum observatum testatur Clariss. Cassinius in Elementis.

Ab hac ultima subtrahatur

\[L_1 \cdot (365, 365) \cdot 2 = 1.351,956 \]
\[L_2 = 1.6880 = 1.224,043 \]

\[\text{aritmetica summa = 6.3471999} \]

Deinde \[L_1 \cdot (332,214) \cdot 2 = 7.473,008 \]
\[L_2 = 27,321 = 1.436,466 \]

\[\text{aritmetica summa = 8.709956} \]

Ab hac ultima subtrahatur

\[\text{summa superior} = \text{6.3471999} \]

\[\text{selenium est} L_3 = 2.3623567 \]

(c) 165. Ob causam quam hic exponere non vacat. Referat S, Solem, fique P satelles, putat Luna revolvitur circa: Planetam primarium T & velicet terram, in ellipses umbilico postum, est B apsias, A apsias, eritque TB, distans maxima & A T distans minima. Jam verò quod minor est distansia A T, respectu distansiae TB, est celerius apsides prægrediantur, (per not. in corol. 8, prop. 66, lib. 1.). Ea est correctionis causa quam Autors nostrar non exponit.

Cum enim satellites Jovis & Saturni circà suos Planetas primarios describant circulos ferè concentricos (phæn. 1 & 2.) Luna verò circà terram in orbita elliptica revolvatur, & major fit motus nosterum in orbita elliptica quàm in circulari, cæteris omnibus manentibus, hinc motus augis cujusque satellitis per Analogiam ex motu Augis Lunaris inventus, diminuit debet in ratione paulò minor, quàm 1 ad 2, calculo non abhamili illi quàm 31:4. prop. instiueatur.
Philosophiae Naturalis

Philosophiae Naturalis

Vacat. (d) Equations maximae nodorum & augis satellitis cujusque feræ sunt ad equations maximas nodorum & augis Lunæ respectivè, ut motus nodorum & augis satellitum temporis unius revolutionis æquationum priorum, ad motus nodorum & apogæi Lunæ temporis unius revolutionis æquationum posteriorum. (e) Variatio satellitis è jove spectati, est ad variationem Lunæ, ut sunt ad invicem toti motus nodorum temporibus quiibus sitelles & Luna ad Solem revolvuntur, per idem corollarium; ideoque in satellite extimo non superat 5\(\text{°}\) 12\(\text{°}\). 12\(\text{°}\).

Propositio XXIV. Theorema XIX.

Fluxum & refluxum maris ab actionibus Solis ac Luna oriri.

Mare singulis diebus tam lunaribus quàm solaribus bis intimescere debere ac bis defluere, patet (f) per corol. 19. & 20.

\(\text{L. = 29,681 = 4,843,1144} \)
\(\text{L. dierum 27,311 = 1,436,4966} \)

utrumque Log. summa = 6,2796110

Deinde L. 302 \(\frac{5}{7} \) = 2,4805818

Log. dier. 16,688 = 1,2214043

utrumque summa = 3,7029861

Hæc fabruratur à summis superioribus

Log. 5,796 \(\times\) 10 remanet Log. 2,576 \(\times\) 10, cui respondet numerus 378, feræ. Quære ex Analogy Newtoni & calculo colligitur variationem satellitis esse partem 378\(\text{°}\), variationis Lunæ circiter. Sed variationem Lunæ maximam in apogeo Solis deinceps determinat Newtonus 33\(\text{°}\) 14\(\text{°}\) fi- vè 1994\(\text{°}\). Quære pars 378\(\text{°}\), est 5\(\text{°}\) 15\(\text{°}\) ut Newtonus invent, quamproximè.

(f) * Per Cor. 19. & 20. Si fluidum in alveo per superficiem cujusvis Planetae excavato contineretur, sìmultque cum Planetae motu diurno periodico uniformiter revolvatur, partes singulae hujus fluidi per vices acceleratæ & retardatæ in superficii suis, hoc est, in meridiani & mediae noctis velo-
Principia Mathematica. Lib. II. ut (g) & aquae maximam altitudinem, in maribus profundis & liberos, appulsu luminario ad meridianum loci minori quam sex horarum spatii sequi, uti sit in maris Atlantici & Ethiopi ci tractu toto orientali inter Galliam & promontorium Boneae Spei ut & in maris Pacifici littore Chileni & Peruviana: in quibus omnibus litoribus aetius in horam circiter secundam, tertia vel quartam, incidit, nisi ubi motus ab Oceano profundo per loca vadosa propagatus usque ad horam, quintam, sextam, septimam aut ultra retardatur. Horas numero ab appulsu luminaris utriusque ad meridianum loci, tam infra horizontem quam supra, & per horas diei lunaris intelligio vigesimas quartas partes temporis quo Luna motu aparente diurno ad meridianum loci revertitur: Vis Solis vel Lunae ad mare elevandum maxima est in ipso appulsu luminaris ad meridianum loci. Sed vis eo tempore in mare impressa manet aliquamduo & per vim novam subinde impressam augetur, donec mare ad altitudinem maximam ascenderit, id quod si spatii horæ unius durumve, fed sapitus ad littora spatii horarum trium circiter, vel etiam plurium si mare sit vadofum.

(h) Motus autem bini, quos luminaria duo excitant, non cernem.

velociiores erunt; in quadraturis sive horæ sextae matutinae, & vesperinae tardiores quam superficies globi conigua, quare suet in alveo refugescit; per vires perpetuas (per cor. 19, & 20) idem poeta iterum demonstrabitur, videisque Solis & Lunæ corporum computum.

(g) * Aqua maximam altitudinem. Rem ita se habere patet ex obversione aetibis marinis, ratio autem haec est. Vis Solis vel Lunae ad mare elevandum maxima est in ipso appulsu luminaris ad meridianum & poetae decretit, attamen haec vis effecit nonum est maximus. Omnès enim mores etsi impressus per Pierceot uniformiter, donec motu contrario defrueerat vel talem retardatur. Hinc fit ut fluxus maris per sex circiter horas antemeridianas auctus & cum motu diurno confitans acceleratus, majori celeritate ulterior pergere debat & aquas magis magisque attollet, usque dum eadem vis motus diurno contraria fluidi curvarum paulatim sitat & aquas cogat refluea. Haec motus retardat maximè circa octantes sive horarum tertiaria notabilis est. Alia non duarum exempla maximorum effecit qui post causas maximas contingunt. Non in ipso ostiis aetibis maxime ferre aetas, sicur neque in ipso ostiis Hybernis maximè friget hiems; sed integro circiter menè post ostiis maximus depressititur aetas Hyberniae effecit. Indubiata quoque conscientia summam calorem secundam aut tertiam post meridiem horà fieri.

(h) * Motus autem bini. Quemadmodum corpus quodvis duplici vi follicicatum in lineis duabus progradit nequit, sed conjunctis viribus parallelogrammi diagonalem eodem modo describit ac si unica vi juxta diagonalis directionem urgeretur.
cernentur distinctè, sed motum quendam mixtum efficient. In luminarium conjunctione vel oppositione conjungentur eorum effectus, & componetur (i) fluxus & refluxus maximus. In quadraturis Sol attollet aquam ubi Luna deprimit, deprimetque ubi Luna attollit; & ex effectuum differentia aestus omnium minimus orietur. Et quoniam, experientiâ testâ, major est effectus Lunae quam Solis, incidet aquae maxima altitudo in horam tertiam lunarem circiter. Extra sýzygiás & quadraturas, aestus maximus qui solâ vi lunari incidere fæptus debet in horam tertiam lunarem, & solâ solari in tertiam solarem, compositis viribus incidet in tempus aliquod intermedium quod tertia lunari propinquius est; ideoque in transitu Lunae à sýzygiis ad quadraturas, ubi hora tertia solis precedit tertiam lunarem, maxima aquæ altitudo precedet etiam tertiam lunarem, idque maximo intervalllo paulo post octantes Lunae, & paribus intervallis aestus maximus sequetur horam tertiam lunarem in transitu Lunae à quadraturis ad sýzygiás. Hæc īta sunt in mari aperto. Nam in ostiis fluviorum fluxus majores cæteris paribus tardius ad æquid venient.

Pendent autem effectus luminarium ex eorum distantis à terrâ. In minoribus enim distantis majores sunt eorum effectus, in majoribus minores, idque in (k) triplicata ratione diametro-rum apparentium. Igitur Sol tempore hyberno, in perigæo existens, majores edit effectus, efficietque ut aestus in sýzygiis (1) paulo majores sint, & in quadraturis paulo minores (cæteris paribus) quam tempore aestivo; & Luna in perigæo singulis mensibus majores ciet aestus quàm antè vel post dies quindecim, ubi in apogæo verfatur. (m) Unde fit ut aestus duos omnino maximi in sýzygiis continuos se mutuo non sequantur.

(41. lib. 1.) ita motus bini quos luminaria hac duo excitant non cernentur distinctè, sed motum quendam mixtum efficient.

(i) * Fluxus & refluxus maximus, ut potè virium summam tum temporis o-stiundus.

(k) * In triplicata ratione diametro-rum (cor. 14. prop. 66. lib. 1.).

(1) * Paulo maiorei fini, ob majorem virium summam & in quadraturis paulo minores ob minorem virium differentiam quàm tempore aestivo.

(m) * Unde fit ut aestus. Si enim Luni in sýzygiarum alterâ fit circa perigæum, aestumque maximum conjunctus cum Sole viribus tunc temporis excitet, necesse est ut in alterâ sýzygia verfetur circa apogæum minoresque vires obtineat.

Pendet etiam effectus luminarum ex locorum latitudine. Designet A p E P tellurem aquis profundis undique coopertam; C centrum ejus; P, p polos; A E aequatorem; F locum quemvis extra aequato- rem; Ff parallelum loci; D d parallelum ei respondentem ex alterâ parte aequatoris; L locum quem Luna tribus ante horis occupabat; H locum telluris ei perpendiculariter subjectum; h locum huic oppositum; K, k loca inde gradibus 10 diestantia, C H, C h maris altitudines maximas mensuratas a centro telluris & C K, C k altitudines minimas: & si axibus H h, K k describatur ellipsis, deinde ellipsesos hujus revolutione circa axem majorem H h describatur sphaeris HPK h p k; designabit hæc figuram ma-

Tom. III.
Philosophiae Naturalis

De Mundi Syst.:

126

ris (n) quœm proximè, & ernunt CF, Cj, CD, Cd altitudines maris in locis F, F, D, d. Quin
tiam si in praetâta ellipticæos revolutione punctum quodvis N descriptat circulum NM, secantem parallelos F, F, D d in locis quibusvis R, T, & æquatorem AE in S; erit CN altitudo maris in locis omni-

(a) 106. * Figuram maris quœm proximè. Circulus centro T descriptus tellurem re
ferat, circulus autem centro L descriptus exhibeat Lunam. Si massa effer in tellu
rem actio, tellus profunda aquis undique coeperit & quiescit (per hyp.) in sphæram
seife componeter. At singula telluris par
tes gravitant in Lunam, etque gravitas in
Lunam in ratione duplicata distantiarum à centro reciprocè. Jam vero rectæ LT,
exponat gravitatem accelerâtricæ corpor
is in centro T positi versus Lunam, fi
que E quælibet fluidi marini particula.
Si in rectœ LE producta sumatur LK æ
equalis LT, sitque LF ad LK in duplica
ta ratione LK ad LE, recta LF exp
ponet gravitatem corporis in loco E ver
sus Lunam, quæ vis dividitur in vires ut
FG & GL (prop. 66. lib. 1.). Si au
tem à vi illâ quæ corpus in E locatum ur
geatur, quæ est ut GL, auseratur vis ut
TL quæ centrum telluris urgetur versus
Lunam, relinquuntur vires ut FG, GT,
quibus corpus E sollicitatur præter vim
propriae gravitatis quæ tendit versus cen
trum terre & vim ipsi communem cum
centro ipsius terre. Jam sit C punctum
telluris cuius zenith Luna immineat, A
verò punctum opposite, sorte B & D
puncta circumspiciat, fove potius exhibeant
circulum horizontis in quo Luna verfa
tur, letuer punctum G à T maximè dista
nse, ubi punctum E est aut in C, aut in
A; in priori cali G transeat in M, in
poletici in N; quum verò punctum E
seriatur in circulo BD, punctum G fe
se coincidit cum T, nullaque partibus in

circulo
bus R, S, T, fit in hoc circulo. Hinc in revolutione diurna loci cujusvis F, affluxus erit maximus in F, hora tertia post appulfum Lunæ ad meridianum supra horizontem, postea defluxus maximus in Q hora tertia post occasum lunæ, dein affluxus maximus in F hora tertia post appulfum Lunæ ad meridianum infra horizontem; ultimo defluxus maximus in Q hora tertia post ortum Lunæ; & affluxus posterior in F erit minor quæm affluxus prior in F. Distinguitur enim mare totum in duos omnino fluidus hemisphaericos, unum hemisphaerio KHk ad boream vergentem, alterum in hemisphaerio opposito kHk; quos igitur fluidum borealem & fluidum australi nominare licet.

107. Similiter argumento patet confisset Solis actione fluidum terrestris copmoni in sphæroidem oblongam cujus axis producitus per Solem transibit. Si enim (siv figur. pract. globus L non Lunam sed volvoque L) atque aequili, cetera sed habent ut supra. At quia hoc casu minor erit quam in altero axium differentia. Nam fluidi tumor in C hic orient quod fluidum magis gravitatis versus Lunam quam telluris centrum T, tum et fluidi in A, inde provenit quod terra centrum magis quid fluidum versus Lunam gravitatis; quæ, si hic elevato Solis actioni tribuat, minor erit effectus quamvis atcho Solis in terram major fit quam atcho Lunae in eauuem, telluris enim semidiameter TC vel TA be evanescit etpeca immane Solis & terrae dis tans; idemque fluidi in C locati gravitas versus solem erit intensibilior major gravitatae telluris versus eauem, & fluidi in A postr gravitas versus solem erit intensibilitier minor gravitate telluris versus eauem, quæ figura sphæroida inde genita parum intument ad verices C & A, parumque in circulo B D deprimetur, atamen propter immensus Solis, licet remotissimi vires, aliquis erit atcho Solis eauem.
licet. Hi fluets temper sibi mutuò oppositì veniunt per vices ad meridianos locorum singulorum, interposito intervallo horarum lunarium duodecim. Cumque regiones boreales magis participant fluōtum borealem, & australis magis australèm, inde orientur æstus alternis vicibus majores & minores, in locis singulis extra æquatorem, in quibus luminaria orientur & occidunt. Æstus autem major, Lunà in verticum loci declinante, incidet in horam circiter tertiam post appulum Lunæ ad meridianum supra horizontem, & Lunâ declinationem mutante vertetur in minorem. Et fluxum differentia maxima incidet in (⁰) temporâ solstitialium; præsertim si Lunæ nodus ascendet, verò ascendit in principio arietis. Sic exerientià compertum est, quod æstus matutini tempore hyberno superant vespertinos, & vespertini tempore æstivo matutinos, ad Plymuthum quidem altitudine quasi pedis unius, ad Brisoliam vero altitudine quintdecim digitorum: observantibus Colepresseo & Sturmio.

Motus autem haéctenus descriptus mutatur aliquantulum per vim illam reciprocationis aquirum, quà maris æstus, etiam cæltantibus luminario actionibus, posset aliquamdiu perseverare. Conservatio haec motus impressi minuit differentiam æstuum alternorum; & æstus proximè posc fýzygias majores reddid, eaque proximè posc quadraturas minuit. Unde fit ut æstus alternè ad Plymuthum & Brisoliam non multò magis different ab invicem quam altitudine pedis unius vel digitorum quintdecim; utque æstus omnium maximì in idem portus, non sint pri-mi à fýzygis, sed terris. Retardantur etiam motus omnes in transitu per vada, adeo ut æstus omnium maximì, in fretis quibusdam & fluviorum ostiiis, sint (⁰) quarti vel etiam quinti à fýzygis.

Porro
Porro fieri potest ut aestus propagentur ob oceano per freta diversa ad eundem portum, & citius transeat per alia freta quam per alia: quo in caelo aestus idem, in duos vel plures successive advenientes dividus, componere possit motus novos diversorum generum. Fingamus aestus duos aequalis ad diversis locis in eundem portum venire, quorum prior praecludat alterum spatium horarum sex, incidatque in horam tertiam ab appulsa Lunae ad meridianum portus. Si Luna in hoc suo ad meridianum appulsa verfabatur in aquatore, venient singulis horis venas aequalis affluxus, qui in mutuos refluxus incidendo eodem affluxibus aquabunt, & sic spatia diei illius efficiant ut aqua tranquille stagnet. Si Luna tunc declinabat ab aquatore, fient aestus in oceano vicibus alternis majores & minores, ut dictum est; & inde propagabuntur in hunc portum affluxus binis majores & binis minores, vicibus alternis. Affluxus aequalis

occurrent observationes quae ad hunc locum pertinent, eae itaque exscribemus. Fieri etiam potest, inquit Autor, ut aestus omnium maximus sit quartus vel quintus à syzygiis vel tardius adveniat, eo quod retardatur motus marium in transitu per loca vadosa ad littora. Sic enim aestus accedit ad litus occidentale Hiberniae horae tertiae Lunari, & post horam unam & alteram ad portus in littore africani ejusdem insulae ut & ad insulas Caliberteides vulgo Soloring dictas. Dein successisse ad Falmouthum, Plimthum, Portlandiam insulam, Vaecam, Winchelesiæam, Doveriam, ostium Tamisius & Portem Londinënum, consuntibus horis duodecim in hoc itinere. Sed & Oceanìs alveis haud atatis profundus impediret aestum propagatio, incidit enim aestus ad insulas fortis nares & ad Occidentali mare aequalis Atlanticus expulsae littoris Hiberniae, Galliae, Hispaniae & Africæ utque ad caput Bonus Spei in horam tertiam Lunarem, prater quam in locis nullius vadis aestus impeditus tardius advenit, inque freto Gadin no quod motu ex mari mediterraneo propagato eestus sectatus; per gondo verò de his littorisus per Oceanìs latitudinem ad oras Americae, accedit aestus primò ad Brasiliae littoris maximae Orientalia cirrh horam Lunarem quartam vel quintam; deinà ad ostium fluminis Amazoniae horae sexae; ad insulas vero adjacentes horae quartae, posset ad insulas Bermudae horae septima & ad Floridae portum S. Augusmini horae septima. Tardius itigeret progressus aestus per Oceanum quam pro ratione motus Lunae; & necessaria est hæc retardatio ut mare eodem tempore descendat inter Brasiliam & novam Franciam, ascendatque ad insulas Fortunatas & littora Europae & Africæ & viceversâ. Namque mare aequale nequeit in uno loco quin simul descendat in altero. Lego jam descripserit agitari quoque mare pacificum veritimile est. Namque aestus altissimi in littore Chileniæ & Peruviae incideret dicimur in horas tertiam Lunarem, sed quia velocitate propagatæ inde ad littus Orientale Japaniae & ad insulas Filipinianae carusque regno Sinarum adjacentes nondum reperi.

108. In alveis fluminum pendet influxus & refluxus à fluminum curfu. Nam currus ille facit aquam tardius influer e mari, & in mare citius & velocius re-
PHILOSOPHIAE NATURALIS

bini majores component aquam altissimam in medio inter utrumque, affluxus major & minor faciet ut aqua ascendat ad mediocrem altitudinem in medio ipsorum, & inter affluxus binos minores aqua ascendat ad altitudinem minimam. Sic spatio viginti quatuor horarum, aqua non bis ut fieri solet, sed semel tantum perveniet ad maximam altitudinem & semel ad minimam: & altitudo maxima, si Luna declinat in polum suprema horizontem loci, incidet in horam vel sextam vel tricesimam ab appulsu Lunae ad meridianum, atque Luna declinationem mutabatur in defluxum. Quorum omnium exemplum in portu regni Tunquinii ad Batusham sub latitudine boreali 20 gr. 50l. Halleius ex nautarum observationibus patefecit: Ibi aqua die transitum Lunae per aequatorem sequente stagnat, dein Luna ad boream declinante incipit fluere & refluere, non bis, ut in alis portubus, sed semel singulis diebus; & aestus incidit in occasum Lunae, defluxus maximus in ortum. Cum Luna declinatione agitat ut hic aestus, usque ad diem septimam vel octavam, dein

109. Aestuum magnitudo non parum eam pendet à magnitudine marium, ut in opusculo citato observavit Clariss. Autor. Sit C centrum terræ, E A D B oblonga maris figura, C A hemiasis major, G B hemiasis minor priori inscriptus ad angulus rectos. Sumatur D punctum medium inter A & B, sitque E F C, vel ipsi aequalis & C F angulus ad centrum terræ, quem ubbendit latitudo maris littoris, E, F, vel e, f, terminari; veretur autem punctum A, in medio inter puncta E, T, & punctum D in medio inter puncta e, f. Si per differentiam altitudinam C A, C B, exponent quantitas æstis in mari facta profundo terram totam cingente, excessus altitudinis C A supra altitudinem C E vel C F designabit maximam quantitatem æstis in medio maris E P littoris E, F terminati, & excessus altitudinis C C e super altitudinem C E.
PRINCIPIA MATHEMATICA.

dein per alios septem dies illadem gradibus decrescit, quibus antea creverat; & lunâ declinationem mutante cessat, ac mox mutatur in defluxum. Incidit enim subinde defluxus in occa-
sum lunae & affluxus in ortum, donec luna iterum mutet decli-
nationem. Aditus ad hunc portum fretaque vicina duplex pa-
set, alter ab oceano Sinens inter continentem & insulam Luca-
niam, alter à mari Indico inter continentem & insulam Borneo.
An æetus spatio horarum duodecim à mari Indico, & spatio ho-
rarum sex à mari Sinens per freta illa venientes, & sic in ho-
ram tertiam & nonam lunarem incidentes, componunt hujus-
modi motus; sitne alia marium illorum condition, observationi-
bus vicinorum littorum determinandum relinquo.

Haecenus causas motuum lunae & marium reddidi. De quan-
titate motuum jam convenit aliqua subjungere.
Felicius commentari non possumus ea quae tradit Autor nostrer de Maris estu, quod huius Propositioni subjungendo eas Dissertationes que Premio fuere condecorata ad Celebri Parisenso Societatem Academiam. Id quidem primum nobis fuerat propositum, ut ea quae in illis Dissertationibus momento...va viderentur & ad Newtonianae Philosophiae illustriam pertinere, breviter comprehendam. Notis adiiceremus; verum trunque ac ingenii nostrri viuo detrita exhibere haec Illustrissimarum Virorum scriptura meretis piguius, & non dubitavimus non melius consulteros turbam Lectionibus nostris, tum ipsis eorum scriptorum Authoribus, si qualia sunt edita hic illa inferemus; cumbque Authorum ad hypothetis abjectis factum est ut in Editione Parisina plurimum irepperint menta, nullo Errorum catalogo correpta, ea demonstrationibus ac calculis accuratse repetitis emendavimus, figuramque ads loca, quibus respondent, aptari curavimus.

Quotum quidem Dissertationes Parisinis typis fuerunt evulgatae, quorum prior a Patre Cavalliieris Jesuitis, secunda ad Daniele Bernoullio, tertia ad D. Mac-Laurino, quarta a Leonardo Eulerius, fuere ad Academiam miisse. Prior in eo occupatur ut Cartesiiae hypothesis circa efluxum esset marini visum & hiatus corrigit & refacit, quod quidem ingenio admodum praebat; tres relique ad Legibus gravitatis aquarum Maris in Solem, Lunam & Terram, omnes Phenomena propria circumstantias explicant & calculis determinantur: has ergo tres, omisso priore, hujus ess loci credibilius.

In Dissertatione Mac-Laurini occurrerit solutio synthetica Problematis de Figurâ Terræ, quae illud proposueramus in Notis nostris ad Prop. XIX. quodque parum felici successu Analytice solvere tentaveramus; ex eis diligentia patet Meridianum esset verum Elipsis in Hypothesi quod terræ sit homogenea: cùm autem hic in manus nostras non deveniret, nisi cùm non ad eam Propositionem XIX prælim subiessens, inde factum est ut in iis Notis de illo Problemate ut nondum soluto egerimus: Quæ in his tribus Dissertationibus ingenios ferunt, enumerare longius fuerint intelligits Lection que finit ipsi speranda a tantis Viris, & quod facilest, his intellectis & perlestit, futurus sit transire ad ea que sequuntur de Luna motu, de precessione æquinociorum, aliisque; Lectionem itaque rogamus ut nobis visum non versat, quod Typographo indulgerimus hac qualia sunt edere, ne, & ipse Lection & Typographus, cem pastur morum que ad condendum Epitome...
TRAITEM

SUR

LE FLUX ET REFLUX DE LA MER.

Par Mr. Daniel Bernoulli Professeur d'Anatomie & de Botanique à Basle.

Devise, Deus nobis hae ostia fecit.

Pour concourir au Prix de 1740.

CHAPITRE PREMIER.

Contenant une Introduction à la Question proposée.

I.

Dans le grand nombre des Systèmes sur le Flux & Reflux de la Mer, qui sont parvenus à notre connaissance depuis l'antiquité la plus reculée, il n'y a plus que ceux des Tourbillons & de l'Attraction ou Gravitation mutuelle des Corps célestes & de la Terre, qui partagent encore les Philosophs de notre temps : l'un & l'autre de ces Systèmes ont eu les plus grands Hommes pour Defs- feurs, & ont entraîné des Nations entières dans leur parti. Il semble donc que tout le mérite qui nous reste à espérer sur cette grande Question, eit de bien opter entre ces deux Systèmes, & de bien manier celui qu'on aura choisi pour expliquer tous les Phénomènes qu'on a observés jusq'ici sur le Flux & Reflux de la Mer, pour en tirer de nouvelles propriétés, & pour donner des uns & des autres les Calculs & les Mesures.

Tom. III.

S

II.
J'ai commencé d'abord par l'idée de Kepler, qu'on nomme avec justice de la vraie Philosophie. Elle est fondée sur l'Attraction ou Gravitation mutuelle des Corps célestes & de la Terre : cet incompréhensible & incontestable Prince, que le grand Newton a si bien établi, & qu'on ne saurait plus revoquer en doute, sans faire tort aux sublimes connaissances & aux heureuses découvertes de notre siècle. Après un examen fort scrupuleux, j'ai vu que cette Gravitation mutuelle, confédérée dans les Globes de la Terre, de la Lune & du Soleil, non seulement pouvait produire tous les Phénomènes du Flux & Reflux de la Mer, mais même qu'elle le devait nécessairement, & qu'elle le devait, suivant toutes les loix qu'on a observées jusqu'ici. Avec ces heureux succès, j'ai poussé mes recherches aussi loin qu'il m'a été possible de les porter. En chemin faisant, je suis tombé sur les Théorèmes de M. Newton, dont je n'avais pu guères voir la source auparavant ; mais en même temps j'ai remarqué le peu de chemin qu'on a encore fait dans cette matière, & même l'insuffisance de la Méthode usitée, lorsqu'elle est appliquée à des Questions un peu détaillées. J'ai suivi une toute autre route ; j'ai poussé mes recherches bien plus loin, & je suis entré dans un détail tel que l'Académie m'a parlé le demander ; & je dois dire à l'avantage des Principes que nous adopterons, que j'ai trouvé par tout un accord merveilleux entre la Théorie & les Observations, accord qui doit être d'autant moins suspect que je n'ai consulté les Observations, qu'après avoir achevé tous mes Calculs, de manière que je puis dire de bonne foi, d'avoir deviné la plupart des Observations, sur lesquelles je n'étois pas trop bien informé, lorsque j'ai entrepris cet Ouvrage.

Quant aux Tourbillons, j'avoué qu'il est bien difficile d'en demontrer le faux à ceux qui veulent s'obstiner à les défendre : mais aussi il n'en est pas de la Physique, comme de la Géometrie. Dans celle-ci on n'admet, ni ne rejette rien, que ce dont on peut absolument démonter la vérité ou la fausseté, pendant que dans la Physique il faut se reporter souvent à un certain instinct naturel de sentir le faux & le vrai, après avoir bien pesé toutes les raisons de part & d'autre. Quant à moi, je ne trouve point ce caractère de vérité, ni dans l'hypothèse des Tourbillons, ni dans les conséquences que l'on en tire. Si nous disons que le Tourillon a la même densité, la même direction & la même vitesse que la Lune, ce Tourillon ne saurait faire aucun effet ; & si au contraire
traitre nous supposons ces trois choses n'être pas les mêmes de part et d'autre, il me paroit bien clair et bien certain, que l'effet du Tourbillon devroit se manifeste infiniment davantage dans le mouvement de la Lune, que dans celui des Eaux de la Terre. Cependant on scot parfaitement bien que la Lune, quoique sujette à beaucoup d'irrégularités dans ses mouvements, n'en a aucune qui puisse être attribuée à l'action aussi sensible d'un Tourbillon. Si nous passons par deflis toutes ces différentes difficultés, nous en rencontrerons d'autres également embarrassantes. C'est contre les loix de l'Hydrostatique, que la Lune, qui nage dans le Tourbillon, puisse causer des variations dans la comprefion des parties du Fluide. C'est une propriété essentielle des Fluides de se remettre aussitôt à l'Equilibre, lorsque ses Parties en sont forties. Si une colonne de Tourbillon, entre la Lune & la Terre, étoit plus comprimée qu'une autre colonne semblable, rien ne scuairoit empêcher ses parties de s'échaper de côté jusqu'au retablissement de l'Equilibre. Qu'on s'imagine, par exemple, l'air de notre Atmosphère tout d'un coup extrêmement échauffé; ce changement ferait en même temps hauser à proportion le Mercure dans le Barometre, puisque l'air chaud a plus de ressort que l'air froid; mais comme rien n'empêche l'air de s'échaper de côté jusqu'à la parfaite conservation de l'Equilibre, cela fait qu'un tel changement n'en scuairoit faire aucun sur le Baromètre; aussi n'observez-t-on dans le Baromètre aucune variation du jour à la nuit, qui cependant, par un raisonnement tout-à-fait semblable à celui des Tourbillonnaires pour expliquer les Mareses, devroit être très-sensible. Pareillement si les eaux d'une Rivière donnent contre un piquet, on ne remarquera aucune différence dans la surface des eaux, que bien près du piquet, & le fond du lit de la Rivière sera toujours également pressé. En voilà assez & trop sur cette matière; car ce sera toujours aux Seclateurs de Descartes de montrer l'effet des Tourbillons sur l'Ocean, avec la même clarté qu'on peut le faire, moyennant le principe de Kepler, principi d'ailleurs qui n'est plus contesté; & savoir, que la Terre & tous les Corps célestes ont une tendance mutuelle à s'approcher les uns des autres. Ce principe posé, il est facile de faire voir, que la Terre que nous supposerons devoir être sans cette tendance parfaitement ronde, en changera continuellement la figure, & que c'est ce changement de figure qui est la cause du Flux & Reflux de la Mer: Comme ce changement dans la Figure de la surface de la Terre est produit de différentes façons, j'en serai ici un dénombrement, & je tâcherai dans la suite d'en donner la mesure.
SI A est le centre de la Lune, ou du Soleil, $BGDH$ la Terre, si l'on tire par les centres de la Lune ou du Soleil & de la Terre la droite AD, & qu'on prenne au dedans de la Terre un Point quelconque F, on tirera FE perpendiculaire à BD, avec la droite FA, & on achevera le Rectangle $FLAE$. Chaque point F est tiré ou poussé vers A, & cette force étant représentée par FA, elle sera considérée comme composée des deux Lateralles FL & FE: cela étant, on voit que la force FE étant appliquée dans chaque point de la Terre, ne fera que l'allonger autour de BD: & comme c'est une même raison pour tous les Plans qui passent par BD, il est clair que la Terre formera ainsi un Sphéroïde produit par la rotation d'une Courbe BGD autour de BD.

On remarquera que cet allongement ne fera qu'extrêmement petit. Premièrement, à cause de la petiteur des Lignes FE par rapport à FA. En second lieu, à cause du peu de rapport qu'il y a entre la pesanteur du Point F vers A, à la pesanteur du même Point vers le centre de la Terre C. Nous verrons dans la suite que cet allongement ne peut aller qu'à un petit nombre de pieds, ce qui est fort peu considérable, par rapport au Diamètre de la Terre.

On remarquera encore, que l'allongement total étant imperceptible par rapport au Diamètre de la Terre, la différence des allongements pour l'Hémisphère supérieur GBH, & pour l'Inferieur GDH, doit être infensible par rapport à l'allongement total; à la rigueur, il faudroit dire, que les forces exprimées par FE, sont tant soit peu plus grandes dans l'Hémisphère GBH, que dans l'Hémisphère opposé, dont les parties sont plus éloignées du point A, & qu'aussi le dit Hémisphère GBH sera un peu plus allongé que l'autre Hémisphère: mais on fera bien voir que la différence doit être infensible. On peut donc prévoir que les Poles B & D resteront également éloignés du Point C, & que la Courbe GBH pourra être censée la même que GDH. Nous donnerons un Calcul justifié & détaillé de tout cela dans la suite de ce Traité.

Ver...
ET REFLEX DE LA MER.

Venons à une seconde considération, qui produira le même résultat que celle dont nous venons de parler.

V.

Comme la Terre tâche continuellement à s'approcher du Soleil & de la Lune, il faut qu'il y ait en même temps d'autres forces qui la retiennent, & ce sont les forces centrifuges de la Terre, qu'elle a par son mouvement autour du Soleil, & autour du centre de Gravité (je l'appelle ainsi pour me conformer à l'usage) qui est entre la Terre & la Lune. Je démontrerai aussi ci-dessous, que cette force centrifuge doit être supposée égale dans toutes les parties de la Terre, & parallèle à la Ligne \(AD \), pendant que l'autre force se répand inégalement sur les parties de la Terre. Elle est plus grande dans les parties les plus proches de \(A \), & plus petite dans les parties qui en sont plus éloignées, & ce la en raison quarrée reciproque des Distantes. Cette raison supposée, le Calcul fait voir, que pourvu que les Couches concentriques de la Terre autour du Point \(C \), soient homogènes, la force moyenne, qui pousse les parties de la Terre vers \(A \), est précisément celle qui répond au centre de la Terre \(C \), & que c'est dans ce centre \(C \), où la force centrifuge est précisément égale à la force centripète. Ainsi chaque partie qui est entre \(C \) & \(B \), est plus poussée vers \(A \), qu'elle n'est repoussée ; & au contraire chaque partie située entre \(C \) & \(D \), est moins poussée vers \(A \), qu'elle n'est repoussée ; de sorte qu'en s'imagoit de deux Canaux communicant entre eux \(GH \) & \(BD \), on voit que chaque goutte dans la partie \(CB \), est tirée vers \(A \), & que chaque goutte dans la partie \(CD \), est poussée dans un sens contraire. Cela diminue l'action de la pesanteur vers le centre de la Terre dans le Canal \(BD \), pendant que cette même pesanteur n'est pas diminuée dans le Canal \(GH \), d'où il arrivera encore un allongement autour de l'Axe \(BD \), que je m'étois propoé de faire voir.

Le Calcul montre que cette raison est enfoi-même de fort peu d'importance ; qu'elle ne sauroit allonger l'Axe \(BD \) considérablement. Mais son résultat est affez comparable avec celui de l'allongement exposé auparavant. On prévoit d'ailleurs encore que l'allongement produit par cette raison, doit être égal dans les Canaux \(BC \) & \(CD \), la différence ne pouvant être sensible ; & ainsi les Points \(B \) & \(D \) resteront encore également éloignés du centre \(C \).

V I.

Une troisième raison, qui peut allonger davantage l'Axe \(BD \), est que par l'allongement même, produit par les deux causes précédentes, la
la pefanteur terrestre qui fait descendre tous les Corps vers le centre C, est changée. Cette pefanteur peut être considérée comme égale dans les Canaux G C & B C, ou D C à des Distances égales du centre C, tant que la Terre est supposée Sphérique; mais cette Sphéricité ôtée, il est naturel que cette égalité ne pourra plus subsister. Il est aussi vraisemblable que la pefanteur est diminuée dans les Canaux C B & C D, & qu'ainsi l'Axe doit encore être prolongé. Pour calculer cet allongement, nous aurons recours au Système de M. Newton, qui supposa la pefanteur produite par l'Attraction commune de la matière en raison quadrée reciproque des Distances. Ce n'est pas que je croye cette hypothèse bien démontrée; car la conclusion de la Gravitation mutuelle des Corps du Système du Monde en raison quadrée reciproque des Distances, qu'on ne saurait plus nier, à une semblable attraction universelle de la matière, de laquelle M. Newton déduit la pefanteur; cette conséquence, dis-je, demande beaucoup d'indulgence. Mais je l'adopterai pour ce sujet, parce que tous les autres Systèmes sur la pefanteur me faisoient inutiles: c'est le feu, qui étant du ressort de la Géométrie, donne des mesures assurées & fixes; & il est d'ailleurs digne de l'attention de tous les Géometres & Physiciens.

V I I.

Les trois causes que je viens d'exposer, comme pouvant & devant allonger la Terre autour de la Ligne qui passerait par le centre du Soleil & de la Lune, sont d'une force assez égale; de sorte qu'il faudra tenir compte de toutes, quoique chacune soit si petite, qu'elle ne saurait allonger la Terre au delà d'un petit nombre de pieds, & peut-être moins d'un pied. Il fera bon de remarquer ici que ce qui, après le Calcul, exprime lesdits allongements, est toujours un certain multiple, ou sous-multiple de \(\frac{b_g}{a_G} \times b \), entendant par \(b \) le rayon de la Terre, par \(a \).
ET REFLUX DE LA MER.

la distance du luminaire en question, & par \(\frac{g}{G} \) la raison qui est entre

la pesanteur d’un Corps placé en B vers A, & la pesanteur vers C, laquelle raison est extrêmement petite.

J’ai jugé à propos d’aléger ici cette Formule, que le Calcul m’a enseigné, afin que ceux qui voudroient le faire après moi, se sachant d’abord quels termes on peut rejeter, comme inutiles, qui rendent les Calculs extrêmement pénibles, & qui se trouvent au bout du Calcul, n’être d’aucune importance. Ce seroit une chose ridicule, de vouloir faire ici attention à des parties d’une Ligne qui proviendroient, si ladite quantité \(\frac{b \times b}{a \times G} \) etoit encore multipliée par \(\frac{b}{a} \), ou par \(\frac{g}{G} \).

VIII.

Notre dessein est d’abord de chercher & d’exprimer analytiquement les allongemens dont nous venons de parler. On peut les trouver par rapport aux deux premières causes, indépendamment de la Figure de la Terre ; mais par rapport à la troisième cause exposée au sixième Article, il faut supposer la Terre, c’est-à-dire, le Méridien \(BGDH \) d’une Figure donnée ; & c’est l’hypothèse la plus naturelle de la supposer elliptique, ayant pour Axes les Lignes \(BD & GH \); quelle qu’elle soit, elle n’en fâcheroit être sensiblement différente, & si elle l’étoit, cela ne fâcheroit produire un changement bien considérable sur le rapport des deux Axes \(BD & GH \), que nous cherchons. Outre cela nous verrons que c’est ici un Problème, qui dépend encore de la loi des changemens dans les Denstés des couches de la Terre. M. Newton supposa la Terre par-tout homogene. Il ne l’a fait apparentem, que pour faciliter le Problème, qui est assez difficile dans toute autre hypothèse. Mais cette supposition de M. Newton n’a aucune vraisemblance ; je dirai même, qu’elle seroit fort peu favorable à notre Système, comme nous le verrons dans la suite. C’est pourquoi je n’ai pas voulu restreindre si fort la Solution du Problème en question. J’ai cru que je payerois trop cher l’avantage d’applanir les difficultés du Problème, & les peines du Calcul. J’ai donc rendu notre Question infiniment plus générale, pour en tirer tous les Corollaires, & pour choisir ceux qui conviennent le plus à notre sujet, & qui rendront par-là même plus vraisemblables les hypothèses, auxquelles ils appartiennent.

IX.

Voici à présent nos hypothèses. Nous considerons la Terre, comme
me naturellement sphérique, & composée des couches concentriques : Nous supposerons ces couches homogènes, chacune dans toute son étendue ; mais qu’elles sont de différentes Densités entre elles, & que la loi des variations de leur Densité soit donnée. Quant à la Sphericité de la Terre, que nous supposerons, on voit bien qu’il feroit ridicule de s’y arrêter, puisque l’élevation des eaux de l’Océan, causée par les deux Luminaires, ne sauroit différer sensiblement, que la Terre soit un peu aplatie, ou un peu allongée. La supposition de l’Homogénéité des couches concentriques, ne doit pas non plus nous faire de la peine, puisqu’on ne sauroit donner aucune raison, pourquoi elles devraient être hétérogènes.

CHAPITRE II.

Contenant quelques Lemmes sur l’Attraction des Corps.

I.

Je prie encore une fois le Lecteur, de ne considérer ce Chapitre, que comme hypothétique. Je ne suppose l’Attraction universelle de la matière, que parce que c’est la seule hypothèse, qui admette des Calculs, et qu’elle est d’ailleurs assez bien fondée, pour mériter l’attention de tous les Philosophe du monde.

On appelle au reste Attraction qu’exerce un Corps A sur un Corps B, la force accélératrice, que le Corps B acquiert à chaque instant, en tombant vers A. On voit donc que l’effet de l’Attraction du Corps A sur le Corps B, est de communiquer à celui-ci une pesanteur, qu’on suppose proportionnelle à la masse du Corps A divisée par le quarré de la Distance ; et cette pesanteur doit encore être multipliée par la masse du Corps B, pour avoir la force que ce Corps exerce s’il est empêché de s’approcher du Corps A.

PROBLEME.

II.

Soit une couche sphérique homogène, infiniment mince, & d’une épaisseur égale, comprise entre les surfaces sphériques M N O R & P Q L S, trouver l’Attraction, ou la force accélératrice, que cette couche exercera sur un Corps placé au point B, pris hors de la surface extérieure.

Solu-
ET REFLUX DE LA MER.

SOLUTION.

Qu'on tire la droite BO par le Point B & le Centré C, dans laquelle on prendra deux Points infiniment proches F & I: on tirera ensuite les deux Perpendiculaires JL & IL, & par les Points L & I, on tirera du centre les droites CN & Cn. Soit à présent $CB = a$; $CJ = x$; $JI = dx$; $CP = b$; PM ou LN (que nous regardons comme infiniment petite) $= c$: la Densité de la matière de la couche $= m$.

On voit que pendant la révolution autour de l'Axe MO, la petite partie $NLIa$ garde toujours une même Distance du Point B, & que cette Distance sera $= \sqrt{(aa - 2ax + bb)}$: or, comme il faut toujours diviser par le Quarré des Distances, il faudra pour trouver la force accélératrice en question d'abord prendre

\[
\frac{1}{aa - 2ax + bb},
\]

et cette quantité doit être multipliée par la raison de BI à BL, & on aura $\frac{a - x}{(aa - 2ax + bb)^{\frac{1}{2}}}$: & cette quantité doit encore être multipliée par la Masse de l'Anneau; que la partie NLI forme par la révolution, & la Masse doit être exprimée par la Densité m & la capacité de l'Anneau, c'est-à-dire (en nommant n la raison de la circonférence d'un Cercle à fon rayon) par $m \times NLI \times LLI \times n \times LI$: ou

par $m \times \frac{b}{\sqrt{(bb - xx)}} \times n \times \sqrt{(bb - xx)}$ ou enfin par $nm b \times dxx$ de forte qu'on a la force accélératrice absolue produite par le dit Anneau $nmbc(a-x)dx = \int nm b \times (aa - 2ax + bb)^{\frac{1}{2}}$, dont l'Intégrale exprimera l'Attraction cherchée de toute la couche. Pour trouver cette Intégrale, nous supposerons $aa - 2ax + bb = y y$, & nous aurons $\int nm b \times (aa - 2ax + bb)^{\frac{1}{2}} = \int nm b \times (2ax - 2bb + yy)dy$

\[
\frac{nmbc}{2aa} \times \left(\frac{aa - bb - yy}{y} + C\right) = \frac{nmbc}{2aa} \times \left(\frac{2ax - 2bb}{\sqrt{aa - 2ax + bb}} + C\right),
\]

entendant par C une Constante convenable: pour la trouver il faut remarquer que l'Intégrale doit être $= 0$, lorsque $n = b$, d'où l'on tire

Tom. III.
TRAITÉ SUR LE FLUX

CHAP. I.

C = \frac{2ab + 2bb}{a + b} = 2b ; substituant cette valeur, on obtient pour l'intégrale en question \(\frac{nmbbc}{aa} \left(\frac{ax - bb}{\sqrt{aa - 2ax + bb}} + b \right) \), & mettant enfin b à la place de x, on obtient la force accélératrice cherchée = \(\frac{nmmbbc}{aa} \).

C. Q. F. T.

COROLLAIRES.

III.

Comme la quantité de la matière déteint la couche (pour laquelle nous venons de déterminer la force accélératrice, qu'elle exerce sur le Corps placé au point B) est = \(\frac{nmmbbc}{aa} \), nous voyons que cette force accélératrice est exprimée par la quantité de matière divisée par le quart de la Distance du Point B au Centre C, & par conséquent la même, que si cette quantité de matière était concentrée au Centre.

SCHOLIE.

IV.

On remarquera que cette Solution n'a lieu, que lorsque le Point B est placé hors de la couche, parce que dans notre Calcul nous avons supposé, que chaque Anneau formé par la révolution de la partie N L I n produit une force accélératrice du même côté, ce qui n'a plus lieu, lorsque le Point B est placé entre les deux surfaces, ou au-dedans de la surface intérieure. Je ne dirai rien de ces deux cas, dont chacun demande une Solution particulière, parce que nous n'en aurons pas besoin, & qu'ils ont déjà été résolus par l'Auteur de ces Problèmes. Je n'aurai même rien dit du cas que nous venons de résoudre, comme pareillement résolu par M. Newton, si je n'avais pas cru, qu'il était convenable de suivre toutes les traces qui nous mènent à l'intelligence de notre Question principale : aussi ces précautions sont-elles nécessaires, pour pouvoir toujours exprimer d'une même façon les Quantités constantes ; & ainsi nous nous souviendrons toujours dans
dans la suite d'exprimer la force accélératrice d'un Corps infinitésimel petit, par la Masse divisée par le carré de la Distance, & de dénoter la Masse par le produit de son étendue, & de sa Densité.

PROBLEME.

V.

Trouver l'Attraction pour un Corps placé en B, causée par une Sphere solide, composée de couches homogènes ; mais de différentes Densités entr'elles.

SOLUTION.

Il paraît par le troisième Article, qu'on n'a qu'à concevoir la Masse de toute la Sphere ramassée au Centre C, & qu'elle causera la même Attraction, tant que le Point B est hors de la Sphere ; nommant donc M la Masse du Globe, ou la somme des Masses de toutes les couches, l'Attraction cherchée sera $\frac{M}{a^2}$. C. Q. F. T.

PROBLEME.

VI.

Soit BGDH une Ellipse presque circulaire, c'est-à-dire, dont la différence des Axes BD & GH soit regardée comme infinitésimale petite ; & qu'on conçoive cette Ellipse former par sa rotation autour de l'Axé BD, un Sphéroïde homogène. On demande la force accélératrice, ou l'Attraction que ce Sphéroïde produira sur un Corps placé au Pole B.

SOLUTION.

Soit la Densité de la matière exprimée par \(\rho \); le petit demi Axé GC = b; le grand demi Axé BG = b + c; BJ = x; JI = d x; on aura la perpendiculaire LI = \(\frac{b + c}{k} \times \sqrt{\frac{1}{2}(b + c) - x b} \). On voit facilement...
TRAITEMENT * que l’Attraction causée par la couche, qui répond au rectangle $L J i l$, est $= n \mu d x - n \mu d x \times \frac{b}{b' L}$, c’est-à-dire, par $n \mu d x = n \mu d x$:

$$\sqrt{x + \frac{b}{2b + x} + (2 b + x - 2 b)} \times (2 b + x + 2 b + x + 2 b + x)$$
ou par $n \mu d x = (b + c) n \mu d x$:

$$\sqrt{(2 b + c + x + 2 b + c + x + 2 b + c + x)} - \frac{1}{2}$$

Donc cette dernière quantité, nous rejetons le terme $c c x$, comme devant être comparé aux infiniment petits du second ordre, & nous changerons le signe radical du dénominateur en signe exponentiel de numérateur ; & de cette manière nous aurons $n \mu d x = (b + c) n \mu d x (2 b + x + 2 b + c x + 2 b + c x) - \frac{1}{2}$

on le fait par la formation des suites de M. Newton,

$$\sqrt{2 b + x + b b + x}$$

$$(b + c + x + b b + x)$$

Substituant donc cette valeur, on obtient $n \mu d x = (b + c) n \mu d x (2 b + x + b b + x)$, qui marque l’action de la couche formée par la rotation du rectangle $L J i l$ à la place de cette quantité, on peut encore, en multipliant les quantités à multiplier, & rejetant les termes affectés de la seconde dimension de c, poser $n \mu d x = \frac{n \mu d x}{\sqrt{2 b}} - \frac{c c n \mu d x}{2 b b} + \frac{c c n \mu d x}{2 b b \sqrt{2 b}}$, & l’intégrale de cette quantité (qui doit être $= 0$, lorsque $x = 0$) est $n \mu x = \frac{2 n \mu x}{3 \mu x} - \frac{c c n \mu x}{3 b b} + \frac{c c n \mu x}{2 b b \sqrt{2 b}}$.

Les hypothèses étant les mêmes, que dans la proposition précédente, trouver la même chose pour un petit corps placé en G, qui est sous l’équateur de l’ellipsoïde.

PROBLÈME.

VII.

Les hypothèses étant les mêmes, que dans la proposition précédente, trouver la même chose pour un petit corps placé en G, qui est sous l’équateur de l’ellipsoïde.

SOLUTION.

Il est facile de démontrer par la géométrie, que toute section de l’ellipsoïde parallèle à l’axe de rotation $B D$, fait une ellipse semblable.

* Ceci se trouve démontré par le Cor. 1. de la Prop. XC. du Livre de Mr. Newton ; on y voit que l’Attraction du point B par le Cercle dont $L J$ est le rayon, est $\frac{b}{B J}$ qu’il faut multiplier par la masse du petit cylindre dont ce cercle est la base & dont $J J$ est la hauteur, pour avoir l’Attraction causée par la couche qui répond au rectangle $L J i l$.

ble à l'Ellipsé génératrice B G D H. Considérons l'Ellipsoïde comme CHAP. composée de la Sphère inscrite, ayant pour Diamètre le petit Axe II. G H, et de l'écorce formant un double Menisque : l'action de la Sphère doit être exprimée par \(\frac{3}{2} \pi \mu b \), comme nous avons démontré au 5. §.

Car la Sphère de cette Sphère est \(\frac{3}{2} \pi \mu b \), et la distance du Point G au centre est \(b \). Il nous reste donc à chercher quelle action résulte du double Menisque.

Concevons pour cet effet tout l'Ellipsoïde partagé en couche parallèles & perpendiculaires à G H. Soit la distance du centre d'une de ces couches au Point G = \(x \); son épaisseur = \(dx \); il n'est pas difficile de voir * que la capacité du bord de cette couche (qui fait partie du double Menisque en question) est \(\frac{\pi c}{2b} \times (2b x - x \sqrt{x}) \) \(dx \), & que ce bord étant multiplié par la Densité \(\mu \), en donne la quantité de matière = \(\frac{\pi c}{2b} \times (2b x - x \sqrt{x}) \) \(dx \). Or toutes les parties de ce bord infinitésimale mince, peuvent être cenfées agir également, & avec une même obliquité sur le Corps placé au point G ; on n'a donc qu'a multiplier cette quantité de matière par la raison de la distance du centre de la couche au Point G à la distance du bord de la couche au même Point G, & diviser par le carré de cette Distance, pour avoir l'attraction du bord de la couche, qui sera donc

\[
\frac{\pi c}{2b} \times \left(2b x - x \sqrt{x}\right) \frac{dx}{\sqrt{2b x}}
\]

\(\frac{1}{2b x} \), ou bien

\[
\frac{\pi c}{4b^2 \sqrt{2b}} \times (2b x - x \sqrt{x})
\]

dont l'intégrale est

\[
\frac{\pi c}{4b^2 \sqrt{2b}}
\]

\(x \times (\frac{2}{b} x \sqrt{x} - \frac{1}{2} x \sqrt{x} \sqrt{x}) \) puisqu'il ne faut point ajouter ici de constante ; & pour avoir enfin l'Attraction de tout le double Menisque, il faut mettre \(x = 2b \), après quoi on aura simplement \(\frac{1}{2} \pi \mu c \). Si on ajoute à

\[
\frac{3}{2}
\]

* Car l'aire de l'Ellipsoïde dégénérée de G de la quantité \(x \) est \(\frac{\pi c}{2b} \times (2b x - x \sqrt{x}) \)

& l'aire du Cercle inscrit est \(\frac{\pi c}{2} \times (2b x - x \sqrt{x}) \). Donc étant cette aire du Cercle de celle de l'Ellipsoïde reste \(\frac{\pi c}{2b} \times (2b x - x \sqrt{x}) \) pour l'aire de Menisque.
à cette quantité l’action de la Sphere inscrite, on aura l’attraction cherchée
de tout l’Ellipsoïde sur un Corps placé au Point $G = \frac{3}{2} n \mu b + \frac{1}{5} n \mu c$.
C. Q. F. T.

COROLLAIRE.

VIII.

On voit par ces deux dernières Propositions, que les forces accélératrices au Pole, & sous l’Equateur dans un Ellipsoïde homogène, sont
comme $\frac{3}{2} n \mu b + \frac{1}{5} n \mu c$ à $\frac{3}{2} n \mu c + \frac{1}{5} n \mu c$, ou comme $5b + c$ à $5b + 2c$,
laquelle raison peut passer pour celle de $1 + \frac{c}{5b}$. Je vois que cela
est conforme à ce que M. Newton dit à la page 380. *des Princip.
Math. Phil. Nat. Edit. 2. pour déterminer la Proportion de l’Axe de
la Terre au rayon de son Equateur. Quant à son raisonnement, il
n'y a peut-être que lui, qui peut y voir clair; car ce grand Homme
voyoit à travers d'un voile, ce qu'un autre ne distingue qu'à peine
avec un Microscope.

LEMME.

Dans un Sphéroïde elliptique homogène, la force accélératrice pour
un Point quelconque, est à la force accélératrice pour un autre Point
pris dans le même Diamètre, comme la distance du premier Point au
centre, à la distance parelle du second Point.

† M. Newton a démontré cette Proposition à la 199. page de son Li-
vre, que nous venons de citer: & comme il ne s'agit ici que de la pro-
portion entre les deux forces accélératrices, sans qu'il soit question de
les exprimer analytiquement, il feroit superflue, pour mon dessein, de
la démontrer à ma façon.

PROBLEME.

X.

Soit encore le double Menisque, tel que nous l’avons décrit au se-
ptième Article, compris entre la surface de l’Ellipsoïde $GBDH$, & $GBHd$,
qui marque la surface de la Sphere inscrite; il s’agit de trouver la for-
se accélératrice, que ce double Menisque produira au point E, pris dans
l’Axe de rotation BD.

SOLUTION.

Nous garderons les dénominations de ci-dessus: or on voit qu’on
trouvera l’action du double Menisque, en prenant celle de tout l’Ellipsoïde
considéré comme homogène avec les Menisques, & en retranchant celle
de la Sphere inscrite. L’action de tout le Sphéroïde est en vertu des

* Ceci se rapporte à la page 80. & suiv. de ce Volume, & nous avons essayé d’éclaircir cet endroit de M. Newton dans la Note (x) & suivantes.
† C’est le Cor. 3. de la Prop. XCL. du Livre 1er. vol. 1er, pag. 512.
6 & 9. Articles $= (\frac{1}{2}n\mu b + \frac{3}{2}n\mu c)$

- $\times \frac{CE}{CB}$, & celle de la Sphere $= \frac{3}{2}n\mu b \times \frac{CE}{CB}$; de là on tire la force accélératrice, qui convient aux Menîques $= \frac{3}{2}n\mu b + \frac{3}{2}n\mu c$)

- $\times \frac{CE}{CB} - \frac{3}{2}n\mu b \times \frac{CE}{CB}$. Substituons à la place de $\frac{CE}{CB}$ cette quantité $\frac{CE}{CB} - \frac{3}{2}n\mu b$, qui peut être considérée égale à $\frac{CE}{CB} + \frac{BBxCE}{CB^3}$ (à cause que nous traitons la petite Bb, comme infiniment petite, par rapport à CB) & nous trouverons la force accélératrice pour les Menîques

$$= \frac{3}{2}n\mu c \times \frac{CE}{CB} - \frac{3}{2}n\mu b \times \frac{BB \times CE}{CB^2} = \frac{3}{2}n\mu b \times \frac{CE}{CB} - \frac{3}{2}n\mu c \times \frac{CE}{CB}$$

(puisque $\frac{BB \times CE}{CB^2} = \frac{c}{b} = \frac{c}{b}$) = $\frac{1}{2}n\mu c \times \frac{CE}{CB}$ C. Q. F. T.

Corollaire.

XI.

Le Signe négatif fait voir, que la Gravitation au Point E, causée par l'action des deux Menîques, se fait vers le Pole B, & non vers le Centre C. Au reste on remarquera, que cette Proposition n'est vraie que pour les Points compris entre $C & b$, en excluant tous les Points qui sont au-delà de b; & cela à cause que le Lemme du g. §. ne s'applique pas à trouver la force accélératrice causée par l'action de la Sphere pour le Point E, si ce Point est pris hors de la Sphere inscrite au Sphéroïde. Ainsi par exemple, au point B, la Gravitation causée par les Menîques se ferait vers le Centre avec une force accélératrice $\frac{3}{2}n\mu c$. Je restreins ces Propositions, quoique ma Méthode suffise pour des solutions beaucoup plus générales; & cela pour ne m'engager dans des longueurs qui nous meneraient au-delà de notre sujet.

Problème.

XII.

Trouver la même chose que dans l'Art. X. pour un Point quelconque F, pris dans une Ligne GH perpendiculaire à BD.

...
CHAPITRE III.

Contenant quelques Considerations Astronomiques & Physiques ; préliminaires pour la Détermination du Flux & Reflux de la Mer.

Comme le Flux & Reflux de la Mer dépendent de la Lune & du Soleil, on voit bien que notre sujet demande une exacte Théorie du mouvement de ces deux Luminaires. Quant au mouvement apparent du Soleil, on le connoit avec toute l'exactitude requise ici. Mais on est encore bien éloigné de savoir avec la même précision la Théorie de la Lune, qui est cependant d'une plus grande importance. Une idée qui m'est venue là-dessus, d'employer le principe de la conservation de ce que l'on appelle communément Forces Vives (principe déjà employé sous un autre nom par le grand & incomparable M. Huyghens, pour trouver les Loix du choc des Corps parfaitement élastiques, & auquel on est redevable d'une grande partie des connaissances nouvelles dans la Dynamique, tant des Fluides, que des Solides :) Cette idée, dis-je, m'a conduit par un chemin fort abrégré, à déterminer beaucoup plus...
plus exactement, que l'on n'a fait jusqu'ici, les mouvements de la Lune, que l'on appelle communément irréguliers, mais qui sont tous sujets aux loix Mécaniques. Je m'étois propoçé d'inferer ici ma nouvelle Théorie sur la Lune ; mais, comme notre sujet n'est déjà que trop étendu, & qu'il demande des disuctions affectez penibles, je la différemerai à une autre occasion, où je la donnerai en forme d'Addition, si l'Académie trouve ce Traité digne de son attention. Je ne ferai donc ici qu'indiquer en gros les connaissances tirées de le Système du Monde, qui servent à donner un Système général du Flux & Reflux de la Mer ; & quand nous viendrons au détail, nous supposerons les mouvements de la Lune parfaitement connus.

I I I.

On sait que la Lune & la Terre sont un Système à part : l'un & l'autre de ces Corps tournent autour d'un Point, & font leur revolution dans un même temps, décrivant chacun une Ellipse : l'action du Soleil sur l'un & l'autre Corps, change un peu ces Ellipises, & fait mème que la proportion des distances du dit Point aux Centres de la Lune & de la Terre, ne demeure pas exactement le même : mais, comme nous ne prétendons jusqu'ici que d'exposer en gros les choses nécessaires à notre Question, nous ne ferons point d'attention à ces inegalités, & considérerons la Terre & la Lune, comme faisant des Ellipises parfaites & semblables entre elles autour d'un même Point.

I I I.

Par la dite Revolution, les deux Corps tachent à s'éloigner l'un de l'autre ; & cet effort est contrebalancé par leur Gravitation mutuelle : & comme la Terre fait autant d'effort pour s'approcher de la Lune, que celle-ci en fait pour s'approcher de la Terre, il faut que les forces centrifuges soient aussi égales : d'où il suit que le Point autour duquel ces deux Corps tournent, doit être placé, en forte que les forces centrifuges soient égales : c'est là la premiere idée. Il vaudroit donc mieux appeller ce Point, Centre des Forces centrifuges, ou bien, puisque les vitesses gardent dans notre hypothèse une proportion constante, Centre de Masse, que Centre de Gravité. Il est vrai que ces mots reviennent au mème, à prendre celui du Centre de Gravité dans le sens commun : Mais quelle idée y peut-on attacher, lorsque la pesanteur est inégale dans les différentes parties du Corps ? Il n'y a aucun Point alors, qu'on puisse nommer tel, quelque définition qu'on donne à ce mot. Quoi qu'il en soit, il est certain que les distances du Point en question aux Centres de la Terre...
Si la Lune & la Terre étoient des Corps parfaitement homogenes dans toute leur étendue, ou du moins chacun compose de Couches concentriques parfaite ment homogenes, & qu'ils fussent parfaitement sphériques, sans avoir aucun mouvement, imprime originellement, ou produit par une Cause Physique, autour d'un Axe passant par leur propre Centre de Gravité, il est clair, que toutes les parties des Corps garderoinient pendant leur Revolution un Paralléllisme; de sorte que les deux Corps vus du Centre de Gravité commun, paroîtroient faire précisément le tour en sens contraire autour d'un Axe perpendicular au plan des Orbites, pendant chaque Revolution des Corps. Cependant cela ne se fait point dans la Lune: car nous savons qu'elle nous montre confamment une même face (je ne fais pas encore attention à quelques legers changemens;) & cela est contraire au Paralléllisme, que nous venons d'alléger: quoique ce ne soit pas ici proprement l'endroit pour expliquer ce Phénomene de la Lune, je ne laisserai pas de le faire, pour nous préparer à ce que nous aurons à dire sur la Terre, comme essentiel à notre matière.

Considérons donc, que la parfaite Homogénéité dans les Couches concentriques de la Lune, aussi bien que la parfaite Sphéricité, font moralement impossibles; mais il n'est pas encore expliqué, comment on peut déduire de là, pourquoi la Lune nous montre toujours une même face. Il ne suffit pas de dire que le Centre de Gravité de la Lune pris dans le sens commun, tâche toujours à s'éloigner, le plus qu'il est possible, du Centre de Revolution. Quelques inégalités que fussent les Couches, & quelque irrégularité que fut la Figure, la Lune garderoit toujours le Paralléllisme des Faces, s'il n'y avait pas une autre raison; savoir, celle de l'inégalité de pesanteur de ses Parties vers la Terre: les parties ayant d'autant plus de pesanteur, qu'elles sont plus près de la Terre: c'est cette raison, qu'il faut joindre à l'une des deux autres, ou à toutes les deux ensemble; de sorte que quand même la Lune ferait parfaitement homogene, sa seule Figure, jointe à l'inégalité de pesanteur de ses Parties vers le Centre de la Terre, pourroit même produire le Phénomene en question.

Soit A le Centre de la Terre: B C F D, par exemple, une Ellipse, dont l'Axe B F soit le plus grand, & C D, le plus petit: qu'elle Ellipse forme par la Revolution autour de l'Axe B F, le Corps de la Lune
ne. Supposons après cela la Lune homogène & mobile autour de son Centre E, & servons-nous de l'hypothèse ordinaire, que la pesanteur de chaque partie de la Lune vers A, soit en raison quartrée réciproque des distances au Point A. Cela étant, je dis, que la Lune montrera constamment au Point A la Face C B D, & que l'Axe F B passera toujours par le Point A, & que la Lune reprendroit cette situation, dès qu'elle en feroit de nouvelle. Comme cette matière est assez intéressante, tant pour l'Astronomie, que pour la Physique, je l'expliquerai par un exemple, qui rendra forçablement tout ce que nous venons de dire. Je dis donc qu'on doit regarder, à cet égard, la Lune, comme un Corps flottant dans un Fluide; car les parties d'un tel Corps, sont parcellairement animées de différentes pesanteurs: or on faisait qu'un Corps flottant, qui n'est pas sphérique, ou qui estant tel, n'est pas homogène, n'est pas indifférent à chaque situation; mais qu'il affecte constamment de certaines situations, qu'il reprend aussi-tôt qu'il en a été détourné. Quelquefois le Corps n'a qu'une seule situation d'Equilibre; d'autres fois plusieurs, suivant la structure du Corps: Mais on se tromperait toujours, si l'on croyoit, que le Centre de Gravité du Corps tâche à se mettre dans l'endroit le plus bas qu'il est possible; de même qu'on se trompe, en disant, que le Centre de Gravité de la Lune, tâche à s'éloigner, le plus qu'il est possible, du Centre de la Terre. On voit donc aisez, que la cause principale de ce que la Lune nous présente toujours une même face, est l'inégalité de pesanteur; & à cette cause, il faudra joindre, ou la non-parfaite Sphéricité, ou la non-parfaite Homogénéité des Couches de la Lune, ou les deux causes à la fois.

V 1.

Comme la Question que nous venons d'expliquer, entraîne celle d'une légère mutation de la Lune en Longitude, que les Astronomes ont observée, il ne sera pas hors de propos de faire voir comment cette mutation découle de notre Théorie. Nous avons vu que le Sphéroïde C B D F mobile autour d'un Point E, doit toujours montrer au Point A la Face E B D tant que le Point E reste dans sa place. Supposons à présent, que ce Corps s'éloigne un peu de cette situation, en faisant une rotation infiniment petite autour du Point E, la force qui tend à, la remettre dans la situation naturelle, est de même infiniment petite; ce qui fait voir,
que le Point E faisant sa révolution autour du Point A, ce ne fûturoit plus être exactement la Face CBD, qui regarde vers A, parce qu'à chaque petit mouvement du Point E, la Lune fait une petite rotation autour de ce Point, pour garder le Parallélisme, & la force qui tâche à tourner vers le Point A la Face CBD, étant encore infiniment petite, ne fûturoit s'en acquitter assez-tôt; & ce sera la même chose pendant que le Point E parcourt un second Élement, & ainsi de suite, jusqu'à ce qu'à la fin la Lune se place assez obliquement, pour que la force, qui tâche à mettre la Lune dans la situation naturelle, soit assez grande, pour réparer, à chaque moment, une nouvelle petite inclinaison, qui s'furit par la rotation du Point E autour du Point A. [Cette explication pourra nous servir dans la suite, pour démontrer un des principaux Phénomènes des Marées.] La Lune prendra donc la situation oblique c b d f, si la Révolution autour du Point A est supposée se faire de E vers D. Mais cette situation oblique demeurerait encore la même à l'égard de la Ligne F A, sans que la Lune eût aucune rotation, si le Point E faisait sa Révolution autour du Point A dans un Cercle parfait, & avec une vitesse constante: c'est donc l'inégalité des distances A E, & des vitesses du Point E, qui fait que l'obliquité de la situation f c b d varie; & c'est cette variation qui fait la nutation de la Lune en Longitude.

VII.

Venons maintenant à la Terre, & examinons quel mouvement elle doit avoir autour du Centre de Gravité, qui est entre-elle & la Lune; cette recherche est nécessaire pour notre Question, & elle ne sera plus difficile, après ce que nous avons dit de la Lune dans cette vaste. Nous remarquerons donc, que si la Terre est parfaitement homogène, soit dans toute son étendue, soit seulement dans chacune de ses Couches concentriques; & si elle est en même temps parfaitement sphérique, elle doit conserver parfaitement un Parallélisme dans la situation de ses parties, pendant la Révolution. Cependant cette parfaite Homogénéité est moralement impossible; & la parfaite Sphéricité a été refusée par les Observations les plus exactes. Ce Parallélisme serait donc altéré, de même qu'il l'est dans la Lune, & la Terre ne manquerait pas de présenter
senter à la Lune une même face, sans le mouvement journalier de la Terre. Ce mouvement empêche l'action de la Lune; & l'effet de cette action étant, à cause du dit mouvement journalier, tantôt d'un côté de la Terre, tantôt de l'autre, il ne pourrait plus produire qu'une légère nutation journalière dans l'Axe de la Terre, & quelque petite inégalité dans le mouvement journalier de la Terre. Mais l'une & l'autre doivent être tout-à-fait infensibles, à cause de la grandeur de la Masse de la Terre, de l'extrême petiteffé de l'action de la Lune, & de la rapidité du mouvement journalier.

VIII.

On voit donc que la Terre fera la révolution autour du Centre de Gravité, qui lui est commun avec la Lune, de telle manière que son Axe gardera constamment une situation parallèle. Si nous considérons donc le mouvement journalier de la Terre à part, il est clair que l'autre mouvement doit être supposé se faire d'une manière à garder un Parallélisme dans toutes les Sections de la Terre. Cela étant, il s'en suit que chaque point de la Terre fait, à l'égard de cet autre mouvement, une même Ellipse; que chaque partie a une même force centrifuge, & que les Directions des forces centrifuges sont par-tout parallèles entre elles. Et c'est ici le point principal, que je me suis proposé d'établir, & de bien démontrer dans ce Chapitre.

IX.

Ce que nous venons de démontrer du mouvement de la Terre à l'égard de la Lune, doit aussi s'entendre à l'égard du Soleil; en sorte que: la force centrifuge des parties de la Terre, par rapport à son Orbite annuelle, doit être centée la même, & leurs Directions parallèles entre elles. Mais cette Proposition n'est pas si essentielle à l'égard de l'Orbite annuelle, comme à l'égard de l'Orbite, qui se fait autour du Centre de Gravité, qui est commun à la Terre & à la Lune, à cause de l'extrême-petitesse de cette dernière Orbite.
CHAPITRE IV.

Qui expose en gros la Cause des Marées.

I.

Après avoir expliqué au premier Chapitre trois différentes raisons, qui peuvent allonger la Terre autour des deux Axes, qui passent par les Centres des deux Luminaires, il n'est pas difficile de voir comment on doit déduire de ces allongements le Flux & Reflux de la Mer, pourvu qu'on ait égard en même temps au mouvement journalier de la Terre. Il est clair que ce mouvement journalier doit faire continuellement changer de place les deux Axes d'Allongement. Mais il faut remarquer ici par avance, que l'action composée des deux Luminaires, peut toujours être considérée comme une action simple, quoi qu'à la vérité fort irrégulière. Cependant cette considération suffit, pour voir en gros, que la Mer doit en chaque endroit s'élever & se baisser environ deux fois dans un jour. Mais il s'agit de mettre cette cause en tout son jour, d'en développer tous les effets, & de les réduire à leur juste mesure, autant que les circonstances peuvent le permettre.

II.

La Question qui se présente d'abord, & qui est en même temps la plus importante pour notre sujet, est de trouver la quantité de l'allongement causé par chacun des deux Luminaires. Nous ne considérons donc qu'un seul Luminaire. Voici, avant toutes choses, les suppositions dont je me servirai dans les Calculs, & que j'ai déjà exposées en partie.

I. Nous supposerons que la Terre est naturellement sphérique. Cette hypothèse n'est que pour abréger le Calcul, & on voit bien que l'effet des deux Luminaires doit être sensiblement le même sur une Terre ronde, ou un peu aplatie, ou un peu allongée.

II. Que les Couches concentriques de la Terre sont d'une même matière, ou d'une même densité. Cette supposition est sans doute fort naturelle ; car les inégalités ne peuvent être tout-à-fait insensibles : mais il me semble qu'il n'y a aucune vraisemblance de supposer que la Terre est homogène dans toute son étendue, comme M. Newton l'a fait.

III. Que la Terre, que nous supposons, sans l'action des Luminaires, ronde, est changée par l'action de l'un des deux Luminaires en Ellipsoïde, dont l'Axe passe par le Centre du Luminaire agissant. C'est l'hy-
Hypothèse de M. Newton ; & quoi qu'on ne puisse pas le démontrer pour le Système des Attractions, elle ne doit pas nous arrêter ; car quelle que soit la Figure de la Terre après ce petit changement, on voit assez qu'elle ne saurait s'éloigner sensiblement de l'Ellipsoïde. Ainsi trouvons-nous cette Figure elliptique dans toutes les hypothèses, qu'on pourrait se former sur la pesanteur, susceptibles d'un Calcul & tant soit peu naturelles. D'ailleurs un petit changement dans cette Figure extérieure de la Terre, n'en saurait produire, qui soit sensible, entre l'Axe du Sphéroïde, & le Diamètre qui lui est perpendiculaire.

IV. Nous supposerons, que les Luminaires ne sauront faire changer de figure toutes les Couches qui composent la Terre jusqu'au Centre. Car vraisemblablement la Terre est, dans sa plus grande partie, solide ; & quand même elle sert toute fluide, sa Masse sert trop grande, pour être mise toute entière en mouvement, & pour obéir assez vite à une action aussi petite. Ces réflexions m'ont engagé à considérer la Terre, comme un noyau sphérique, composé de Couches parfaitement sphériques & inaltérables par l'action des deux Luminaires, & inondé d'un fluide homogène, tel que sont les eaux de la Mer ; & à supposer, qu'il n'y a que ce fluide inondant, qui reçoive des impulsions des Luminaires, & que sa profondeur n'est pas sensible par rapport au rayon de la Terre. Cette hypothèse est sans contredit la plus naturelle, lorsque la Terre n'est pas supposée homogène dans toute son étendue, mais, si on la supposait homogène, comme M. Newton l'a fait, contre toutes les apparences de vérité, notre hypothèse n'entre plus en ligne de compte.

V. Enfin nous substituerons à la place des Forces centrifuges, qui empêchent la Terre de tourner vers les Luminaires, une autre force qui agit de la même façon, afin que nous puissions considérer d'abord la Terre, comme dans un parfait repos, & un entier équilibre dans toutes ses parties. Cette force à substituer doit être supposée égale dans toutes les parties de la Terre (§. VIII. Chap. III.) & parallèle à la Ligne qui passe par les Centres de la Terre & du Luminaire, dont il sera question.

III.

La Force centrifuge dont nous venons de parler, doit être prise pour notre sujet, précisément telle, qu'elle soit égale à la force totale de l'Attraction du Luminaire, tout comme si la Terre se soutenait dans sa distance, en décrivant un Cercle parfait ; & cela est vrai, quelle que soit la Force centrifuge réelle de la Terre. C'est ici une Proposition, dont on ne sent la vérité, qu'après quelque réflexion ; & elle est fondée sur ce que la différence entre la Force centrifuge, telle que nous venons de
La force centrifuge totale devant être parfaitement égale à la Gravitation totale de la Terre vers le Luminaire, & la première Force étant la même dans toutes les Parties, on voit bien qu'on pourrait supposer la force centrifuge égale à la Gravitation vers le Luminaire, telle qu'elle est au Centre de la Terre. Car la Gravitation qui répond au Centre, peut être censée la moyenne entre toutes les Gravitations du Globe; & cela, quelque relation qu'on supposera entre les Distances & les Gravitations, puisque la différence des distances est inén sensible, par rapport à la Distance totale; & que par conséquent la Gravitation diminue comme également pour des égales augmentations de Distances, & qu'il se fera ainsi une juste compensation pour l'Hemisphere tourné au Luminaire, & pour l'Hemisphere opposé. Cette Proposition n'est pourtant pas géométriquement vraie; mais la fin du Calcul m'a fait voir, qu'elle peut être censée vraie pour notre sujet: & comme elle abrège fort le Calcul, je l'ai mise ici, pour en faire usage dans la suite.

PROBLÈME.

V.

Soit A, le Centre du Soleil, $B G D H$ la Terre; $A D$ une Ligne tirée par les Centres du Soleil & de la Terre: trouver la différence entre $B D$ & la perpendiculaire $G H$, qui passe par le Centre C.

SOLUTION.

Qu'on s'imagine deux Canaux $B C$ & $G C$, communiquants entre eux au Centre C, rempli d'un Fluide de différentes Densités, telles qu'on supposerait dans les couches de la Terre. Pour déterminer ces couches, nous considérerons la Sphère inscrite $G b H d$, & nous supposerons tout ce noyau immuable pendant la révolution journalière de la Terre, fondés, à cet égard, sur ce que nous avons dit dans la quatrième hypothèse du II. §. Quand même on ferait attention aux changemens de figure dans les couches près de $G b H d$, cette considération ne fera qu'abréger sensiblement le résultat du Calcul, parce que ces changemens de figure
figure font tout à fait insensi-
bles, & que, selon toutes les
apparences, ils ne feraient se
faire au delà d'une certaine pro-
fondeur assez petite à l'égard du
rayon de la Terre. Après celt-
ne remarque, nous déduisons la
Solution de notre Problème, de
celui que le Fluide doit être en é-
quilibre dans les Canaux GC &
BC. Pour satisfaire à cette loi,
& pour observer un ordre, nous
diviserons la Solution en trois
parties : dans la première, nous
chercherons la pression totale du
Fluide BC au Point C ; dans la
seconde, nous ferons la même
chose à l'égard du Fluide GC ;
& enfin nous ferons le Calcul,
en faisant les deux pressions to-
tales égales entre elles.

L' Soit $AC = a$; GC, ou
$BC = b$; la cherchée $B b = c$:
Qu'on tire du Centre C deux
quarts de Cercles infiniment pro-
ches pn, om ; soit Cp ou $Gn = x$;
$p o$ ou $mn = d x$; la Densité va-
riable en po ou $nm = m$; la Densité uniforme de l'eau (qui couvre le
noyau sphérique, & qui forme le double Méridien) = μ. Soit la
Gravitation au Centre C vers le Centre du Soleil $A = g$; & la force
centrifuge qui agit parallèlement à BD, sera par-tout = g (§. VIII.
Chap. III. & §. IV. Chap. IV. qu'on nomme G la Force accélératri-
ce en G ou b, causée par l'action du Globe $GbHd$, & Q la même
force centrifuge pour les Points p & n. Après toutes ces prépara-
tions, on voit que la goute po (dons la Masse doit être exprimée par
la Densité m, & par la hauteur dx, c'est à dire mdx) est animée par
plurieurs Forces accélératrices : la première Force accélératrice est celle
qui résulte de l'action du Globe $GbHd$, que nous avons nommé Q : la
seconde est la Force centrifuge de A vers C, provenant par la revolu-
tion de la Terre autour du Point A ; nous avons démontré, que cette
Force doit être faite = g : la troisième se fait vers A, & provient de
la Gravitation vers le Soleil : celle-ci est négative à l'égard du Point C.
& doit être faite $= -\frac{a^3}{(a-x)^2} \times g$: enfin la quatrième provient de l'action du double Ménisque, compris entre $GBHD$ & $gbHD$, & elle est encore négative à l'égard du Point C; elle est $= -n \mu \varepsilon x \times \frac{x}{b}$, en vertu des §. §. X. & XI. Chap. I. En multipliant toutes ces pressions accélératrices de la goutte p par sa Masse, on obtient la pression absolue qu'elle exerce sur le Point C, & cette pression absolue sera

$\left(Q + g - \frac{a^3 g}{(a-x)^2} - \frac{8 n \mu \varepsilon x}{15 b} \right) \times m dx$.

On remarquera ici en passant, que comme a est sensé infiniment plus grand que x, on peut poser $\left(\frac{a-x}{a} \right)^2 = 1 + \frac{a}{2} x$, & ainsi cette pression devient

$\left(Q - \frac{2 g x}{a} - \frac{8 n \mu \varepsilon x}{15 b} \right) \times m dx$.

dont l'intégrale donnera la pression de la Colonne pC, savoir;

$\int Q m dx - \int \frac{2 g m dx}{a} - \int \frac{8 n \mu \varepsilon m x dx}{15 b}$,

après quoi on aura la pression de toute la Colonne BC, en substituant dans l'intégrale b à la place de a. A cette pression, il faut encore ajouter celle de la petite Colonne BB, dont la gravitation ou pesanteur vers C doit être censée uniforme dans toute sa hauteur, & égale à G; il faut aussi remarquer, que toutes les autres forces qui agissent sur cette petite Colonne BB peuvent être négligées, comme infiniment inférieures à l'action G, qui exprime proprement la pesanteur près la surface de la Terre vers son centre; ainsi donc la pression de la petite Colonne BB doit être simplement estimée par sa hauteur ε, sa densité μ & sa pesanteur G, ce qui fait $\mu \varepsilon G$. Il résulte enfin de tout cela, que la pression totale de toute la Colonne BC sur le Point C est

$\mu \varepsilon G + \int Q m dx - \int \frac{2 g m x dx}{a} - \int \frac{8 n \mu \varepsilon m x dx}{15 b}$,

en prenant après l'intégration $x = b$.

II. Pour trouver à présent la pression de la Colonne GC, il faut chercher toutes les Forces qui animent la goutte mn, dont la Masse est encore mdx. La première de ces Forces provient de l'Attraction du Globe $GBHD$, & est encore Q, puisque cette Force est la même en n & en p: la seconde Force, provenant de la Force centrifuge des parties de la Terre, entant qu'elle se tourne autour du Point A, est $= 0$, cette Force étant par-tout perpendiculaire à GC (§. VII. Chap. III.) La troisième Force provient de la Gravitation des Parties de la Terre vers A, cette Gravitation est au Point n, vers le Point $A = \frac{a^2 g}{a + x} & \text{étant}$
étant décomposée, la Gravitation resultant vers C doit être exprimée par
\[
\frac{ag^x}{(a + n)^3}.
\]
dans cette dernière expression on peut rejeter au Dénominateur le terme \(a \times x \), comme le Calcul me l'a fait voir ;
ainsi il provient \(\frac{g}{a} \), qui marque la troisième force vers C resultant de la Gravitation vers A.

La quatrième Force accélératrice, qui anime la goutte \(mn \) à descendre vers le centre, provient de l'action du double Méridien, qui en vertu du X11

\(n.m = \frac{1}{\gamma} n.\mu \frac{x}{b} \). En prenant la somme de toutes ces Forces accélératrices, la Force totale sera \(Q + \frac{g}{a} x + \frac{4.\mu}{15} \frac{x}{b} \); cette Force accélératrice totale doit être multipliée, par la petite Masse \(md \), & du produit il faut prendre l'intégrale, qui marquera la pression qu'exerce la Colonne \(mc \) sur le centre \(C \):

Cette pression est donc
\[
\int Qmdx + \int \frac{gmx dx}{a} + \int \frac{4.\mu mc dx}{15} \]
& pour avoir la pression, qui réponde à toute la Colonne \(GC \), il faut encore après l'intégration faire \(x = b \).

III. Après avoir exprimé analytiquement les valeurs des pressions des Colonnes \(BC \) & \(GC \), il ne reste plus pour achever la Solution de notre Problème, qu'à faire une équation entre les deux dites valeurs trouvées dans la première & seconde partie. On aura donc \(\mu \frac{Gc}{a} + \int Qmdx - \int \frac{gmx dx}{a} - \int \frac{8.\mu mc dx}{15} = \int Qmdx + \int \frac{gmx dx}{a} + \int \frac{4n\mu mc dx}{15} \]
& cette équation arrangée donne
\[
\frac{5 \mu G a b c}{f 4 n \mu a c m \times dx} = \int \frac{15 gb m x dx}{f 4 n \mu a m x dx},
\]
de là on tire la valeur cherchée de \(c \), qui est constante ; savoir ;

\[
c = \frac{\int 15 gb m x dx}{f 4 \mu G a b f 4 n \mu a m x dx}.
\]
C. Q. F. T. X 2

COROD
On voit par notre Solution, que généralement $B b$ doit être égale à $D d$; car la valeur de c est la même, soit que l'on prenne x affirmativement, soit négativement. Auffi aurait-il été ridicule de supposer la Courbe $B G D H$ une Ellipse, si les deux parties $G B H$ & $G D H$ n'étoient pas devenues par le Calcul également allongées; & la supposition aurait renfermé une contradiction.

Au reste ces deux petites Lignes ne s'eroint pas égales à la rigueur. Cette égalité n'est fondée que sur ce que nous avons rejetté plusieurs fois dans notre Solution de certaines petites quantités, mais qu'on pouvoit négliger réellement, comme tout-à-fait inéffables, non-seulement par rapport à la Ligne $B C$, mais même par rapport à la petite Ligne $B b$, qui ne feraient être que d'un petit nombre de pieds. Cependant je crois encore nécessaire d'avertir ici, qu'il faut être sur les gardes, en rejettant dans le Calcul de certains termes; car comme dans l'équation résultante, plusieurs termes se détruisent, & qu'il n'en reste que des termes d'une fort petite valeur, on ne doit rejeter que des quantités qui font infinies, même par rapport aux quantités restantes dans l'équation.

Ce n'est qu'avec une telle précaution, que j'ai négligé dans ma Solution plusieurs termes, & je ne les aurais point négligés, si la fin du Calcul ne m'avait ensigné, qu'ils peuvent & doivent être négligés.

Scholie.

Pour avoir une juste idée de notre équation, remarquons que μ signifie la densité de l'eau de la Mer, qui inonde la Terre, & m la densité quelconque de la couche, dont la distance au centre est égale à $z : n$ exprime la circonférence du Cercle, dont le rayon est égal à l'unité; b est le rayon de la Terre; a la distance entre les centres du Soleil & de la Terre; g exprime la force accélératrice vers le Soleil, d'un Corps placé au centre de la Terre; & enfin G exprime la force accélératrice, ou la pesanteur des Corps à la surface de la Terre vers son centre.

Or, pour voir que tous les termes de notre équation sont homogènes & comparables entre eux, & en même temps de quelle manière il faut faire usage de notre équation, il faut remarquer qu'en vertu du III. §. Chap. II. G doit être exprimée par la Masse de toute la Terre, divisée par le carré de son rayon; c'est-à-dire, qu'il faut supposer
fer $G = \frac{1}{b} m x d x$, & comme on connoit pour le Soleil le rapport
entre $g & G$, aussi bien que celui d'entre $a & b$, on voit qu'on peut
enfin exprimer c simplement par b: mais il faut pour cet effet intégrer
au-pravant les quantités $m x d x \& m x \mu d x$; c'est ce que nous allons
faire dans quelques hypothèses particulières.

VIII.

Soit d'abord la densité de la Terre uniforme, & nommément celle
de l'eau de la Mer: c'est ici l'hypothèse de M. Newton.

En ce cas m est une constante & égale à a; & ainsi notre équation
finale du V. §. est $c = \frac{15 g b b}{2 a (5 G - 2 n \mu b)}$.

Mais par le VII. §. on obtient $G = \frac{2}{3} n \mu b$, ou bien $2 n \mu b = 3 G$,
& substituant cette valeur pour le second terme du Dénomina-
teur, il provient $c = \frac{15 g b}{4 G a} \times b$.

Nous verrons dans la suite, que cette expression analytique donne pré-
cisément la hauteur indiquée par M. Newton (+) simplement en pieds,
pouces & lignes, sans en donner le calcul, ou du moins sans le met-
tre à la portée, je ne dirai pas de tout le monde, mais uniquement de
celui qui voudroit bien prendre la peine nécessaire pour l'approfondir.
Notre méthode comprend donc le cas tout particulier de M. Newton.
Mais ce cas donne une si petite quantité, qu'il ne me paroit pas possible

\[X \frac{3}{2}\]
d'en

(+) C'est dans le Corollaire de la Prop. XXXVI. du Liv. III.; M. Newton dit que la
hauteur de l'eau de la Mer sous le Soleil ou au point opposé au Soleil, surpasse la hauteur
de l'eau de la Mer à 30° de ces points de 11 1/4, 11 1/4 pouc., & c'est à peu près à cela
que revient l'expression $\frac{15 g b}{4 G a}$, car (par Cor. 1. Prop. 8. de ce Livre) la gravité à la
surface du Soleil est à la gravité à la surface de la Terre comme 10000 à 4,45. Le Demi-
Diamètre du Soleil étant vu de la Terre sous l'Angle de 1° 14', ce Diamètre est à la dis-
tance du centre de la Terre comme 1 à 214, ainsi la gravité de la Terre sur le Soleil (qui
est g) est à la gravité à la surface de la Terre (qui est G) comme $\frac{10000}{214}$ à 4,45; D'où l'on
trouve le Log. de $\frac{G}{G} = -4,7002107$. Le Diamètre du Soleil étant à celui de la Terre
comme 10000 à 109, on aura que le Rayon de la Terre $= b$ est à la distance du Soleil
$= a$ comme 1 à 214 $\times \frac{10000}{109}$, ainsi le Log. de $\frac{b}{a} = -5,7070165$, & $\log \frac{G b}{G a} = 8,4072372$.
Enfin, réduisant le Rayon de la Terre b en pouces à raison de 114 1/4 lieues de 1855
Toises chaque pouce, le Rayon, son Log. est 8,3728709. Ainsi le Log. de $\frac{G b}{G a} = 0,7791031$
dont le nombre est 0,014 dont les 3/4 font 11 1/2 pouces, à peu près comme M. Newton
a trouvé.
d'en déduire les Phénomènes des Marées, tels que les observations les donnent. C'est ce que je ferai voir plus au long dans la suite. Je n'ai donc jamais pu comprendre, comment M. Newton, & tous ceux de sa Nation, qui ont écrit sur cette matière, ont pu s'y attacher. On voit par là, combien il est essentiel d'étendre les hypothèses des densités des couches de la Terre. J'ai remarqué que la loi de ces densités contribue beaucoup au haussement & baissement des eaux dans les Marées; qu'on en peut déduire tel effet qu'on trouvera nécessaire pour l'explication des Phénomènes indiqués par l'expérience; je ferai même voir que cet effet pourrait être infini dans de certaines hypothèses. Mais ce que je souhaite sur-tout que l'on remarque, c'est que les mêmes hypothèses qui donnent plus d'effet aux Luminaires, pour hauser & baisser les eaux dans les Marées, sont d'ailleurs extrêmement vraisemblables par plusieurs raisons Physiques, toutes très-fortes. Mais venons à d'autres exemples.

IX.

Supposons la Terre creuse en dedans, jusqu'à une distance donnée c depuis le centre, & que la croute (dont l'épaisseur fera $b - c$, soit encore par-tout d'une densité égale à celle de l'eau de la Mer.

Nous avons en ce cas encore m égale à la constante μ, & ainsi le Calcul se fera comme dans le précédent Article, avec cette restriction, que les intégrales des quantités $m \times x \times dx$, & $m \times dx$ doivent être $= 0$, lorsque $x = c$: de cette manière on obtient

$$\frac{1}{2} \mu \left(\frac{1}{b} + \frac{1}{c} \right) \times (b + c)$$

substituant cette valeur dans l'équation finale du V. §, il vient

$$c = \frac{2 \mu}{G} \frac{G}{b} \left(b + c \right)$$

& (par le VII. §.) G est $= \frac{2 \mu}{b} \times \left(b - c \right)$: de cette dernière équation, on peut tirer celle-ci $\mu = \frac{3 b b G}{2 n (b - c)}$, & enfin

$$G \times \left(b + c \right)$$

substituant cette valeur dans le second terme du Dénominateur de notre équation, on a

$$c = \frac{2 \mu}{G} \frac{G}{b} \times \left(b + c \right)$$

Cette quantité est la même que celle du précédent Article, lorsque, $c = 0$; mais elle devient plus petite, à mesure qu'on suppose la Terre plus creusée, & elle deviendrait tout-à-fait nulle, si on supposoit la Terre preque entierement creuse en forme d'une voute sphérique, dont l'épaisseur fut peu considérable, par rapport au rayon de la Terre. Cette remarque suffit seule, pour refuter le sentiment de ceux qui croyent que la Terre pourrait bien n'être qu'une croute voutée; car il ne pourroit.
roît y avoir en ce cas aucun Flux & Reflux de la Mer, au moins dans notre Système.

X.

Si l’on supposoit la loi des densités des couches de la Terre exprimée par cette équation \(m = \frac{x}{b} \mu \), c’est-à-dire, que les densités fussent proportionnelles aux distances des couches au centre, on trouveroit la hauteur

\[
\varepsilon = \frac{\mu b}{7 G a} \times b,
\]

& par conséquent beaucoup plus petite, que si la Terre étoit par-tout d’une même densité, sçavoir en raison de 7 à 4. Autfi cette hypothèse n’est-elle aucunement vraisemblable, y ayant apparence que les couches plus denses sont plus bas que les couches plus légères.

XI.

Si la loi des densités est exprimée par \(m = \frac{x^2}{\xi} \mu \), c’est-à-dire, si l’on supposoit les densités, suivre la raison inverse des distances des couches au centre, on trouveroit

\[
\varepsilon = \frac{\frac{\mu b}{G a}}{b} \times b,
\]

ce qui fait la valeur de \(\varepsilon \) quatre fois plus grande, que dans la supposition de M. Newton, de la parfaite homogénéité de la Terre.

XI I.

Supposons enfin la loi des densités exprimée par \(m = \left(\frac{b}{x} \right)^{1/2} \mu \), il faudra mettre \(\frac{1}{2} \mu b b \) pour \(\int m x d x \), & l’équation du VI. §. divisée par \(\mu \) fera

\[
\varepsilon = \frac{45 g b}{10 G a} \frac{1}{a^2} \mu a b \times b:
\]

mais en vertu du VII. §. on a

\[
\varepsilon = \frac{\int 2 n m x x \frac{d x}{b}}{b} = \frac{\int 2 n \mu x^{\frac{1}{2}} d x}{b^{\frac{1}{2}}} = \frac{6 n \mu x^{\frac{3}{2}}}{b^2}
\]

= (en faisant \(x = b \)) \(\frac{1}{2} n \mu b \). D’où l’on voit que le Dénominateur de notre équation fondamentale devient \(= 0 \); & par conséquent \(\varepsilon = \infty \).

Ainsi l’élévation des eaux ferait infinit.

XII.

J’ai mis cette dernière hypothèse, non qu’elle soit possible, puisque la densité ne s’assoirait être infinie, comme elle devroit être au centre; mais pour faire voir l’avantage & la supériorité de notre Théorie, puisque nous soms point de bornes à l’élévation des eaux; si les Marées étoient cent ou mille fois plus grandes qu’on ne les obèrve, nous pourrions
164 traité sur le flux

chap. iv.

ions lui assigner une cause suffisante. Ayant au reste bien examiné tous les Phénomènes du Flux & Réflux de la Mer, je suis entièrement convaincu, que la force assignée par M. Newton ne suffoiera pour les produire: il faut donc dire dans le système même de ce Philosophe, que les densités de la Terre ne sont pas uniformes, mais qu’elles croissent vers le centre. Cette hypothèse n’est-elle pas fort probable d’ailleurs d’elle même? L’eau est-elle le seul Fluide que nous connaissions? & ne faut-il pas que les Fluides plus pesants, soient plus proches du centre de la Terre? le Mercure est près de quatorze fois plus pesant que l’eau: la grande compresse qui souffrent les parties proches du centre de la Terre, ne pourroit-elle pas contribuer à rendre la matière plus compacte & plus dense?

Si nous considérons outre cela, combien les Planetes & la Terre, qui nagent sans doute dans un milieu résistant, quoique extrêmement subtil, conservent leur mouvement, sans en perdre la moindre partie considérable pendant une longue suite de siècles, nous pourrions facilement croire, que tous ces Corps ont beaucoup plus de matière, que Mr. Newton ne marque. Enfin de quel côté que j’enviège cette Question, tout me fait croire, que les couches de la Terre augmentent de densité vers le centre.

x iv.

Si, tout le Noyau ou tout le Globe de la Terre restant, l’eau de la Mer; qui inonde la Terre, changeoit de densité, la quantité eufroit la raison reciproque des densités des eaux de la Mer. Il suit de là que si la Terre estoit inondée de Mercure, les Marées seroient quatorze fois plus petites, qu’elles ne sont actuellement. Et si au contraire l’air étoit un Fluide homogène pesant, mais sans élasticité, sa hauteur seroit environ de 850 e plus grande à ceux qui ont le Soleil au Zenith, qu’à ceux qui l’aurien sont à l’Horizon. Cela seroit 1700 pieds de différence dans la hauteur de l’Atmosphère, à ne donner que deux pieds de valeur à e; & cette différence en produirait une sur le Baromètre de plus de 20 lignes. D’où vient donc, demandera-t-on, qu’on n’observe point à cet égard aucune variation dans le Baromètre? C’est l’élasticité de l’air qui en est la cause. Cette élasticité fait que la hauteur du Baromètre doit être constamment la même dans toute la surface de la Mer, en faïtant abstraction seulement des causes accidentelles & passagères, qui peuvent survenir tout d’un coup, et qui n’agissent sur l’air, que parce que celui-ci ne suffoiera obèr allez promptement, ni se mettre dans un état dans son état naturel d’équilibre. On remarquera ici qu’il est faux que la pression du Mercure soit égale à la pression, ou plutôt au poids de la Colonse d’air verticale couchée dehors, ce que l’on affirme ordinairement...
mais la pression du Mercure est égale au poids moyen de toutes les Colonnes d'air verticales, qui environnent la Terre, c'est à-dire, égale au poids de tout l'Atmosphère (dont la hauteur est considérée comme infiniment petite, par rapport au rayon de la Terre) multiplié par la raison de la base de la Colonne du Mercure à toute la surface de la Terre. Cette Proposition fait voir que la hauteur moyenne du Baromètre doit être la même sous l'Equateur & sous le Cercle Polaire, quoique le poids absolu de la Colonne d'air verticale sous l'Equateur pendant les plus grandes chaleurs ne fût pas la moitié si grand que celui d'une pareille Colonne d'air sous le Cercle Polaire en Hiver. On voit de tout ce que nous venons de dire, pourquoi, ni le Soleil, ni la Lune ne changent pas sensiblement la hauteur du Baromètre, quoiqu'ils élevent les eaux considérablement. La véritable raison n'en est que l'élasticité de l'air, qui doit faire presser égalemént tous les endroits de la surface de la Terre; & cette seule reflexion démontre entièrement l'insuffisance des inégalités compressions de la matière des Tourbillons, pour expliquer les Marris, comme nous avons déjà remarqué au III. §. Chap. I.

X V.

Tous les cas particuliers, que nous venons d'examiner, font voir, & il n'est pas difficile de le démontrer généralement par l'équation du V. §. que la quantité c (qui exprime la différence entre la plus grande hauteur de la Mer, & la plus petite, entant qu'elle est produite par la seule action du Soleil) est toujours $\frac{ngb}{Ga} \times b$, le coefficient n dépend des différentes densités des couches de la Terre, le rapport $\frac{b}{a}$ est connu par les Observations astronomiques: il ne reste donc qu'à voir comment on pourra déterminer la quantité $\frac{g}{G}$: c'est en comparant les effets que les Forces g & G produisent, la première, en retenant la Terre dans son Orbite annuelle; la seconde, en retenant la Lune dans celle qu'elle fait autour de la Terre. Si la distance moyenne de la Lune au centre de la Terre est nommée a, la Force centrifuge de la Lune sera $\frac{bb}{aa} G$, & la force centrifuge de la Terre est g: or la Force centrifuge moyenne de la Terre dans son Orbite, est à la force centrifuge moyenne de la Lune autour de la Terre, ou plutôt autour du centre de Gravité du système de la Terre & de la Lune, comme la distance du Soleil divisée par le Quarré du temps périodique de la Terre autour du Soleil, est à la distance de la Lune au centre de Gravité commun de la Terre & de la Lune; [M. Newton suppose cette distance $= \frac{g}{G}$, voyez ses Princ. Math. Phil. Nat. Edin. 2. pag. 430; il fonde cette supposition sur quelques Phénomènes des Marse, Tom. III. Yxées,
réées, mais mal choisis à mon avis; elle est donc encore fort douteuse; mais comme elle n'est pas de conlèquence pour notre sujet, je ne laisserai pas de l'adopter ici] divisée par le quarré du temps périodique de la Lune: on a donc, en nommant le temps périodique de la Terre T, & celui de la Lune t, cette Analogie $g \cdot \frac{b}{a} \cdot G \cdot \frac{a}{T^2} = \frac{39}{40} \cdot \frac{a}{t^2}$; ce qui donne $\frac{g}{G} = \frac{40 \cdot ab \cdot T^2}{39 \cdot a \cdot t^2}$, & par conséquent

$$c = \frac{ng}{G \cdot a \cdot b} \cdot \frac{40 \cdot ab \cdot 111}{39 \cdot a \cdot T^2} \cdot b.$$

RÉMARQUE.

Pour voir que cette Formule s'accorde avec celle de M. Newton pour la supposition de l'homogénéité de la Terre, nous remarquions, qu'en ce cas on a $n = \frac{1}{2}$ (§. VII.) & M. Newton suppose $\frac{b}{a} = \frac{1}{60^2}$ (Princip. Mat. Phil. Nat. Edit. 2. pag. 430.) $\frac{1000}{T^2} = \frac{178725}{178725}$ (Princip. Math. pag. 395.) & enfin $b = 1969539$ pieds après la mesure de M. Caffini. De tout cela il resul
te

$$c = \frac{40 \cdot 15 \cdot 1000 \cdot 1969539}{39 \cdot 4 \cdot (60^2)} \cdot 178725.$$

cela fait $c = \frac{1}{2}$ pied $\frac{11}{12}$ pouces $\&$ un quart. M. Newton trouve 1 pied $\frac{11}{12}$ pouces $\&$ un huitième. (Princ. Math. pag. 419.) La différence me paraît trop petite, pour en rechercher l'origine.

X VI.

Tout ce que nous venons de dire par rapport à l'action du Soleil, doit être entendu aussi de la Lune, sans y rien changer; de sorte que les équations fondamentales des §. V. § V. et V. servent également pour la Lune, en entendant par a la distance entre les centres de la Terre & de la Lune, & par g la pesanteur d'un Corps placé au centre de la Terre vers la Lune. Et comme nous avons dit au X V. §, que quelque hypothèse qu'on prenne pour exprimer les différentes denités dans les couches de la Terre, on trouvera toujours

$$c = \frac{ng}{G \cdot a \cdot b},$$

nous dirons par rapport à la Lune, qu'on trouvera toujours

$$b = \frac{n^2}{G \cdot a} \cdot b,$$

prénant.
ET REFLEXUS DE LA MER.

prenant pour la différence des hauteurs des eaux à ceux qui ont la Lune au Zenith, & à l'Horizon, pour la distance entre les centres de la Lune & de la Terre, & pour la pesanteur d'un Corps placé au centre de la Terre vers la Lune.

XVII.

Ce qui m'a engagé à ne parler d'abord que de l'action du Soleil sur la Mer, est qu'on connoit parfaitement bien la valeur de g pour le Soleil, comme nous avons vu au XV. § au lieu que la Lune, qui n'a point de Satellites, ne sauroit donner immédiatement la Force accélératrice qu'elle cause au centre de la Terre, & que nous avons nommé r. Je trouve par ma nouvelle Théorie de la Lune, dont j'ai déjà fait mention ci-dessus, plus générale, plus exacte, & sur-tout infiniment plus facile, que celle de M. Newton, qu'on peut déterminer la valeur r avec toutes les autres qui en dépendent; savoir la masse de la Lune, comparée avec celle de la Terre, & leur commun centre de Gravité, moyennant quelques irrégularités dans les mouvements de la Lune, pourvu qu'on puisse les observer assez exactement. M. Newton a tâché de déterminer la Force accélératrice r, en comparant les effets de la Lune sur la Mer avec ceux du Soleil; cette Methode feroit fort bonne, si on l'avait bien séparer les effets des deux Luminaires. Il a prétendu le faire, en comparant les Marées bâtarde, qui suivent les Quadratures, avec les plus grandes Marées, qui suivent les Syzygies. Nous verrons ci-dessous ce que l'on peut trouver à redire à cette Methode, & comment on pourra en substituer d'autres plus exactes.

XVIII.

Au reste, il est clair que la Lune & le Soleil produisent leurs effets indépendamment l'une de l'autre: tout ce que le Soleil pourrait contribuer au moins dans la pure Théorie, pour troubler l'action de la Lune, est qu'il allonge un peu la Terre: mais il est auffi bien évident, que la Lune changera également la surface de la Mer sur une Terre parfaitement ronde ou allongée d'un petit nombre de pieds: nous avons déjà dit la même chose dans la première hypothèse du second Article.

Voici donc comment il faudroit déterminer la surface de la Mer, si les deux Luminaires pouvoient produire dans un instant tout leur effet, c'est-à-dire, si l'eau n'avait point d'inertie, & qu'elle pût prendre incontinent sa justte figure; car c'est de cette inertie, qu'il faudra tirer dans la suite plusieurs inégalités, & autres Phénomènes, qu'on a observés dans les Marées.

Soit

Y
Soit $b g d h$ le Globe de la Terre parfaitement sphérique, & confidérons d’abord le Soleil, que nous supposions placé dans la Ligne prolongée bd passant par le centre de la Terre C: notre Globe se changera en Sphéroïde, tel que $B G D H$; les eaux baignant autour de $g h$, & montant autour de b & d. Soit ensuite la Lune dans la Ligne prolongée qp; il est clair qu’elle agira sur le Sphéroïde de la même façon qu’elle feroit sur le Globe parfait, duquel le Sphéroïde diffère d’une quantité tout-à-fait insensible: ainsî donc la Lune fera monter & baisser les eaux par defus la surface du Sphéroïde, tout autant qu’elle feroit à l’égard de la surface sphérique, sans l’action du Soleil. Il faut donc prendre ng, ou mp, à bb, ou dd en raison des Forces lunaire & solaire, c’est-à-dire, comme $\frac{y}{a}$ à $\frac{e}{a}$, tracer ensuite les courbes qrp, telles qu’en prenant un Angle quelconque uCq, égal à un Angle $y CB$, la perpendiculaire $u x$ interceptée entre les surfaces des Sphéroïdes, ait à la perpendiculaire yz, interceptée entre le premier Sphéroïde & le Globe, la raison de ng à bb. Voilà donc une Construction géometrique générale, qui montre à chaque moment, à chaque endroit, la hauteur de la Mer, & les variations de cette hauteur. Mais elle demande des Calculs longs & pénibles. Nous verrons dans la suite, comment on pourra s’y prendre, pour les faire, en commençant par les circonstances & les hypothèses les plussimples, & en ajoutant des corrections & équations à faire pour chaque circonstance changée.

XXI.

Voici donc les cas & les hypothèses, par lesquelles nous commenceron. Nous supposons d’abord, que la Lune fai des Cercles parfaits autour de la Terre, & pareillement la Terre autour du Soleil: que ces Orbits sont dans le plan de l’Equateur de la Terre: qu’ensemble la Terre est inondée: que la surface de la Mer prend dans un instant sa juste Figure, tout comme si l’eau n’avait point d’inertie, ni résistances; & enfin qu’il ne faille déterminer les lois des Marées, que sous l’Equateur. Mais avant de faire les
les Calculs, il sera bon d'exposer préliminairement quelques Lemmes géométriques.

CHAPITRE V.

Contenant quelques Propositions de Géométrie préliminaires pour l'Explication & le Calcul des Marées.

PROBLEME.

S'oit, comme ci-devant, le Cercle $b g d h$ & l'Ellipse presque circulaire $B G D H$, & supposons la Sphere & le Sphéroïde, décrits par la rotation du Cercle & de l'Ellipse autour de l'Axe $B D$, égaux; trouver le rapport entre les petites Lignes $B b$ & $G g$.

SOLUTION.

Nous supposerons pour nous servir des mêmes expressions, que nous avons employées jusqu'ici, $B b + G g = e; G g = \pi$, & $B b = e - \pi$; $C b$ ou $C g = b$; n la circonférence du Cercle, dont le rayon est égal à l'unité. Ceci posé, on fût que la Sphere sera $\frac{3}{2} n b$; on fût aussi, qu'un Ellipsoïde (dont le grand Axe est $= 2 A$, & le plus petit Diamètre $= 2 B$) est $= \frac{1}{3} n B B A$, cela donne notre Sphéroïde $= \frac{3}{2} n (b - \pi) \times (b + e - \pi) = \frac{3}{2} n (b^2 - 3 b b x + b b e)$ si l'on néglige les infinités petits du second ordre. Faissant à présent par la condition du Problème la Sphere égale au Sphéroïde, on a $\frac{3}{2} n b = \frac{3}{2} n (b^2 - 3 b b x + b b e)$ c'est-à-dire, $n = \frac{1}{3} e$. C. Q. F. T.

COROLLAIRE.

I I.

Si $G g = \frac{1}{3} e$, il faut que $B b$ foit $= \frac{3}{2} e$, & par conséquent double de Y l'autre.
l'autre. Ainsi donc l'eau monte deux fois plus autour de la Ligne, qui passe par le centre de l'un des Luminaires, & celui de la Terre, qu'elle ne descend à la distance de 90 degrés.

PROBLEME.

III.

Si l'on tire du centre C une droite quelconque Cy, trouver la petite Ligne yz, qui marque la hauteur verticale du Point y pris dans l'Éllipse, par dessus le Point Z pris dans le Cercle.

SOLUTION.

Qu'on tire par le Point z la droite Cz perpendiculaire à l'Axe; on voit qu'en conséquence de nos hypothèses, l'Angle cyz doit être pris pour un droit, & le petit Triangle cyz cené semblable au Triangle Cyz, d'où l'on tire

$$yz = \frac{az}{cz} \times cz.$$

Soit à présent $C = y; z = s; \sqrt{b}; s$; on aura par la nature de l'Éllipse

$$c = \frac{CG}{CB} \times \sqrt{BC} \times s = \frac{b - \frac{1}{2}c}{b + \frac{1}{2}s} \times \sqrt{b + \frac{1}{2}c - s} \times (b + \frac{1}{2}c + s).$$

Si on change cette quantité en suites, & qu'on rejette toujours les infiniment petits du second ordre, on trouvera enfin

$$c = z = s = \frac{3ss - bb}{3b\sqrt{b} - ss} \times c.$$

De là on tire $cz = z = x = \frac{3ss - bb}{3b\sqrt{b} - ss} \times c$, & par conséquent

$$yz = \frac{3ss - bb}{3bb} \times c.$$ C. Q. F. T.

COROLLIAIRE.

IV.

Pour trouver les Points M, où l'Éllipse coupe le Cercle, on n'a qu'à faire $yz = 0$, ce qui donne $x = \frac{6}{b} \sqrt{\frac{1}{2}} = 0$, $5773 b$, & l'Arc bM de $54^o, 44'$.

Corol.
Si la Terre tournoit autour d'un Axe perpendiculaire au plan de notre Figure, & que le Cercle \(bgdb\) représentât ainsi l'Equateur de la Terre, dans lequel l'un des Luminaires est supposé se trouver : si par cette rotation de la Terre le point \(B\) est parvenu en \(y\), le Luminaire restant dans l'Axe \(BD\), l'Angle \(bcZ\) sera l'Angle horaire, dont le Cosinus est appelé \(s\), le Sinus total \(b\); & en voit que la différence des hauteurs de l'eau avant & après la ditte rotation sera représentée par \(Bb-\gamma\), c'est-à-dire par \(\frac{b}{3} - \frac{3s}{b}\times c\), ou par \(\frac{b - ss}{b}\times c\), ou en nommant le Sinus de l'Angle horaire \(r\) par \(\frac{r}{bb}\) \(c\). Nous conclurons de là, que les baissemens des eaux sont proportionnels aux Quarrés des Sinus des Angles horaires, qui commencent du moment de la haute-Mer.

Corollaire III.

VI.

Les variations qui répondent à de petits intervalles de temps égaux, font pour chaque point \(Z\), proportionnelles aux aires du Triangle \(Caz\). Car l'intervalle de temps doit être exprimé simplement par un petit Arc de Cercle, qui est \(\frac{-bds}{\sqrt{bb-ss}}\), en considérant \(s\) comme variable; & si nous faisons cette quantité égale à un petit élément de temps \(ds\), nous aurons \(\frac{-bds}{\sqrt{bb-ss}} = ds\) \& \(ds = \frac{-d\sqrt{b-ss}}{b}\). Or par le V. § tout le baîissement des eaux étant \(\frac{bb-ss}{bb}\times c\), sa différentielle sera \(\frac{2c\sqrt{bb-ss}}{b}\) ; & comme les quantités \(c\), \(b\) \& \(ds\) sont constantes, nous voyons, que les variations verticales des Marées, qui se font en de petits intervalles de temps égaux, font proportionnelles aux quantités répondantes \(s\sqrt{bb-ss}\), ou aux Aires des Triangles \(Caz\).
TRAITÉ SUR LE FLUX

CHAP. V.

SCHOLIE.

VII.

On voit que ces propriétés tendent à déterminer les haussemens & baissemens d'une même Marée pour chaque moment, & nous verrons dans la suite, combien elles répondent aux Observations. Ces propositions suffiraient pour ce deffin, si nous ne voulions considérer que ce qui arrive aux Conjonctions & Oppositions des deux Luminaires: mais comme cette restriction ne serait qu'un cas très-particulier de toute la Théorie des Marées, nous passerons plus outre. Remarquons cependant encore une fois, que chaque Luminaire peut être considéré, comme agissant sur la Mer, indépendamment l'un de l'autre; puisque les petites variations causées par l'un des deux, ne changent pas sensiblement toute la figure de la Terre: une quantité de quelques pieds ne feraient être sensible par rapport à tout le Diamètre de la Terre. Nous allons donc considérer les deux Luminaires à la fois, & dans une position en longitude quelconque, quoique toujours dans le plan de l'Équateur. Nous considérerons aussi sur la Terre un Point quelconque dans l'Équateur, pour voir combien la Mer doit être plus haute ou plus basse dans ce Point, qu'elle ne serait sans l'action des Luminaires. C'est ici une Question des plus essentielles pour notre sujet. Souvenons nous cependant, que c'est l'altitude de toute la variation des eaux d'une Marée, entant qu'elle est produite par la seule action du Soleil, & à la même chose pour la Lune.

PROBLEME.

VIII.

Soit A B C D E, l'Équateur de la Terre parfaitement circulaire, tel qu'il serait sans l'action des deux Luminaires: supposons le Soleil dans la Ligne prolongée D B, & la Lune dans la Ligne prolongée E C; & soit un point Z donné de position: trouver l'altitude y z, qui marquera l'élévation de la Mer pour le dit point Z produit par les deux Luminaires.

SOLUTION.

Supposons que le Soleil élève les eaux en B de la hauteur B b, & la Lune de la hauteur B c au Point c. On aura par les précédentes Propositions B b = 2 3 c, & B c = 3 8 : qu'on partage la hauteur cherchée y z en deux parties y r, & r z, dont la première convienne à l'action de la Lune, & l'autre à l'action du Soleil; soit le Sinus total = r, le Sinus de lAn-
ET REFUX DE LA MER.

l'Angle donné $b C z = \frac{e}{b}$; le Sinus de l'Angle $C C z$ pareillement donné $= \frac{c}{b}$.

de cette manière, nous aurons en vertu du III. §. $r x = \frac{3 b b - b b - c c}{3 b b}$.

& pareillement $y r = \frac{2 b b - 3 c c}{3 b b} \times b$, & par conséquent

$y z = \frac{2 b b - b b - 3 c c}{3 b b} \times c + \frac{2 b b - 3 c c}{3 b b} \times b$. C. Q. F. T.

COROLLAIRE.

IX.

On voit par cette Solution la loi qu'il faudrait observer pour construire une Table, qui marquât pour chaque âge de la Lune, & pour chaque moment, les hauteurs des Marées, en supposant le Point z changer continuellement de position, jusqu'à ce qu'il ait fait le tour ; voyons à présent quel est le Point Z, qui marque la plus grande hauteur $y z$, les Foles b & c étant donnés de position.

LEMME.

X.

Si le Sinus de l'Angle $b C z$ est appelé, comme ci-dehors, $\frac{e}{b}$; le Sinus de l'Angle $C C z$, $\frac{m}{b}$; le Sinus de la somme de ces deux Angles, c'est-à-dire, le Sinus de l'Angle $b C C$, $\frac{m}{b}$; je dis qu'on aura

$$
c = m \sqrt{(b b - c c) - n c}, \quad \text{et}
$$
c^2 = \frac{m b b + n m c - m m c - 2 m n c \sqrt{(b b - c c)}}{b b}.

Tom. III. Z

Je

* La lettre n exprime ici $\sqrt{b b - m m}$. La démonstration de ce Lemme est fort simple, le Rayon $b C$ étant b, le Sinus de tout l'Angle $b C C$ étant $\frac{m}{b}$, on aura $B M = m$, $C M = \sqrt{b b - m n}$.

$C S = c$, $C S = \sqrt{b b - c c}$, $B R = c$. Prolongez $B R$ en N, & menez $M V$ parallèle à $C R$, les Triangles $C S$ & $B M V$ seront semblables à cause des Angles droits $S & V$ & des Angles égaux $C C Z$ & $M B N$; Donc on aura $C C (b) : C S (\sqrt{b b - c c}) = B M$.

$(b) : B V = \frac{m b b - c c}{b}$; On trouvera de même que $C C (b) : C S$.

$(c) = C N ; N R = C M (a) : R V = \frac{u c}{b}$; Donc $B R (c) = B V = R V = \frac{m \sqrt{b b - c c}}{b} - \frac{n c}{b}$. C. Q. F. T.
TRAITEMENT DU FLUX

CHAP. V.

Je n’ajouterai pas la démonstration de ce Lemme : mais il est pourtant bon d’avertir ici, qu’en cherchant la valeur de θ, qui marque le Sinus de la différence de deux Angles donnés par leurs Sinus, on tombe facilement dans une autre expression beaucoup plus prolixe, & qui rend le Calcul du Problème, que nous allons exposer, presque impraticable.

PROBLEME.

Trouver les Points Z, où les hauteurs y z soient les plus grandes.

SOLUTION.

La nature de notre Problème demande, que la différentielle de y z, sçavoir \(\frac{-2 \xi d \xi - \frac{b}{3} \frac{d \xi}{d \xi}}{\frac{d b}{d \xi}} \) (§ VIII.) soit = c, ou bien \(\xi \frac{d \xi}{d \xi} = \frac{-c}{b} \) c d c.

Et fi l’on différentie l’équation seconde du précédent Lemme, on trouve, prenant les quantités m, n & b pour constantes, & \(\xi \) pour variable,

\[\xi d \xi = \frac{a n d x - a m d x}{b b} + \frac{i m n e - a m b b}{b b \sqrt{(b b - c c)}} d c ; \]

En comparant ces deux valeurs de \(\xi d \xi \), on trouve une nouvelle équation, à laquelle on pourra donner une telle forme,

\[\left(-\frac{c}{b} b b c + a m n e - a n m \right) \sqrt{b b - c c} = 2 a m e - a m b b ; \]

si l’on suppose pour abréger la formule \(\frac{-c b b}{a m} + \frac{m}{b} - \frac{n}{m} = \alpha \), on trouve après une réduction entière de l’équation, le Sinus de l’Angle b C z, ou

\[\frac{c}{b} = \pm \sqrt{\left(\pm \frac{\alpha}{2 \sqrt{4 + A A}} \right)} . \]

C. Q. F. T.

SCHOLIE.

XII.

Il ne sera pas difficile de reconnaître dans chaque cas, quel choix on doit faire des Signes ambigus. Mais pour faciliter la chose, & pour en donner une idée d’autant plus distincte, on pourra faire les remarques qui suivent.

1° Que notre Formule marque en même temps quatre Points x, Z, z & S, que les deux premiers diamétralement opposés, marquent que la Mer y est la plus haute, & les deux autres diamétralement opposés marquent que la Mer x est la plus basse, & que l’Arc z z est toujours de 90°,

ce que l’on connoit de ce que \(\sqrt{\frac{1}{2} + \frac{\alpha}{2 \sqrt{4 + A A}}} \), exprimant le Sinus d’un Angle, son Cosinus est exprimé par \(\sqrt{\frac{1}{2} - \frac{\alpha}{2 \sqrt{4 + A A}}} \).

2° Que
2. Que l'Angle $b C c$ étant aigu, le Point z tombe entre les Points b et c, que si cet Angle est droit, le Point z tombe précisément sur c (en supposant la Force lunaire plus grande que la Force solaire, comme elle l'est sans doute); et enfin, lorsque l'Angle $b C c$ est obtus, que le Point z tombe au-delà du Point c, l'Arc $b z$ devenant plus grand que l'Arc $b c$, avec cette loi que le Point z s'approche réciproquement du Point d, tout comme il s'était éloigné du Point b. Enfin, qu'il y a autant de racines inutiles, qu'il faut rejeter, mais qu'il faudrait adopter, si la Force solaire surpassait la Force lunaire.

Corollaire I.

XIII.

On trouve le Sinus de l'Angle $c C z$ exprimé par $\frac{c}{b}$ de la même façon, que nous avons trouvé le Sinus de l'Angle $b C z$. On voit même que sans faire le Calcul de nouveau, on n'a qu'à renverser les lettres c et d dans la valeur de A, indiquée au §. XI. & supposer $\frac{d}{c m} + \frac{m}{n} - \frac{n}{m} = B$,

on aura $\frac{c}{b} = \pm \sqrt{\left(\frac{d}{c} \pm \frac{B}{2\sqrt{(4 + BB)}}\right)}$.

Corollaire II.

XIV.

Considérant l'Angle $b C c$ comme variable, on voit que l'Angle $c C z$, qui marque l'Angle horaire entre le moment de la plus haute Marée, & celui du passage de la Lune par le Méridien, peut faire un maximum, ou plus grand, puisqu'il est $= a$, tant lorsque l'Angle $b C c$ est nul, que lorsqu'il est égal à un droit : nous allons déterminer cet Angle dans la Proposition suivante.

Problème.

XV.

Déterminer l'Angle $b C c$ tel que son Angle $c C z$ devienne le plus grand qu'il est possible.

Za

So.
Pour déterminer l'Angle en question, il faut faire \(d\phi = 0 \), or \(\phi \) étant exprimé par des constantes, \& par la variable \(B \) (§. XIII.) il faut supposer \(dB = 0 \), c'est-à-dire, que la différentielle de la quantité \(\frac{-\frac{2b}{c} + \frac{m}{n} - \frac{n}{m}}{c} \),

doit être supposée égale à zéro, en considérant les lettres \(m \) \& \(n \) comme variables : substitutions pour \(n \) la valeur \(\sqrt{b} \), \(b - m \), \(m \) (§. X.) nous aurons

\[
B = \frac{\frac{c}{m} \sqrt{b} b - m}{m} \cdot
\]

dont la différentielle devient nulle, en faisant

\[
\frac{m}{b} = \sqrt{\frac{c + \theta}{\frac{c}{m}}}
\]

COROLLaire.

XVI.

Si \(\theta \) était = \(b \), c'est-à-dire, si les deux Luminaires avaient une force égale, pour mettre la Mer en mouvement, on aurait \(m = b \). Mais la Force lunaire étant plus grande que la Force solaire, \(m \) devient plus petit que \(b \), cependant l'Angle \(b \theta \), \(\phi \) ne deviendra jamais moindre que de 45°.

On remarquera aussi, qu'il y a quatre Points, tels que \(\beta \), dont deux sont autant éloignés du Point \(b \), que les deux autres le sont du Point \(d \); \& que dans ces quatre Points, la haute Marée vient alternativement après \& avant le passage de la Lune par le Méridien.

Nous allons voir à présent comme on doit appliquer tout ce que nous venons de dire pour trouver l'heure des Marées, \& pour faire voir, combien notre Théorie bien ménagée s'accorde là-dessus avec les Observations.

CHAPITRE VI.

Sur l'heure moyenne des Marées pour toutes les Lunaisons.

I.

On a été de tout temps soigneux à bien remarquer l'heure des hautes \& basses Marées, pour établir là-dessus, autant qu'il est possible,
ble, des règles pour l'utilité de la Navigation; & quoi qu'il soit impossible de donner des règles générales & exactes, on n'a pas laissé de continuer ces recherches. Mais je ne cache pas qu'on se fait encore aviser de raisonner là-dessus autrement, que par induction sur un grand nombre d'Observations, pendant que c'est ici une matière, qui dépend beaucoup de la Géométrie pour l'essentiel, & que ce n'est que par rapport à quelques circonstances, qu'on est obligé de recourir aux Observations, pour établir des règles: & cela est si vrai, que la seule Théorie m'a fait voir plusieurs Points, dont je n'étois pas encore instruit par la lecture. Voyons donc avant toutes choses, jusqu'où la Théorie peut aller, pour éclaircir notre sujet: nous nous attacherez encore aux hypothèses marquées au XIX. §. du Chap. IV. que je prie le Lecteur de relire. Nous irons ensuite plus loin, & nous examinerons, quelle correction il faudra employer à l'égard de chaque hypothèse, lorsqu'elle est en quelque façon changée.

Il est bon d'avertir ici le Lecteur, lorsqu'il parlera des deux Marées qui se suivent, que j'entends deux Marées pareilles, qui se suivent au bout de 24. heures, en soutenant la Marée intermédiaire; nous éviterons par-là de certaines petites inégalités, qu'on a observées, lorsqu'on a comparé ensemble les deux Marées, qui se font dans un même jour. Si l'on veut comparer ensemble des Marées, qui ont plusieurs jours d'intervalle, nous choisirons celles qui se font pendant que la Lune est au-dessus de l'Horizon.

Il est clair, que si la Lune a voit infiniment plus de force que le Soleil, la haute Marée répondrait précisément au passage de la Lune par le Méridien, & l'intervalle d'une Marée à l'autre ferait d'un jour lunaire précis; & si au contraire la Force du Soleil surpaissait infiniment la Force lunaire, la Marée se ferait au moment du passage du Soleil par le Méridien, & l'intervalle d'une Marée à l'autre, ferait précisément d'un jour solaire. Mais comme les deux dites Forces sont, suivant toutes les Observations, comparables entre elles, on voit que le vrai temps de la haute Marée doit dépendre du passage par le Méridien de l'un & de l'autre Luminaire: mais il aura toujours plus de rapport avec la Lune, qu'avec le Soleil, parce que la Force lunaire est, sans contredit, plus grande que la Force solaire. Nous verrons dans la suite, qu'il y a quatre situations de la Lune, dans lesquelles l'intervalle de deux Marées, qui se suivent, est précisément d'un jour lunaire; & qu'en
deçà, ou en delà de ces quatre Points, les Marées doivent nécessairement avancer ou retarder sur le temps du jour lunaire: nous déterminerons ces accélérations & retards, qui sont fort inégaux, & nous ajouterons plusieurs autres. Remarques sur cette matière, qui l'éclairciront plus que toutes les Observations, qu'on a faites jusqu'ici. Il est vrai que ces déterminations dépendent du rapport qu'il y a entre les Forces des deux Luminaires, que ce rapport est encore incertain, & qu'il est même variable: mais j'indiquerai quels sont les moyens les plus sûrs, pour le déterminer d'abord dans de certaines circonstances, ensuite généralement. Avant que de traiter cette Question, qui est une des plus utiles, & des plus essentielles, nous déterminerons généralement le vrai temps des hautes & basses Marées, en supposant le rapport entre les forces des deux Luminaires connu.

I V.

Soit b a d c l'Equateur, dans le plan duquel les deux Luminaires sont encore supposés se mouvoir de b vers a, pendant que l'Equateur de la Terre se tourne dans le même sens autour de son Centre C. Prenons dans l'Equateur un Point b, & considérons les Luminaires se trouver dans leur Conjonction au Point b, c'est-à-dire, étant l'un & l'autre dans la Ligne prolongée d b; on voit qu'en ce cas la haute Marée doit être dans ce moment-là en b, & précisément à midi.

V.

Voyons à présent ce qui doit arriver un, deux, trois, &c. jours après: supposons pour cet effet, que le Soleil se trouvant encore à midi au Point b, la Lune réponde au Point c: la haute Marée répondra dans ce moment au Point z, & les Arcs b z, c z se déterminent par les §, §, XI. & XIII. du Chap. V. il faut donc que le Point b parcourt dans l'Equateur l'Arc b z, pour se trouver dans l'endroit de la plus haute Marée; car on peut négliger les petits Arcs, que les Luminaires parcourront, dans le temps que le Point b de l'Equateur parcourt l'Arc b z. On voit donc, que si l'on veut régler le temps des hautes Marées.
Marées après le temps vrai, on doit prendre l'Arc α pour l'Arc horaire, qui marque l'heure de la haute Marée de ce jour-là.

Cette règle suppose le Point c en repos, pendant le temps qui convient au dit Arc horaire $\beta \zeta$; mais il est facile de corriger cette supposition : car nous verrons dans la suite, que l'Arc $\beta \zeta$ est presque égal à l'Arc βc ; et cela étant, il est clair, qu'on n'a qu'à substituer des heures lunaires aux heures solaires, qui répondent à l'Arc $\beta \zeta$, pour corriger la dite supposition.

V I.

Nous venons de montrer, comment on peut déterminer le vrai temps des hautes Marées, en le rapportant au midi, c'est-à-dire, au passage du Soleil par le Méridien : voici à présent, comment on peut déterminer l'heure des hautes Marées, en la rapportant au passage de la Lune par le Méridien, qu'on connaît par les Ephémérides : on peut le faire immédiatement par le moyen de l'Arc ξ : nous verrons que le Point z ne se trouvera s'éloigner du Point ξ au-delà d'environ dix degrés, qui répond à 40 minutes de temps, pendant lequel cet Arc ne se trouvera varier sensiblement ; d'où il suit que ce petit Arc ξz marquera toujours l'Arc horaire entre le moment du passage de la Lune par le Méridien & le moment de la haute Marée.

V I I.

L'Arc ξz étant tantôt négatif, tantôt affirmative, comme il paraît par le XIII. Art. du Chap. V. on voit que la haute Marée suivra le passage de la Lune par le Méridien, depuis les Syzygies jusqu'aux Quadratures, & qu'elle le précédera depuis les Quadratures jusqu'aux Syzygies : on voit encore par l'Art. XV. du Chap. V. que l'Arc ξz fait un maximum, lorsque le Sinus de l'Arc βc est $\sqrt{\frac{\alpha+\beta}{2}}$; c'est alors que la haute Marée retardera ou avancera le plus sur le passage de la Lune par le Méridien : & comme vers ce temps-là les Points c & z peuvent être confondus avoir un mouvement égal, l'intervalle d'une Marée à l'autre, sera alors précisément d'un jour lunaire : & cet intervalle peut être appelé intervalle moyen entre deux Marées qui se suivent : il est de 24 heures 50,5 minutes, en prenant 29 jours 12 heures 44 minutes, pour le temps moyen d'une Conjonction à l'autre.

On remarquera encore que l'intervalle d'une Marée à l'autre est le plus petit dans les Syzygies, & le plus grand dans les Quadratures.
Pour déterminer analytiquement les propriétés, que nous venons d’indiquer en gros, nous supposons que la Lune répondant au Point m, et la haute Marée étant dans ce moment là au Point n, l’Arc mn soit alors le plus grand qu’il est possible. Soit outre cela encore le Sinus total $= 1$, le Sinus de l’Arc $mb = m$, son Cosinus $= n$. Cela étant, nous avons déjà dit, et nous le remarquerons encore ici:

1^o. Qu’on aura $m = \sqrt{\frac{c+b}{b}}$

2^o. Qu’on peut déterminer la grandeur de l’Arc mn par le moyen du XIII. §. Chap. V. où nous avons démontré, que généralement le Sinus de cet Arc est

$$\sqrt{\left(\frac{1}{2} \pm \frac{B}{2\sqrt{4+BB}}\right)}$$

eu supposant $B = \frac{bb}{mm} + \frac{m}{n} - \frac{n}{m}$. Pour appliquer cette règle générale à notre cas particulier, il faut supposer $b = 1$; $m = \sqrt{\frac{c+b}{b}}$, et $n = \sqrt{\frac{b-c}{b}}$: après ces substitutions, on trouve le Sinus de l’Arc mn

$$= \sqrt{\left(1 - \sqrt{\frac{3c-c}{b}}\right)}$$

et comme b est beaucoup plus grand que c, on peut censer le Sinus de l’Arc mn être simplement $= \sqrt{\frac{c}{b}}$.

3^o. Qu’on déterminera la grandeur de l’Arc nb, par le moyen du XI. §. du Chap. V. Il est remarquable que cet Arc ne dépend point du rapport, qui est entre la Force lunaire δ, & la Force solaire ϵ; car il est toujours de 45 degrés.

4^o. Que si la Lune est supposée dans un Point quelconque c, les Arctez xz & cz peuvent se déterminer par le moyen des XI. & XIII. §. §. du Chap. V. comme nous avons déjà dit; mais si l’on suppose le Point c bien près du Point b, nos Formules font voir, qu’on peut censer alors le Sinus de l’Arc $cz = \frac{c}{c+b} \times m$, & le Sinus du petit Arc $bx = \frac{b}{b+c} \times m$. Cet-
Cette Formule nous servira à déterminer combien les Marées priment vers les Syzygies.

5. Que si la Lune se trouve en α bien près de α, la haute M. réé se répondra dans ce moment au Point z au delà du Point α, & on trouvera par le XIII. Art. du Chap. V. si l'on traite bien l'équation qui y est marquée, le Sinus du petit Arc $\alpha z = \sqrt{\frac{n}{2}}$, en prenant pour n le Cosinus de l'Arc $b \alpha$, ou ce qui revient au même, le Sinus du petit Arc $a \alpha$. Cette valeur du petit Arc αz nous servira à déterminer, combien les Marées retardent vers les Quadratures.

Ces deux dernières Remarques sont fondées sur ce que $m = n$, étant comme infiniment petits, les quantités A & B deviennent comme infiniment grandes, & alors on peut substituer simplement $\frac{1}{A}$ & $\frac{1}{B}$ à la place des Quantités

$$\sqrt{\left(1 - \frac{A}{2\sqrt{4 + AA}}\right)} \& \sqrt{\left(1 - \frac{E}{2\sqrt{4 + BB}}\right)}$$

& après ces substitutions, on trouve les Sinus des petits Arcs, comme nous les avons déterminés.

IX.

Toutes ces proprietés, que nous venons d'établir, sont tout-à-fait conformes aux Observations. Mais pour en sentir toute la force, il faudrait toujours savoir le rapport qu'il y a entre les Forces β & γ, & c'est ce que j'ai déjà dit, qu'on ne saurait déterminer immédiatement par les principes d'Alphonse, faute d'Observations assez justes sur la Lune; il faut donc s'en tenir aux effets Physiques, que la Lune produit sur la Terre, pour en déduire la force; & je n'en conçois point d'autres, que les Marées mêmes; mais il s'en faut servir avec beaucoup de circonspection. Comme c'est ici un point très-essentiel, je n'ai pas voulu manquer de le considérer avec toute l'attention qu'il mérite. Voici mes refletsions là-dessus.

X.

On pourrait déduire le rapport moyen entre les Forces β & γ du rapport des plus hautes Marées, qui se font près des Syzygies, & des plus petites Marées aux Quadratures. Car on voit par le VIII. §. Chap. V. que la hauteur de la plus grande Marée doit être à celle de la plus petite Marée, comme $\beta + \gamma$ est à $\beta - \gamma$. Mais les hauteurs des Marées dans les Ports, où l'on fait les Observations, dépendent de tant de circonstances, qu'elles ne peuvent être tout-à-fait proportionnelles aux hauteurs des Marées dans la Mer libre; & c'est ce qui fait, qu'on
trouve le rapport moyen entre les plus grandes & les plus petites Marées, affe différemment dans différents Ports.

M. Newton, qui a suivi cette Méthode, rapporte une Observation faite par Sturm au dessous de Bristol, où cet Auteur a trouvé que les hauteurs de la plus grande & de la plus petite Marée, ont été, comme 9 à 5, d'où il faudrait conclure, que \(\delta = 3 \frac{1}{3} \times 5 \). Cette Observation est bien éloignée de celle que j'ai reçue dernièrement faite à Saint Malo par M. Thouroud. La voici : «Dans les grandissimes Marées, la Mer s'élève de 50 pieds en plomb au-dessus du bas de l'eau : dans les Marées bâtardees, elle ne diffère que de quinze pieds.» Si j'ai bien compris cette Observation, la plus grande Marée éroit à la plus petite, comme 50 à 15, ou comme 10 à 3 ; ce qui donnerait \(\delta = \frac{5}{3} \times 5 \). Ces deux résultats sont bien différents : il est vrai, que le rapport de 5 à 3 est variable, mais cette variation ne feraient aller si loin ; si la plus petite valeur de \(\frac{5}{3} \) est \(m \), la plus grande valeur de \(\frac{5}{3} \) sera environ \(\frac{3}{2} m \).

Il y a une autre réflexion à faire sur cette Méthode de trouver le rapport entre les Forces des deux Luminaires : c'est que les Marées sont une espèce d'Oscillations, qui se refissent toujours des Oscillations précédentes ; cette raison fait que les variations des Marées, ne feraient être aussi grandes qu'elles devraient être, suivant les Loix hydrodynamiques. Concevons un pendule attaché à une Horloge animée successivement par des poids différents : On fissa, que plus ces poids sont grands, plus les Oscillations du pendule deviennent grandes : mais en changeant les poids, les premières Oscillations ne prendront pas d'abord leur grandeur naturelle ; elles ne s'en approchent que peu à peu. Il n'en est pas de même des durées des Oscillations, lorsque le pendule est successivement animé par différentes pêseurs. Confidérons d'abord un pendule simple animé par la pesanteur ordinaire, & qui fasse ses Oscillations dans deux secondes de temps, & supposons ensuite la pesanteur devenir tout d'un coup quatre fois plus grande ; je dis que la première Oscillation, qui suivra ce changement, se fera de même que toutes les autres suivantes dans une seconde de temps.

Cette considération me porte à croire, que les Observations sur les durées & sur les intervalles des Marées sont plus sûres pour notre défense, que les hauteurs des Marées ; si cette réflexion est bien fondée, on pourrait faire attention aux Méthodes suivantes, pour trouver le rapport moyen entre \(\delta \) & \(\varepsilon \).

Il faudroit pendant plusieurs mois observer, quel est le plus petit intervalle de deux Marées. Nous avons dit au V l. § que l'intervalle moyen est d'un jour moyen lunaire, que je suppose de 24 heures 50 minutes : mais il sera moindre dans les Syzygies, quoique plus grand qu'un
qu'un jour solaire, ou de 24 heures: supposons ce plus petit intervalle de 24 heures, & d'autant de minutes, qu'il y a d'unités dans \(N \); &

il faudra prendre dans la Figure ci-dessus un Arc horaire \(b \) \(c \) de 50 minutes de temps. De cet Arc \(b \) \(c \), il faut prendre une partie \(c \) \(x \), qui répond à \((50 - N) \) minutes. Or par la IV. Remarque du VII. §.

\[
\text{L'Arc } c \ x \ \text{est à l'Arc } b \ c, \ \text{comme } \frac{c + \frac{t}{c}}{d} \times m \ \text{est à } m: \ \text{d'où nous tirons cette analogie},
\]

\[
\]

& cette analogie donne

\[
\theta = \frac{N}{50-N} \times c.
\]

Soit \(N \) égal à 35 (c'est ainsi qu'on l'observe à peu près dans les Marées régulières) & on aura \(\theta = \frac{35}{50} c \).

2°. On pourroit aussi faire attention aux plus grands intervalles, si ce plus grand intervalle (qui se fait ordinairement après les Quadratures) étoit de 24 heures & d'autant de minutes, qu'il y a d'unités en \(M \). On trouve par la même Méthode, que nous venons d'indiquer, & par la V. Remarque du VII. §. \(\theta = \frac{M}{M-50} \times c \).

Soit \(M = 85 \) minutes (c'est à peu près la valeur que l'on observe) & on trouvera

\[
\theta = \frac{45}{45} \times c.
\]

Voilà les deux Méthodes, que je crois les plus exactes; & la première doit l'emporter sur la seconde, parce que les Marées sont plus irrégulières après les Quadratures, qu'après les Syzygies. Il y a encore

\[\text{À a 2} \]

plu-
plusieurs autres Méthodes pareilles à celles que je viens d’exposer, & dont j’ai fait en partie le Calcul; mais comme je ne suis pas assez content des Observations, sur lesquelles ces Méthodes sont fondées, je ne les mettra pas ici. Je me contenterai de dire, qu’après tous les examens que j’ai faits, j’ai trouvé, que pour accorder, autant qu’il est possible, toutes les Observations qui déterminent le rapport entre $\frac{1}{e}$ et $\frac{2}{e}$, il faut supposer la valeur moyenne de $\frac{1}{e} = \frac{1}{2}$, la plus petite valeur de $\frac{2}{e} = 2$, & fa plus grande valeur $= 3$. C’est donc sur ces suppositions que nous raisonnerons & calculerons dans la suite; & comme nous ne considérerons encore toutes les circonstances variables, que dans leur état moyen, nous ferons dans tout le reste de ce Chapitre $\frac{1}{e} = \frac{1}{4}$.

M. Newton suppose $\frac{1}{e}$ environ $= 4$: mais j’ai déjà dit, pourquoi sa Méthode doit indiquer la valeur de $\frac{1}{e}$ plus grande qu’elle n’est: la raison en est, que si les Marées n’avaient point d’influences les unes sur les autres, comme elles ont, les plus grandes Marées différeenteroient davantage des plus petites, & par là on trouveroit la valeur de $\frac{1}{e}$ plus petite.

Avant que de finir cette digression sur le rapport entre la force de la Lune, & celle du Soleil, & d’en faire l’application à notre sujet, je ferai ici une réflexion sur les Forces absolues de la Lune & du Soleil. Nous avons fait voir aux §. §. VIII. & XV. du Ch. IV. que dans l’hypothèse de l’homogénéité de la Terre adoptée par M. Newton, le Soleil ne fçauroit faire varier les eaux au-delà de deux pieds, ni par conséquent la Lune au-delà de cinq pieds. Ces deux Forces combinées ensemble pour les Quadratures feroient une Force absolue à faire varier les eaux en pleine Mer de trois pieds de hauteur verticale pendant une Marée. Mais peut-on comprendre, que d’une variation de trois pieds en pleine Mer, il pût se produire tous les effets des Marées aux Quadratures? Encore est-il très-vraisemblable, que la variation actuelle des eaux diffère beaucoup de la variation entière, que la Théorie indique comme possible: peut-être même, que la variation actuelle est à peine sensible par rapport à l’autre, & cela non-seulement à cause des empêchemens accidentels, tel que le frottement, l’imparfaite fluidité, &c.; mais encore à cause de l’incertitude des eaux & du mouvement journalier de la Terre; car on voit bien, que si ce mouvement journalier de la Terre étoit d’une vitesses infinie, les Luminaires ne pourroient avoir aucun effet pour faire varier la Mer, quelque Force qu’ils eussent. Je suis donc entièrement persuadé, que les Forces absolues des deux Luminaires sont beaucoup plus grandes, que M. Newton ne les suppoisoit, & tous
Les intervalles de deux Marées qui se suivent, font les plus petits dans le temps des Syzygies : leur intervalle moyen est alors de 24 heures 35 minutes, & les Marées prennent chaque jour de 15 minutes sur le mouvement de la Lune.

Les intervalles des deux Marées qui se suivent, font les plus grands dans le temps des Quadratures : ils sont alors de 24 heures 85 minutes, c'est-à-dire, de 25 heures 25 minutes : les Marées retardent de 35 minutes par jour sur le mouvement de la Lune. Cette grande inégalité doit rendre l'heure des Marées plus incertaine & plus irrégulière que dans les Syzygies ; & c'est aussi ce que l'on observe : mais ce n'est pas la seule raison.

Les Marées répondront précisément au passage de la Lune par le Méridien, tant dans les Quadratures, que dans les Syzygies, si celles-ci se font au moment du passage de la Lune par le Méridien. Mais si les Quadratures & les Syzygies ne se font pas dans le moment du passage de la Lune par le Méridien, il faut des corrections. Dans les Syzygies, il faut une correction de 15 minutes pour un jour entier en vertu du XI. §. & par conséquent $\frac{1}{4}$ de minutes par heure, que la haute Marée avancera sur le passage de la Lune par le Méridien, si les Syzygies se font avant ce même passage ; & que la haute Marée retardera sur le passage de la Lune par le Méridien, si les Syzygies se font après ce passage. Dans les Quadratures il faut une correction de 35 minutes par jour, en vertu du §. XII. c'est-à-dire, environ une minute.
186 TRAITÉ SUR LE FLUX

CHAP. & demie par heure, que la haute Marée retardera sur le passage de la
VI. Lune par le Méridien, si les Quadratures se font avant ledit passage ; &
qu'elle avancera, si les Quadratures se font après le passage de la Lune
par le Méridien. Car près des points b & a, les Arcs ξ & ω peuvent être censés proportionnels aux Arcs σ & α.

XIV

Si au lieu de rapporter les hautes Marées aux jours lunaires, on vou-
loir confidérer les jours solaires, on voit bien qu'il faut dire, que les
hautes Marées, au lieu de primer de 15 minutes dans les Syzygies, re-
tardent de 35. minutes dans un jour, ou d'environ une minute & de-
mie par heure ; & qu'elles retardent de 85 minutes par jour dans les
Quadratures, ce qui fait environ trois minutes & demie par heure : de
là nous tirerons cette règle pour les Syzygies.

Il faut ajouter à l'heure moyenne de la Marée dans les Syzygies une
minute & demie par chaque heure, que les Syzygies auront devancé ladi-
te heure moyenne, & en retrancher une minute & demie par chaque he-
ure, que les Syzygies retarderont sur la même heure moyenne.

Et pour les Quadratures nous aurons la règle suivante :

Il faut ajouter, ou retrancher, dans les Quadratures de l'heure moyen-
ne de la Marée, trois minutes & demie par chaque heure, que les Qua-
dratures avanceront ou retarderont sur la même heure moyenne.

XV.

M. Caffini, dont les remarques ingénieuses sur les Marées m'ont ser-
vi de guide dans mes recherches, a donné par induction des règles pa-
reilles, avec cette différence que dans les Syzygies, il a mis deux mi-
nutes par heure, au lieu d'une minute & demie, & deux minutes &
demie dans les Quadratures, au lieu de trois minutes & demie.

XVI.

Enfin nous remarquerons, que l'intervalle moyen de deux Marées
qui se suivent, lequel intervalle est de 24 heures lunaires, ou 24 he-
ures 50 minutes, n'est pas également éloigné des Syzygies & des Qua-
dratures ; mais qu'il est beaucoup plus près des Quadratures, que des
Syzygies : aussi pouvoit-on le prévoir facilement ; car comme toutes les
accélérations depuis le Point b jusqu'au Point m (qui est celui dont il
eft question ici) doivent compenser tous les retardements depuis le Point
m jusqu'au Point a, & que les accélérations sont beaucoup plus petites que
que les retardements, on voit d'abord, que le Point \(m \) doit être plus près du Point \(a \), que du Point \(b \). Mais nous déterminerons exactement ce point \(m \) par le moyen de la première Remarque du VIII. §. où nous avons démontré que le Sinus de l'Arc \(mb \) est \(\sqrt{\frac{a+b}{a}} = \sqrt{b} = 0,8366 \) lequel Sinus répond à un Arc de 56°. 47'm. L'Arc \(mb \) étant donc de 56°. 47'm., l'Arc \(ma \) sera de 33°. 13'm., & les deux Arces \(mb \) & \(ma \) font comme 3407 à 1993.

L'Arc \(nb \) étant toujours de 45 degrés (par la III. Remarque du VIIII. §.) nous avons l'Arc \(mn = 11°. 47'm. ; \) & cet Arc \(mn \) marque le plus grand intervalle possible entre le passage de la Lune par le Méridien, & la haute Marée. Cet intervalle est donc de 47 minutes de temps: le passage de la Lune par le Méridien suivra la haute Marée depuis les Syzygies jusqu'aux Quadratures, & la précédera depuis les Quadratures jusqu'aux Syzygies. Mais le plus grand intervalle de l'un à l'autre (qui se fait environ 2 1/2 jours avant & après les Quadratures) ne surpasse jamais 47 minutes de temps.

XVII.

Toutes ces Propositions depuis le XI. §. jusqu'ici; nous donnent une idée claire des heures des hautes Marées, & de toutes leurs variations pour chaque âge de la Lune. Car, quoi-que nos démonstrations soient fort hypothétiques, elles n'en méritent pas moins d'attention; je ferai voir dans le Chapitre suivant, comment on peut donner des corrections assez justes à l'égard de toutes les hypothèses que j'ai exposées au XIX. §. du Chap. IV. Mais pour donner toute la perfection qui est possible, à cette matière, je montrerai plus précisément, comment on peut trouver l'intervalle entre le passage de la Lune par le Méridien, & la haute Marée, pour tout Arc donné entre les deux Luminaires; après quoi je donnerai une Table, que j'ai pris la peine de calculer de dix en dix degrés. Il sera facile après cela moyennant les Ephémérides & des Interpolations, de déterminer l'heure des Marées généralement.

XVIII.

Soit donc encore le Soleil en \(b \); la Lune dans un Point quelconque \(m \); la haute Marée en \(n \). Soit le Sinus de l'Arc \(mb = m \); le Sinus total = 1, le Cosinus de l'Arc \(mb = n \); qu'on fasse (§. XIII. Chap. V.).

\[
B = \frac{-1}{6 \cdot mn} + \frac{m}{n} - \frac{n}{m} = \frac{4 \cdot mn - 7}{2 \cdot mn} ;
\]

\(\text{on} \)
on aura le Sinus de l'Arc $m n$ (qui est l'Arc horaire entre le passage de la Lune par le Méridien & la haute Marée)

$$= \sqrt{\left(1 + \frac{B}{\sqrt{4 + BB}}\right)}$$

Si l'on change cette Quantité radicale en suites, en faisant attention que B est toujours un nombre négatif beaucoup plus grand que l'unité, on verra qu'on peut, sans aucune erreur sensible, supposer le Sinus de l'Arc horaire $m n = \frac{1}{B} - \frac{3}{2B}$, & même simplement $= \frac{1}{B}$ près des Syzygies & des Quadratures. Voici à présent la Table dont je viens de parler.

La première Colonne marque de dix en dix Degrés l'Angle compris entre les deux Luminaires vus du centre de la Terre environ l'heure de la Marée: la seconde marque le nombre de minutes, qu'il faut retrancher depuis les Syzygies jusqu'aux Quadratures, & ajouter depuis les Quadratures jusqu'aux Syzygies à l'heure du passage de la Lune par le Méridien, pour trouver l'heure de la Marée; & la troisième marque la vraie heure de la haute Marée:
Table Fondamentale

Pour trouver l'heure moyenne des hautes Marées.

<table>
<thead>
<tr>
<th>Distantes entre les deux Luminaires en Degrés</th>
<th>Temps de la haute Mer avant & après le passage de la Lune par le Méridien</th>
<th>Heure de la haute Mer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Degrés</td>
<td>0 Minutes.</td>
<td>0 Heur. 0 Min.</td>
</tr>
<tr>
<td>10</td>
<td>11 1/2 avant.</td>
<td>0 28 1/2</td>
</tr>
<tr>
<td>20</td>
<td>22 avant.</td>
<td>0 58</td>
</tr>
<tr>
<td>30</td>
<td>31 1/2 avant.</td>
<td>1 28 1/2</td>
</tr>
<tr>
<td>40</td>
<td>40 avant.</td>
<td>2 0</td>
</tr>
<tr>
<td>50</td>
<td>45 avant.</td>
<td>2 35</td>
</tr>
<tr>
<td>60</td>
<td>46 1/2 avant.</td>
<td>3 13 1/2</td>
</tr>
<tr>
<td>70</td>
<td>40 1/2 avant.</td>
<td>3 59 1/2</td>
</tr>
<tr>
<td>80</td>
<td>25 avant.</td>
<td>4 55</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>6 0</td>
</tr>
<tr>
<td>100</td>
<td>25 après.</td>
<td>7 5</td>
</tr>
<tr>
<td>110</td>
<td>40 1/2 après.</td>
<td>8 0 1/2</td>
</tr>
<tr>
<td>120</td>
<td>46 1/2 après.</td>
<td>8 46 1/2</td>
</tr>
<tr>
<td>130</td>
<td>45 après</td>
<td>9 25</td>
</tr>
<tr>
<td>140</td>
<td>40 après.</td>
<td>10 0</td>
</tr>
<tr>
<td>150</td>
<td>31 1/2 après.</td>
<td>10 31 1/2</td>
</tr>
<tr>
<td>160</td>
<td>22 après.</td>
<td>11 2</td>
</tr>
<tr>
<td>170</td>
<td>11 1/2 après.</td>
<td>11 31 1/2</td>
</tr>
<tr>
<td>180</td>
<td>0</td>
<td>12 0</td>
</tr>
</tbody>
</table>
La Table que nous venons de donner, détermine généralement l’heure des hauteurs Mers pour les hypothèses exposées au XIX. §. Chap. IV. s’il est vrai que la raison moyenne entre les Forces de la Lune & du Soleil, soit comme 5 à 2. Je la crois à - peu - près telle, après avoir bien examiné toutes les Observations qui peuvent la déterminer : cependant, comme ces Observations ne sont ni assez justes, ni en assez grand nombre, pour s’y fier entièrement, je ne la donne pas encore pour tout à fait exacte ; il est pourtant certain, que cette Table ne fera qu’marquer d’avoir toute l’exactitude nécessaire, les Marées étant sujets à plusieurs irrégularités, dont on ne pourrait donner aucune mesure, & qui font de beaucoup plus grande conséquence, que tout ce qu’il y a encore d’incertain dans la Table. Nous allons examiner avec quelles précautions & corrections on doit s’en servir.

CHAPITRE VII.

Qui contient à l’égard de plusieurs circonstances variables, les corrections nécessaires pour les Théorèmes & pour la Table du Chapitre précédent, & une explication de plusieurs observations faites sur les marées.

I.

Les vents & les courants irréguliers contribuent le plus à rendre les Marées incertaines & irrégulières. Ils accéléreront & augmenteront le Flux, ou le retarderont & le diminueront, selon qu’ils ont une direction commune ou contraire avec le Flux naturel des eaux. Mais on voit bien qu’il faut le contenter de ces effets, & qu’il est difficile & même impossible d’en marquer le détail, ou des mesures précises.

II.

La seconde circonstance qui fait varier les Marées, est la situation du Port, sa profondeur, sa communication avec la Mer libre, la pente de son fonds & des environs, &c. Tout cela fait qu’il est impossible de marquer l’heure abolui des Marées dans les Ports, ou Bayes, ou Côtes différents n’étant situées. Mais comme toutes ces circonstances demeurent toujours les mêmes, on peut supposer qu’elles font le même effet sur toutes les Marées ; sechant donc combien la Majesté est retardée dans les Syzygies, on la fera aussi à peu-près dans toutes les autres situations.
tuations de la Lune. Cette supposition est la seule ressource qui nous reste: j'avoue même qu'elle doit être fort peu exacte pour les différen
tes déclinaisons des deux Luminaires à l'égard de l'Equateur: il n'est pas vraisemblable non plus, qu'elle soit également juste pour les grandes Marées dans les Syzygies, & pour les Marées bâtarides dans les Quadratu
res. Mais avec tout cela, on ne doit pas la rejeter, plusieurs Observa-
tions m'ayant fait voir, que moyennant cette correction, le cours des Marées répond assez bien à la Théorie. Il faut donc s'avoir par un grand nombre d'Observations pour chaque endroit l'heure moyenne des hautes Mers dans les Syzygies, & ajouter cette heure au temps marqué dans la seconde & troisième Colonne de notre Table: c'est cette heure moyenne des hautes Mers dans les Syzygies, que les Mariniers appellent heures du Port: elles varient extrêmement dans les différents Ports, comprenant tout le temps & durée d'une Marée.

III.

Ce retard de l'heure moyenne des pleines Mers dans les Syzygies, à
l'égard du midi, s'observe aussi dans la Mer libre, ou plutôt dans les Îles
qui font en pleine Mer: mais il n'est pas si grand, & vient d'une autre cause, s'avoir de l'inertie des eaux, qui les empêche d'obéir assez promptement, à cause de la vitesse du mouvement journalier de la Terre. On peut appliquer ici tout le raisonnement que nous avons fait au VI. §. du Chap. III. pour expliquer la mutation de la Lune en longitude: On pour-
roit douter, si cette raison doit faire avancer ou retarder les Marées: Sup-
posions donc, pour nous en éclaircir, que, tant les Luminaires, que la ha-
te Marée, répondent à un même Point dans cette Figure: comme le mou-
vement des Luminaires n'est pas fendi
ble, par rapport au mouvement journalier de la Terre, nous les con-
fidérerons comme demeurant dans la ligne d b: l'Equateur de la Terre changera la figure naturelle b g d b en B G D H; & cette figure B G D H
tournant autour du Centre C de B
vers G, le sommet B viendra quel-
que temps après en y: cela étant, si les eaux pouvoient se composer dans
un instant dans un état d'équilibre, l'élevation B b devroit s'échanger en
y z, & la force qui devroit produire ce changement, serait exprimée
par B b y: mais cette force étant infiniment petite, si l'Angle B C y

B b 2

eff
c'est infiniment petit, elle ne feroit produire tout son effet. On voit par-là, qu'il faut supposer l'Angle B C y d'une grandeur considérable, & considérer ensuite le sommet B comme transporté en y, afin que la différence des preffions soit aff z grande, pour conserver le sommet des eaux au Point y, malgré la rotation du Globe. Le vrai sommet étant donc en y, l'Angle B C y sera l'Angle horaire, qui marquera les retardements réels des hautes Marées sur le passage de la Lune par le Méridien. Là-dessus nous pourrons faire les Remarques qui suivent.

10. Si les Luminaires ne sont pas en conjonction, & que le Soleil soit en β, & la Lune en ε, on pourra conserver la chose, comme si les Luminaires étoient en conjonction, mais dans la Ligne C x, déterminée de position au VIII. §. du Chap. V. & augmenter toujours l'Angle β C x de l'Angle B C y, dont nous venons de parler ; d'où il paroit que l'Angle horaire B C y doit toujours être ajouté au temps marqué dans la troisième Colonne de notre précédente Table : car la hauteur des Marées ne paroit pas devoir changer la chose, puisque les changements de preffion pour un petit temps donné, sont proportionnels aux baiffemens des eaux, qui doivent se faire pour conserver le sommet des eaux dans un même Point y.

2. Si le mouvement journalier de la Terre étoit infiniment lent, l'Angle B C y feroit nul ; mais il doit être plus grand, d'autant qu'on suppoze le mouvement journalier plus grand & plus prompt ; & la différence des hauteurs entre les hautes & basses Marées, doit diminuer à proportion.

3. Si la vitesse du mouvement journalier étoit comme infinité, la pleine Mer répondroit presque au Point G ; mais aussi la différence des hautes & basses Murs feroit comme nulle. Il me semble après avoir bien considéré la chose, que les hauteurs des Marées dans les Syzygies doivent être censées proportionnelles aux Sinus des Angles G C y dans la Mer libre, & que si la hauteur B b dans le mouvement journalier de la Terre est = ε, elle sera avec le mouvement journalier de la Terre = \(\frac{C s}{C b} \times \varepsilon \).

Or, comme on a observé que dans la Mer libre la haute Marée suit environ de deux heures le midi dans les Syzygies ; il faut supposer l'Angle
glement BC y de 30 degrés, & les forces abfolues des Luminaires doivent être supposées plus grandes en raison de $\sqrt{3}$ à 2 pour élever les eaux, autant qu'elles le feraient sans le mouvement journalier de la Terre.

I, V.

Nous avons encore fait voir, que sans le concours des causes secondes, les plus grandes Marées devraient se faire dans les Syzygies, & les plus petites dans les Quadratures. Cependant on a observé que les unes & les autres se font un ou deux jours plus tard. Ce retardement est encore produit, sinon pour le tout, au moins en partie, par l'inertie des eaux, qui doivent être mises en mouvement, & qui ne se laissent obéir que promptement aux forces qui les sollicitent, pour leur faire suivre les lois que ces forces demanderoient. Il y a peut-être encore une autre cause, & M. Cuffini me paroit le soupçonner de même, quoique l'on ne se serve pas de nos principes, la voici : c'est qu'il se pourrait bien que cette cause, qui nous est encore si cachée, & qui donne une tendance mutuelle aux Corps flottans & composés dans le système du monde, que cette cause, dis-je, ne se communique pas dans un instant d'un Corps à l'autre, non plus que la lumière. S'il y avoit, par exemple, un Torrent central de matière subtile, & d'une étendue infinie, vers le centre de la Terre, & un semblable vers le centre de la Lune, ces deux Torrents pourroient produire la Gravitation mutuelle de ces deux Corps, & la vitesse du premier pourroit être telle, qu'il fallût un ou deux jours à la matiere, pour parvenir depuis la Lune jusqu'à la Terre : en ce cas on voit bien que l'effet de la force lunaire sur notre Océan, feroit le même, qu'il auroit été un ou deux jours auparavant dans la supposition que la Gravitation se communique dans un instant. Quoi qu'il en soit, comme ce retardement a été observé le même & peu-près après les Syzygies & après les Quadratures, nous pouvons encore supposer, qu'il est le même, pendant toute la révolution de la Lune, c'est-à-dire, que les Marées sont toujours telles, qu'elles devroient être, sans lesdites causes, un ou deux jours auparavant.

Au reflet je n'ai mis ici ce que je viens de dire sur la cause qui pourroit produire la Gravitation mutuelle des Corps du Système du Monde (Gravitation, qu'il n'est plus permis de revoquer en doute) que comme
un exemple: je ne prétens pas expliquer ce Phénomene, j'avoue même qu'il n'est encore tout-à-fait incompréhensible: je ne crois pas non plus que l'ACADEMIE en ait voulu demander une explication: je souhaiterions donc qu'on remarquât que ceux qui voudroient le servir d'autres principes, pour expliquer le Flux & Reflux de la Mer, ne le feroient qu'en apparence, & que tout ce qu'ils pourroient alleguer ne feroient que des efforts d'expliquer mécaniquement la Gravitation ou l'Attraction mutuelle du Soleil, de la Lune & de la Terre, sans disconvenir pour cela de nos principes au fond, lequels font fâche, & doivent être considérés comme des faits avérés par l'expérience.

V.

Je profiterai de cette occasion, pour parler d'un des principaux Phénomenes, & pour répondre à une objection, qu'on pourroit nous faire là-défis, & dont l'éclaircissement me paroit très-propre-pour faire voir l'avantage de notre Méthode & de nos Calculs.

On a déterminé après un nombre infini d'Observations, que dans les Syzygies l'heure moyenne de la haute Mer est à Brest à 3 heures 28 minutes, & dans les Quadratures à 8 heures 40 minutes, & que la différence n'est que de 5 heures 12 minutes depuis les Syzygies jusqu'aux Quadratures. Cette différence a été observée tout à fait la même à Dunkerque, & dans d'autres Ports; quoique les heures des Marées soient différentes aux divers Ports. C'est donc ici une Observation qui mérite beaucoup d'attention, comme générale & bien averée: cependant il est certain, que sans les causes secondes, que nous avons déjà indiquées, la différence entre les heures du Port pour les Syzygies, & pour les Quadratures, devroit être à-peu-près de 6 heures lunaires, c'est-à-dire d'environ 6 heures 12 minutes. Voici comment je détermine exactement cet intervalle.

L'heure moyenne de la haute Mer dans les Syzygies, est dans la Théorie pure précisément à midi, puisqu'il faut considérer les Syzygies, comme tombant précisément sur l'heure du midi. Si les Syzygies se faisoient plus tard, la haute Mer arriveroit plus tôt & reciprocement; & les accélérations compensent parfairement les retardemens après un grand nombre d'observations. L'heure moyenne de la haute Mer dans les Quadratures, doit être de même censée celle qui se fait, lorsque la Quadrature se fait précisément à midi; car, lorsqu'il est question d'un certain jour, il en faut prendre le milieu, c'est-à-dire l'heure du midi, afin que les différences se détruitent ou se composent les unes les autres. Soit donc le Soleil au Zenith b, & la Lune en a à 90 degrés du Zenith, ou à l'Horizon: cela étant, on voit que si la haute Mer est supposée se faire précisément au moment du passage de la Lune par le Méridien,
ridien, elle doit se faire 6 heures lunaires après midi; car le Point b doit faire, par le mouvement journalier de la Terre; l'Arc horaire b a (supposant que le passage de la Lune par le Méridien, qui a été à l'heure du midi en b, réponde au Point a); mais pour parler plus précisément, la Lune & le Méridien se trouvant en a, la haute Marée répondra au Point z, & l'Arc a z sera égal aux deux tiers du petit Arc a (§. XIII. Chap. VI.) c'est donc l'Arc b a z; qui marque l'heure moyenne de la haute Mer dans les Quadratures: l'Arc b a est de 90 degrés; le petit Arc a est d'environ 3 degrés, & l'Arc a z de 2 degrés; & par conséquent l'Arc b a z de 95 degrés, qui donne un temps de 6 heures 20 minutes, qui devrait être in abstrato l'heure moyenne de la haute Mer dans les Quadratures, pendant que celle des Syzygies est à midi. D'où vient donc, me demandera-t-on, que, suivant les Observations, on ne trouve que 5 heures 12 minutes à la place de 6 heures 20 minutes. Je réponds que c'est cette même anticipation des Syzygies & des Quadratures à l'égard des plus grandes & des plus petites Marées, dont nous avons parlé dans le précédent Article, qui en est la cause. Il est si vrai, que c'est ici la véritable raison, que la quantité de cette anticipation répond parfaitement bien à l'intervalle des heures moyennes des hautes Mers pour les Syzygies & les Quadratures. Nous en pourrons même déterminer plus exactement la dite anticipation, sur laquelle on est encore bien divisé, les uns la faisant d'un jour, d'autres de deux, pendant qu'on a déterminé assez exactement, & d'un commun accord l'autre Point.

Frons d'abord le terme de deux jours, comme le plus généralement adopté, en considérant que les Marées se reglent après les Lumières, tels qu'ils ont été deux jours auparavant: imaginons nous les Syzy-
Syzygies se faire en b & les Quadratures en b & a: l'effet des Luminaires sera, en vertu de notre supposition, dans le tém des Syzygies, comme si le Soleil était en b, & la Lune en c, en prenant l'Arc b d'environ $2\frac{1}{2}$ degrés; & le même effet dans les Quadratures sera comme si le Soleil était en b, la Lune se trouvait en c, environ $64\frac{1}{4}$ degrés; dans les Syzygies, la haute Mer répond au Point z, & dans les Quadratures au Point z'. C'est donc l'Arc $z'bz$ qui exprime l'Arc horaire entre l'heure moyenne de la haute Mer des Syzygies & celle des Quadratures (substituant toutefois des heures lunaires à la place des heures ordinaires, à cause du mouvement de la Lune.) Or la Table mise à la fin du précédent Chapitre, fait voir par le moyen des interpolations, que la Lune étant avant les Syzygies à $2\frac{1}{2}$ degrés du Soleil, l'heure de la haute Mer est à 10 heures 46 minutes du matin; & que la Lune étant après les Syzygies à $64\frac{1}{4}$ degrés du Soleil, la haute Mer se fait à 3 heures 35 minutes du soir; l'intervalle est donc de 4 heures 49 minutes, temps lunaire, ou d'environ 5 heures, temps ordinaire. Ce résultat répond déjà assez bien à l'observation, qui le donne de 5 heures 12 minutes.

Mais si au lieu de deux jours on prend 1 jour, ou environ 59 heures, qui répond à peu près à 20 degrés de distance de la Lune depuis les Syzygies & les Quadratures, l'heure moyenne de la haute Mer le jour des Syzygies, sera en vertu de la Table, à 11 heures 2 minutes du matin, & le jour des Quadratures, à 3 heures 59 minutes du soir; & l'intervalle de lune à l'autre sera de 4 heures 57 minutes temps lunaire; qui fait à peu près 5 heures 8 minutes. Et enfin on trouve une conformité exacte entre les deux points en question, en donnant un jour & demi au retardement des Marées, c'est-à-dire, en supposant que l'état des Marées est tel qu'il devrait être naturellement, un jour & demi plutôt: c'est alors que l'intervalle de l'heure moyenne de la pleine Mer aux Syzygies à heures pareilles aux Quadratures, devient de 5 heures 12 minutes, tel qu'un grand nombre d'Observations l'a donné: aussi ce terme d'un jour & demi, est-ce celui qui est le plus conforme aux Observations, & en consultant les Tables qui font dans les Marées...
Refl u x de la M e r. 197

Memoires de l'Academie de l'annee 1710. pag. 330. & 352. & prenant la difference moyenne, on trouve fort a peu pres la meme valeur. Toutes ces circonstances, l'explication naturelle de ce Phenomene, sa conformite avec toutes les Observations faites jusqueici, & son usage pour determiner au juste un des points des plus essentiels, qu'on n'a connu encore que par tatonnement, font bien voir la justesse & la supériorité de nos Methodes.

V L

Les autres corrections que l'on doit apporter aux Formules & a la Table du precedent Chapitre, regardent l'hypothese que nous avons faite, pour rendre d'abord la Question & les Calculs plus faciles; savoir que les deux Luminaires sont des Cercles parfaits autour de la Terre, & cela dans le plan de l'Equateur. Cette supposition entraîne celle d'une egalité parfaite dans les distances des Luminaires a la Terre, auifi-bien que dans leur mouvement, & elle fait outre cela leur declinaison, a l'egard de l'Equateur, nulle. Voyons donc a présent ce que les differentes distances, l'inegalité des vitesses & l'obliquité des orbites peuvent faire sur l'heure des Marées.

V I I

Les differentes distances des deux Luminaires à l'égard de la Terre changent le rapport de leurs forces sur la Mer; & c'est cependant de ce rapport que dependent presque toutes les Propositions du precedent Chapitre. Nous avons supposé ce rapport pour les distances moyennes de la Lune & du Soleil, comme 5 à 2, fondés sur un grand nombre d'Observations, qui doivent nous confirmer dans cette supposition, à l'égard des variations des distances, après avoir remarqué & démontré la Proposition qui suit :

Les Forces de chaque Luminaire sur la Mer sont en raison reciproque, triplee de leurs distances à la Terre.

En voici la Demonstration. Nous avons dit & demontré au Chapitre quatrieme, que la Force de chaque Luminaire est generalement

\[\frac{m g^b}{c^a} \times \frac{b}{c} \]

en entendant par \(n\) un nombre constant par \(\gamma\) le rapport de la pesanteur dans la region de la Terre vers le Luminaire à la pesanteur qui se fait vers le centre de la Terre, & par \(\frac{b}{c}\) le rapport du rayon de la

Tome III. C c Ter-

* Je vois après avoir fini cette Piece, que M. Cassini a deja indiqué ce que notre Remarque convient de Physique. Voy. les Mem. de l'Ac. des Sc. de 1714. p. 252.
Terre à la distance du Luminaire a; or comme les différentes distances ne changent que les quantités G & a, nous voyons que la Force de chaque Luminaire est constamment proportionnelle à $\frac{G}{a}$, & la quantité g, qui exprime la pesanteur vers le centre du Luminaire, étant réciproquement proportionnelle aux carrés des Distances a, il s’ensuit que les Forces de chaque Luminaire sur la Mer, sont en raison réciproque triplée de leurs Distances à la Terre.

M. Newton a déjà démontré cette Proposition, qui se confirme aussi par toutes les Observations faites sur les Marées, quand on en fait une juste estime, & une application bien menagée. La Proposition que nous venons de démontrer, nous enseigne qu’à la place de notre Équation fondamentale $T = \frac{G}{2}$, employée dans le Chapitre précédent, il faut se servir de celle-ci plus générale

$$T = \frac{G}{2} \times \frac{l}{L} \times \frac{s}{s} \times c$$

en dénotant par l & s les distances moyennes de la Lune & du Soleil à la Terre, & par L & S leurs Distances données quelconques; & là-dessus on pourra calculer toutes les Questions traitées-ci-dessus pour des Distances quelconques entre les Luminaires & la Terre: mais nous ne considérerons que deux cas, 1°. Lorsque la Lune étant dans son Périègée, & la Terre dans son Aphelie, le rapport de s à c devient le plus grand; & 2°. Lorsque la Lune étant au contraire dans son Apogée, & la Terre dans son Perihelie, le rapport de s à c devient le plus petit. Nous donnerons 1000 parties à la distance moyenne de la Lune, 1055 à sa plus grande distance, & 945 à sa plus petite distance; & pour le Soleil, nous poncerons les pareilles distances être en raison de 1000, 1027 & 983; & nous aurons pour le premier cas $s = 3,115 c$; & dans le second cas $s = 2,022 c$.

Comme il ne s’agit ici que des petites corrections, nous supposerons simplement pour le premier cas $s = 3 c$, & pour le second $s = 2 c$; & affirmer que nos règles font d’autant plus faciles dans l’application, nous n’aurons point d’égard aux variations du Soleil, comme n’étant presque d’aucune importance par rapport à celles de la Lune. Disons donc simplement, que dans le Périègée de la Lune, il faut mettre $s = 3 c$, & dans l’Apogée $s = 2 c$. Cela étant, voici les conséquences que nous en tirons.

1°. Un jour & demi après les Syzygies, l’intervalle de deux Marées qui se suivent, est dans le Périègée de 24 heures 27 minutes; & dans l’Apogée de 24 heures 33 minutes.

2°. Un jour & demi après les Quadratures, le même intervalle est dans le Périègée de 25 heures 25 minutes; & dans l’Apogée de 25 heures
heures 40 minutes. Voyez à l'égard de ces deux Propositions le § VII. du Chap. VI.

3°. Le plus grand intervalle entre le passage de la Lune par le Méridien & la haute Mer (que nous avons vu au XVI. § du Chap. VI. devoir se faire environ 2 3/4 jours avant & après les Quadratures, sans nos corrections, mais qui sera réellement environ 1 1/2 jours avant, & 4 1/2 après les Quadratures) est de 39 minutes environ le Perigée de la Lune, & d'une heure environ son Apogée. Ce plus grand intervalle se fait aussi plutôt dans le Perigée, & plus tard dans l'Apogée; la différence est d'environ un demi jour.

4°. Pour calculer la Table pareille à celle de ci-dessus, mais qui servait pour le Perigée & pour l'Apogée de la Lune, nous remarquons que les Sinus des petits Arcs horaires, qui marquent les intervalles entre le passage de la Lune & la haute Mer sont toujours

\[= \sqrt{\left(\frac{3}{4} + \frac{B}{2 \sqrt{4 + BB}} \right)} \]

& qu'à la place de cette quantité, on peut substituer la valeur fort approchante \(\frac{1}{B} - \frac{3}{2B} \) (§ XVIII. Chap. VI.) & même qu'on peut négliger ici, sans le moindre scrupule, le second terme, puisqu'il ne s'agit que de petites corrections. Nous confidérerons donc ces petits Arcs horaires, comme reciprocément proportionnels aux quantités \(B \), c'est-à-dire, aux quantités \(\frac{-3\,b\,b}{cm\,m} + \frac{m}{m} - \frac{m}{m} \). Et dans cette dernière quantité, nous pourrons encore rejeter sans peine les deux derniers termes pour notre présent dessein, & dire par conséquent, que pour les différentes valeurs de \(\frac{3}{c} \), tout le reste étant égal, les intervalles entre le passage de la Lune, & la haute Marée sont reciprocuellement proportionnels aux valeurs de \(\frac{3}{c} \), ou directement proportionnels aux valeurs de \(\frac{c}{3} \). D'où il paraît que les nombres de la seconde Colonne de notre précédente Table, doivent être multipliés par la Fraction \(\frac{3}{4} \) dans le Perigée, & par \(\frac{1}{4} \) dans l'Apogée de la Lune, après quoi les nombres de la troisième Colonne se déterminent comme dans la précédente Table. Mais quant aux autres nombres de la première Colonne, il faut les augmenter chacun d'environ 20 degrés, à cause du retard d'un jour & demi expliqué au long dans ce Chapitre, pendant lequel la Lune change de place à l'égard du Soleil d'environ 19 degrés, à la place desquels je mettrais un nombre rond de 20 degrés.

Voici donc à présent une Table corrigée à l'égard de toutes les cir-
chap. constances exposées jusqu'ici. La première Colonne marque la distance qui est entre le Soleil & la Lune, environ le temps de la haute Mer, ou plutôt ici, environ le passage de la Lune par le Méridien. Les trois Colonnes suivantes marquent le nombre de minutes entre le passage de la Lune par le Méridien, & la haute Mer pour le Perigée, pour les Distances moyennes & pour l'Apogée de la Lune. Et les trois dernières marquent les heures absolues des haute Mer pour les Perigées, les Distances moyennes & les Apogées de la Lune. Et pour se servir de cette Table, il ne faudra plus qu'ajouter aux nombres des six dernières Colonnes l'heure moyenne du Port en vertu du III. §. La Table n'a été calculée que de dix en dix degrés ; les interpolations supplèeront avec assez de justesse à telle autre Distance entre les deux Luminaires, que les Ephémérides indiqueront. La même méthode des interpolations peut aussi être employée, lorsque la Lune se trouve à une Distance donnée de son Apogée ou Perigée.
Table plus générale et corrigée pour trouver l'heure des hautes marées.

<table>
<thead>
<tr>
<th>Délais entre les Luminaires avant le passage de la Lune par le Méridien, en minutes de temps.</th>
<th>Temps de la haute Mer avant & après le passage de la Lune par le Méridien en minutes de temps.</th>
<th>Table approchée des heures de la haute Mer, dont on peut se servir au défaut des Ephémérides, qui marquent le passage de la Lune par le Méridien.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perigée de la Lune.</td>
<td>Distance moyenne de la Lune.</td>
<td>Apogée de la Lune.</td>
</tr>
<tr>
<td>H. M.</td>
<td>H. M.</td>
<td>H. M.</td>
</tr>
<tr>
<td>0 18</td>
<td>0 22</td>
<td>0 18</td>
</tr>
<tr>
<td>10 9 2</td>
<td>12 1 4</td>
<td>0 27 2</td>
</tr>
<tr>
<td>20 0</td>
<td>0</td>
<td>0 5 2</td>
</tr>
<tr>
<td>30 9 1</td>
<td>12 0 14</td>
<td>1 20</td>
</tr>
<tr>
<td>40 18 2</td>
<td>22 27 2</td>
<td>2 12 2</td>
</tr>
<tr>
<td>50 16 3</td>
<td>39 2 14</td>
<td>2 40 1</td>
</tr>
<tr>
<td>60 39 1 4</td>
<td>49 1 16</td>
<td>3 3 1</td>
</tr>
<tr>
<td>70 37 1 5</td>
<td>56 1 18</td>
<td>3 4 4</td>
</tr>
<tr>
<td>80 38 1 6</td>
<td>50 1 20</td>
<td>4 2 2</td>
</tr>
<tr>
<td>90 33 1 7</td>
<td>50 1 22</td>
<td>4 9 2</td>
</tr>
<tr>
<td>100 22 8</td>
<td>50 1 24</td>
<td>5 8 2</td>
</tr>
<tr>
<td>110 0 9</td>
<td>50 1 26</td>
<td>6 9 2</td>
</tr>
<tr>
<td>130 25 10</td>
<td>50 1 28</td>
<td>8 25 10</td>
</tr>
<tr>
<td>130 33 1 11</td>
<td>50 1 30</td>
<td>9 10 11</td>
</tr>
<tr>
<td>140 40 12</td>
<td>50 1 32</td>
<td>9 10 12</td>
</tr>
<tr>
<td>150 37 1 13</td>
<td>50 1 34</td>
<td>10 45</td>
</tr>
<tr>
<td>160 33 1 14</td>
<td>50 1 36</td>
<td>11 30</td>
</tr>
<tr>
<td>170 31 1 15</td>
<td>50 1 38</td>
<td>11 51 11</td>
</tr>
<tr>
<td>180 27 1 16</td>
<td>50 1 40</td>
<td>11 59 12</td>
</tr>
<tr>
<td>180 22 17</td>
<td>50 1 42</td>
<td>11 59 12</td>
</tr>
</tbody>
</table>

Note: Les données se réfèrent à l'heure des marées hautes, calculées à partir du passage de la Lune par le méridien. Les délais entre les marées hautes et le passage de la Lune sont donnés en minutes de temps. La distance moyenne de la Lune, ainsi que l'apogée de la Lune, sont également répertoriés pour aider aux calculs approchés.
TRAITÉ SUR LE FLUX

Cette Table suppose encore le plan des Orbits de la Lune & du Soleil être le même que celui de l'Equateur de la Terre, ce qu'il faut sur-tout remarquer à l'égard des trois dernières Colonnes. Mais cette supposition n'a pas beaucoup d'influence sur les autres Colonnes; & les Ephémerides, qui marquent le paffage de la Lune par le Méridien, suppléeront aux trois dernières.

VII.

Après avoir exposé au long tout ce que les différentes distances des Luminaires, & sur-tout de la Lune à la Terre, peuvent contribuer pour faire varier l'heure des Marées, nous dirons aussi un mot sur l'inégalité du mouvement des Luminaires.

Cette inégalité seroit d'une très-grande importance, s'il falloit construire une Table pour les heures des Marées, sans se rapporter aux Tables & aux Ephémerides: mais elle ne nous est d'aucune confluence, puisque nous supposons l'heure du paffage de la Lune par le Méridien, aussi-bien que l'Arc compris entre les deux Luminaires, connus par les Ephémerides. C'est la raison qui m'a engagé à rapporter l'heure des Marées au paffage de la Lune par le Méridien, en donnant une Table, qui marque, combien la première avance ou retarde sur l'autre.

IX.

Il nous reste à considérer les inclinaisons des Orbits à l'égard de l'Equateur: pour cet effet il faut concevoir un Cercle qui passe par les centres du Soleil, de la Lune & de la Terre; & c'est proprement ce Cercle que doivent représenter toutes nos Figures, que nous avons considérées jusqu'ici, comme représentant l'Equateur de la Terre. On voit bien après cela, que tous les Points resteront dans ce Cercle aux mêmes endroits; & que les Arcs se conserveront tels, que nous les avons déterminés: mais les Angles horaires formés sur l'Equateur par les Arcs, en sont changés. On ne leaurait sans une Théorie parfaite de la Lune déterminer au juste ces Angles horaires, à cause de la variabilité de l'inclinaison de l'Orbite lunaire à l'égard de l'Equateur; mais aussi ce changement n'est-il pas fort considérable, par rapport à l'Arc horaire compris entre le paffage de la Lune par le Méridien, & le moment de la haute Mer; nous supposerons, & nous pouvons le faire ici sans aucune erreur sensible, que les Orbits de la Lune & du Soleil sont dans un même plan, ayant chacune une inclinaison avec l'Equateur de 23° 30'. & nous considérerons là-dessus la Lune dans trois sortes de situation: x°. Lorsque sa déclinaison, à l'égard de l'Equateur, est nulle; & alors
Il faut multiplier les nombres de la seconde, troisième & quatrième Colonnes de notre Table par \(\frac{75}{100} \), & ce qui proviendra marquera le nombre de minutes entre le passage de la Lune par le Méridien, & l'heure de la haute Mer. 2°. Lorsque la Lune se trouve dans sa plus grande déclinaison à l'égard de l'Equateur ; & alors il faut multiplier ledits nombres de notre Table par \(\frac{102}{100} \). Et enfin 3°, lorsque la Lune se trouve au milieu de ces deux situations ; auquel cas il faut se servir de notre Table, sans y apporter aucun changement. Quant aux autres situations de la Lune en longitude, on peut se servir du principe de la proportionnalité de la différence des termes. Ces règles sont fondées sur la proportion qu'il y a entre les petits Arcs de l'Écliptique & de l'Equateur, compris entre deux mêmes Méridiens fort proches l'un de l'autre.

X.

Il s'agit de tout ce que nous venons de dire, que le plus grand intervalle possible entre le passage de la Lune par le Méridien & la haute Marée, est environ un jour avant les Quadratures, & quatre jours après les Quadratures, la Lune dans son Apogée & dans sa plus grande déclinaison à l'égard de l'Equateur de la Terre ; & que dans le concours de toutes ces circonstances, ledit plus grand intervalle peut aller jusqu'à 63 minutes de temps, que la haute Marée avancera sur le passage de la Lune par le Méridien un jour avant les Quadratures, & qu'elle retardera quatre jours après les Quadratures.

XI.

Voilà mes réflexions sur le temps des Marées ; je me flatte qu'elles ont toute la précision qu'on peut espérer sur cette matière, du moins quant à la Méthode. Toute l'incertitude qui y reste encore, est fondée sur le rapport moyen entre les forces de la Lune & du Soleil, que je crois pourtant avoir fort bien déterminé, puisque tous nos Théorèmes conviennent si bien avec les Observations. Un plus grand nombre d'Observations nous donnera peut-être un jour plus de précision là-dessus. Il est vrai que nous n'avons déterminé l'heure & les intervalles des Marées, que sous la Ligne Equinocialem ; mais je ne crois pas que la latitude des lieux puisse changer sensiblement les intervalles des Marées ; ainsi je n'ai pas jugé nécessaire d'en parler. La latitude des lieux a, cependant beaucoup de liaison avec la hauteur des Marées : c'est à quoi nous ferons attention dans la suite.
CHAPITRE VIII.

Sur les différentes hauteurs des Marées pour chaque jour de la Lune.

I.

Je me propose à présent d'examiner les diversités des hauteurs des Marées, non d'un endroit à l'autre, mais d'un même endroit, que nous supposerons d'abord pris sous l'Équateur, pour toutes les diverses circonstances qui peuvent se rencontrer. Nous suivrons, pour cet effet, la même Méthode que nous avons obsérvé pour déterminer généralement l'heure des Marées, c'est-à-dire, que nous commencerons nos recherches par les cas les plus simples, pour ne pas être arrêtés tout court en voulant surmonter trop de difficultés à la fois: nous nous servirons donc d'abord des mêmes hypothèses que nous avons employées dans le Chap. VI. & que nous avons exposées à la fin du Chap. IV. après quoi nous pousserons nos recherches dans le Chapitre suivant à tous les cas possibles, tout comme nous avons fait dans le Chapitre précédent pour déterminer généralement l'heure des Marées.

II.

J'entends par la hauteur d'une Marée toute la variation de la hauteur verticale des eaux, depuis la haute Mer jusqu'à la basse Mer suivante. Pour trouver cette hauteur, il faut d'abord faire attention aux §§. XI. XII. & XIII. du Chap. V. qui déterminent l'Équateur, les lieux de la Lune & du Soleil étant donnés, la position des deux points auxquels la Mer est la plus haute & la plus basse; après quoi le VIII. Art. du même Chapitre donnera la hauteur cherchée, en cherchant premièrement la hauteur de la haute Mer, & ensuite la hauteur de la basse Mer.

III.

Remarquons d'abord, que les deux points de la Circonférence, qui marquent la haute & la basse Mer, sont éloignés entre eux de 90 degrés. On le voit par les expressions des §§. XI. & XIII. & nous l'avons démontré dans la première Remarque du §. XII. Chap. V. Supposant donc le Soleil répondre au Point ß, la Lune au Point ë, & que la haute Mer réponde au Point z, il faut prendre l'Arc z ß de 90 degrés,
grés, & le Point s sera celui qui répond à la baïse Mer. Cherchez donc par le VIII. §. du Chap. V. la valeur de yz, qui marque l'élevation des eaux pour le Point z; & ensuite prenez de la même manière la valeur de sx, qui étant négative, marque la dépression des eaux; cela étant fait, on voit que la somme de yz & de sx marquera la hauteur de la Marée, mais dans l'expression analytique de sx, il faut changer les Signes. Il est vrai que cette Méthode supposée, que pendant l'intervalle, depuis la haute Mer jusqu'à la baïse Mer, la Lune ne change pas de place; & c'est à quoi on pourroit avoir égard, en augmentant d'environ trois degrés l'Arc b° dans le calcul de sx; mais ce ferait une exactitude hors de place, & qui augmenterait beaucoup les peines du Calcul,

qui n'est déjà que trop embaraillé. On pourra même remédier à ce petit défaut, déjà insensible par la nature, en prenant l'Arc b°, tel qu'il est, non au moment de la haute Marée, ni à celui de la baïse Mer, mais au milieu de leur intervalle; & c'est ce que nous supposerons dans la suite.

Soit donc comme dans le V. Chap. le sinus de l'Arc $b^\circ = m$; son co-sinus n; le sinus de l'Angle $bCz = r$; le sinus de l'Angle $Cz = c$; le sinus total b; & nous aurons en vertu du §. VIII. Chap. V.

$$yz = \frac{2bb - 3rr}{3bb} \times c + \frac{2bb - 3cc}{3bb} \times d.$$

De là on trouvera sx en vertu du §. XII. Chap. V. en mettant $bb - r^2$, & $bb - cc$ à la place de rr & de cc; & de cette façon on aura

$$sx = \frac{3rr - bb}{bb} \times c + \frac{3cc - bb}{bb} \times d.$$

Changez à présent les Signes dans la valeur de sx, & supposiez la hauteur de la Marée $= M$, & vous aurez

$$M = \frac{bb - 2rr}{bb} \times c + \frac{bb - 2cc}{bb} \times d.$$

Cette dernière expression marque généralement la hauteur des Marées, puisqu'on peut toujours déterminer les valeurs de rr & cc par les §§. XI. & XIII. du Chap. V. Mais les Calculs ne laissent pas d'être assez pénibles, quoi que les Formules ne soient pas prolixes. Nous tâcherons donc
donc de rendre ces Calculs plus faciles, sans déroger beaucoup à l'exactitude des Formules.

I V.

Voyons donc d'abord ce qui arriveroit, si la Force lunaire étoit infiniment plus grande que la Force solaire. On auroit en ce cas \(c = 0 \) & \(r = m \),

\[
M = c + r = \frac{2mn}{b} \times c,
\]

laquelle Formule ne sauroit manquer d'être assez approchante ; elle donne même la juste valeur pour les Syzygies & pour les Quadratures.

V.

Pour déterminer les hauteurs des Marées plus exactement encore, nous considérerons la valeur de \(c \) comme fort petite, au lieu de la supposer tout-à-fait nulle, comme nous l'avons fait dans l'Article précédent. Mais nous pourrons supposer hardiment \(c = \frac{mn}{b} \), & on verra que cette supposition ne sauroit s'éloigner beaucoup de la vérité, si l'on consulte l'Article VII. du précédent Chapitre vers la fin, & le peu d'erreur qui pourroit s'y trouver n'est presque d'aucune conséquence pour notre présent sujet. On voit outre cela, que \(c \) étant fort petit, on peut supposer cette Analogie

\[
e : m - c : b : n;
\]

puisque cette Analogie feroit exactement vraie, si les quantités \(c \) & \(m - r \) étoient réellement & infiniment petites ; de cette Analogie on tire

\[
r = m - \frac{n\epsilon}{b} = m - \frac{mnn\epsilon}{b^2};
\]

sousstituant ces valeurs exposées pour les quantités \(c \) & \(r \), & faisant le Sinus total \(b = 1 \), on obtient cette Equation,

\[
M = c + r = \frac{2mn\epsilon}{b} + \frac{2m^2n^2\epsilon^2}{b^2} - \frac{2m^2n + \epsilon^2}{b^2}.
\]

De cette manière il paroit que les Marées décroissent depuis les Syzygies jusqu'aux Quadratures, & qu'elles croissent avec la même loi depuis les Quadratures jusqu'aux Syzygies. Ceux qui voudront essayer la juste Equation du §. III. & cette Equation approchante, sur un même exemple, verront qu'elles ne diffèrent guères.

V I.

Il nous sera facile à présent de calculer & de donner une Table pour les hauteurs des Marées, telle que nous en avons donné une à la fin du Chap. VI. pour les heures des Marées, & pour laquelle nous tâchons.
rons dans le Chapitre suivant de trouver les corrections nécessaires aux différentes circonstances, tout comme nous avons fait à l'égard de ladite Table du VI. Chap. Nous supposerons encore le rapport moyen de 3 à 6 être comme 5 à 2, tant que nous n'avons pas des Observations qui puissent déterminer ce rapport au juste. Nous donnerons mille parties à la hauteur de la plus grande Marée.

La première Colonne marquera dans cette Table de dix en dix degrés les Arcs compris entre les deux Luminaires, environ le milieu des Jusans (§. III.) c'est-à-dire, environ trois heures après le passage de la Lune par le Méridien ; la seconde Colonne donnera les hauteurs cherchées des Marées, pour les suîdites hypothèses ; & la troisième en marquera les différences.
TABLE FONDAMENTALE
pour trouver les Hauteurs des Marées, ou les Descendes verticales des eaux pendant les Jusans.

<table>
<thead>
<tr>
<th>Distance entre les deux Luminaires en Degrés.</th>
<th>HAUTEUR DES MAREES</th>
<th>DIFFERENCE DES HAUTEURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Degrés.</td>
<td>1000 Parties</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>987</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>949</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>887</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>806</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>453</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>429</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>453</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>806</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>887</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>949</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>987</td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td>1060</td>
<td></td>
</tr>
</tbody>
</table>
Si on voulait construire cette Table conformément à l'Equation finale du §. III. qui est la vraie Equation, on aurait pu profiter de la Table du VI. Chap. dans laquelle les nombres de la seconde Colonne divisés par 4, donnent les degrés de l'Arc, dont le Sinus est appelé e, après quoi on connaît aussi l'Arc dont le Sinus est appelé γ. Connaissant ainsi par les Tables les quantités e & γ, on trouve sans beaucoup de peine la valeur de M du §. III.

On voit aussi, que si la distance entre les deux Luminaires est entre deux nombres de la première Colonne, on peut sans aucune erreur sensible employer le principe général des Interpolations, de sorte que cette Table peut suffire pour tous les cas.

On remarquera au reste, qu'il est ici de grande importance d'avoir substitué la vraie valeur pour e, & qu'un assez petit changement dans cette valeur, a une grande influence sur le rapport des Marées. On ne doit donc encore considérer cette Table, que comme un exemple de nos Formules générales : le Chapitre suivant fera voir les précautions que l'on doit prendre là-dessus.

Nous voyons tant par les Formules que nous avons données pour les hauteurs des Marées, que par la précédente Table, quelle est in abstrato la nature des variations des Marées. On peut faire là-dessus les Remarques qui suivent.

1° Que les changements des Marées sont fort petits, tant aux Syzygies qu'aux Quadratures, & ils l'ont enfin infiniment plus petits que les autres, si l'intervalle d'une Marée à l'autre était aussi infiniment petit.

2° Que les plus grands changements ne se font pas précisément au milieu, mais plus près des Quadratures que des Syzygies : c'est-à-dire, que la plus grande diminution des Marées se fait dans nos suppositions, lorsque la Lune est environ à 60 degrés (80 avec la correction de 20 degrés expliquée au Chap. VII. depuis les Syzygies ; le plus grand décroissement se fait donc de la neuvième à la dixième Marée (de D d 3
la douzième à la treizième avec la correction) ; de même le plus grand
accroissement se fait à environ 30 degrés depuis les Quadratures (30
degrés avec la correction) qui répond au changement de la quatrième
def la cinquième à la septième à la huitième avec la correction)
depuis les Quadratures. Je parle dans cette Remarque de toutes les
Marées qui se font, tant celles du matin, que celles du soir, pour ren-
dre leurs intervalles plus petits : on se souviendra cependant de ce que
j'ai dit expressément, que je fais abstraction par tout ailleurs des Marées,
qui répondent au passage inférieur de la Lune par le Méridien, lorsqu'il
s'agit de comparer les Marées entre elles ; car ces deux fortes de Ma-
rées ont quelques inégualités entre elles, que je n'ai pas encore confi-

3°. Que les petits changements dans les Syzygies, & ceux des Qua-
dratures, comparés entre eux, sont inégaux ; puisque ceux-ci sont en-
vivron doubles de ceux-là. Dans l'application de cette Remarque il fau-
dra ajouter, de part & d'autre, trois Marées, ou environ un jour &
demi de temps.

4°. Que le plus grand changement de deux Marées qui se suivent,
trois qui répondent à la Lune de stell (dont l'intervalle répond
da environ 13 degrés de variation dans la distance de la Lune au Soleil)
fait près du quart de la variation totale de la plus grande à la plus pe-
tite Marée.

X L

Je ne doute pas que les Observations ne confirment en gros les Re-
marques que je viens de faire, & toutes les Règles précédentes. On
ne saurait plus douter de la Théorie que nous avons adoptée & établie ;
& la Théorie posée, les Calculeurs en sont sûrs. Mais comme nous ne
femmes pas encore sûrs des hypothèses secondes, qu'on ne saurait évit-
ter, telles que sont le juste rapport entre la force lunaire & solaire, que
nous avons supposé comme 5 à 2, le retardement des effets de la Lune
sur sa position, que nous avons supposé d'un jour & demi, ou de trois
Marées, ou de 30 degrés, que la Lune peut parcourir en longitude pen-
dant ce retardement, &c. nous nous croyons en droit de demander quel-
que indulgence pour le résultat desdites Remarques & Règles. Cepen-
dant comme je n'ai fait aucune supposition sans un bon examen fondé
sur les plus justes Observations choisies entre toutes celles qui peuvent
les déterminer, je me flatterais d'un tel succès, si Messieurs les ACADEMICIENS vouloient se donner la peine de confirmer nos
Tables, nos Règles & nos Théorèmes nouveaux avec les Observations,
dont ils ont un grand Trésor : mais ce succès, dont je me flatterai par avan-
ce, se manifesterait davantage, si ils veulent encore faire attention aux

CORR
corrections que je vais donner dans le Chapitre suivant, à l'égard de diverses circonstances variables, & que nous avons supposées dans ce Chapitre comme constamment les mêmes.

CHAPITRE IX.

Sur les Hauteurs des Marées corrigées, suivant différentes circonstances variables.

I.

Nous suivrons dans cet examen la même route que nous avons tenue dans le VII. Chap. à l'égard du temps des Marées. Pour commencer donc par l'effet des Vents & des Courants, on voit bien qu'ils peuvent augmenter & diminuer les Marées, & que ces variations ne font pas d'une nature à pouvoir être aucunement déterminées. On pourra pourtant remarquer que lorsqu'ces causes convergent pendant un temps un peu considérable leur force & leur direction, leur effet confitera plutôt à hauffer ou baisser la Mer elle-même, qu'à augmenter ou diminuer les Marées.

II.

Les circonstances attachées à chaque Port ou autre endroit en particulier, telles que font sa situation, la profondeur des eaux, la pente des fonds, la communication avec l'Océan, &c., font extrêmement varier les Marées. Ce sont ces caues qui font que les grandes Marées ne font que d'un petit nombre de pieds dans de certains endroits, de 8 ou 10 pieds dans d'autres, & de 50 à 60 pieds, & au delà encore dans d'autres endroits. Ce qu'il y a de singulier, est que dans la Mer libre les grandes Marées ne font que d'environ 8 pieds, pendant qu'elles vont au-delà de 50 pieds dans plusieurs Ports & autres endroits, dont la communication avec la Mer ouverte, est entrecoupée & empêchée de tous côtés; & qui par conséquent devroient, selon les premières apparences, avoir les Marées moins grandes. Nous donnerons dans un autre Chapitre la raison hydrostatique de ce Phénomene, pour ne point nous écarter de notre sujet présent. Cela fait d'abord voir, qu'on ne fçauroit rien déterminer sur les grandeurs absolues des Marées, & que tout ce que la Théorie pourrait encore faire, serait d'en marquer le rapport: mais l'expérience nous enseigne encore, que ce rapport même n'est pas constant dans les différents endroits, quoi qu'il soit renfermé dans des bornes plus étroites.
La grande Marée sera double de la petite Marée dans un endroit; et elle pourra être triple dans un autre: c'est que les causes qui font varier les hauteurs absolues des Marées à l'égard de différents endroits, ne gardent pas une proportion tout-à-fait constante. Mais les Marées moyennes entre la plus grande & la plus petite pendant une même révolution de la Lune, peuvent être cenfées observer les règles que nous leur avons prescrites dans le Chapitre précédent. Il y a même apparence, que les changemens qui dépendent de la différente situation des Luminaires observerront à peu près les Loix que nous avons démontrées \(\textit{ab extra}. \) Ces reflexions m'ont déterminé à confidérer la plus grande & la plus petite Marée, non telles qu'elles devroit être dans la Théorie pure, mais telles qu'on les observe, lorsqu'a cause de la distance moyenne à la Terre, sans aucune cause accidentelle les troubles. Nous avons démontré au III. §. du Chap. VIII. que la hauteur de la grande Marée doit être exprimée par \(\delta + \epsilon \), & la hauteur de la petite Marée par \(\delta - \epsilon \); mais si on supposer la hauteur moyenne réelle de la grande Marée \(A \) & de la petite Marée \(B \), il faudra suivant cette correction faire
\[
\delta + \epsilon = A, \quad \delta - \epsilon = B;
\]
c'est-à-dire
\[
\delta = \frac{A + B}{2}, \quad \epsilon = \frac{A - B}{2},
\]
& ces valeurs doivent être substituées dans les Equations & Formules du Chapitre précédent. En supposant \(\frac{\epsilon}{\delta} = \frac{1}{2} \) comme nous avons fait, on obtient \(\frac{A}{B} = \frac{7}{3} \), & si cette raison étoit confirmée par les Observations, il n'y aurait aucun changement à faire. On pourrait se servir de la Table, telle qu'elle est, en donnant toujours 1000 parties à la hauteur de la grande Marée. Mais si \(\frac{A}{B} \) avait réellement une autre valeur considérable différente de celle que nous venons de lui assigner, il ne faudroit pas négliger la correction que nous venons d'indiquer.

L'on voit aussi après ces considérations, qu'on ne doit pas s'attendre à pouvoir déterminer avec la dernière précision les hauteurs des Marées. Nous pourrons donc sans scrupule, pour rendre nos Propositions plus nettes & plus faciles, nous servir de l'équation du §. IV. Chap. VIII. qui est la meilleure approche de la vraie équation de l'Article qui précède l'autre. Nous supposerons donc la hauteur des Marées toujours exprimée par \(\delta + \epsilon = 2 \ m \ m \epsilon \), & employant la correction indiquée, nous aurons à présent
\[
M = A - m \ m A + m \ m B, \quad \text{ou plus simplement,}
\]
\[
M = n \ n A + m \ m B;
\]
C'est
C'est donc de cette dernière équation, que nous nous servirons dans la suite de cette Dissertation.

III

Cette correction pourra en même temps remédier à un autre inconvénient, qui provient de l'inertie & de la Masse des eaux. Nous avons déjà dit ailleurs que les Marées sont une espèce d'oscillations qui tâchent naturellement à se conférer telles qu'elles sont: on s'entend bien que cette raison doit empêcher les grandes Marées d'atteindre toute leur hauteur, & les petites de diminuer autant qu'elles devraient faire naturellement: qu'elle ne doit pas changer sensiblement la Marée moyenne entre la plus grande & la plus petite, & qu'elle change les autres d'autant plus qu'elles sont plus éloignées de cette Marée moyenne. Et on voit que notre correction satisfaire à toutes ces trois conditions.

IV.

Après la dite correction qui regarde immédiatement les hauteurs des Marées, il faut encore employer celle qui regarde les tems, que nous déterminons par les Phases de la Lune, ou par les distances, qui font entre les Luminaires. Nous avons expliqué au long aux §. §. IV. & V. du Chap. VII. que les Phases de la Lune qui répondent aux Marées en question, ne doivent pas être prises telles qu'elles sont, mais telles qu'elles seraient environ un jour & demi après, c'est-à-dire, que les distances entre les Luminaires doivent être augmentées d'environ 20 degrés, & moyennant cette correction, la Théorie ne saurait manquer de satisfaire au juge aux Observations.

V.

Nous n'avons considéré jusqu'ici les Luminaires, que dans leurs distances moyennes à la Terre, & c'est pour ce cas que nous avons appelé la hauteur de la plus grande Marée A, & celle de la plus petite Marée B. Pour déterminer donc ce que les différentes distances peuvent faire sur les hauteurs des Marées, il faudra se rappeler tout l'Art. VII. du Chap. VII. Nous y avons démontré, que la force lunaire doit être supposée généralement $= \frac{L^2}{3} \times \mathcal{E}$, & la Force solaire $= \frac{S^2}{5} \times \mathcal{E}$. Or comme la somme de ces Forces exprime toujours la hauteur de la grande Marée, & que la différence des mêmes Forces exprime la hauteur de la petite Marée, il faudra faire ces deux Analogies:

Tom. III

$E e = 3 + \mathcal{E}$
La première de ces quatrièmes proportionnelles marquera donc la hauteur corrigée de la grande Marée, & la seconde, la hauteur corrigée de la petite Marée. Par conséquent l'équation finale du II. §. sera celle-ci après sa correction :

\[
M = \frac{L}{L + S} \left(\frac{1}{S} + \frac{E}{S} \right) \times \frac{L}{L + S} \left(\frac{1}{L} - \frac{E}{L} \right) \times \frac{1}{S} \times \frac{1}{L}
\]

Je m'assure que cette équation donnera toujours les hauteurs des Marées avec toute la justesse qu'on peut attendre sur cette matière, pour les suppositions auxquelles notre Théorie est encore affujettée. Mais comme il est presque impossible qu'il n'y ait absolument aucune cause étrangère, qui trouble les Marées, nous ne devons pas être trop scrupuleux sur ces corrections, qui font elles-mêmes médiocres. Ainsi pour rendre nos règles plus sensibles & plus faciles, nous ne ferons point d'attention aux changements dans les distances du Soleil à la Terre ; ces changements sont beaucoup plus petits que dans la Lune, & ils sont en même temps de beaucoup moindre conséquence : Nous supposons donc S constant = s. Quant à la Lune, nous la considérerons, tout comme nous avons fait au VII. §. du Chap. VII. dans son Perigée, dans sa distance moyenne & dans son Apogée ; & nous retiendrons les suppositions que nous avons faites au dit Article, pour les distances de la Lune, & pour les conséquences que nous en avons tirées. Nous ferons donc pour le premier cas \(\delta = 3 \, \frac{c}{15} \), & \(\frac{L}{L} = 0.8439 \) ; pour le second cas \(\delta = \frac{c}{2} \), & \(\frac{L}{L} = 1.000 \), & enfin pour le troisième \(\delta = 2 \, \frac{c}{15} \), & \(\frac{L}{L} = 1.174 \). De cette façon nous aurons les trois équations qui suivent, exprimées en nombres décimaux.

1°. Pour le Périgée de la Lune,

\[M = 1.338 \times A + 5.277 \text{ m m E} \]

2°. Pour les distances moyennes de la Lune,

\[M = 8.96 \times A + m \text{ m E} \]

3°. Pour l'Apogée de la Lune

\[M = 0.901 \times A + 0.703 \text{ m m E} \]

On remarquera dans ces équations, que A marque la hauteur de la grande Marée, & B la hauteur de la petite Marée dans les distances moyennes des Luminaires à la Terre, ces Luminaires étant supposés
ET REFLUX DE LA MER. 215

Chap. IX.

Un & l'autre se trouver dans l'Equateur; que m marque le Sinus de l'Arc compris entre les Luminaires diminué de 20 degrés, & n le Co-

sinus de cet Arc.

On remarquera après cela, que les grandes Marées sont comprises en vertu de la première & de la troisième équation dans les termes de 1138 à 901, & les Marées bâtarde dans les termes de 1277 à 703; d'où l'on voit que la différence entre les grandes Marées n'est pas à beau-
coup près si grande, qu'elle l'est entre les Marées bâtardes, si on com-
pare cette différence à la hauteur de la Marée qui lui répond. Cela se

conforme par l'expérience, & c'est une nouvelle source des irrégularités des petites Marées comparées entre elles, dont nous avons déjà parlé

ailleurs, & que M. Cassini n'a pas manqué d'observer.

VI.

J'ajouterais-ci-dessous une Table fondée & calculée sur les trois dites

équations, mais qui se rapporte aux Quantités A & B, qu'il faut donc

crstoire par expérience pour le Port ou autre endroit, dont il est ques-
tion. On pourra déterminer ces Quantités A & B, sur un grand nom-

bre d'Oblervations, tant des hautes que des petites Marées, en prenant des unes & des autres le milieu Arithmétique.

VII.

On remarquera, quant à la construction de la Table que nous allons
donner, que les Arcs compris entre les Luminaires ont été augmentés de 20 degrés à l'égard de la Table précédente, dans laquelle on n'a pas eu égard aux causes secondes & aux corrections à faire. Ces 20 degrés

sont déterminés par le retard d'un jour & demi des Marées, par rapport

aux Phases de la Lune, expliqué ci-dessus: il est vrai que cet intervalle
d'un jour & demi ne demande pas tout-à-fait 20 degrés de correction : mais comme il faudrait estimer les distances entre les Luminaires, telles

qu'elles sont, non au moment de la haute-Mer (qui doit être supposée

se faire au moment du passage de la Lune par le Méridien) mais au mi-

dieu du Jusian, en vertu du III. §. du Chap. VIII. & que l'intervalle
depuis la haute Mer jusqu'au milieu du Jusian, demande encore une cor-

rection d'environ un degré & demi, la somme de ces corrections peut

être supposée de 20 degrés, en estimant les distances des Luminaires

au moment du passage de la Lune par le Méridien, que les Ephémé-

rides indiquent.

Ee 2

VIII.
Voici donc à présent la Table. La première Colonne y marque les distances entre la Lune & le Soleil dans le moment du passage de la Lune par le Méridien : les trois autres Colonnes marquent les hauteurs des Marées pour le Périgée de la Lune, pour les distances moyennes de la Lune à la Terre, & pour l'Apogée de la Lune.
<table>
<thead>
<tr>
<th>Distances entre les Luminaires</th>
<th>HAUTEURS des Marées au Périgée de la Lune.</th>
<th>HAUTEURS des Marées aux Distances moyennes de la Lune à la Terre.</th>
<th>HAUTEURS des Marées à l'Apogé de la Lune.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Deg.</td>
<td>0.995A + 0.149B</td>
<td>0.883A + 0.117B</td>
<td>0.795A + 0.082B</td>
</tr>
<tr>
<td>10</td>
<td>1.104A + 0.038B</td>
<td>0.970A + 0.030B</td>
<td>0.874A + 0.021B</td>
</tr>
<tr>
<td>20</td>
<td>1.138A + 0.000B</td>
<td>1.000A + 0.000B</td>
<td>0.901A + 0.000B</td>
</tr>
<tr>
<td>30</td>
<td>1.104A + 0.038B</td>
<td>0.970A + 0.030B</td>
<td>0.874A + 0.021B</td>
</tr>
<tr>
<td>40</td>
<td>0.995A + 0.149B</td>
<td>0.883A + 0.117B</td>
<td>0.795A + 0.082B</td>
</tr>
<tr>
<td>50</td>
<td>0.853A + 0.319B</td>
<td>0.750A + 0.250B</td>
<td>0.676A + 0.176B</td>
</tr>
<tr>
<td>60</td>
<td>0.668A + 0.527B</td>
<td>0.587A + 0.413B</td>
<td>0.529A + 0.290B</td>
</tr>
<tr>
<td>70</td>
<td>0.460A + 0.749B</td>
<td>0.413A + 0.587B</td>
<td>0.372A + 0.412B</td>
</tr>
<tr>
<td>80</td>
<td>0.284A + 0.958B</td>
<td>0.250A + 0.750B</td>
<td>0.225A + 0.527B</td>
</tr>
<tr>
<td>90</td>
<td>0.133A + 1.127B</td>
<td>0.117A + 0.883B</td>
<td>0.105A + 0.621B</td>
</tr>
<tr>
<td>100</td>
<td>0.034A + 1.238B</td>
<td>0.030A + 0.970B</td>
<td>0.027A + 0.682B</td>
</tr>
<tr>
<td>110</td>
<td>0.000A + 1.277B</td>
<td>0.000A + 1.000B</td>
<td>0.000A + 0.703B</td>
</tr>
<tr>
<td>120</td>
<td>0.034A + 1.238B</td>
<td>0.030A + 0.970B</td>
<td>0.027A + 0.682B</td>
</tr>
<tr>
<td>130</td>
<td>0.133A + 1.127B</td>
<td>0.117A + 0.883B</td>
<td>0.105A + 0.621B</td>
</tr>
<tr>
<td>140</td>
<td>0.284A + 0.958B</td>
<td>9.250A + 0.750B</td>
<td>0.225A + 0.527B</td>
</tr>
<tr>
<td>150</td>
<td>0.460A + 0.749B</td>
<td>0.413A + 0.587B</td>
<td>0.372A + 0.412B</td>
</tr>
<tr>
<td>160</td>
<td>0.68A + 0.527B</td>
<td>0.587A + 0.413B</td>
<td>0.529A + 0.290B</td>
</tr>
<tr>
<td>170</td>
<td>0.853A + 0.319B</td>
<td>0.750A + 0.250B</td>
<td>0.676A + 0.176B</td>
</tr>
<tr>
<td>180</td>
<td>0.995A + 0.149B</td>
<td>0.883A + 0.117B</td>
<td>0.795A + 0.082B</td>
</tr>
</tbody>
</table>
Il nous reste à confidérer les déclinaisons des Luminaires & les latitudes des lieux sur la Terre, pour lesquels on cherche la nature des Marées. Nous avons supposé les unes & les autres nulles dans ce Chapitre. Mais cette matière est si riche & si remarquable par plusieurs propriétés très singulières, & elle demande d'ailleurs tant d'attention, que j'ai cru devoir la traiter à part. Ce fera donc le sujet du Chapitre suivant.

CHAPITRE X.

Dans lequel on examine toutes les propriétés des Marées, qui dépendent des différentes Déclinaisons des Luminaires & des différentes latitudes des Lieux.

I.

Les déclinaisons des Luminaires à l'égard de l'Equateur, & les distances des lieux sur la Terre du même Equateur, ont tant de rapport entre elles, qu'on ne seuroit bien traiter cette matière, qui est une des plus importantes de notre sujet, sans les confidérer les unes & les autres en méme tems. Mais pour ne pas rendre la question trop embarrassante dès le commencement, nous ne ferons d'abord attention qu'à la Lune, tout comme si les Marées étoient uniquement produites par l'action lunaire. Nous confidérerons aussi la chose d'abord suivant la pure Théorie, & nous verrons ensuite quelles corrections on y pourra employer.

II.

Reusconnons-nous de tout ce que nous avons dit dans quelques-uns des premiers Chapitres, & sur-tout dans le cinquième, sur le changement de la figure de la Terre produit par l'action de l'un des Luminaires. Nous avons confidéré la Terre d'abord comme parfaitement sphérique; nous avons démontré ensuite que cette figure est changée par l'action de l'un des Luminaires en ellipsoïde, dont l'Axe prolongé passe par le centre du Luminaire agissant, & enfin que la rotation-diurne de la Terre fait que chaque Point dans la surface de la Terre, doit tantôt se baisser, tantôt s'élever, afin que la figure ellipsoïde soit conservée; mais nous n'avons calculé ces baissemens & haussemens, que pour les Points.
Points pris dans l'Équateur même, dans le plan duquel nous avons supposé en même temps se trouver l'Axe de l'Ellipsoïde. C'est pour ces cas, que nous avons démontré (§ V. Chap. V.) que les bassemens des eaux font proportionnels aux Quarrés des Sinus des Angles horaires, qui commencent du moment de la haute Mer; & l'on remarquera que ces Angles horaires font proportionnels alors aux Arcs compris entre le Pôle de l'Ellipsoïde & le Point en question.

I.

Voici à présent comment il faut s'y prendre, pour trouver les mêmes bassemens & hauffemens, qui le sont pendant le mouvement durant de la Terre dans un point quelconque, & la Lune ayant aussi une déclinaison quelconque. On voit qu'on aura toujours le même Ellipsoïde, quelle que soit la déclinaison de la Lune; mais qu'il sera obliquement porté à l'égard de l'Équateur: on voit aussi qu'il faut s'imager dans ce Sphéroïde allongé une Section parallèle à l'Équateur, qui passe par le point en question: cette Section ne sera pas un cercle parfait, & la circonférence n'aura pas tous les points également éloignés du centre de l'Ellipsoïde: c'est les différences de ces distances, qui forment la nature des Marées. Il s'agit donc de déterminer ces différences.

I V.

Pour cet effet il faudra commencer par chercher les distances de chaque point du Parallèle au Pôle de l'Ellipsoïde (j'appelle ainsi l'extrémité de l'Ellipsoïde, qui prolongé, passe par le centre de la Lune) & ces distances étant connues, il est facile de trouver la distance du même point au centre de l'Ellipsoïde, & les différences de ces distances. Car si le Cofinus de la distance d'un point pris dans le Parallèle au Pôle de l'Ellipsoïde étoit c, le Sinus total $= 1$, si le demi Axe de l'Ellipsoïde est nommé $b + \delta$, & le plus petit demi-diamètre b, la distance du point pris par le Parallèle jusqu'au centre de l'Ellipsoïde sera généralement $= b + \delta$; nons avons démontré cette Proposition au § V. Chap. V.

V.

Nous montrerons donc d'abord, comment il faudra déterminer la distance d'un Point quelconque, pris dans un Parallèle donné au Pôle de l'Ellipsoïde. La voie de la Trigonométrie sphérique ordinaire nous ferait affez inutile ici, puisqu'il nous faut des expressions analytiques, applicables à tous les cas, & traitables aux Calculs. Si l'on vouloit tirer de telles expressions des règles de la dite Trigonométrie, les formules qui

Soit dans un Triangle sphérique, le Sinus total = 1 ; le Sinus d’un des côtés = S ; le Cosinus du même côté = C ; le Sinus d’un autre côté = s ; le Cosinus de cet autre côté = c ; le Cosinus de l’Angle compris entre les deux côtés donnés = y ; le Cosinus du troisième côté opposé à l’Angle donné, que j’appellerai q, sera exprimé par cette équation

\[q = S \cdot y + C \cdot s \]

Soit à présent \(A D G K \) le Méridien de la Terre, qui passe par le centre de la Lune, & que la Lune réponde au point \(B \), qui deviendra ainsi le Pole de l’Ellipsoïde, & la droite \(B H \), qui passe par le centre \(O \), son Axe. Soit l’Axe de rotation de la Terre \(A G \), les Poles \(A & G \), \(D F K \) l’Equateur ; \(C E L \) un Parallèle, dans lequel nous prendrons un point quelconque \(E \), & qu’on tire enfin par ce point \(E \), & par le Pole \(A \) l’Arc \(A E F \).

De cette manière, l’Arc \(AB \) fera le complément de la déclinaison de la Lune ; l’Arc \(AE \) fera le complément de la latitude du point \(E \), & l’Arc \(DF \) fera l’Arc horaire depuis le passage du point \(E \) par le Méridien, qui passe par la Lune ; de sorte qu’on connait dans le Triangle \(B A E \), les côtés \(BA & EA \), avec l’Angle compris \(BAE \), & de là on tirera par le moyen du Théorème exposé au précédent Article, l’Arc \(BE \), qui est la distance du Point \(E \) au Pole de l’Ellipsoïde.

Nous nommerons donc encore le Sinus total = 1, le Sinus du côté \(AB = S \); le Cosinus = C; le Sinus du côté \(AE = s \); le Cosinus = c;
le Cofinus de l'Arc DF, qui est la mesure de l'Angle BAE, y; le Cofinus de l'Arc BE, q: nous aurons
$$q = Ss \cdot y + Cc.$$

VII.

Ayant ainsi trouvé l'Arc BE, il est facile d'exprimer la droite EO, qui est la distance du point E jusqu'au centre de l'Ellipsoïde, par le moyen du 4o Art. qui nous marqué que cette distance est toujours égale au plus petit demi-diamètre, augmenté par le produit du Quarré du Cofinus de cet Arc trouvé, & de l'excès du demi-Axe BO sur le plus petit demi-diamètre: c'est-à-dire, si nous retenons les dénominations, dont nous avons faites depuis le IV. §. jusqu'ici, que nous aurons $EO = b + (Ss \cdot y + Cc) \cdot t$.

C'est cette équation de laquelle nous devons tirer toutes les variations des Marées, que la déclinaison de la Lune & la latitude du lieu peuvent produire.

VIII.

Nous voyons d'abord, que n'y ayant que la lettre y de variable, la quantité EO est toujours d'autant plus grande, que l'on prend y plus grande. Pour avoir donc la plus grande EO, il faut faire $y = 1$. La haute Mer répond donc encore au passage de la Lune par le Méridien; & on aura alors la droite $CO = b + (Ss + Cc) \cdot t$.

IX.

Mais pour trouver la plus petite EO ou eO, il ne faut pas faire $y = 0$; mais $y = -\frac{Cc}{Ss}$; & alors la hauteur eO est simplement $= b$. Nous ferons la définition des remarques suivantes:

I. La différence entre la plus grande CO & la plus petite eO, faisant la hauteur de la Marée, entant quelle est produite par la seule action de la Lune, il s'ensuit que cette hauteur est $=(Ss + Cc) \cdot t$. Cette formule nous apprend bien de nouvelles propriétés sur les Marées, & nous fera en même temps à décider plusieurs questions, sur lesquelles les Auteurs ne font pas encore consensus.

(*) Nous voyons d'abord, que la plus grande Marée se fait, lorsque la déclinaison de la Lune est égale à la latitude du lieu. Cette règle suppose toute la Terre inondée; & c'est à quoi il faut avoir égard, lorsqu'il est question de la hauteur d'un lieu. Ce n'est pas par exemple immédiatement aux Ports de Picardie, de Flandre, &c. que les eaux sont élevées.
Traité sur le Flux

Chap. X.

élevées par la Lune ; la cause principale des Marées dans tous ces endroits doit être attribuée plutôt à l’élévation & descente des eaux, qui se font dans la Mer du Nord, à environ 35 degrés de Latitude Septentrionale, autant que j’en ai pu juger par l’inspection des Cartes Marines. J’ajoute pourtant que ce n’est ici qu’une édition fort incertaine ; il est impossible de rien dire de positif là-dessus.

On remarquera aussi que je parle ici de la hauteur de la Marée, qui répond au passage supérieur de la Lune par le Méridien ; j’appellerai cette Classe de Marées, Marées de deflus, & la Classe de celles qui répondent au passage inférieur de la Lune par le Méridien, Marées de defflus.

(6) Si la déclinaison de la Lune est nulle, nous aurons $S = 1$ & $C = 0$ & la hauteur de la Marée de deflus fera $s = s$. Nous voyons de la, que si la Terre était toute inondée, & que les Luminaires retaient dans le plan de l’Equateur, les hauteurs des Marées pour les endroits de différentes latitudes seraient en raison quarrée des Sinus des distances au Pole.

(7) Si pour nos Pays Septentrionaux, la déclinaison de la Lune devient Méridionale, les Marées de deflus deviennent encore plus petites à cet égard, & cette diminution serait très-considerable, s’il n’y avait pas une cause hydrostatische que je marquerais ci-dessous, qui lui est un obstacle ; sans la considération de cette cause, on pourrait croire facilement que notre Théorie ne répond pas assez aux Observations.

(8) Nous éclaircirons cette matière par un exemple, en supposant la Latitude du lieu de 35 degrés. En ce cas la hauteur des Marées de deflus, tout le reste étant égal, devoir être,

Dans la plus grande Déclinaison Septentrionale de la Lune, $= 0.963$.

Lorsque la Déclinaison de la Lune est nulle, $= 0.671$.

Dans la plus grande Déclinaison Méridionale de la Lune, $= 0.265$.

La différence de ces Marées est énorme, & surpasse de beaucoup toutes les inégalités qu’on peut soupçonner avoir quelque rapport à la Déclinaison de la Lune. Nous en dirons bientôt la raison.

(9) Si on supposoit la Latitude telle que $S s$ fût $=C c$, ou $S s = \sqrt{1 - S S} \times \sqrt{1 - \frac{S C}{S}}$, ou enfin $s = \sqrt{1 - S S} = C$, le point E qui répondroit à la plus petite $E O$, ferait précisément au point E. En ce cas, il n’y aurait qu’une Marée de deflus dans l’espace d’un jour lunaire, & la Marée de deflus s’évanouiroit entièrement. Cela arriveroit donc, par exemple, si la Lune ayant 30 degrés de Déclinaison Septentrionale, l’élévation du Pole étoit de 70 degrés : mais en même tems la Marée feroit
roit bien petite, puisqu'elle ne monterait qu'à environ la cinquième partie, qu'elle ferait sous l'Equateur.

(?) Si s est plus petit que C, la quantité du §. VII. $(Ss + Cc) : s$, ne s'aurait plus devenir égale 0; c'est pourquoi la Mer décroîtra alors continuellement depuis le passage supérieur de la Lune par le Méridien, jusqu'à son passage inférieur. Il n'y aura donc plus qu'une Marée par jour depuis la parallèle, qui fait $s = C$, jusqu'au Pôle; & pour s'auroir la hauteur de ces Marées, il faut dans cette Formule, premièrement supposer $y = 1$; & ensuite $y = -1$, & prendre la différence des Formules: la hauteur des Marées sera donc dans ces cas $= (Ss + Cc) : s - (-Ss + Cc) : s$, ou bien $= 4ss Cc$. Elle ne s'aurait donc être qu'exactement petite.

Nous aurions un grand nombre de réflexions à faire encore sur cette matière, s'il ne fallait pas se contenir dans de certaines bornes; & quoique tous ces Théorèmes ne soient vrais que dans la Théorie, où l'on suppose les eaux être constamment dans leur estat d'équilibre, & toute la Terre inondée (car avec ces suppositions, ces Théorèmes seraient exactement vrais) & que diverses circonstances peuvent leur donner quelquefois une toute autre face, il ne laissent pas d'être très-utiles, pour expliquer en gros un grand nombre de Phénomènes observés sur les Marées, & pour pénétrer à fond cette matière.

II. Nous avons démontré qu'il n'y a des Marées de deffus, que tant que s est plus grand que C, lorsque la Déclinaison de la Lune est Septentrionale (si cette Déclinaison est Méridionale, il n'y aura point alors de Marées de deffus dans les Païs Septentrionaux.) Nous disposerons donc s plus grand que C, & nous chercherons là-deffus la hauteur de la Marée de deffus, de la même façon que nous l'avons trouvée pour celles de deffus.

Nous avons vu que la hauteur EO est la plus petite possible, lors qu'on prend $y = \frac{-Cc}{Ss}$, & qu'alors elle devient $= b$; après cela les hauteurs EO croîtront jusqu'au point L, qui fait $y = -1$. La différence de ces hauteurs fera donc la hauteur de la Marée de deffus, qui sera par conséquent $= (-Ss + Cc) : s$, pendant que celle de la Marée de deffus était $= (Ss + Cc) : s$. On pourra faire là-deffus les remarques suivantes,

(a) Les Marées de deffus sont égales à celles de deffus, lorsque la déclinaison de la Lune est nulle.

(b) Dans les Païs Septentrionaux, les Marées de deffus sont plus grandes que celles de deffus, lorsque la déclinaison de la Lune est Septentrionale, & plus petites lorsque cette déclinaison est Méridionale, &
généralement les déclinaisons de la Lune étant égales, mais de différents côtés, les Marées de deflus deviennent les mêmes qu'étoient celles de defsous, & reciprocement.

(c) La différence des deux Marées d'un même jour lunaire est \(4C \cdot cs \cdot s \cdot s \); si l'on applique ces Formules à des cas particuliers, on verra que les Marées de deflus deviennent differer considérablement de celles de defsous, s'il n'y ait pas une autre raison qui doit les rendre à peu prés égales. Nous exposerons cette raison ci-defsous, après que nous aurons examiné tout ce que la Théorie dit sur cette matiere in alio loco.

III. Nous voyons aussi que les durées de deux Marées d'un même jour doivent être selon la pure Théorie fort différentes. Voici comme on peut déterminer ces durées. Si dans le Parallele \(CL \) on suppose être le point, la distance duquel au centre de l'Ellipsoïde soit la plus petite & égale à \(b \), & qu'on tire ensuite par ce point un Arc de Méridien \(Aef \), l'Arc \(Df \) sera la mesure du temps depuis la haute Mer de deflus jusqu'à la basse Mer suivante, & l'Arc \(fK \) la mesure du temps, depuis cette basse Mer jusqu'à la haute Mer de defsous. Or nous avons vu au IX. § que le Cosinus de l'Arc \(Df \) (y) est \(\frac{cc}{ss} \) ou bien si \(DM \) est de 90 degrés, le Sinus de l'Arc \(Mf \) vers le point \(K = \frac{cc}{ss} \). Là-deflus nous pourrons faire ces remarques.

(1) Dans les Pays Septentrionaux la déclinaison Septentrionale de la Lune rend les Jufsans des Marées de deflus plus longs, & les Flots des Marées de defsous plus courts; & la déclinaison Méridionale fait le contraire avec les mêmes mesures; & lorsque la déclinaison est nulle, la durée du Jusan est égale à celle du Flot suivant.

(2) Si la déclinaison de la Lune est égale au Cosinus de la latitude du lieu, le Jusan durera 12 heures lunaires, & il n'y a point de Flot pour l'autre Marée, parce qu'il n'y a point du tout de Marée de defsous.

(3) En général, la différence du temps, entre le Jusan de la Marée de deflus, & le Flot de la Marée de defsous, se détermine par le double
ble de l'Arc horaire M_f, & la différence des durées des deux Marées entières, est exprimée par le quadruple de l'Arc M_f, dont le Sinus est $\frac{C}{S}$. D'où l'on voit que plus la déclinaison de la Lune est grande, plus cette différence est grande aussi.

Soit, par exemple, la latitude du lieu de 35. degrés, la déclinaison de la Lune de 25 degrés, l'Arc M_f sera de 15 degrés, qui répond à une heure lunaire ; le Jufan durera donc 7 heures lunaires, & le Flot suivant 5 heures lunaires, & la différence fera de deux heures, & toute la Marée de dessus durera 4 heures plus que celle de dessous.

Voilà donc comme la chose seroit, si la Terre étoit toute inondée, & si les eaux étoient constamment dans une situation d'équilibre parfait. Nous avons exposé toutes les variations des Marées qui sont dues à l'Action de la Lune, par rapport aux différentes déclinaisons & latitudes, & par le moyen de nos Remarques on connoit les differences entre les Marées d'un même jour, entre celles qui se font dans différentes Saisons, &c. tant à l'égard des hauteur des Marées, que de leurs durées. Il est vrai que les deux hypothèses indiquées sont bien éloignées de la vérité, & que cela change extrêmement les mesures des variations ; mais je suis pourtant sûr qu'il doit y avoir des variations, & qu'elles seront de la nature que nous avons trouvée.

Quant aux irrégularités de la surface de la Terre, il n'est pas possible d'en deviner les effets, que fort superficiellement, & comme chaque endroit demanderoit à cet égard des réflexions différentes, nous n'entreprendrons point cet examen. Nous ne considérerons donc que ce qui regarde le défaut de l'équilibre des eaux, & les mouvements reciproques ou oscillatoires qui en résultent.

La Lune change la surface de la Terre de Sphérique en Ellipsoïdique, & l'Axe de l'Ellipsoïde passe par la Lune. Cet Axe étant différent de l'Axe de Rotation, la figure de la Terre change continuellement, quoique toujours la même à l'égard de l'Axe de l'Ellipsoïde ; & s'il n'y ait pas quelques caufes secondes, lesdits changemens confisteroient simplement en ce que chaque goute montât & descendit alternativement & directement vers le centre.

Il est remarquable encore, que si les eaux se mouvoient librement, sans souffrir aucune ressistance, ces oscillations augmenteroient continuellement.
à l'infini, parce qu'à chaque demi-tour de la Terre, les eaux doivent être centrifugées avoir reçu quelque nouvelle impulsion: c'est une propriété qu'on peut démontrer par plusieurs exemples semblables, tirés de la Mécanique & de l'Hydrodynamique. Mais le grand nombre de résistances qui s'opposent aux mouvements des eaux, font que celles-ci prennent bien vite leurs plus grands degrés d'oscillations. Ces derniers degrés d'oscillations peuvent cependant être considérés proportionnellement aux forces que la Lune exerce sous différentes circonstances, pourvu que les changements qui se font dans la Lune, se faissent assez lentement, pour donner aux eaux le temps qu'il leur faut pour changer leur mouvement. On peut donc dire à cet égard, que les changements qui se font dans la Lune, par rapport à ses déclinaisons, doivent produire dans les Marées à peu-près les Phénomènes que nous avons indiqués, & à beaucoup plus forte raison les changements de déclinaisons dans l'autre Luminaire. Mais les changements qui sont dus à la rotation de la Terre font trop vites, pour que les Marées puissent s'y accommoder, car elles tâchent de conserver leur mouvement réciproque comme un Pendule simple. Cette unique raison fait que si les deux Marées d'un même jour doivent être suivant les différents effets de la Lune fort différentes, la plus grande augmente la plus petite, & celle-ci diminue l'autre, de sorte qu'elles sont beaucoup moins inégales qu'elles ne devraient être sans cette raison. Tout ce qu'on peut donc dire à cet égard, est que nos Théorèmes sont vrais, quant à leur nature; mais non pas suivant les mesures que nous en avons données. On peut, pourtant, moyennant une autre réflexion, réparer en quelque façon cet inconvenient : c'est en supposant que la plus grande Marée donne à la plus petite, qui est sa compagne, autant qu'elle en perd, & les supposer l'une & l'autre à peu-près égales, ce que l'expérience confirme, & de là on tirera la hauteur absolue de chacune, en prenant le milieu Arithmétique des deux Marées, qui conviennent à un même jour-lunaire. En corrigeant de cette façon les précédentes Propositions, nous aurons les Théorèmes suivants, qui ne feraient plus manquer d'être assez conformes aux Observations.

La hauteur de la Marée de dessus est \((Ss + Cc)\); \(d\) (§. Remarque I.) & la hauteur de la Marée de dessous \((-Ss + Cc)\); \(d\) (§. IX. Remarque II.) en prenant donc la moitié de la somme de ces deux hauteurs, nous aurons la hauteur moyenne de la Marée, qui convient aux déclinaisons de la Lune, & latitudes du lieu données, \((Ss + Cc)\). De cette Formule, je crois fort juste pour la suppression de l'entière inondation de la Terre, on pourra tirer les Corollaires suivants.

(I.) Les
Les déclinaisons Septentrionales & Méridionales de la Lune font le même effet sur les Marées, à l'égard de leur hauteur moyenne.

Cette propriété est confirmée par les Observations. Mais il sera toujours vrai, que dans les Pays Septentrionaux la déclinaison Septentrionale de la Lune augmente un peu les Marées de dessus, & diminue celles de dessous ; & que la déclinaison Méridionale fait le contraire : & c'est ce que l'expérience confirme aussi. On se souviendra donc que nous parlons de la hauteur moyenne des deux Marées d'un même jour lunaire.

(II.) A la hauteur de 45 degrés la hauteur moyenne de la Marée est \(\frac{1}{4} S S + \frac{1}{2} C C \) = \(\frac{1}{4} \), & par conséquent constamment la même.

C'est ici une propriété bien singulière, que quelques foie la déclinaison des Luminaires, les hautes moyennes des Marées n'en soient point changées, & cette propriété nous fait voir, pourquoi dans nos Pays on s'aperçoit de peu de changement dans les Marées, à l'égard des déclinaisons.

(III.) Si la latitude du lieu est moins de 45°, la plus grande Marée moyenne se fait lorsque les déclinaisons des Luminaires sont nulles, & les Marées diminuent, si les déclinaisons augmentent.

L'expérience confirme encore cette propriété, & tout le monde convient que dans nos Pays (dont les Marées dépendent de la Mer du Nord, à environ 35 degrés de latitude) les plus grandes Marées, tout le reste étant égal, se font environ les Équinoxes.

Si la latitude du lieu est plus grande de 45 degrés, c'est le contraire.

(IV.) Sous l'Équateur, la hauteur de la Marée est = \(S \), & les variations qui dépendent des différentes déclinaisons de la Lune, y seront le plus sensibles : si la déclinaison est nulle, la hauteur de la Marée y est exprimée par \(\bar{\beta} \); & si la déclinaison est supposée de 15 degrés (elle peut aller jusqu'à près de 29 degrés) la hauteur de la Marée moyenne sera de 0.82. La différence des hauteurs est de \(\bar{\beta} \).

(V.) Les variations sont moins grandes à cet égard sur les Côtes de la France, baignées par l'Océan, & les Marées y sont cauchées par la Mer du Nord à la hauteur d'environ 35 degrés, la hauteur de la Marée, la déclinaison de la Lune étant nulle, y sera exprimée par \(0.671 \), & si la Lune avait 25 degrés de déclinaison, la hauteur moyenne y sera exprimée alors par 0.610. La plus grande Marée est donc à la plus petite à cet égard, comme 671 à 610, & la différence sera comme \(\bar{\beta} \), qui fait l'onzième partie de la grande Marée.

Nous voyons par ces exemples, que les variations qui dépendent de la déclinaison de la Lune, sont toujours beaucoup plus petites, que celles
les qui dépendent des différentes distances de la Lune, & qui peuvent aller jusqu’au tiers de la grande Marée. C’est pourquoi on a eu beaucoup de peine à s’apercevoir des variations qui répondent aux différentes déclinaisons.

(VI.) Enfin nous remarquerons que cette Formule \(S S s s + C C c c \) pour les hauteurs moyennes des Marées ne doit pas être poussée au-delà du terme des doubles Marées, qui est lorsque la latitude du lieu est égale à la déclinaison de la Lune: car, passé ce terme, nous avons démontré qu’il ne doit y avoir qu’une Marée par jour, dont la hauteur est exprimée par \(4 S S C C c \), en vertu de la Remarque (?) de l’Art. IX. Il faudra aussi donner à ce terme une certaine latitude; car il y a apparence que ce n’est qu’à une certaine distance depuis ce terme vers l’Équateur, que les Marées commencent à être doubles, & à une autre distance vers le Pôle, qu’elles commenceront à être simples, si la Mer libre s’étend jusqu’là; & que dans la Zone, qui est entre deux, les Marées seront mêlées de l’une & l’autre espèce avec beaucoup d’irrégularité.

Nous venons d’exposer au long, & avec toute la précision possible; le rapport réel des hauteurs des Marées: nous n’avons qu’un mot à dire sur l’heure des haute Marées. Comme c’est toujours au moment du passage supérieur de la Lune par le Méridien, que la Mer devrait être la plus haute; quelle que soit la déclinaison de la Lune, & la latitude du lieu: nous voyons que si les Marées dépendent uniquement de la Lune, ces deux fortes de variations ne devraient point apporter de changement à l’heure de la haute Mer, & si l’on veut avoir égard aux forces du Soleil, nous avons déjà montré au IX. Art. du Chap. VII. les variations qui peuvent provenir à cet égard.

Mais si la déclinaison de la Lune & la latitude du lieu n’ont pas d’influence directement sur l’heure de la haute Mer, & si elles n’en ont que très-peu, lorsque l’action de la Lune est combinée avec celle du Soleil, il est remarquable, que tant la déclinaison de la Lune, que la latitude du lieu, feroient extrêmement varier l’heure des basses Mers, sans cette cause seconde, que j’ai exposée au long dans le XI. Art. & qui fait que les deux Marées d’un même jour lunaire sont beaucoup moins inégales, qu’elles ne devraient être. Cependant cette raison ne feroit rendre les deux Marées tout-à-fait égales, & il fera toujours vrai, ce que j’ai dit dans la Remarque (x) de la III. Partie du §. IX. que c’est tantôt le Jusfan d’une Marée, qui surpasse en durée le flot de la Marée suivante, tantôt celui-ci qui surpasse l’autre. C’est une propriété qui n’est point échappée aux Observateurs des Marées; mais on n’avait pas remar-
remarqué les circonstances de ces inégalités, savoir que dans les Pays Septentrionaux, la déclinaison Septentrionale de la Lune rend les Marées de dessus plus longues, & les Marées de dessous plus courtes, & que la déclinaison Méridionale fait le contraire.

On voit donc qu'à cet égard le Jufan peut être différent du flot suivant, mais non pas du flot antécédent; & s'il on remarque quelque différence entre le flot & le Jufan d'une même Marée, ou cette différence sera constante pendant tout le cours de l'année, & alors il faut l'attribuer à la configuration des Côtes; ou elle n'aura point de loix, & ne fera que tout-à-fait accidentelle, & caufée par des Vents ou Courants accidentels.

X I V.

Les différences que nous avons exposées dans ce Chapitre entre les deux Marées d'un même jour, tant pour leur hauteur, que pour leur durée, nous donnent un moyen de reconnoître ces deux Classes de Marées, & de distinguer l'une d'avec l'autre, ce qui serait impossible sans cela sur les Côtes irrégulières de l'Europe, où nous savons que les diverses heures du Port comprennent toute l'étendue d'une Marée, ou d'un demi-jour lunaire.

La Classe des Marées de dessous comprendra celles qui sont plus grandes & plus longues, la déclinaison de la Lune étant Septentrionale, ou qui sont petites & plus courtes, cette déclinaison étant Méridionale, & l'autre Classe fera reciprocque.

X V.

Nous avons examiné avec toute l'attention requise les effets des différentes déclinaisons de la Lune, qui sont la source de tant de propriétés très-remarquables des Marées. Il ne nous reste donc plus qu'à confirmer encore les déclinaisons du Soleil. Cet examen nous sera très facile, après celui que nous venons de faire sur la Lune.

Nous nommerons la force du Soleil, sa déclinaison étant nulle, & comme nous avons fait toujours dans le Corps de ce Traité, & nous rétiendrons les dénominations du V. §. Si nous appliquons donc au Soleil tout le raisonnement que nous avons fait sur la Lune, nous voyons qu'on n'a qu'à substituer dans toutes les Formules de ce Chapitre c à la place de b, pour trouver les variations qui proviennent des différentes déclinaisons du Soleil dans tous les lieux de la Terre, & de cette manière tout ce que nous avons dit sur la Lune, sera aussi vrai à l'égard du Soleil. Si donc la hauteur de la Marée, entant qu'elle est produite sous l'Equateur par la seule action du Soleil au temps des Équinoxes, est appelée c, la hauteur de la Marée sera pour telle déclinaison du Soleil,

Tom. III. G g
& telle latitude du lieu entre les deux Cercles Polaires qu'on voudra =
(T T s s + E E c c) c, entendant par T le Sinus de la distance du So-
leil au Pole, & par E son Cosines.

XVI.

Pour tirer tout l'avantage, qui est possible, de nos Méthodes, &
leur donner la dernière perfection, nous tâcherons enfin de donner une
Formule générale pour tous les cas possibles. Souvenons-nous pour cet
effet, que nous avons nommé au IX Chapitre A la hauteur des Ma-
rées qui se font sous la Ligne dans les Syzygies (ou plutôt un jour &
demi après) les distances des Lunaires étant moyennes, & leurs dé-
clinaisons nulles; & que pour les mêmes circonstances nous avons nom-
mé B la hauteur des Marées bâtaudes: voyons à présent, comment il
faut changer ces Quantités A & B, lorsque les déclinaisons des Lumia-
naires, & les latitudes des lieux font d'une grande quelconque.

(I.) Quant à la quantité A, comme elle a été exprimée par la somme
des forces entières des deux Lunaires, c'est-à-dire, par \(\delta + \varepsilon \), on voit
qu'il faut mettre ici à la place de \(\delta \) la quantité corrigée \(SS s s + CC c c \)
& à la place de \(\varepsilon \) la quantité corrigée \(TT s s + EE c c \), & ensuite faire cette Analogie

\[
3 + \varepsilon : A : SS s s + CC c c \times (TT s s + EE c c) \times c
\]

Cette quatrième proportionnelle marque la hauteur des Marées dans
les Syzygies, lorsque les déclinaisons des Lunaires, & la latitude du
lieu sont quelconques, & si la déclinaison de l'un & l'autre Luminaire
est nulle, cette quantité devient simplement \(= s s A \). Si l'on nomme
donc F la hauteur de la Marée dans les Syzygies, les déclinaisons des
Lunaires étant nulles pour un lieu quelconque, il faut supposer \(s s A = F \)
& de cette manière ladite quatrième proportionnelle devient

\[
= \frac{(SS s s + CC c c) A - (TT s s + EE c c) c}{s s (\delta + \varepsilon)}
\]

C'est cette quantité qu'il faut substituer dans les équations du §. V.
Chap. IX, pour A.

(II.) La quantité qu'il faudra substituer pour B dans ces équations,
que nous venons de citer, se trouve à peu-près de la même façon; il
n'y a qu'à prendre au lieu de la somme \(\delta + \varepsilon \) leur différence \(\delta - \varepsilon \), qui
exprimoit la hauteur des Marées bâtaudes. Si l'on appelle donc G la
hauteur de la Marée dans les Quadratures, les déclinaisons des Lunai-
res étant nulles, on trouvera la quantité à substituer pour

\[
B = \frac{(SS s s + CC c c) \delta - (TT s s + EE c c) \varepsilon}{s s (\delta - \varepsilon)} \times G
\]

Nous
ET REFLUX DE LA MER.

Nous substituerons encore dans l'équation générale du §. V. Chap. IX. à la place des Lettres S & s (qui marquent le rapport des distances du Soleil à la Terre sous diverses circonstances, & qui se trouvent employées dans ce Chapitre dans un autre sens) ces autres Lettres D & d.

Après ces réflexions préliminaires nous considérerons le Problème général des hauteurs des Marées sous telles circonstances, qui pourront concourir, & qui servira à déterminer ces hauteurs avec toute la précision possible. Je m'affirme que tous ceux qui jettent les yeux sur cette Solution, verront sans peine, combien j'ai été attentif à examiner & éplucher toutes les circonstances qui peuvent faire varier les Marées.

PROBLÈME GENERAL.

XVII.

Trouver généralement la hauteur des Marées, en supposant connues toutes les circonstances qui peuvent les faire varier.

SOLUTION.

Il faut connaître d'abord par Observations les quantités F & G, qui marquent les hauteurs moyennes des grandes Marées, & des Marées bâtarde, qui se font un jour & demi après les Syzygies & les Quadratures, les déclinaisons des Luminaires étant nulles, & leurs distances à la Terre étant moyennes. Dans la Théorie, deux Observations suffisent pour cet effet; mais il vaut mieux dans l'application de nos Méthodes observer un grand nombre de fois, comme on a déjà fait préféré dans tous les Ports de la France, la hauteur des grandes Marées, & celle des petites Marées, les Luminaires se trouvant à peu-près dans l'Equateur, & prendre des unes & des autres le milieu Arithmétique, que j'appelle F pour les grandes Marées, & G pour les petites Marées.

Il faut ensuite connaître le rapport moyen, qu'il y a entre les forces de la Lune & du Soleil. Nous avons donné plusieurs moyens pour cela dans le corps de cette Dissertation, & nous nous croyons bien fondés de le supposer comme $\frac{5}{2}$. Quoi qu'il en soit, nous nommons ce rapport λ.

Il faut après cela faire attention aux Phases de la Lune, ou à l'Arc compris entre les deux Luminaires dans le moment du passage de la Lune par le Méridien: cet Arc doit être diminué de 20 degrés (§. VII. Chap. IX.) Nous nommons le Sinus de l'Arc résultant m, & le Co-sinus n, & le Sinus total l.
Il faut aussi connaître les distances des Luminaires à la Terre : j'appelle d la distance moyenne du Soleil ; D la distance au temps de la Marée cherchée ; l la distance moyenne de la Lune ; L la distance au temps de la Marée cherchée.

Il faut aussi avoir encore les déclinaisons des Luminaires à l'égard de l'Equateur : j'appelle S le Sinus de la distance de la Lune au Pole, C son Cosinuss ; T le Sinus de la distance du Soleil au Pole ; E son Cosinus.

Enfin, il faut faire attention à la latitude du lieu, & à la Remarque (a) du IX. Art. que nous avons faite pour l'estimation des latitudes. Nous appelons le Sinus de la distance au Pole s & le Cosinus c. Toutes ces dénominations faites, je dis que la hauteur de la Marée sera

$$\frac{1}{D} \times \frac{L}{d} \times \frac{S}{mm} \times \frac{S + C}{T} \times \frac{T + E}{G} \times F.$$

$$\frac{1}{D} \times \frac{L}{d} \times \frac{S}{mm} \times \frac{S + C}{T} \times \frac{T + E}{G} \times G.$$

XVIII.

Je n'ai mis ici cette grande Formule, que pour faire voir toute l'étendue & toute l'exactitude de notre Théorie & de nos Calculs, car les mesures & la Table que nous avons donnés au Chapitre IX, entrent de précision dans une Question aussi sujette que celle-ci aux variations accidentelles, qui n'admettent aucune détermination.

Je ne dis rien des Marées & de leurs changemens extraordinaires, qui se font dans la Zone glaciaire, pour ne point grossir trop ce Traité, & pour ne point l'embarrasser de choses fort abstraites & a ce difficiles. J'ai d'ailleurs déjà exposé en gros & même assez au long ce qui est.

Quant enfin à l'heure des hautes Mers, j'ai fait voir qu'elle n'est point changée par les déclinaisons des Luminaires, ni par la latitude du lieu ; nous avons donc déjà donné toute la perfection possible dans les Chapitres précédens à cette autre grande Question. Pour l'heure des basses Mers, qui dépendent beaucoup des déclinaisons des Luminaires, & de la latitude du lieu, nous en avons fait voir toutes les variations & propriétés dans ce Chapitre.
CHAPITRE XI.

Qui contient l'Explication & Solution de quelques Phénomènes & Questions, dont on n'a pas eu occasion de parler dans le corps de ce Traité, sur tout à l'égard des Mers détachées, soit en partie, soit pour le tout, de l'Océan.

I.

S'Uivant quelle progresion les eaux montent & descendent dans une même Marée, par rapport aux temps donnés,

Cette Question dépend de toutes les circonstances que nous avons considérées dans ce Traité; mais les variations à l'égard du changement de ces circonstances, ne font pas varier beaucoup la loi, suivant laquelle les eaux montent & descendent; je ne parlerai donc que du cas le plus simple, qui est lorsque la latitude du lieu, & les déclinations des Luminaires sont nulles, & lorsque même temps les Luminaires sont dans leurs Syzygies, ou dans leurs Quadratures. Que l'on exprime donc tout le temps depuis la haute Mer jusqu'à la baie Mer par un quart de Cercle, dont le rayon est égal à l'unité; je dis que les descentes verticales des eaux depuis la haute Mer doivent être exprimées par les Quarres des Sinus des Arcs, qui représentent les temps donnés. Si l'on considère les Marées depuis le commencement du Flot, il faudra dire que les élevations verticales des eaux, sont en raison quadrée des Sinus, qui répondent aux temps donnés §. III. Chap. V. Ceux qui vou- dront rendre cette Proposition plus générale, pourront consulter le §. VIII. Chap. V. & si on y ajoute enfin les §§. VI. & VII. du Chap. X. on verra facilement, ce qu'il faudroit faire pour tous les cas possibles. Mais la loi générale ne différera pas beaucoup de celle que nous venons d'exposer; & cela d'autant moins que les deux Marées d'un même jour, qui devraient être souvent fort inégales, ne laissent pas de se composer à une égalité mutuelle par la raison exposée au long au §. XI. Chap. X. On peut donc se tenir sans peine à la Règle que nous venons d'établir.

Il s'en suit de cette Règle, que les baissemens ou élévations des eaux, qui se font dans de petits temps égaux, sont proportionnels aux produits des Sinus par les Cosinus répondants des Arcs horaires; de sorte que si on partage tout le temps du Flux ou du Reflux également, les variations également éloignées en deçà & en delà de ce terme, sont égales; ces variations sont les plus sensibles au milieu du Flux ou du Reflux, & la...
variation totale depuis le commencement du Flux ou du Reflux jusqu'au milieu, fait précisément la moitié de toute la variation d'une Marée. On voit enfin que les variations doivent être insensibles au commencement & à la fin de chaque Flux & Reflux.

Toutes ces Propositions sont confirmées entièrement par les Observations qu'on a faites sur cette matière, rapportées par M. Caffini dans les Mémoires de l'Académie des Sciences pour l'année 1720. pag. 360. Il semble seulement qu'il y a une erreur de quelques minutes dans la détermination de l'heure de la baffe Mer, erreur presque inévitable dans cette sorte d'Observations. Mais il faut remarquer, pour voir plus parfaitement l'accord de notre Règle avec les Observations, que tout le temps du Flux & Reflux est de six heures-lunaires, pendant que les Observations ont été prises sur des heures solaires.

II.

Pourquoi il n'y a point de Marées sensibles dans la Mer Cafpine, ni même quelques-uns dans la Mer Noire, & pourquoi elles sont très petites dans la Mer Méditerranée, & de quelle nature sont ces Marées.

On ne saurait bien répondre à ces questions, sans confidérer auparavant le Problème principal, qui est de savoir les Marées, lorsque la Mer n'a qu'une certaine étendue en longitude, & c'est un Problème pénible pour le Calcul, & assez délicat pour la Méthode. Pour le rendre d'abord plus simple, nous supposerons les Luminaires en conjonction & dans le plan de l'Equateur, & que c'est aussi sous l'Equateur, que l'on cherche les Marées.

Ressouven-nous que sans l'action des Luminaires, l'Equateur serait parfaitement circulaire, comme $b g d h$, & que les Luminaires se trouvant dans l'Axe DB, cette Figure est changée en l'Ellipsoïde $BGDH$, lorsque toute la Terre est inondée, & que les eaux peuvent couler de tous côtés. Nous avons démontré aussy au III. §. Chap. V. que dans cette supposition, la petite hauteur yz (dont les variations par rapport à ses différentes situations expriment les variations des Marées au point x)

$$e = \frac{3s - b}{3} \times c,$$

dans laquelle Formule on suppose $C_a = s; C_b = b$.

& la différence entre la plus grande CB & la plus petite $CG = c$.

Supposons à présent que la Mer n'a qu'une certaine étendue en longitude, & savoir celle de zx, & qu'on tire par le centre C & l'extrémité x la droite Cs. Cela posé on voit bien que la surface de la Mer ne peut pas être en ys, comme elle serait, si toute la terre était inondée; car l'espace ys est plus grand que l'espace zs, & il faut que cet
et espace soit confamment le même; puisque la quantité d'eau dans une Mer doit être supposée la même pendant les révolutions de la Terre; mais la surface de l'eau prendra la courbure or, & voici quelle sera la nature de cette courbure or; il faut premièrement, que l'espace oCr soit confamment le même que l'espace zCz, & en second lieu, que la courbe or soit semblable à la courbe vs, ou plutôt la même, puisque toutes les petites lignes, telles que sx, sont incomparablement plus petites que le rayon de la Terre; & ainsi la petite perpendiculaire sr sera égale à la petite perpendiculaire yo, de même que toutes les perpendiculaires comprises entre les termes s & y.

On voit donc déjà que ce ne sont plus les sx & yz, dont les variations marquent les variations des Marées pour les points x & z, & que ces variations font exprimées ici par celles des petites lignes rx & oz. De là on peut conclure par la seule inspection de la Figure, que les Marées doivent être d'autant plus petites, que la Mer est moins étendue en longitude; que ces Marées ne peuvent être que tout-à-fait insensibles dans la Mer Caspienne & dans la Mer Noire, & fort petites dans la Mer Méditerranée, dont la communication avec l'Océan est presque entièrement coupée au Détroit de Gibraltar. On en peut même tirer des propriétés très singulières de cette sorte de Marées. 1°. Que la plus haute Mer ne se fait pas ici au moment du passage des deux Luminaires par le Méridien, comme dans l'Océan, ni 6 heures lunaires après, mais au milieu, si la Mer a peu d'étendue en longitude. 2°. Que les Marées font les plus grandes aux extrémités Orientales & Occidentales z & x, & qu'elles sont incomparablement plus petites au milieu. 3°. Que la haute Mer dans l'une des extrémités le fait au même moment que la basse Mer dans l'autre extrémité. Voilà en gros les propriétés des Marées dans ces Mers: le Calcul en fera connaître le détail.

Pour ne point ennuyer le Lecteur par une trop longue suite de raisonnements purement Géométriques, & dans plusieurs circonstances affez compliquées & chargées de Calcul, je ne retiendrai ici que le plus précis.

Soit Bb + Gg = ε, qui marque la variation pour la Mer libre de tous côtés;
236 TRAITEME SUR LE FLUX

Chap. 10. — La Terre: soit l’Arc x, qui marque l’étendue de la Mer en longitude $= A$. Le rayon de la Terre que nous prenons pour le Sinais total $= 1$, qu’on tire x perpendiculaire à CB, et soit l’éspace $x\cdot n\cdot x\cdot z = S$. Cela pose, on trouvera d’abord $xy\cdot n\cdot s = \frac{1}{2} A\cdot c$. Cet espace devant être égal à l’espace $y\cdot o\cdot r\cdot s$, qui est égal à la petite $s\cdot r$ multipliée par A, on en tire $s\cdot r = \frac{1}{2} c - \frac{S}{A} c$.

Si on suppose après cela $Cn = n \& Ca = s$, on en aura $s\cdot x = n\cdot n \cdot c - \frac{1}{2} c$, \& par conséquent $r\cdot x = n\cdot n \cdot c - c + \frac{S}{A} c$, mais ces sont les différentes valeurs de $r\cdot x$, en considérant $n \& S$ comme variables, qui marquent les différentes hauteur de la Mer au point x, qui est à l’extrémité occidentale de la Mer.

De cette valeur $r\cdot x$ on peut tirer géométriquement toutes les propriétés des Marées, quelque étendue qu’on suppose à la Mer, \& tout ce que nous avons trouvé pour le point x, peut être déterminé de la même façon pour le haut point dans l’Arc $x\cdot x$ qu’on voudra; mais on remarquera surtout une propriété générale, qui est que l’Arc horaire compris entre la haute \& la basse Mer, c’est-à-dire l’Arc compris entre la plus grande \& la plus petite $r\cdot x$, est toujours de 90 degrés. Pour le démontrer, il faut supposer la différentielle $r\cdot x = 0$, \& faire $d\cdot S = \frac{ns}{\sqrt{1-n}} d\cdot n$, à cause de la valeur constante de A, d’où l’on tirera cette équation $2\cdot A\cdot n\cdot \sqrt{1-n} + ns = 0$, qui marque déjà la propriété générale que nous venons d’indiquer. Cette propriété donne enfin la hauteur de la Marée, exprimée par la différence de la plus grande \& de la plus petite valeur de $r\cdot x = (z\cdot n - 1 + \frac{\sqrt{1-n} - s\cdot \sqrt{1-t}}{A}) c$, \& on remarquera que dans toutes ces Formules, s est donnée en $n \& c$ en constantes, à cause de l’Arc A donné.

Nous appliquerons ces équations générales à deux formes de cas particuliers.
niques; premierement, lorsque A est de 90 degrés; & en second lieu, lorsque cet Arc est fort petit.

I. Si A est de 90 degrés, on aura \(s = \sqrt{1 - n^2} \), & le lieu de la haute ou de la baie Mer à l'égard du point fixe B sera déterminé par cette Equation

\[
-2A\sqrt{1 - n^2} + 2nn - i = 0,
\]

qui donne

\[
C n, ou n = \sqrt{\left(\frac{4}{2\sqrt{A A + 1}}\right)} = 0,9602,
\]

qui marque que l'Arc = b est d'environ 16 degrés 12. minute, & que la hauteur de la Marée fera de 0,844 c. Nous voyons donc que si la Mer avait 90 degrés d'étendue en longitude, la haute Mer ferait dans les Syzygies 1 heure 5. minutes plus tard que si toute la Terre était inondée, & que la hauteur de la Marée ferait de 156 millièmes parties plus petite.

II. Supposons à présent que l'étendue de la Mer en longitude soit très-petite, c'est-à-dire, que A exprime un Arc circulaire fort petit, & soit la corde de cet Arc = B: la Géométrie commune donne

\[
s = n - \frac{1}{2} n BB + \frac{1}{2} \sqrt{4BB - 4nnBB + nnBB - BB}. \quad \text{Et B étant supposé fort petite, on changera la quantité radicale en suite}, \\
\text{et} \quad \text{on négligera les quantités affectées de } BB \text{. (le Calcul fait voir à la fin, qu'il faut retenir les termes affectés de } BB \text{.) & de cette manière on trouvera}
\]

\[
s = n - \frac{1}{2} BB.
\]

On remarquera après cela, que la différence entre l'Arc A & la corde B, convertie en suite commence [par le terme \(\frac{1}{2} B \)], lequel pouvant être négligé pour notre dessin, on mettra A à la place de B, & on aura

\[
s = n - \frac{1}{2} n A A.
\]

En substituant dans l'équation exposée ci-dessus

\[
2A\sqrt{1 - n^2} + 2n - i = 0,
\]

la valeur trouvée pour s, & négligeant toujours les termes affectés de A\(^2\) & de A*, nous aurons simplement \(n = \sqrt{\frac{1}{2}} \).

L'Arc = b est donc pour ce dernier cas de 45 degrés, & la haute Mer, si elle était sensible, ne se ferait par conséquent que trois heures lunaires après le passage de la Lune par le Méridien. La hauteur de la Marée étant généralement exprimée, comme nous avons vù ci-dessus par

\[
\left(\frac{2n - i + \sqrt{1 - n^2 - i\sqrt{1 - i}}}{A}\right),
\]

il faudra substituer dans cette expression les valeurs trouvées pour n & s; ce que faïant avec les mêmes...
mes précautions, que nous avons employées en cherchant la valeur de
s, on trouvera à la fin simplement la hauteur de la Merée = AC.

Cette expression fait voir que dans les petites Mers, les hauteurs des
Marées sont proportionnelles aux étendues que ces Mers ont en longi-
tude, & les Marées se trouveront par cette Analogie. Comme le Si-
num total est à l'Arc longitudinal, que la Mer renferme, ainsi la hauteur
de Marée dans la Mer qui est supposée inonder toute la Terre, exprimée
par c, sera à la hauteur de la Marée en question.

Appliquons maintenant tout ce que nous avons trouvé pour en tirer
les propriétés des Marées dans la Mer Caspienne. Supposons pour cet
effet, que dans les conjonctions & oppositions des Luminaires, la haute-
teur des Marées grandissimes dans la Mer du Sud (dans laquelle les Ma-
rées ne sc auraient manqué d'atteindre presque toute la hauteur, qu'el-
tres auraient, si toute la Terre était inondée) est sous l'Equateur de 8
pieds : c'est la hauteur que les Relations de voyages m'ont fait adopter
pour la Mer libre. & que je crois qu'on remarquera sur les Côtes es-
carpées des petites Îles situées près de l'Equateur dans ladite Mer du
Sud : Cela étant, j'ai démontré dans la Proposition (II. § du XII. Chapitre précèdent), que les grandes Marées ne seront plus que de 4 pieds
à la hauteur de 45 degrés, où je suppose le milieu de la Mer Caspien-
ne. Si nous donnons après cela à cette Mer dix degrés d'étendue en lon-
gitude, cet Arc fera environ la sixième partie du Rayon, & la hauteur
des grandissimes Marées devrait être par conséquent aux extrémités O-
rientale & Occidentale de la Mer Caspienne d'environ huit pouces ;
mais elles seront nulles au milieu de la Mer. Je suppose cette agitation
de la Mer trop petite pour avoir pu être remarquée par les gens qui ont
été sur les lieux, & qui sans doute n'ont pas fait un examen fort scru-
puleux là-dessus, & qui n'auraient pas manqué de l'attribuer à des cau-
ses accidentelles, s'ils avaient remarqué quelque petite élévation & bal-
lement des eaux. J'espère que des Observations plus exactes confirme-
ront un jour ce que je viens d'indiquer sur les Marées de la Mer Cas-
pienne.

On doit faire le même raisonnement sur la Mer Noire, qui peut être
considérée comme détachée de la Mer Méditerranée, à cause du peu de
largeur du Détroit qui est entre deux. Il est à remarquer qu'on a ob-
servé dans cette Mer des Marées, quoique très-petites.

On voit aussi que les Marées dans la Mer Méditerranée doivent être
beaucoup plus petites, que dans l'Océan, sur-tout si l'on fait attention
que cette Mer n'est tout à fait ouverte que depuis l'Île de Chypre jus-
qu'à celle de Sicile.
Comment les Marées peuvent être beaucoup plus grandes sur les Côtes, dans les Bayes, dans les Golfes, &c. que dans la Mer libre de tous côtés.

Pour répondre à cette question, il faut encore faire réflexion à ce que j'ai déjà dit, que si les Luminaires restoient à un même lieu, & que le mouvement journalier de la Terre se fit avec une lenteur infinie, les eaux qui inondent la Terre, ne pourroient point manquer d'être dans un parfait équilibre, & les Marées auraient par-tout les hauteurs qu'on leur a prêcités dans cet Ouvrage, sans que la configuration des Côtes ou autres causes semblables les pût déranger, pourvue que l'endroit en question communiqût avec l'Océan; d'ailleurs les eaux ne ferroient que monter & descendre verticalement, excepté aux Côtes, qui alternativement sont baignées, & refissent à sec, & ausquelles les eaux au-roient quelque mouvement horizontal, quoi qu'infiniment lent, & la direction de ce mouvement des eaux dépendroit dans ce cas, auifi bien que dans les autres, de la direction de la pente des Côtes. Mais la vitesse du mouvement journalier de la Terre, qui fait que dans le temps d'un jour tout l'Océan doit faire quatre mouvemens & agitations réciproques, rend ces mouvemens fort sensibles. Comme outre cela la Mer n'inonde pas toute la Terre, & qu'il y a de grands Golfes, Canaux, &c. qui par l'élevation & baïssement des eaux, font tantôt plus, tantôt moins pleins, il faut que ceux-ci reçoivent les eaux & les renvoient alternativement vers des endroits qui s'empliront, pendant que les autres se vuideront, & de là doivent provenir des mouvemens horizontaux, qu'on appelle communément Flux & Reflux. Ce sont ces mouvemens horizontaux, qui se faisant vers des endroits plus ferrés, peuvent produire les grandes Marées, qui vont dans de certains endroits au-delà de 60 pieds; c'est aussi cette raison qui rend les Marées plus grandes dans le Golf de Venise, qu'elles ne sont dans la Mer Méditerranée. C'est ici qu'on peut faire un grand usage de ce que divers Auteurs ont donné sur le mouvement des eaux, & je m'assure que moyennant les connaissances qu'on a déjà sur cette matière, on pourroit rendre exactement raison de tous les différents Phénomènes, qui s'observent sur les Marées aux endroits différemment situés. Mais un tel examen deman-deroit des volumes, & des années pour les faire.

Quelle est en gros la nature des Marées au Détroit de Gibraltar.
Les Marées doivent sans doute être beaucoup plus compliquées ; et parroit plus irrégulières au Détroit de Gibraltar, que dans d'autres endroits, parce qu'il s'y fait un concours de deux fortes de Marées, dont l'une vient de l'Océan, et l'autre de la Méditerranée ; et on voit facilement, que si les Marées confluoient simplement à élever & baisser les eaux, sans causer des Courans, il y aurait sur ces Côtes quatre Marées par jour, c'est-à-dire, que les eaux monteraient & descendraient quatre fois, parce que les Marées des deux Mers ne se font pas en même temps : mais comme il se forme des Courans reciproques, chaque Courant tache à se conserver, & de là il se forme des lissières, qui ont chacune des mouvements différents : celles qui sont sur les Côtes de chaque côté, paraissent devoir être attribuées aux Marées de la Méditerranée, & deux autres qui les touchent, aux Marées de l'Océan : on remarque même au milieu une cinquième lissière, dont le mouvement n'est pas si irrégulier que celui des quatre autres, & qui ne fait voir presque aucun rapport avec la Lune : il semble que ce Courant ne doit sa source, qu'à un défaut d'équilibre entre les deux Mers.

Je dirai à cette occasion, qu'il peut arriver de même, que les Marées sont formées dans un certain Port par le mouvement des eaux, qui viennent de deux différents côtés & à divers temps : il semble qu'il faut tirer de là qu'il peut y avoir des endroits où le Flot dure constamment plus long-temps que le Jufan, & qu'il y en a d'autres où il arrive le contraire. Cette même cause peut encore produire plusieurs fortes de Phénomènes particuliers à de certains endroits.

Pourquoi les petites Marées sont beaucoup plus inégales, par rapport à leur grandeur, que les grandes Marées.

Nous avons déjà vu que les petites Marées qui suivent les Quadratures, doivent être fort susceptibles de plusieurs irrégularités, tant par rapport au moment de la haute & basse Mer, que par rapport à la hauteur de la Marée.

Il me semble qu'on doit outre cela remarquer les grandes inégalités qui régissent parmi les petites Marées, quoique tout-à-fait régulières ; pouvant sous diverses circonstances croître jusqu'au double, pendant que les grandes Marées ne croissent que d'environ un quart. Pour rendre raison de cette Observation qu'on a faite, il faut se ressouvenir des circonstances essentielles & fondées dans la nature des Marées, qui peuvent les rendre, tantôt plus grandes, tantôt plus petites dans un même lieu, quoique l'âge de la Lune ne diffère point.

Nous avons vu que ce sont les diverses distances des Luminaires à la Terre ;
Terre, & leurs différentes déclinaisons, qui peuvent encore changer les hauteurs des Marées, lorsque l'âge de la Lune, & la latitude du lieu font les mêmes. Le calcul nous a enseigné aussi, que l'effet de la diversité des déclinaisons des Luminaires est beaucoup plus petit que celui de la diversité des distances : comme donc la diversité des distances est beaucoup plus grande dans la Lune, que dans le Soleil, & que le Soleil a en même temps beaucoup moins de force que la Lune, on peut pour estimer en gros les variations des petites Marées, & les variations des grandes Marées, simplement faire attention aux distances de la Lune : nous avons trouvé que la diversité des distances peut faire varier l'action de la Lune depuis 2 à 3, l'action du Soleil que nous considérons comme constante, étant exprimée par l'unité. Cela étant, & les hauteurs des petites Marées étant aussi proportionnelles aux différences des actions des deux Luminaires, nous voyons que les hauteurs de ces petites Marées doivent être contenues dans les termes de 2 - 1, & 3 - 1, ou 1 & 2, pendant que les hauteurs des grandes Marées, qui font proportionnelles aux sommes des actions des Luminaires, feront renfermées dans les termes de 2 + 1 & 3 + 1, c'est-à-dire, de 3 & 4.

Lesdits termes sont confirmés par les Observations, comme par exemple, par celles qui sont exposées dans les Mémoires de l'Académie de 1712. pag. 287. & 288. Nous voyons de cette raison, que les variations aboluées doivent être à peu-près les mêmes dans les petites Marées & dans les grandes Marées, & c'est ce que les Observations citées confirment aussi ; & comme ces variations sont par conséquent plus sensibles dans les petites Marées que dans les grandes Marées, il faudra peut-être se servir plutôt des premières, que des autres, pour examiner par des Observations ce que les diverses circonstances peuvent contribuer pour faire varier les hauteurs des Marées.

I V.

Pourquoi les Marées étant montées plus haut, & ayant inondé plus de terrain pendant le Flot, descendent en même temps davantage, & laissent plus de terrain à sec pendant le Jusun, & quelle proportion il y a entre les montées & descentes.

Nous voyons la première Question indiquée, comme fort remarquable dans les Mémoires de l'Académie des Sciences de 1712. pag. 94. La raison en est que les Marées font une espèce de mouvement oscillatoire, ou de balancement ; car il y a dans ces balancements un point d'équilibre, qui doit passer pour fixe, & au-dessus duquel l'eau doit être censée s'élever dans la haute Mer, & le laisser dans la basse Mer. On pourrait croire d'abord que les élévations & descents de l'eau à l'he
garn du point fixe, font constamment proportionnelles. En ce cas
notre Problème serait résolu dans toute son étendue avec beaucoup de
facilité. Mais il y a une toute autre proportion bien plus variable & bien
plus compliquée, que nous allons rechercher, d'autant que ce n'est pas
proprement la hauteur des Marées dans le sens que nous l'avons don-
né jusc i ci, qu'il importe d'avantage de connaître dans la Navigation
pour l'entrée & sortie des Vaissaux dans les Ports ou des Rades : il s'y
agit plutôt de connaître la hauteur absolue des eaux, lorsqu'elles sont
arrivées à leur plus grande ou leur plus petite hauteur ; & pour cet ef-
fect, il faut savoir dans chaque Marée, tant l'élévation des eaux à l'é-
gard du point fixe, que leur baïflement ; jusqu'ici nous n'avons détermi-
né que la somme de ces variations sous le nom de hauteur de la Marée.
Voyons d'abord comment il faudra déterminer le point fixe : il est
vrai qu'il est en quelque façon arbitraire, cependant il paroit le plus
convenable de le placer là, où atteindroit la surface de la Mer, si les
Marées étaient nulles. Un tel point doit être considéré comme demeu-
rant constamment à la même hauteur ; car les caues qui peuvent le
hausser ou le baïfier, telles que sont les Vents, les Courants inégaux,
&c. ne sont que passagers & purement accidentelles. Il s'agit donc à
prêtant de savoir, combien les eaux montent au-dessus de ce point fi-
xe dans la haute Mer, & combien elles descendent au-dessous du mê-
me point dans la baïse Mer. Cette Question dépend de toutes les circon-
tances qui concourent pour former la hauteur absolue des Marées, &
que nous avons examinées au long avec tout le soin possible. Ce seroit
donc se jeter de nouveau dans les mêmes difficultés, si nous voulions
traiter la présente Question avec la même rigueur, & de même scrupuleu-
sement, que nous avons fait l'autre ; c'est pourquoi nous ne confirmerons
que les circonstances fondamentales & principales, qui font que la Ter-
re est toute inondée, que les Luminaires font dans le plan de l'Equate-
teur, & que la latitude du lieu est nulle, faisant abstraction de toutes
les caues secondes : ceux qui voudront enfin une Solution très exac-
te, n'auront qu'à consulter les Chapitres VIII. & IX. pour y arriver.

Soit donc encore (comme nous avons supposé au Chap. V., b = b
l'Equateur, & que b marque le lieu du Soleil, c celui de la Lune, &
z le point de la plus grande élévation des eaux, exprimée par y z, si
l'on prend un Arc de 40 degrés z s, le point s marquera l'endroit du
plus grand baïflement des eaux, exprimé par s s : nous avons démon-
tré là-dessus au VIII. §. du Chap. V. qu'on a généralement

\[y z = \frac{2 b b - 3 s s}{3 b b} \times c + \frac{2 b b - 3 s s}{3 b b} \times s \]

dans laquelle équation b marque le Sinus total, c le Sinus de l'Angle
b C z ;
Or comme les points z & s, qui sont de niveau, marquent le point fixe dans le sens que nous venons de lui donner, on voit que ces quantités y z & s x marquent précisément l'élévation des eaux au dessus du point fixe, & leur baïfment au-dessous du même point, tels que nous nous sommes proposés de les déterminer. Des valeurs que nous venons de trouver, on pourra tirer les Corollaires suivants.

(a) La différence entre chaque élévation au-dessus du point fixe, & la décente au-dessous du même point, est toujours = \frac{1}{2} s + \frac{3}{2} z : d'où nous voyons déjà que l'une croissant ou diminuant, l'autre doit croître ou diminuer suffis, qui est le Phénomène observé par M. Cassini. Cette différence fait environ le tiers de la plus grande hauteur de Marée : je dis environ, parce que les quantités c & s sont variables, quoique leurs variations soient beaucoup plus petites que celles qui résultent des différences âges de la Lune, & à cet égard on peut dire que la différence dont il s'agit ici, est presque constante.

(b) Dans les Systèmes (ou plutôt un jour & demi après) les quantités δ & r doivent être supposées = 0, & ainsi on a y z = \frac{3}{2} c + \frac{3}{2} s, & s x = \frac{1}{2} c + \frac{3}{2} s, la montée est donc dans les grandes Marées toujours double de la décente. Cette propriété servira à déterminer commodément le point fixe dans chaque Port, & elle le donne de 5 pieds 3 pouces plus haut pour Brest, qu'il n'a été choisi par les Observateurs, fi on la compare avec l'Observation, qui est au milieu de la page 94 des Mém. de l'Acad. des Scienc. de 1 7 1 2.

(c) Dans les Quadratures (ou un jour & demi après) il faut faire \delta = 0, & s = \beta, ce qui donne y z = \frac{3}{2} \beta - \frac{3}{2} c, & s x = \frac{1}{2} \beta - \frac{3}{2} c: d'où l'on voit que la montée & décente des eaux à l'égard de notre point fixe, ont une raison variable dans les petites Marées, qui dépend du
rapport qui se trouve alors entre la force lunaire 3, & la force solaire 5.
Nous avons supposé dans cet Ouvrage ce rapport moyen comme 5 à 2, & ce rapport positif, il faut dire que dans les petites Marées, l'élévation des eaux au-delà de notre point fixe, est 3 fois plus grande que leur baisse au-dessous du même point. Dans les Marées minimes nous avons supposé 3 = 2 c, & dans les plus grandes des petites Marées 3 = 3 c.

(d) Nous avons fait voir, que le point x n'est jamais éloigné beaucoup du point c, cela étant & faisant le Sinus de l'Angle b c c (qui marque l'âge de la Lune) = m, on pourra supposer c = 0 & r = m, ce qui donne

\[\frac{yc}{b} = \frac{yc}{b} + \frac{yw}{b} - \frac{mmm}{b} c; \quad & \frac{xe}{b} = \frac{yc}{b} + \frac{yw}{b} - \frac{mmm}{b} c. \]

Si l'on applique toutes ces Règles aux Observations faites en différents temps & lieux, on y trouvera un grand accord, si l'on choisit bien la juste proportion entre les quantités 3 & c. Mais on remarquera dans cet examen, que les Vents & les Courants peuvent faire varier le point fixe que nous avons adopté.

CONCLUSION.

Je finirai ce discours par quelques réflexions sur notre Théorie. Et le supposé avant toutes choses une pesanteur vers les centres du Soleil & de la Lune, pareille à celle qui se fait vers le centre de la Terre, & que cette pesanteur s'étend au-delà de la région de la Terre. C'est le seul principe qui nous soit abjectement nécessaire, & il n'y a personne qui le conteste. La rondeur des Luminaires prouve suffisamment la pesanteur qui se fait vers le centre, & quelle raison pourrait-on avoir pour donner des limites à cette pesanteur? Auffi a-t-elle été reconnue depuis les siècles les plus reculés; mais on n'en a connu toute l'évidence & toutes les loix, que depuis la Philosophie immortelle de M. Newton. Les premières conséquences que nous avons tirées de ce principe pour l'explication des Marées, sont purement Géométriques. Nous pouvons donc être assurés de connoître la vraie cause des Marées, qu'importe en quoi nous en ignorions encore la cause première, qui est la cause générale & physique de la pesanteur. S'il y avait quelqu'un qui eût rendu cette première cause, il mériterait d'autant plus la préférence, que son Système renfermerait nécessairement la vraie cause universelle de la pesanteur: cette conséquence fera la pierre de touche pour prouver la vérité d'un tel Système sur les Marées. Il en est de ceci, comme si l'on demandait, par exemple, pourquoi la surface de l'eau dans un réservoir ne monte toujours horizontalement : on voit qu'on ne saurait en di-
et reflux de la mer.

Re la première cause, sans qu'elle renferme la vraie théorie sur la pesanteur & sur la fluidité, qui seules peuvent être la vraie cause du phénomène en question. Cette seule réflexion m'a fait quitter quelques conjectures qui me prêtentaient à mon esprit sur la cause matérielle des marées, quoi qu'elles me paraissent d'ailleurs assez plausibles. Je n'ai fait au reste en employant ce principe, que ce que Kepler a déjà fait. M. Newton est allé beaucoup plus loin sur cette matière, après avoir démontré auparavant que la pesanteur vers chaque corps dans le système du monde diminue en raison quarrée reciproque des distances; d'où il a tiré plusieurs nouvelles propriétés sur les marées, tellesquelles s'accordant avec les observations, pourroient confirmer davantage son principe sur la diminution de la pesanteur, s'il avait besoin d'autres preuves. Ce principe n'a pourtant pas beaucoup d'influence, si je me souviens bien, sur les variations des marées, qui dépendent des phases de la lune, des declinaisons des luminares & de la latitude des lieux, soit à l'égard des hauteurs des marées, soit à l'égard des marées. Il ne sert principalement qu'à déterminer au juste les variations qui dépendent des différentes distances des luminares à la terre, & que les observations n'ont pas déterminer avec assez de précision; il n'y en a cependant aucune qui lui soit contraire, & plusieurs observations bien détaillées, sont tout-à-fait conformes aux résultats que ce principe donne. On remarquera enfin qu'en peu de temps j'ai dit sur la pesanteur terrestre, que j'ai considérée comme formée par l'attraction universelle de la matière, n'a absolument aucun rapport avec aucune variation des marées; ces marées pourront subalter telles qu'elles sont, quelle que soit la nature de la pesanteur à cet égard; tout cet examen ne nous a servi que par rapport à la question, quelle devroit être la hauteur absolue de la hauteur des marées, sans le concours d'une infinité de causes secondes, qui peuvent augmenter & diminuer ces hauteurs absolues, de sorte que quel qu'est été le résultat de ces recherches, notre théorie n'en ait pas souffrir aucune atteinte. J'espère avec tout cela, qu'on n'aura pas trouvé ces recherches inutiles à l'égard de plusieurs circonstances qui en ont été éclaircies, outre que nos déterminations donnent, en choisissant les hypothèses les plus vraisemblables, des nombres tels que la nature de la chose paroit exiger. Nous pouvons donc être tout-à-fait fârs de n'avoir rien admis d'efficace dans toutes nos recherches, qui ne soit au-deffus de toute contrefaçon.

Quant à l'application de nos principes, à l'usage que j'en ai fait, & au succès de mon travail, ce n'est pas à moi à faire cet examen, fur-tout ne pouvant le faire, sans entrer dans un certain parallèle avec un aussi grand homme qu'étoit M. Newton. Si j'ai eu quelques succès, je dois avouer à l'honneur de ce savant philosophe, que c'est...
lui qui nous a mis en état de raisonnner solidement sur ces sortes de
matières; & si j'ose me flatter de quelque mérite, c'est celui d'avoir
traité notre sujet avec une attention & une exactitude conforme aux
grandes voies de l'Académie, & au respect qu'on doit à cet ilustre Corps.
DE CAUSA PHYSICA
FLUXUS ET REFUXUS
M A R I S.
A D. D. MAC-LAURIN Mathematicarum
Professore, et Societate Academiae
Edimburgensis.

OPINIONUM COMMENTA DELET DIES, NATURÆ JUDICIA CONFIRMAT.

SECTIO I.

PHÄNOMENA.

Philosophi motum Maris triplicem olim agnoverunt *, diurnum, menstruum & annuum; motu diurno Mare bis singulis diebus intumescit defluitque, menstruo aestus in Syzygiis Luminarii augmentur, in Quadraturis minuantur, annuo denique aestus hyeme quam aestate sint majores: verum Phaenomena haec sint paulo accuratis proponenda.

I. Motus Maris diurnus absolvitur horis circiter solaribus 24. minutissime primis 48. intervallo sicicet temporis quo Luna motu apparente a Meridiano loci cujusvis digressa ad eundem revertitur. Hinc altitudo Maris maxima contingit Lunæ appellante ad datum fictum respectu Meridiani loci dato; verum hora solaris in quam incidit aestus singulis diebus retardatur, eodem ferè intervallo quo Lunæ appulsus ad Meridianum loci. Atque hic motus adeò accuratè ad motum Lunæ componitur, ut, secundum Observationes a celebr. D. Caffini allatas, ratio fit habenda horæ in quam incidit vera conjunction vel opposition Solis, & æquatio à

* Plin. Lib. 2, Cap. 92.
motu Lunae defumpta adhibenda, ut tempus quo Mare ad maximam aequatur altitudinem die Nova lunii vel Plenilunii accuratissimae definitione. In aequanitatis autem diversi existunt aequus tempore, ut loquitur Plinius, non ratione discordes. Duo aequus qui singulis diebus producuntur, non sunt semper aequales; matutini enim aequus sunt vespertinis tempore hybernico, minores tempore aestivo, praeritum in Syzygiis Luminarium. (a).

II. De motu Maris mensenario tria praecipue sunt observanda. 1. Aequus sunt maximus singulis mensibus paulo post Syzygias Solis & Lunae, decrescunt in transitu Lunae ad Quadraturas, & sunt paulo post minimi. Differentia tanta est, ut ascensus totius aequae maximum sit ad minimum ejusdem mensis, secundum quod aequo Observationes, ut 9 ad 5, & in nonnullis casibus differentia observationi adhuc maior. 2. Aequus sunt maxores, caeteris paribus, quod minor est distantia Lunae a Terra, idque in majori ratione quam inveniis duplicata distantiarum, ut ex variis Observationibus colligitur. Ex. gr. anno 1713. ascensus aequae in Portu Britonico, (b) referente eodem Cl. viro, 26o. Febr. fuit pedum 22 digitorum 5. & Martii 13o. pedum 18. digit. 2. Declinatio Lunae in utroque caelo eadem; in priore distantia Lunae partium 953, in posteriori partium 1032, quarum distantia mediorum est 1000. Eft autem quadratum numeri 1032 ad quadratum numeri 953, ut 22. pedes 5. digit. ad 19 pedes 1/2 digitos; ascensus autem aequae in posteriori caelo fuit tantum 18. pedem cum 2. digitis. 3. Aequus sunt, caeteris paribus, maxores, cum Luna verificatur in Circulo aequinoctiali, & minuuntur crescente Lunae declinatione ad hoc Circulo.

III. Aequus sunt, caeteris paribus, maxores, quod minor est distantia Solis a Terra; adeoque maxores hyeme caeteris paribus, quam aestate. Differentia vero longe minor est quam quam ex diversis Lunae distantiae oritur. Ex gr. distantiae Lunae propeae fuerunt aequales Junii 19. 1711. & Decemb. 28. 1712. ascensus aequae priore die pedum 18 digit. 4., posteriori pedum 19. digit. 2.; declinatio autem Lunae fuit paulo minor in hac quam in illa Observatione. (c).

Porro in diversis locis aequus sunt diversi, pro varia locorum latitudine, eorumque situ respectu Oceanii unde propagatur, pro ipsius Oceanii amplitudine, & littorum fretorumque indole, aliusque variis de causis.

SECTION II.

PRINCIPIA.

Phenomenis aequus Maris insignioribus breviter recensitis, progresimur ad

(a) Mem. de l'Acad. Royale, 1710, 1712, & 1713.
(b) Ibid. (c) Mem. de l'Acad. Royale, 1710, 1712, & 1713.
ad Principia, unde horum ratio est reddenda. Liceat tamen praefari nobilissimam quidem, sed simul difficillimam esse hanc Philosophiae partem, quae Phaenomenorum causas inuestigat & explicat. Ea est Naturae subtilitas, ut non sit mirum causas primarias, solertiam Philosophorum ple- rorumque effugere. Qui omnium Phaenomenorum rationes, exponere, integramque causarum seriem nobis exhibere in se susceperunt, illi certe magnis suis aufer hocuque exciderunt. Philosophiam quidem perfeciffimam viri clarissimi sibi propofuerunt ex frustrando, qualem tamen humanae fortis competere fas est dubitare. Praefatigitur tantorum virorum successu minus felici edoctos, ipsius naturae vestigia caute & lentè sequi. Quod si Phaenomena ad generalia quaedam Principia reducere possimus, horumque vires calculus subijicere, hicce gradibus aliquam verae Philosophiae partem affequemur; quae quidem manca seu imperfecta erit, si ipforum Principiorum causae lateant; tanta tamen in eff rerum naturae venutas, ut ea pars longè praefet subtilissimis virorum acutissimorum commentis.

Motus Maris cuivis vel leviter perpendenti manifestum est Luminarum, Lunae praefatet, motibus affines esse & analogos. Eadem est periodus motus Maris diurni ac Lunae ad Meridianum loci, eadem motus mensitue ac Lunae ad Solem; utriusque Luminaris vis in motu Maris generando hinc elucet, quod aeternus sint majores quod minores utriusque distantiae à Terra; adeò ut nullus sit dubitandi locus, motum Maris esse aliquà ratione ad motum Lunae & Solis compositum. Quales autem dicemos illas esse vires quae à Luna & Sole propagatæ (aut ab his aliquote modo pendentes) aquam bis singulis diebus tollunt & deprimit; quae in Syzygii Luminarium conspirant, Quadraturis pugnant; in minoribus utriusque distantias angenter, in majoribus minuuntur; quae in minori Lunae declinatone fortiores, in majori debiliores sunt; & nonnquam majore motum cient cum Sol & Luna infra Horizonatem deprimitur, quam cum in Meridiano superiori ambo dominentur. Fuerunt Viri celeberrimi qui aestum Maris præfione quâdam Lunae cieri portarunt. Verum caufam & menfum hujus præfionis non ostenderunt, nec quo pacto motus Maris varii hinc oriri possint fatis clarè indicarunt, multitum minùs motus illos (hoc principio posito) ad Calculum revocare docuerunt.

Sagacissimus Keplerus Mare verò Lunam gravitare, aestumque Maris hinc cieri olim monuit. Newtonus, postquam leges gravitatis detectisset, invento æquilibrium Maris non tam turbare ipsius gravitate verò Lunam, quam ex inæqualitate vis quà particulae Maris tendunt ad Lunam & Solem pro diverfis suis distantis ab horum centris, primoque motum Maris ad certas Leges, ad Calculum revocare docuit. Fætendum quidem est gravitatis caufam ignotam esse vel falsè obscuram;
Corpora tamen non sunt ideò minus gravia. Sint qui afferant Corpora nullo impulso aut vi externa, sed vi quædam innatae & mutuo appetere; verum non æquum est horum somnia veritati afficer. Alle statum confirmant ad immediatum supræmum Auctoris imperium, ait neque horum nimia aestimatio probanda est; neque illorum fastidium qui tot natuœ testimonii non attendunt quoniam causa gravitatis est obscura. Viœ gravitatis est nobis adeò familiaris, ejusque mensura adeò pro comperto habetur, ut hac ad alias vires aestimandas feræ semper utamur; quam in Coelis, non minus quam in Terris dominari, & secundum certam legem augeri & minui demonstravit vir eximius tanta cum evidentia ut majorem frustra destabilis in ardua & difficili hac Philosophia parte, qua de rerum causis agit.

Newtonus argumento singulari ostendit, Lunam urgeri versus centrum Terræ vi quæ (habitat ratione distantiarum) cum gravitate Corporum terrestrium planè congruit; quali Terram versus Lunam pariter urgeri æquo jure centendum est. Cum Corpus aliquid versus alium pelitit, inde quidem haud fequitur hoc versus illud simul urgeri. Verum quid de gravitate Corporum coelestium sentiendum sit, ex is quæ comperta sunt de gravitate Corporum terrestrium (alifque viribus similibus) optimè dignoscitur; cum per hanc ad illam a gnoscendam ducamur, sintque Phænomena omninò similis. Mons gravitas in Terram, & si Terra non urgeret montem vi æquali & contrariâ, Terra à monte pulsa pergeret cum motu accelerato in infinitum. Porro status cujusvis systematis Corporum (i.e. motus centri gravitatis) necessariò turbatur ab omni actione cui non æqualis & contraria est aliqua reatio, ita ut vividquam perenne aut constantia dici possit in systemate si hac lex locum non habeat. Cumque Terræ partes ita semper in se mutuò agant, ut motus centri gravitatis Terræ nullatenus turbetur à mutuis Corporum aut agentium quorumcunque conflictibus, sine intra sine extra superficiem fitorum; eademque lex obtineat in viribus magneticiis, electricis aliisque, tecte experienteri, jure concludit Newtonus Lunam non tantum in Terram, sed hanc quoque in illam gravitare, & utramque circa communem centrum gravitatis moveri, dum hoc centrum circa totius systematis centrum gravitatis (a) continuò revolviur.

Gravitatem, ceteris paribus, proportionalem esse quantitati materiæ solidæ Corporis, accuratissima docent experimenta; idemque, e calculo gravitatis Corporum coelestium comprobatur; quin gravitatem quoque sequi

(a) Suspiceri licet aliquam obliquitatis Eclipticæ variationem, de quâ sermo est apud Astronomos, ex mout Solis circa centrum systematis oriri: indicio erit hanc esse Phænonem causam, si constiterit illam variationem analogiam servare cum motu Jovis Planetarum maximi.
sequi rationem materiæ Corporis versus quod dirigitur, ex principio mem-
rorato allisque argumentis colligitur. Similis est ratio aliarum virium
quæ in naturâ dominantur. Lucis radii ex gr. magis refringuntur, ca-
teris paribus, quod denslora sunt Corpora quæ subintran. Terræ partes
versus se mutuo gravitante, non versus illud punctum fictum quod cen-
trum Terræ appellamus; quod cum rationi & analogiae naturæ sit maxi-
më confertaneum, tum pulcherrimè confirmatur accuratissimis experi-
mentis quæ in Boreali Europæ parte nuper inlitterunt viri clarissimi ex
Academiâ Regiâ Parisiensi. Causa gravitatis (quæcumque demum sit)
latè dominatur; cùmque fit diversa in diversis diffantiis, non est miran-
dum, ejus vim pendere quoque à magnitudine illius Corporis, versus
quod alia impellit. Fatemur vim hanc Corpori centrali impropriè tri-
bui; expedí t quidem brevitate gratiâ sic loqui, id autem fens vulgari
non Philosophico est intelligendum.

Hæc breviter tantum hic attingimus. Newtonus postquam definitisset
vim Solis ad aquas turbandas ex differentia diametri Æquatoris & A-
xis Terræ (quæm approximatione quâdam suâ invenit agaverat) per regu-
lam auream quererit breviter ascensionem aquæ ex vi Solis oriundum. Ve-
rum quamvis elevatio aquæ, quæ sic prodit, parum à vera differat, cùm
tamen Problematæ hæc sunt diversi generis, quorum prius pendet à Quad-
draturâ circuli, posterius autem à Quadraturâ Hyperbolæ seu Logari-
thism, ut postea videbimus; sitque dubitandi locus an à priori ad poste-
rioriorem elevationem determinandam, transitus adeò brevis sit omni ex
parte legitimus, vel etiam an Methodus quâ figuram Terræ denuiverat
sit falsis accurata; cùmque vires sublimissimæ motum Maris producant, quæ
nullos alios sensibles edunt effectus, adeò ut levissima quæque in hac disquisitione ali-
cujus momenti esse possint; propertiae exiliimavi me
faciturum opere præsum, si aliam aperiem viam quà
calculus in hifice Problematibus ex genuinis principiis
accuratissimè institui poterit.

Repetenda imprimit sunt paucæ ex Newtono, postea
viam diversiam sequemur. Sit L Luna, T centrum Terræ, B b planum rectæ L T perpendiculare, P particu-
la quævis Terræ; sitque P M perpendiculæ in planum B b. Representet L T gravitatem Terræ mediocrem vel particulæ in centro T postea versus Lunam, sumatur L K ad L T, ut est L T* ad L P*, crit-
L K in vires K G & L G, quorum prior urget par-

\[\text{ticulam}\]
De Causa Physica Fluxus

ticulum P versùs centrum Terræ, estque fere æqualis ipsi PT; posterioris pars TL omnibus particulis commissis, et fibi semper parallela, motum aquæ non turbat; altera vero pars TG et quam proximum æqualis ipsi 3 PM:* Imprimis igitur quærendum est quænam debet esse figura Terræ fluidæ cuius particulæ versùs se mutuò gravitant viribus in inversâ distantiarum ratione, duplicatâ decrescentibus, quæque simul agitantur duabus viribus extraeis, quorum altera versùs centrum T dirigitur, etque semper ut PT distantia particulæ à centro, altera agit in rectâ ipsi TL parallela, etque ad priorem ut 3 PM ad PT. Ostendemus autem Sectione sequenti figuram hujus Fluidi esse accuratâ Sphaeroidem quæ gignitur revolutione Elliptico circa Axem tranversum, si Terra supponatur uniformís denfâ; atque hinc calculus motus Maris ex motibus coelestibus deducere conàbimur.

Observandum autem alias causas conspirare ad motus Maris producendos cum inæquali gravitate partium Terræ versùs Lunam et Solem. Motus Terræ diurnus circa Axem suum variis modis æstum Maris afficeret videtur, præter illum à Newtono memoratum, quo æstus ad horam lunarem secundam aut tertiam retardatur. 1. Æstus est paulo major ob vim centrifugam & figuram Sphaeroidam, ex motu Terræ oriundam, cum hæc vis paulo major evadat in partibus Maris altioribus quam in depressioribus. 2. Cuû Maris æstus furtur vel à Meridie versùs Septentrione, vel contrà à Septentrione versùs Meridiem, incidunt in aquas, quæ diversâ velocitate circa Axem Terræ revolventur, atque hinc motus novos cieri necesse est, ut postea dicemus. Poë concede Theoriam gravitatis, vis quæ particulæ Maris urgentur versùs Terram soliadam, (que quæ aquà lotgè densior est) superat vim quæ versùs aquam urgentur. Vires illæ sunt quidem exiguae; cum autem vires quibus Luna & Sol in aquas agunt, in experimentis pendulorum & staticis nullos producant effectus sensibiles, tantos autem motus in aquis Oceani genere, suspicari licet vires tantillas ad aquæ motus augendos aliqua ex parte conducere.

* Vis hæc paulo major est si particula P sit in parte Terræ Lunæ obversâ, minor si in parte Lunæ aversâ, unde meritò habetur æqualis ipsi 3 PM.
ET REFLEXUS MARIS.

SECTIO III.

De Figurā quam Terra fluida aequaliter densa indueret ex inaequali particularum gravitate, versus Lunam aut Solem.

Expositis Phænomenis æstās Maris & principiiis generalibus unde celeberrimi Phænomeni ratio petenda videtur, progradimur nunc ad figuram determinandam quam Terra fluida viribus Lunæ vel Solis suprà explicatīcis, agitata assumēret, praemittenda autem sunt quædam Lemmata quibus haec disquisitio alias difficillima facilè perfici poterit.

(†) LEMMA I.

Hoc Lemma ad demonstrandum Coroll. 4. proponitur, quod Corollarium ad Propositionem sequentem reductur, quam facilissime Analytice demonstrari potest.

THEOREMA.

A Puncto quovis Ellipseos, ducantur ad Ellipsoidem tres lineae PH, PM, PM, prior quidem PH sit axi parallela, reliques FM, PM faciant cum ipsīae æquales quovis angulos MPM, mPM; à punctis P, H, M & m ducantur perpendiculars ad PH & ad axim PD, HD, QMR, mqr & super DD describatur Ellipsis simili priori, ducanturque à puncto D ad eam Ellipsoid lineæ DN, DN lineis PM, PM parallelas, denique ducantur NN quæ fecer axim in V, dico quod si DV = PQ + Pq = DR + Dr, si puncta Q & q cadant ab eadem parte puncti P, vel quod si DV = PQ - Pq = DR - Dr, si puncta Q & q cadant ad partes diversas puncti P.

Primo, quoniam ex constructione lineæ DN, DN æquales faciant angulos cum axe DD, facile deductur lineam NV in axi æquale perpendicularam, ideoque si Radius sit ad Tangentem anguli QPM, ut t ad t, & DV dicatur æ, erit NV = ± æ; & pariter si PQ aut PQ vel eorum æquales DR aut Dr dicatur æ, MQ vel mq dicatur ± æ.

Axis major sit ad minorem in utraque Ellipsis ut a ad b dicaturque BD = f, DB = g; DP = h, & DD = g - f = l erit per naturam Ellipsoidos a² : b² : f g : h², & pariter erit

\[a² : b² : f g : h² = l z : z² : z² : z², \]

hinc \[a² : b² : f g : h² = l z = \frac{z²}{2} + \frac{z²}{2} = D V. \]

In primo autem cæsi in quo Q & q sunt ab eadem parte puncti P, erit RM = k - k Vel
De Causa Physica Fluxus

Sit $A b a b$ Ellipsis, C centrum, $H I$ diam
ter quaevis, $M m$ ordinata ad diametrum
$H I$ in puncto u, ex H & M ducentur
reclae $H P$ & m parallelæ; duabus qui-
bulvis diametris conjugatis; & fibi mutuo
occurrentes in q; jungantur $q u$ & $P M$,
atque haæ reclae erunt fibi mutuo parallelæ.

Occurrat recta $H P$, ordinatae $M m$ in z,
& recta $M Q$ (quae parallela sit ipsi $m q$)
in Q. Sint $C G$, $C A$ & $C B$ semidiamet-
tri respectivè parallelae reclæ $M m$, $m x$ &
$H P$. Ducantur $G E$ parallelae ipsi $C B$ &
producantur donec occurrat semidiametro
$C I$ in g. Ex naturæ Ellipsoès Rectangula-
um $M x x m : H x x P : C G : C B = j$
& ob parallelas $C G$ & $M m$, erit $q z$
$= x m : G E : C G$. Unde $M x x q x : H x x P :$

vel $x = h + r m = h + h x$, & $B R$ aut $B r$, $f + x$; & $R b$ aut $r b$, $g - x$; hinc ex na-

turæ Ellipsoès erit $a^2 : b^2 = f + x + g - x : h + h x$
$= f g + x x - f x - x x = h^2 + x^2 = x^2 + x x$
$= h^2 + x^2 + 2 h x + 2 x^2$ (demæs ex

atuque termino respectivè terminis $f g : h^2$
quæ sunt in eadem ratione, & positio l loco
$g - f) = - x : = 2 h x + 2 x$, atque hinc
habetur $a^2 + x^2 = 2 a^2 h^2 = b^2 l - b^2 x$
& transpositione facta deductivè terminis, sit

$x = a^2 / 2 a^2 h + b^2$. Quare si sumatur sum-

ma, duorum linearum $D R$, $D r$, quæ per singu-

los valores x exprimuntur, erit $D R + D r$
$= P Q + P q = a^2 x^2 + b^2$ dualium valores

$D V$ prius inventi.

In altero verò cali in quo Q & q hinc
inde à puncto P cadunt, erit $R M = x = h$
& $r m = h - x$, erit. $B R = f + x$ & $B r =
=f - x$, $R b = g - x$ & $r b = g + x$. Unde ex

naturæ Ellipsoès erit

$a^2 : b^2 = f + x + g - x : h^2 = 2 h x + 2 x^2$
$= f g + x x - f x - x x = h^2 + x x$
$= h^2 + 2 h x + 2 x^2$ (demæs terminis $f g$; h^2 & adhibito loco $g - f$
$= - x : = 2 h x + 2 x$, hincque obinetur $a^2 : x^2 = 2 h x + 2 x^2$ & tran-

posizione facta deductivè terminis $f g = a^2 / 2 a^2 h + b^2$. Quare si sumatur dif-

ferentia duorum $D R$, $D r$ quæ per singulos valores x exprimuntur, erit $D R - D r$
$= P Q - P q = a^2 x^2 + b^2$ dualium valoris $D V$ prius inventi, ergo $2 D V = P Q - P q$
præter Q & q sunt ab eadem vel à diversa parte puncti P. Q. E. D.
ET REFLEXUS MARIS.

CG x GE = CB. Verum H x z P = u x z P = H x u = G G x C G.
Quare ex aequo M x z q = u x z P = G G x GE = CB. Est autem Re-
ctangulum sub G G & GE aequale quadrato ex semidiametro CB per no-
tam proprietatem ellipsoes, cun C I fit conjugata semidiametro CG, &
CB ipse CI. Proinde M z x z q = u x z P, & z q = z P = z M,
adeoque qu parallelæ rectæ PM. q.e.d.

Cor. 1. Recta P Q dividitur harmonice in q & z vel P Q = P q ;
Q z = q z. Quippe ducatur ut parallelæ ipfi m x, occurrante rectæ HP
in e, tum erit P : q z : : P M : q u (ob parallelas P M, q u) : : P Q : q e.
Unde P q : q z : : P e : q e : : q e : : P e + q e : q e + q z : : (quantam
Q e, eq. sunt æquales) P Q = Q z.

Cor. 2. Occurrat recta m x Ellipsoe in x, jungatur H x quæ occur-
rat rectæ P M in r, juncta ur erit parallela m x. Quippe sit I h paralle-
la rectæ HP & occurrante ipfi m x in o; tum om erit æqualis rectæ q m
& IO : O X : : P q : q m : : P Q : Q M ; adeoque I x erit parallela ipfi PM.
Verum cum I H fit diameter Ellipsoe & ad punctum in Ellipso fi-
tum ductæ sint rectæ I x, H x ab extrematis diametri IH, erunt
æ parallelae dubia diametri conjugatis, ex natura Ellipsoe. Quare
cum ex punctis H & M eductæ sint duae rectæ H x & P M respectivæ
parallelae dubia diametri conjugatis, quæ sibi mutuo occurrunt in r,
juncta ur erit parallela rectæ m x per hoc Lemma.

Cor. 3. Sit recta HP nunc parallela
Axi Ellipsoe, eritque Angulus HP M æ-
quale Angulo H P M, quoniam Q M : q m : :
Q z : q z : : P Q : P q per Cor. 1. Ducantur
porro H h & P I parallelae alteri Axi A a
& occurring Axi B b in D & d; super A-
xem D d descriptur Ellipsoe similis Ellipso
A B b a & simultiter posita cui occurrat re-
ta ur producitur N & n; occurratur ur Axi
D d in V, eritque VN vel V n æqualis rectæ
er, & si jungantur D n, D N, erunt hæ
rectæ respectivæ parallelae rectis PM, P m.
Nam P h = B a : : P q : q m & H e = B a : : H q :
q x, unde H e + P e = q x = : H q + q P :
m q x q x : : C B = : C A. Sed Rectan-
gulum D V X V d = V N = : : C B = : C A d V
= H e, D V = P e, adeoque D V X V d = H e x P e, unde V N = e r x,
& V N = r x, PM parallelae rectæ D N & P m rectæ D n.

Cor. 4. Hinc sequitur conversè quod si N n fit ordinata : b inte-
riori Ellipso ad Axem D d & D P perpendicularis Axi D d occurræ Ell-
ipso exteriori in P, jungantur D N & D n, hæque parallelae P M, P m
occu-
occurrant Ellipsi exteriori in \(M \& m \); ducatur \(PH \) parallela Axi \(Dd \), in quam sint perpendicularares \(MQ \& m q \), tum \(PQ + P q \) (vel \(2 \) \(P e \)) erit æqualis \(2 \) \(DV \) punctis \(Q \& q \) cadentibus ad eisdem partes puncti \(P \), & \(PQ - P q = 2 \) \(DV \) cum \(Q \& q \) sunt ad contrarias partes puncti \(P \).

Lemma II.

Recta \(PL \) perpendicularis Ellipsi \(ABab \) in \(P \), occurrat Axi \(Bb \) in \(L \), & ex puncto \(L \) sit \(LZ \) perpendicularis in semidiametrum \(CP \), eritque Reclangulum \(C PZ \) contentum sub semidiametro \(CP \) & intercepta \(PZ \) æquale quadrato ex semiasis \(CA \).

Sit \(CP \) semidiameter conjugatus ipsi \(CP \), ducatur \(PD \) perpendicularis in Axiem \(Bb \) & producatur donec occurrat semidiametro \(CP \) in \(K \), jungatur \(KZ \), sitque \(PT \) tangens Ellipsos in puncto \(P \). Ob Angulos rectos \(LDP \), \(LZP \), \(LPT \) circulus translitit per quatuor puncta \(L \), \(D \), \(P \), & \(Z \), & continget rectam \(PT \) in \(P \), adeoque Angulis \(PUV \) æqualis erit Angulo \(CPT \) vel \(PCK \). Proinde circulus translitit per quatuor puncta \(C \), \(K \), \(D \) & \(Z \); Angulus \(C Z K \) æqualis erit recto \(CDK \), \(KZ \) translitit per punctum \(L \) & ex naturâ circuli \(P \times PZ = L \times P \times PK = CA \cdot \). q. e. d. (a).

(a) Proprietates bis in hoc & praecedenti Lemmae demonstrare analogice facile ad hypotrocham transfomerur.
Ponamus particulas corporum versus se mutuo gravitare viribus decrecentibus in inversa duplicata ratione distantiarum a le invicem, sintque \(PAEa \), \(PBFb \) similes pyramides vel coni ex materiâ hujusmodi homogeneâ compositi, er quae gravitas particulae \(P \) in solidum \(PAEa \) ad gravitatem ejusdem particulae in solidum \(PBFb \) ut \(PA \) ad \(PB \), vel ut homologa quaevis latera horum solidorum.

Gravitas enim particulae \(P \) in superficiem quamvis \(AEaA \) puncto \(P \) concentricam est ut superficies haec directe & quadratum radii \(PA \) inversa, adeoque est semper eadem in quibus distantiâ \(PA \). Quare gravitas particulae \(P \) versus totum solidum \(PAEa \) erit ad gravitatem ejusdem particulae versus totum solidum \(PBFb \) ut \(PA \) ad \(PB \).

Cor. 1. Hinc gravitates quibus particulae simile fite respectu solidorum similibus & homogeneorum versus haec solida urgentur, sunt ut distantiâ particularum a punctis similiter fitis in ipsis solidis, vel ut latera quaevis solidorum homologa. Quippe haec solida resolvit possunt in similes conos vel pyramides, vel similum horum frustra, que verticis habeunt in particulis gravitantis.

Cor. 2. Hinc etiam faciliter sequitur quod si annulus ellipticus, figuris similibus \(DBab \), \(DnDN \) terminatus, circà Axem alterutrum revolvatur, gravitatem particulae intra solidum sic genitum sitæ, vel in interiori ejus superficie posita, versus hoc solidum evanescere; quoniam si recta quaevis Ellipsoidus hicse similibus & similiter positis occurrat, aequalia senper erunt rectas segmenta extrema quae ab Ellipsoidibus intercipientur (ut facile offenditur ex naturâ harum figurarum) adeoque vires aequales & opposatas in hoc caelo se mutuo destruent. Hinc vero sequitur quod si \(ABAb \) sit Sphaeroidem genitae motu Ellipsoidis circà alterutrum Axem, sintque \(B & D \) particulae quaevis in eodem semidiametro sitae, gravitatem particulae \(B \) versus Sphaeroidem fore ad gravitatem particulae \(D \) ut dista\(tia CB \) ad distansiâ \(CD \), per Corollarium precedens.
LEMMA IV.

Sit $ABab$ Sphærois genita motu semiellipticos ABa circà Axem Aa, P particula quævis in superficie solidi, sit PK Axis normalis in K; & PD Axi parallela occurrat plano Bb (quod Axis supponitur normale) in D. Revolvatur vis quâ particulâ P gravitât versus Sphæroidem in duas vires, alteram Axi parallelam, alteram eidem perpendicularam, eritque prior æqualis vi quâ particulâ K in Axi sita tendit ad centrum solidi, posterior autem æqualis vi quâ particulâ D urgetur versus idem centrum.

Producatur PK donec rursus occurrat Ellipsi generatrici in H, ducatur Hd parallela Axi Aa quæ occurrat Axi Bb in d, concipiantur solidum $DndN$ simile ipsi $BAbab$ & similiter positum describi super Axem Dd.

Horum solidorum Sectiones ab eodem plano resectae erunt semper Ellipses similes & similiter positæ, uti notum est & facilè ostenditur. Sint igitur $BAbab$, $DndN$ hujusmodi figurae à plano $PAbBP$, quod semper transtire possit per datum rectam PDI resectæ ex similibus hinc solidis. Continent planum $PzZIT$ cum plano priori Angulum quàm minimum & faciat Sectiones similes $PzZIT$, $DrdR$ & similiter positas in praedictorum solidorum superficiebus. Hisce positis, imprimit ostendemus vim quâ particulâ P urgetur versus duo frusta quæ planis PbI, PZI & planis PBI, PTI continentur, si reducatur ad directionem PK, æquali fore vi quâ particulâ P urgetur versus frustum planis $DndND$, $DrdR$ terminatum.

Sint enim Nn, $N'n'$ duæ ordinatae ex interiori Ellipsi ad Axem Dd; sint (a) PM, Pm, PM' & Pm' respectivè parallelae rectis DN, Dn, DN' & Dn'; sint porro plana DNR, $DNoR'$, Dnr, $Dn'r'$, PMZ, $PMM'n'$, Pmz, $Pmm'z'$ plana $PbIB$ perpendicularia quæ alteri plano, $PzZIT$ occurring in rectis DnR, $Dn'R'$, Dr, Dr', PZ, PZ', Pz, Pz', respectivè. His positis, quoniam Anguli NDN' & MPM', nDn' & mPm',
m P m', ponuntur semper æquales; & rectæ P M & D N, P m & D n, æqualiter semper inclinatur ad P I communem planorum Sectionem; si Angulus N D N' & inclinatio planorum P b T B, B Z I T ad se invicem continuo minui supponantur donec evanescant, erunt gravitates particulae D, in Pyramides D N N'R'R', D n n'r'r & particulae P in Pyramides P M M' Z' Z, P m m' z' z ultimo in ratione rectarum D N, D n, P M & P m respectivè per Lemma 3. Eodemque vires secundùm rectas Axî A a, perpendicularares æqutatae erunt ut rectæ D V, D V, P Q, P q respectivè. Unde cum P Q = P q = a D V per Corol. 4. Lem. 1. sequitur vim quam particula P urgetur versus Axem A a, gravitate sua in Pyramides P M M' Z' Z, P m m' z' z æqualem esse vi, quam particula D urgetur gravitate sua versus Pyramides D N N'R'R', D n n'r'r. Quare si plana D N R, P M Z, P m z sic descripta, æquales semper viribus, quibus particula D urgetur versus eundem Axem gravitate sua in frusta motu planorum P M Z, P m z sic descripta, æquales semper viribus, quibus particula D urgetur versus eundem Axem gravitate sua in frusta motu planorum D N R, D n r descripta; unde sequitur particulam P urgeri eaédem vi secundum rectam P K, gravitate sua in frusta planis P b I, P z I, & planis P b I, P T I contenta, quam particula D tendit versus frusta planis D n N D, D r R D terminata. Proinde cum hæ vires secundùm rectas Axi totius solidi perpendicularares æqutatae sint etiam æquales, & par fit ratio virium quibus particulae P & D urgentur versus frusta quævis alia similiter ex solidis rectis, sequitur particulam P æqualiter urgeri versus Axem gravitate sua in solidum exterius, & particulam D gravitate sua in solidum s naïle interius, cum hæ vires sint eodem per Corol. 2. Lem. 3.

Simili planè ratione colligitur vim, quam particula P urgetur secundùm rectam Axi Parallelam, æqualem esse vi, quam particula K in Axè sita urgetur versus centrum solidi.

Cor. I. Particulae igitur quævis Sphæroidis æqualiter ab Axè vel Equatore solidi distantes æqualiter versus Axem vel Equatorem urgentur. Viresque quibus particulae quævis urgentur versus Axem sunt ut illarum distantiae ab Axè, & vires quibus urgentur versus planum Equatoris, sunt ad se invicem, ut illarum distantiae ab hoc plano.
Cor. 2: Representet A vim quæ Sphærois urget particulam in Axis termino A fitam, B vim quæ idem solidum urget particulam B in circumferentia circuli medii inter A & a positam; summatur KR ad KC, ut $\frac{A}{C} = \frac{B}{C}$, jungatur PR, & particula P tendet versus Sphæroidem in recta PR, vi quæ huic rectæ semper est proportionalis. Vis enim quæ particulæ D urgetur versus centrum solidi, est ad B, ut CD ad CB, per Cor. 2. Lem. 3. Similiter vis quæ particula K urgetur versus solidi centrum est ad A, ut CK ad CA. Quare per Lemma 4. vis quæ particulæ P urgetur secundum rectam PK Axi normalis est ad vim, quæ urgetur secundum rectam PD Axi parallelem, ut $\frac{PK \times B}{CB}$ ad $\frac{CK \times A}{CA}$; adeoque ut $PK \times KC$ ad $CK \times KR$. I. e. ut PL ad KR ex constructione. Quare particula P urgetur secundum rectam PR, his viribus conjunctis, & vis composita est ad B, ut PR ad BC. Quo verò pacto vires A & B computari possint, postea ostendemus.

Proposito I.

Theorëma Fundamentale.

Constit Sphærois ABA materia fluida, cujus particulae versus se mutuo urgeantur viribus in inversâ duplicatâ ratione distantiarum decrecentibus; agantque simul duæ vires extraneæ in singulas Fluidi particulas, quam altera tendat versus centrum Sphæroidis, sitque semper proportionalis distantias particularum ab hoc centro; altera agat secundum rectas Axis solidi Parallelas, sitque semper proportionalis distantias particularum à plano BB Axi normali; & si seniæces CA, CB Ellipsoïd generatricis sint inversæ proportionales viribus totis, quæ agunt in particulæ æquales in extremis Axis punctis A & B fitas, erit totum Fluidum in æquilibrïo.

Ut hæc Proposito nostra primaria clarissimè demonstretur, ostendemus imprimis vim compositam ex gravitate particulae cujusvis P & duabus viribus extraneis, semper agere in reçâ PL, quæ est ad superficiem Sphæroidis semper normalis. 2. Fluidum in reçâ quâvis PC à superficie ad centrum ductâ, ejusdem ubique esse ponderis. 3. Fluidum in canalibus
et Reflexus Maris.

canalibus quibusvis à superficie ad datam quamvis particulam intra solidum ductis, eadem semper vi particularium illam urgere.

1. Vires totae que agunt in particulæ A & B dicantur M & N, quæ ex hypothesi sunt in ratione Axiom CB & CA. Refolvatur vis prior extranea quæ agit secundum rectam PC in vires duas, alteramAxis paralleliam, alteram eidem perpendiculararem; eruntque ëae vires semper ut rectæ PK & KC. Unde cùm vis quà gravitas particulae P urget eam secundum rectam PK fit etiam ut PK, per Lemma superfici, sequitur vim totam quà particula P urgetur secundum rectam PK, cùs ad N, ut PK ad CB. Vires tres agunt in particularam P secundum rectam PD Axi paralleliam, particulae scilicet gravitas & duas vires extraneae, quà singulæ variantur in ratione rectæ PD vel KC; adeoque vis ex his tribus resultans erit ad M ut CK ad CA. Vis igitur quà particula P urgetur secundum rectam PK est ad vim quà urgetur secundum rectam PD ut $\frac{N \times PK}{CB \times CA}$ ad $\frac{M \times KC}{CA \times CB}$, i.e. (quoniam si PL Ellipso generatrici perpendicularis occurrat Axis A in L, erit KC ad KL, ut CA ad CB, ex notâ Ellipso propriate) ut $PK \times KC$ ad $KL \times CK$, adeoque ut PK ad KL. Unde vis composita particularam urget in rectâ PL, quæ ad superficiem Fluidi ponitur perpendicularis; etque semper ut recta hæc PL, quàe vires secundum rectæ PK sunt semper ut PK.

2. Sit LZ normalis in semifundamentum CP, & vis quà particula P urgetur versus centrum, erit ut recta PZ per vulgaris Mechanica Principia, & pondus Fluidi in rectâ PC ut rectangulum CP \times PZ quod semper est æqualis quadrato ex semiaxi CB per Lemma II. Centrum igitur æqualiter undique urgetur, etque Fluidum in æquilibró in C.

3. Sit P particula quaevis in solido ut licunque sita, PP recta quaevis à superficie ad particulam P ducta; sint PK, PL normales in Axem AA, & vis quà particula P urgetur pondere Fluidi in rectâ quàvis PP secundum hanc rectam, facili calculo quem brevitas gratia ëmitto, inveniatur æqualis $\frac{N \times CA^2 \times PK^2}{2CB^2 \times CA} + \frac{M \times CB^2 \times CB^2}{2CA^2} - \frac{M \times CA^2 \times PK^2}{2CA^2} = \frac{M \times CB^2 \times CK^2}{2CB^2 \times CA}$

= (cùm P K:a:CA = K:b:CB=a:CA, & si CG sit femiaxis Ellipso per P ductæ similis Ellipso AB a b, & similiter sitæ, P l:CG = Cb:a:CA) $\frac{M \times CA - M \times CG}{2}$ adeoque quàm hæc quantitates à situ puncti P non pendeat, vis hæc est semper eadem, si detur locus particularis p, quàe proinde quàm undique æqualiter urgeatur, Fluidum erit ubique in æquilibró.

Tom. I I L

L I

Cor.
COR. I. Sit ut in Cor. 2. Lemmatis IV. \(A \) vis gravitatis in Sphæroidem in loco \(A \), \(B \) vis gravitatis in eandem in loco \(B \), \(V \) vis \(KG \) in mediocri sua quantitate in superiore Sezione exposita, quà Luna vel Sol aquam Sphæroidis deprimit in distantia \(d \), quà ponitur mediocris inter \(CA \) & \(CB \). Sit \(CA = a \), \(CB = b \), eritque vis \(N \), quà particula \(B \) verùs \(C \) urgetur, æqualis \(B + \frac{bV}{d} \), & \(M = A + \frac{aV}{d} - \frac{2aV}{d} = A - \frac{aV}{d} \). Unde per hanc Propositionem \(a : b :: B + \frac{bV}{d} : A - \frac{2aV}{d} \), erit Fluidum in æquilibrrio. Atque hinc ex datis \(A \), \(B \) & \(V \) in terminis \(a \) & \(b \) species figuræ innotescet. Eft \(Aa - Bb = \frac{2a^2V}{d} + \frac{b^2V}{d} \).

COR. 2. Cum vis \(V \) (five ex inæquali gravitate particularum versus Lunam, vel versus Solem oriatur (sit exigua admodum respectu virium \(A \) & \(B \), & differentia inter a & b admodum parva, ducatur \(a = d + x \) & \(b = d - x \), eritque \(Bd - Bx + Vx = \frac{dx^2}{d} = Ad + Ax - 2Vx \), & neglectis terminis ubi \(x \) x reperitur \(Bd - Bx + Vd - 2Vx = A + A - 2Vd - 2Vx \), unde \(Bd - Ad + 3V = A + B - 2V \); adeoque \(x : d :: B - A + 3V \), \(B + A - 2V \); & differentia altitudinis a qua in \(A \) & \(B \) (feu \(x \)) ad semidiametrum mediocrem \(d \) ut \(B - A + 3 \) \(V \) ad \(A - 2V \), vel quàm proximè ut \(B - A + 3V \) ad gravitatem versus Sphæroideum mediocrem.

COR. 3. In precedentibus Corollariis supposimus \(d = \frac{1}{2} CA + \frac{1}{2} CB \); verum si \(d \) denotet aliam quamvis distantiam ubi vis \(KG \) ponatur æqualis ipsi \(V \), sitque \(e = \frac{1}{2} CA + \frac{1}{2} CB \), erit \(x : e :: B - A + \frac{3ve}{d} \); \(B + A - \frac{3ve}{d} \).

COR. 4. Per vim \(V \) in his Corollariis intellectimus vim vel Solis vel Lunæ, & figuram consideravimus, quam Terra fluida homogenea in æqualiter si bre vires seor-ùm in eam agerent. Sit nunc Luna Soli coniuncta vel opposita, & simul agant in Terram. In hoc casu vires Luminariae conspirant ad aquam tollendam in \(A \) & \(a \), eamque deprimi dam in \(B \) & \(b \), & easdem ubique fervant leges. Unde erit etiam in hoc casu fluidum in æquilibrrio, si vis tota quæ agit in loco \(A \), sit ad vim tum quæ agit in loco \(B \) ut \(CB \) ad \(CA \); adeoque si \(V \) nunc designet ipsum virium, quibus Sol & Luna aquam deprimi in rectis \(Tb, TB \) ad mediocrem distantiam fluidum erit in æquilibrrio, si \(b : a :: A - \frac{2aV}{d} : B + \frac{bV}{d} \), vel \(x \) ad \(d \) ut \(B - A + 3V \) a \(B + A - 2V \) quàm proximè, ut prìùs.

COR. 5. Sit nunc Luna in rectâ \(AA \), Sol in rectâ \(BB \); quàm
niam Lunæ vis potior est, Axis transversus figuræ generatricis transeat per Lunam, conjugatus per Solum; & si vis tota quæ agit in loco A sit ad vim totam quæ agit in loco B ut CB ad CA, erit Sphærois fluida in æquilibriv etiam in hoc cau. Sit s vis quæ Sol deprimit aquam in rectis TA, Ta ad mediocrem à centro C distantiam, l vis quæ Luna aquam deprimit in rectis TB, Tb ad æqualem distantiam; eritque vis tota quæ agit in loco A æqualis A = \frac{2a l}{d} - \frac{a l}{d}, vis tota quæ agit in loco B æqualis B + \frac{b l}{d} - \frac{2 b s}{d}. Unde colligitur ut in Corol. 2.

s : d :: B - A + 3 l - 3 s = B + A - 2 l - 2 s = (si l - s nunc dicatur V) B - A + 3 V. B + A - 2 V,

ut prius.

S C H O L. Eâdem planè ratione ostenditur quod si B a b A sit Sphærois fluida obleta genita motu semielipris B A b circa Axem minorem B b; & vertatur hæc Sphærois circa eundem Axem tali motu ut gravitas versus Sphæroidem hanc in Polo A sit ad excessum quo gravitas in loco B superat vim centrifugam in B ex motu Sphæroidis circa Axem oriundam ut CB ad CA, Fluidum fore ubique in æquilibriv. Unde sequitur figuram Terræ, quatenus ex vi centrifugâ à motu diurno oriunt, da immutatur, esse Sphæroidem oblatam qualis gignitur motu semielipris B a b circa Axem minorem (si materia Terræ pro æqualiter denà habeatur) semidiametrum æquatoris esse ad semiaxem ut gravitas sub Polis in Terram est ad excessum gravitatis supra vim centrifugam sub æquatore, corpus in loco quovis P tendere versus Terram vi quæ est semper ut recta P L perpendicularis Ellipsis generatrici & Axii majori occurrens in L, & menfuram denique gradus in Meridiano esse semper ut cubus ejusdem rectæ P L. Hæc omnia accuratè demonstratur ex hæc Propositione; quæ quamvis in disquisitione de figura Terræ eximii usit fiant, hic obiter tantum monere convenit.

L 1 2

Lem.
LEMMA V.

Sit figura quaevis ABa: descriptur circulus CNH centro A, radio quovis dato AC; ex A educatur recta quaevis AM occurrens figure ABa in M, & circulo in N; sint MQ & VR perpendicularares in Axem datum AA, fit KR temper æqualis abscissae AQ, & vis quâ particula A urgetur versus solidum motu figure ABa circa Axem AA generat ordinata KR directe & radius AC inversè.

Occurrat alia recta ex A educata figure in m & circulo n, sintque mq & nv normales in Axem AA. Sit $AZza$ alia Section soli in Axem, cui occurrant plana AMz, AMz ipsi AMa normalia in rectis AZ, AZ, quae circulum radio AC in plano $AZza$ descriptum secent in X & x; denique arcus MO circularis centro A descriptus occurrat Am in o. His positis, minuat angulus contentus planis AMA, AZa, & simul angulus MAm donec evanescent, & ultima ratio vis quâ particula A tendit ad Piramidem $AMZam$ ad vim quâ urgetur versus Piramidem $ANXn$ erit recta AM ad AN, vel AQ ad AR, per L. m. II. vis hujus Piramidis est ut vis superficiei NXn in rectam AN, adeoque ut $\frac{NXn}{AN^2} \times AN = \frac{NXn}{AN}$, vel ut $\frac{NRn}{AN}$ (quotiam NX est ut NR) i. e. $PT Rr$; ejusdemque vis ad directionemAxis reducita ut $Rr \times \frac{AN}{AN}$; quare vis Piramidis $AMZam$

ad eandem directionem reducita $Rr \times \frac{AQ}{AC} = \frac{Rr \times KR}{AC}$. Vis igitur quâ particula A urgetur versus frustum soli plane AMA, AZa contenti, est ut area quam generat ordinata KR directe & radius AC inversè; chime solidum fit totundum, motu ipso figure circa Axem AA generat, par erit ratio vis quâ particula urgetur versus integrum solidum.

COR. Vis quâ particula A urgetur in solidum est ad vim quà urgetur versus Sphaeram super diametrum Aa descriptam ut area quàm gene-
ET REFLEXUS MARIS.

Sed et ordinata KR ad $\frac{3}{4} CA$. Quippe si AM a sit circulus, erit AQ ad AA, ut AR ad AM, vel AR ad AN. Unde in hoc case erit $KR = \frac{3AR}{AC}$, & area ARK (quam generat ordinata KR) $= \frac{3AR}{3AC}$, adeoque area tota motu ordinata RK genita erit $\frac{3}{4} CA$.

PROPOSITION II.

PROBLEMA.

Invenire gravitatem particulae A in extremitate A transversi V versus Sphaeroidem oblongam.

Caeteris manentibus ut in Lemmate praecedenti sit AM a Ellipsis, AA Axis transversus, C centrum, BB Axis conjugatus, F focus; educatur recta quevis AM ex A Ellipsis occurrent in M, cui parallela CV occurrit Ellipsis in V, unde ducatur ordinata ad Axem VL, juncta AM rectae CV occurrit in e, erique $AM = 2$, $CE :$ cumque $AQ : CL :: AM$ (2, CE), $CV : 2$ $CL : CA$, erunt $\frac{3}{4} AQ$, CL & CA continuæ proportionales. Sit $CA = a$, $CB = b$, $CF = c$, $AR = x$, $CL = l$, cumque

$AR : NR :: CL : VL$ erit $x : a = x : l$ $: \frac{a^2}{l^2} \times \frac{b^2}{a^2}$, adeque l^2 $= \frac{a^2b^3x^2}{a^4 - c^2x^2}$ & AQ vel $KR = \frac{2a^2b^2x^2}{a^4 - c^2x^2}$, area $ARK = \int \frac{2a^2b^2x^2}{a^4 - c^2x^2} = (fix$ $x :: c : a) \int \frac{2a^2b^2}{a^4 - c^2x^2} \times \frac{x^2dx}{a^2 - c^2x^2}$. Quare sit a quantitas cujus Logarithmus evanescit, five aliæcarius Logarithmicus modulus, l Logarithmus quantitatis $a \sqrt{\frac{a + x}{a - x}}$, erique $ARK = \frac{2a^2b^2}{a^4 - c^2x^2} \times l - z$. Unde vis quâ particula A gravitatur versus soliud genitum motu segmenti elliptici AM circa Axem AA, erit ad vim quâ eadem particula gravitavit versus soliud genitum motu segmenti circularis ex circulo supra diametrum A a describit eadem recta AM abscissa circa eundem Axem ut $\frac{a^2b^2}{a - x} \times \frac{a^2b^2}{a + x}$, & si L sit Logarithmus quantitatis $a \sqrt{\frac{a + x}{a - x}}$, erit vis quâ particula A tendit versus totam Sphaeroidem ad vim quâ tendit versus totam Sphaeram ut $3b^2 \times l - c$ ad c.

SCHOL. Eadem ratione inventur gravitas particulae in Polo ae versus Sphaeroidem oblatam, quzerendo aream cujus ordinata est $\frac{a^2b^2}{a^4 - c^2x^2} \times \frac{b^2 + c^2}{b^2 + z^2}$. Sit Baa Sphaeris oblate motu Ellipsis B a circa Axem minorem genita, centro B, radio BC describitur Arcus circu-
Duo plana $BMbA$, $BZgE$ se mutuo secent in recta HBh commune figurarum tangente, auferantque ex solido frustum $BMbA$ occurrentis in M, & semicirculo HCh, Hch sectiones horum planorum & superficiei Sphaeræ centro B, radio BC descriptae. Ex puncto B educatur recta quævis BM in priori plano figuræ $BMbA$ occurrentis in M, & semicirculo HCh in N; sintque MQ & NR normales in Hh, & ordinata KR semper æqualis rectæ MQ. His position, si angulus CBe planis hinc contentus minuatur in infinitum, erit gravitas particula B versus frustum $BMbA$ $BZgE$ ultimò ad gravitatem ejusdem particulae versus frustum Sphaeræ semicirculii HBh, Hch contentum, ut area $HKdh$ genita motu ordinatæ KR ad semicirculum HCh.

Sit m punctum in figurâ $BMbA$, ipsi M quam proximum jungerit Bm quæ circulo HCh occurrat in n; sitque nr normalis in Hh. Ad hæc sint plana BMZ, BMz perpendiculæ in plano $BMbA$, secentque planum alterum $BZgE$ in rectis BZ, Bz circumferentiæ Hch occurrentibus in K & x. His position, vis quæ particula B gravitat in Pyramide

Lemma VI.

266 De Causa Physica Fluxus

li C, rectæ BF occurrentis in S, eritque gravitas in hanc Sphaeroidem in Polo B ad gravitatem in eodem loco versus Sphæram super diametrum BB descriptum ut $3\frac{CA}{CF} - \frac{CF}{3} = \frac{CF}{3}$. Methodus vero quà gravitas particulae in Equatore sita versus Sphaeroidem oblongam vel oblatam computatur, est minus obvia, facilis tamen evadit ope frequentis Lemmatis.
dem B M Z z m erit ad vim quae eadem particula gravitatis in Pyramide
B N X n ultimò ut recta B M ad B N, vel M a ad N R per Lem. III.
Gravitas autem in banc Pyramide est ut \(\frac{N X \times N n}{B N^2} \times B N \), vel (quam
NX est ut NR) ut \(\frac{N R \times N n}{B C} \) i.e. ut R r; atque haec gravitas agit secun-
dum rectam B b vi quæ est \(\frac{B r \times R N}{B C} \); unde gravitas in Pyramide
B M Z z m agit secundum rectam B b vi quæ est ut \(\frac{R r \times M Q}{B C} \), vel \(\frac{R r \times K R}{B C} \).
Proinde ultima ratio virium quibus particula B urgetur versus integra
frusta solidi & Sphærae B C, est ratio areae H K d h (quam generat or-
dinata K R) ad fœmicirculum H C h.

Cor. Gravitas in frustum planis B M b a, B Z g e terminatum, est
ad gravitatem in frustum Sphericum contentum circulis superior
B b, B g descriptis, ut area H K J h ad \(\frac{1}{3} C B^2 \). Sit enim B M B b circu-
lus, eritque M Q ad B b ut R N s ad B C, & K R = \(\frac{2 R N^2}{C B} \).= \(\frac{2 B C^2}{C B} \), &
area H K d B = \(\frac{1}{3} C B^2 \) adeoque area tota H K d h = \(\frac{1}{3} C B^2 \).

PROPOSITIO III.

PROBLEMA.

Invenire gravitatem particule in Aequatore sita versus Sphæro-
dem oblongam.

Per Aequatorem intelligimus circulum ab Axe conjugato genitum dum
figura circa alterum Axiem revolutur. Representat B M b a in figura
præcedentis Lemmatis, Sectionem quamvis Sphæroidis Aequatoris pla-
nò normalem, eritque haec figura semper similis Sectioni per Polos sol-
vidi, seu figura cujus revolutione solidum genitum esse supponimus.
Hujus demonstrationem ut facilem & ab aliis traditam brevitatis gravi
duem. Sit igitur C A Sectionis hujus semiaxis tranversus, C B fem-
diaxis conjugatus, F focus; sit C B = b, CA = a, CF = c, BR = x, C V femidiameter parallela rectæ B M V L ordinata ad Axiem B b, C L = l.
Tunc C B : C L : : C L : : \(M Q \) ut in Propositi. præcedenti, & \(M Q \)
= \(\frac{1}{b} \). Verum NR s, B R s : : C L s : : V L s i.e. \(a^x - b^x \), x s : : \(l s - l s \), \(b^x - b^x \), & \(l s = \frac{a^2 b^2 x^2 - b^2 x^2}{a^2 x^2 - b^2 x^2} \), \(\frac{a^2 b^2 x^2 - b^2 x^2}{a^2 x^2 - b^2 x^2} \), & K R = \(M Q \) = \(\frac{1}{b} \).= \(\frac{2 a^2 b}{b} \).= \(\frac{2 a^2 b}{b} \).= \(\frac{1}{2} \), & area B J K R
aqua-
aequalis \(\int \frac{a^2 b^2}{c^1} \cdot \frac{c^2 - z^2}{a^2 - z^2} = \frac{a^2 b^2}{c^1} \cdot \frac{b^2}{a^2 - z^2} \). Sit igitur \(l \) (ut in priore Propositione) Logarithmus quantitatis \(a \sqrt{\frac{a + z}{a - z}} \) & area \(BDKR \) erit \(\frac{a^2 b^2 z}{c^1} \cdot \frac{2 a^2 b^2}{c^1} \cdot \frac{b^2}{a^2} = \frac{2b^2}{c^1} \cdot \frac{a - b^2 l}{a - c} \).

Supponantur nunc \(n = b \), adeoque \(z = c \); fitque \(L \) Logarithmus quantitatis \(a \sqrt{\frac{a + c}{a - c}} \), ut prius, eritque area tota \(HKdh \), motu ordinatu

\[\frac{b^2}{c^1} \times a - b \cdot L \] Quare gravitas particulae \(B \) versus fruastum planis ellipticis \(BMBa \), \(BZge \) terminatun erit ultimò ad gravitatem in fruæm iiidem planis contentum à Sphæra centro \(C \) radio \(CB \) descriptœ reflectœ, ut \(a \cdot c - b \cdot L \) ad \(\frac{1}{3} c^3 \) per Cor. Lem. VI. Sit circulus \(BPPb \) Equator Sphæroidis, \(BP \) & \(Bp \) duæ quævis chordæ hujus circuli; Secliones Sphæroidis circulo \(BPb \) perpendiculares erunt Ellipsis similis Seclioni quæ per Polos solidi transit; quorum \(BP \) & \(Bp \) erunt Axes transversi; Secliones autem Sphærae super diametrum \(Bb \) descriptæ per eadem plana erunt circuli quorum diametri erunt chordæ \(BP \), \(Bp \). Proinde easdem semper erit ratio gravitatis particularis \(B \) in fruæta elliptica & sphærica his planis terminata; eritque gravitas versus integram Sphæroidem ad gravitatem versus Sphæram, ut \(a \cdot c = b \cdot L \) ad \(\frac{1}{3} c^3 \), a denotante semiaxia transversum figurae cæ.
 sunday text content...

Gravitas in loco A versus Sphæroidem oblongam motu figuræ AB a circa Axem transversam A a genitam, est ad gravitatem in eodem loco versus Sphæram centro C radio CA descriptam, ut \(\frac{b \times L}{C^1} \) ad \(C^1 \) per Prop. II. Haec autem gravitas est ad gravitatem in B versus Sphæram centro C radio CB descriptam, ut \(C \times A \) ad \(C \times B \) (per Cor. 1. Lem. III.) quæ est ad gravitatem in loco B versus Sphæroidem ut \(\frac{b \times L}{C^1} \) ad \(a \times c - b \times L \) per Prop. IV. Componatur hae rationes; eritque gravitas in loco A versus Sphæroidem ad gravitatem in loco B versus eandem, ut \(2a \times b \times L - c \) ad \(a \times c - b \times L \). Designet A gravitatem in loco A, B gravitatem in loco B, V summam virium quiibus Luminaria conjuncta vel opposita aquam deprimunt in recta TR.

Tom. III. Mm TR,
TB, Tb perpendicularibus rechæ A a quæ per Terræ & Lumina-
rium centra tranire supponitur, ut in Cor. 4. Prop. I. vel diffe-
rentiam earumdem virium in Lunæ Quadraturis, ut in Cor. 5. ejuf-
dem Prop. & per ea quæ demonstrantur Cor. 1. Prop. I. erit \(Aa - Bb \)
\[= \frac{2a^2V + b^2V}{d}, \]
Adeoque \(Aa - Bb \) \(\times \frac{a^2 - b^2L}{2abxL - c} \) \[= \frac{2a^2V + b^2V}{d}, \] & \(V: \)
A:: \(2a^2L + b^2L - 3a^2c: \frac{2a}{d} \times \frac{2a^2 + b^2L - c}{2abLx - c}. \)
Atque ex datâ ratione \(V \) ad \(A \) vel ad \(B \), vel \(\frac{1}{3} A + \frac{1}{3} B \)
(quæ pro G gravitate mediocrì in circumferentia \(A B a b \) haberì potest) habeamus equationem unde species figuræ & differentia feminæm seu aequæ computari possint.

Eff autem \(L \) Logarithmus quantitatis \(a^{\frac{d+c}{d-c}} \)
deœque æqualis \(c = \frac{c^1}{3a^2} + \frac{c^1}{5a^2} + \frac{c^7}{7a^2}, \) &c. per Mefhodos notissimas, adeoque \(L - c = \frac{c^1}{3a^2} + \frac{c^1}{5a^2} + \frac{c^7}{7a^2}, \) &c. Unde eff \(V \) ad \(A \), ut \(\frac{2c^2}{5a^2} + \frac{c^4}{3a^2} + \frac{6c^6}{5a^2}, \) &c. ad
\(L - c \times ad \frac{c^1}{3a^2} + \frac{c^1}{5a^2} + \frac{c^7}{7a^2}, \) &c. ad
\(\frac{2a^2 + b^2}{2abL} - b^2L + a^2c - 2abc. \)

Verum si \(V \) sit admodum exigua respecù gravitatis \(G \) (ut in præsen-
ti causi) erit differentia femidiametrorum \(CA, CB \) ad femidiametrum mediocrìm quàm proximè ut \(15 V \) ad \(8 G \), vel paulò accuratius ut \(15 V \)
ad \(8 G - 57 \frac{1}{2} \times V \). Sit enim ut in Cor. 2. Prop. I. \(a = d + x, b = d - x \)
adeoque \(c = a - b = 4d \times x, \) eritque \(A : B : = \frac{2a^2 + b^2}{2abL} - b^2L + a^2c - 2abL \)
\[= \frac{b + \frac{b^2}{3} + \frac{b^4}{15} + \frac{b^6}{7a^2} + \frac{a^2c}{3} + \frac{4c^2}{7a^2} + \frac{c^4}{15a^2}}{35a^2} + \frac{c^6}{35a^2}, \] &c. i.e. ut \(\frac{d-x}{3} + \frac{4d \times x - 3}{3} + \frac{2a^2 + b^2}{2abL} - b^2L + a^2c - 2abL \)
\[= \frac{x^2}{7a^2} \times \frac{x - 3}{3} + \frac{d - x}{3} + \frac{4d \times x - 3}{3} + \frac{2a^2 + b^2}{2abL} - b^2L + a^2c - 2abL \]
deœque (neglecès terminis, quos plurès dimensiones ipfus \(x \) ingrediem-
sur,) ut \(\frac{1}{d} + \frac{1}{d} : \frac{1}{d} + \frac{1}{d} \). Proinde erit \(B - A \) ad \(B + A \) (= \(\frac{2G}{x} \)) \(d + 18x \), & \(B - A : G : = \frac{x}{5} d + 18x \). Sed per Cor. 2. Prop. I.
est \(x \) ad \(d \), ut \(B - A + 3 V \) ad \(B + A - 2 V \), adeoque substituendo valo-
ses quantitatum \(B - A \) & \(B + A \), erit \(x \) d = \(\frac{2Gx}{5d + 18x} \) + \(3 V : 2G - 2V. \)

Unde \(2G \times x = 2V a = \frac{2Gd + 5V d + 54V x}{5d + 18x} \) & \(10Gd + 10V d \times x = \)
\(36G \times x = 36V x = 2Gd + 15V d + 54V x, \) &c. terminis omifis ubi
reperì;
reperitur \(\varpi \); eit \(8 \, Gd \times - 64 \, V \times = 15 \, V \times d \) atque \(\varpi \times d : 15 \, V : 8 \, G - 64 \, V \), \& \(2 \times \) ad \(d \) ut \(15 \, V \) ad \(4 \, G - 32 \, V \). Ascensus igitur totius aequae i.e. differentia semifidamentorum \(CA \), \(CB \) (vel \(\varpi \)) est ad semifidamentum mediocrem, ut \(15 \, V \) ad \(8 \, G \) quae proxime; facile autem erit rationem hanc exhibere magis accuratete, quoties ufnus id postulabit, assumendo plures terminos valoris Logarithmi \(L \), \& calculus prosequendo; prodit autem hoc paedo \(\varpi \) ad \(d \) magis accuratute, ut \(15 \, V \) ad \(8 \, G - 57 \times V \).

Cor. \(B - A \) est æqualis \(\frac{3}{4} V \), \& \(B - G = \frac{3}{8} V \) quae proxime. Quippe \(B - A : G : = 2 \times 5 : 30 \times 40 \times G \), adeoque \(B - A : V : = 3 : 4 \).

Schol. Eadem ratione patebit gravitatem versus Sphæroidem oblatam in Polo \(B \) fore ad gravitatem in Equatore in loco quovis \(A \), ut \(2 \, CB \times CA \times CF - CS \) ad \(CA \times CS - CB \times CF \).

Propositio V.

Problema.

Invenire \(v \) que ortur ex inequali gravitate partium Terræ versus Solem, \& definire ascensum aque hinc oriumum.

Sic \(S \) Sol, \(T \) Terra, \(AB \) orbica lunarum neglegata excentricitate, \(B \) \& \(b \) Quadraturæ. Designet \(S \) tempus periodicum Terræ circa Solem, \(L \) tempus periodicum Lunæ circa Terram, \(l \) tempus quo Luna circa Terram revolvetur in circulo ad distantiam mediocrem \(Td \) (\(= \frac{1}{2} CA \times \frac{1}{2} CB \)) si motus Lunæ gravitatem suæ versus Solem nullatenus turbaretur, \& folæ gravitate versus Terram in orbita retinæretur. Designet porro \(K \) gravitatem mediocrem Lunæ vel Terræ versus Solem, \(g \) gravitatem Lunæ versus Terram in mediocris suæ distantia, \(v \) vim quam actio Solis huic gravitati adjiceret in Quadraturis ad eandem distantiam. His positis, erit \(v : K : = dT : ST \); atque \(K : g : = \frac{dT}{SS} : \frac{dT}{ll} \). ex vulgari doctrinâ virium centripetarum; unde \(V \times g : = ll \). \(SS \): quam \(ll \) fit paulo minus quam \(LL \), quoniam Luna non inhibit, diffrahitur. \(\frac{}{} \) Terræ gravitate suæ in Solem; patet vim \(v \) esse ad \(g \) in paulo minori ratione quam \(LL \) ad \(SS \). Hanc autem rationem vis \(v \) ad \(g \) nemo hac egressi (quantum \(MMM \) novi)
novi) accuratè definitivit; ex tamen proprior videtur esse rationem \(LL \) ad \(SS \) = 2 \(LL \) vel talem rationem \(LL \) ad \(SS \) = 3 \(LL \) quàm rationem \(LL \) ad \(SS \). Argumenta vero quibus id' colligitur hic omittenda censeo, mo- niti Academie Illustriissimæ membrorum, cum in hâc disquisitione parvi fit momenti quænam hærum rationum adhibebatur. Supponsum igitur cum \(NEWT O N O v \) \(g :: LL :: SS :: \) (per computos Astronomicos periodorum Solis ac Lunæ) \(x = 178,724 \). Vis \(V \) quæ in Terræ superficie vi \(v \) respon- dent, est ad \(v \), ut Terræ semidiameter mediocris ad diastantiam Lunæ mediocrum vel ut \(t \) ad \(60 \). Vis autem \(g \) agit secundum rectas, quæ in centro gravitatis Terræ ac Lunæ concurrent, quibus ratione habi- tā ex incrementā gravitatis in defensione ad superficiem Terræ patebit vis \(V \) esse ad \(G \) (quæ gravitas mediocris in superficie Terræ designatur ut supra) ut \(1 \) ad \(38,604600 \). Unde cūm per Cor. 2. Prop. III. sit \(n : d :: 25 V : 8 G = 57 4 \) \(V \) erit in hâc casu \(n : d :: x = 205,891 \). Cùm- que semidiameter Terræ mediocris sit pedum \(196154800 \); hinc sequitur totum aque ascensum ex vi Solis orientatū fore pedis unius Parisisensis cum \(68724 \) partibus pedis, i. e. pedis unius cuius digitis decem, \(\& \) \(1 \) partibus digitis; quæ quo more breviter comprehendor \(NEWT O N O \) esse pedis unius, digitorum undecim cum \(v \) parte digitis, quæ altitudine à nostrâ differt tantām, saeptā parte unius digitis.

Verum in hoc calculo Terræ supponitur esse Sphae- nica, nisi quaternus à vi Solis Mare elevatus. Sed si ascensum aquæ maximum quærumus, ponendum est Solem in circulo æquinoctiali versus, figural- quem \(A B = b \) in hoc plano constat, \& augenda est vis \(V \) in ratione semidiametri mediocris ad semidia- metrum Terræ maximum, \& minuenda est vis \(G \) donec evadat equalis gravitati sub \(\text{Æquatore} \); i. e. Si figuram Terræ eam esse supponamus quam defini- vit \(NEWT O N O \), augenda erit vis \(V \) in ratione \(459 \) ad \(460 \), \& minuenda est \(G \) in eadem ferè ratio- ne, quoniam vires gravitatis in superficie Terræ sunt inversæ ut distantiam locorum à centro; cu- mque distantia \(d \) sit augenda in eadem ratione, erit ascensus aquæ in \(\text{Æquatore} \) angendus in ratione tri- plicata semidiametri mediocris ad maximam, ade- quae erit pedis unius, digitorum undecim cum \(60 \) circiter parte digitis. Terræ autem altior est sub \(\text{Æquatore} \) quàm prodit calculo Newtoniano ex hypothesi quod Terræ sit uniformiter densa à superficie utque ad centrum; ut colligitur ex \(\text{varias pendulorum Observationibus} \), \& per eundem ex mensuris gradis meridia-
ET REFUXUS MARIS

meridiani quam viri clarissimi nuper defuniverunt accuratissimè sub Circulo Polarì.

SCHOL. 1. Si gravitatem posuissetmus æqualèm in A & B, & ejusdem vis in totà circumferentia AB a b, prodixisset e equalis tantum $\frac{3}{2}V^2$, & ascensus aqae (sèn 2 α) pedis unius digitorum sex cum tertià circiter parte digiti. Quippe in hác hypothesi prodixisset CA ad CB, ut G + V ad $G - 2V$, adeoque e ad d, ut $\frac{3}{2}V$ ad G quæm proximè.
Atque hinc apparat utilitas precedentiam Propositionum, cùm ascensus aqae secundum hanc minus accuratam hypothesià minor fit ascensù quæm in hác Propositione definitivam, differentià $\frac{3}{4}V^2$, quartà scilicet parte ascensù illius.

SCHOL. 12. Ex hác doctrina patet Satellites Jovis Soli & sibi mutuo conjunctos vel oppositos in Oceano Joviali (si ullus sit) ingentes motus excitare debère, modò non sint Lunâ nostrâ multò minores; quin diameter Jovis ad distantiam cujusque Satellitis multò majorem habeat rationem quam diametrum Terræ ad distantiam Lunæ. Verisimilè est mutationes macularum Jovis ab Astronomis observatas hic aliqua saltem ex parte ortam ducere; quòd si ha mutationes eam analogiam servarente deprehendantur cum ascensibus Satellitum, quam hanc doctrina postulat, indicio erit veram eam causam hinc esse petendam. Ex hác doctrinâ licet quoque conjecture non absque utilitate, motus Satellitum circa Axes suos & circa primarios ita compositos esse ut idem Hemisphérium suis primaris semper ostendat, secundum sententiam celeb. Astronomorum. Verisimilè enim est motus Maris nimos in Satellitibus cieri debèri, si quàm alià quàvis velocitatem circa Axes suos revolverentur; quàs autem in his agitandis (si quà sint) sufficiere possunt ælius ex variis Satellitum distantibus à suis primaris orundis.

SECTIO IV.

De motu Maris quiènus ex motu Tel'uris diurno alièfve de causis immutatùr.

Oftendimus in Sectione precedentì Terram fluidam versùS Solem vel Lunam inæqualiter gravem Spheroidis oblongae figuram induere debere; cujus Axes transversum per centrum Luninarii transfinire, si Terra non revolverentur circa Axem suum motu diurno; & ascensum aqae in hypothesi Terræ quièentis ex vi Solis oriundum definitivum. Verum...
ob motum Terrae diversa est ratio æquor Maris. Hinc enim aqua nun-
quam fit in æquilibrio, sed perpetus motibus agitur. Supponamus
Solem & Lunam conjunctos vel oppositos verfari in plano æquoris
$ABab$; fit AA diameter quæ per illorum centra
transit, BB huic perpendicularis. Dum aquæ mo-
les revolvitur motu diurno, augentur vires quibus
ascensus ejus promovetur in transitu aquæ à locis b
& a ad A & a, & in his locis evadunt maximae ;
avsenus tamen aquæ prorogari videtur, postquâm
hae vires minuì coeruptur utque ferè ad loca ubi hæ
vires æquipollent viribus quibus deprimitur infra al-
titudinem quam naturaliter obtineret, si nullâ vi ex-
traneâ motus aquæ perturbaretur; adeò ut motus
aquæ considerari possit tanquam liberatorius, & tan-
tundem ferè ascendat viribus quibus elevatur decre-
centibus, quàm illâm crescentibus. Cùmque vis
centrifuga ex motu diurno orta fit multò minor gra-
vitatem, fitus loci F ubi prædictæ vires æquipollent sub
Æquatoren, dum aqua transit à loco b ad locum A;
fic ferè definiri possè videtur. Ex puncto F fit FF
normalis in BB, & Fz in TF. Designet V sum-
mum virium quibus Sol & Luna aquam deprimunt
in rectis TB, Tb ut suprà, & vis quà aqua tollitur in F erit $\frac{3V \times Fz}{d} = \frac{3V \times Ff^2}{d \times TF}$.

Supponamus F esse locum aquæ ubi altitudo aquæ fit minima ; ut TF
haberi possit pro femiaxe conjugato figurae $ABab$, dicatur gravitas in
extremitate hujus Axii B, & gravitas mediocris in hac figura G , ut
suprà; & vis quà aqua deprimitur infra fitum naturalem in loco F erit
$B - A + \frac{V \times TF}{d}$. Ponantur hæ vires æquales, cùmque TF sit quàm
próximè æqualis distantiae d, sitque $B - G = \frac{3V}{8}$ per Cor. Prop.IV.

erit $\frac{3V}{8} + V = \frac{3V \times Ff^2}{d^2}$, seu $TF^2 : Ff^2 :: \frac{3}{8} : 1 + \frac{3}{2} :: 24 : 11$. unde
angulus FTb erit graduum 42 minutorum 37, incidetque ferè in puncto medium inter b & A. Hunc vero calculum ut accuratum non
proponimus.
ET REFUXUS MARIS.

PROPOSITIO VI

PROBLEMA.

Motum Maris ex vi Solis orindum, & motum lunarem in orbītā quām proximē circulāri inter se comparare, & hīnc ascensum aquae estimāre.

Astronomis notissīmum est Lunae distantiam mediocrem in Syzygīs minorem esse distantiam mediocrī in Quadraturīs. Clarīs Halleyus ex Observationibus colligit distantiam priorem esse ad posteriorem ut 444 ad 454. Newtonus Methodo quādam suā hārum rationēm inventī esse eam 69 ad 70: Princip. Prop. 28. Lib. 3. Clarissimus Auctor Tractātis de Motibus Lunae secundum Theoriam gravitatis, in hac doctīnnā optimē verfatus, colligit eam esse numeri 69 ad 70; ratione non habitā decrementi gravitatis dum Luna transit à Syzygīs ad Quadraturas. Ut motus Maris ex vi Solis orindus (quālis suprà definitur Prop. V.) cum motu Lunae coneratūr, supponamus orbem Lunarem aquā complexī, & queramus ascensum hujus aquae per Prop. IV. & V. In Prop. V. erat vis v ad g, ut 1 ad 178: 725; quarte in hoc casu forret x; d: 15 v: 8 g = 57 1 4 x : 91 496: adeoque semiaxis figurar ad semiaxem conjugatum (vel d + x ad d - x) ut 46.248 ad 45.248; quae ferē congruit cum ratione distantiarum Lunae in Quadraturīs & Syzygīs quam Halleyus ex Observationibus deducit; adeō ut figura orbitae Lunaris specie vix diversa sit ab eā quam Globus aequus quiescens Lunae orbitam complens ex vi Solis indueret; forent tamen positione diversae, sīquidem illius Axis minor Solem respiciat, hujus Axis major versus Solem dirigeretur. Ratio numeri 59 ad 60 (quarum femi differentia est ad semimmemmam ut 3 v ad g quām proximē) probē congruit cum ratione semiaxium figurar quæ aquæ ex vi Solis indueret, si vis gravitatis eadem esset per totam circumferentiam A B a b, ut ostendi minus in Schol. 1. Prop. V. Ascensus autem aquae Prop. V. definitus congruit cum eā quam ex Observationibus colligit Halleyus; unde suppacari licet differentiam diametrorum orbitae lunaris paulo fēri majorem ex decremento gravitatis Lunae in Terram dum transit à Syzygīs ad Quadraturas, similis fēre ratione quā ascensus aquae prodit in hac propositione major proper exceñum gravitatis aquae in Terram in loco B supra ipsius gravitatem in loco A aliisque à centro distantīs. Verum quidquid sit judicandum de ratione diametrorum orbitae Lunaris, ex his colligere licet ascensus aquae Prop. V. definitum majorem vix evadere propter motum Terrae diurnum circa Axem suum. Supponamus enim hunc motu
DE CAUSA PHYSICA FLUXUS

tum augeri donec vis centrifuga ex hoc motu oriunda fiat æqualis gravitati, & particularis Maris revolutantur ad morem Satellitum in orbis quàm proximè circularibus Terram contingentibus. Hæ orbitae erunt ellipticae, quarum Axes minores producunt transibant per Solem. Et si semiaxium differentiam sit ad semidiametrum mediocrem ut $3V$ ad G (secundum ea quæ de motibus lunaribus tradit vir acutissimus) erit minor ascensus aquis supra definito Prop. V. in qua invenimus: $2 \times c$ esse ad d ut $15 V$ ad $4 G$. Quòd si quæramus horum semiaxium differentiam ex figura orbitae lunaris quæturus ex Observationibus innotescit secundum clariff. Halleyum, parum admodum superavit ascensus aquis supra definitum. Nec mirum fi non accuratè convenient, quàm gravitas Lunæ versus Terram æquatur rationem inversam duplicatam distantiarum, gravitas aquis major quoque sit in majori distantia, fed non in eadem racione. Cûm hæc Phænomena sint analoga, & sibi mutuo aliquam lunci afferant, bæc de ipsis inter se collatis memorare videbatur operæ praetium. Supponimus tamen hæc aquis motum in eodem circulo æquatori parallelæ perseveraret, vel latitudinem eadem in æqualis revolutionibus servaret, & variationem ascensus aquis, quaæ ex figura Sphaeroidicæ Terræ provenit, non consideramus.

PROPOSITIO VII.

Motus aquis turbatur ex inæquali velocitate, quæ corpora circa Axem Terræ motu diurno deferuntur.

Quippe si aquis moles feratur æquus, vel alia de causâ, ad majorem vel minorem ab æquatore distantiam, incidet in aquam diversæ velocitatis circa Axem Terræ latam; unde illius motum turbari necesse est. Differentia velocitatum quibus corpora, exempli gratiâ, in loco 50 gr. ab æquatore diffuso, & in loco 36 tantum milliarium magis versus Septentrionem vergente major est quàm quà 7 milliarium æqualis horis describeretur, ut facili calculo patebit. Cûmque motus Maris tantum nonnuncut ut æquus 6 milliarium, vel etiam plura æqualis horis describatur, effectus qui hinc oriri possint non sunt contemnendi.

Si aqua deferatur à Meridie versus Septentrionem motu generali æquus, vel alia quàvis de causâ, curfus aquis hinc paulatim deflectet versus Orientem, quoniam aqua prius ferebatur motu diurno versus hanc plagam majori velocitate quàm ea quæ convenit loco magis versus Boream sito. CONTRÀ si aqua à Septentrione versus Meridem deferatur, curfus aquis ob finitem cauam versus Occidentem deflectet. Atque hinc varia motus Maris Phænomena oriri suppositur. Hinc forfitan, exempli gratiâ, Montes glaciales quàe ex Oceano boreali digredientur, frequen-
frequentius conspicuuntur in Occidentali quàm Orientali Oceanis Atlantici plagis. Quin & majores æstus hinc cieris posse in pluribus locis quàm qui ex calcule virium Solis & Lune procedunt, habitum ratione latitudinis, verissime est. Eandem causam ad ventos præsertim vehementiores propagandos, & nonnunquam augendos vel minuendos, aliaque tum Aëris tum Maris Phænomena producenda conducere supplicamur. Sed haec nunc figuratiim profequi non licet.

PROPOSITIO VIII

PROBLEMA.

Inveniæ variætionem ascensus aquæ in Prop. V. definiti, qui ex figuras Terre Spheroidica provenit.

Sint $P A p a$, $P B p b$ sectiores Terræ per Polos P & p, quarum prior transeat per loca A & a, ubi altitudo aquæ in æquatore viribus Solis & Lunæ fit maxima, posterior per loca B & b ubi sit minima; sint hae sectiores ellipticas, F focus figurae $P A p a$, f focus sectiois $P B p b$, & g focus sectiois $A B a b$. Et si omnes sectiores solidi per rectam $A a$ transeunt supponantur ellipticas calculo inito ope Lemmatis V. invenimus gravitatem in loco A versus solidum hoc fore ad gravitatem in eodem loco versus Sphæram centro C super diametrum $A a$ descriptam ut $r + \frac{3 CF^2 + 3 Gc^2}{10 c^2} + \frac{2 CF^4 + 6 CF^2 Gc^2 + 9 Gc^4}{5 c^2 A^2} + \frac{Gc^4}{CB \times CF}$,

DE CAUSA PHYSICA FLUXUS

PROPOSITIO IX

PROBLEMA

Invenire vim Lunae ad Mare movendum.

Quòd si analysis diversarum causarum quæ ad æstus Phenomena producenda conferunt, accuratâ institutio posset, id certè ad uberiorem scientiam

* Sit enim Lunæ declinatio 28 gr. & loci ultra 62 gr. versus eandem plagam, & manifestum est Lunam, semel tantum 24 horarum spatio loci hujus horizonem stingere.
ET REFLEXUS MARIS.

Hinc enim situs centri gravitatis Lunæ & Terræ, & quæ ad æquinoctiorum præcessionem aliaque Phenomena naturæ insigniæ spectant, certius innotescerent. Quas ob causas ascensīs aquæ quantitatem, quoumque ex motibus coelestibus eam affequi licet, accuratè definiendam & demonstrandam, positis legibus gravitatis quæ ex Observationibus deducuntur (de cujus causâ hic non est differenti locus) putavimus. Cogitata aenem hæc qualiconque judicio Illustriissimæ A C A D E M IÆ R E G IÆ, quam omni honore & reverentia semper prosequimur, lubenter submittimus.
ANNOTANDA IN DISSERTATIONEM

In Prop. IV. inventur \(x = \frac{2sVd}{8G} \) quàm proximâ, qui valor ipfius \(x \) est satis accuratus, nec ullâ correctione indiget præsertim in calculo Prop. V. Est autem magis accuratè \(x \) ad \(d \) ut \(15V \) ad \(8G - \frac{88}{7}V \) non ut \(15V \) ad \(8G - \frac{80}{14}V \) sive \(8G - \frac{57}{14}V \) ut lapsum quodam calami aut calculi scripturam ad finem Prop. IV. qui quidem est exigui momenti, & argumenta Propositionum sequentium non immutat. Calculi autem summanm hic adjiciam. Inveniam in Prop. IV. esse \(B \) ad \(A \), ut \(\frac{c}{a} + \frac{c}{5a^2} + \frac{c}{35a^3} \), &c. ab \(\frac{b}{a} \times \frac{c}{7a^4} + \frac{c}{3a^2} + \frac{c}{7a^4} \), &c. adeoque (substituendo loco \(b \)) ipfius valorem \(\frac{a^2 - b^2}{a} \) sive \(x = \frac{a^2 - c^2}{a} \), &c. ut \(\frac{c}{a} + \frac{c}{15a^2} + \frac{c}{35a^3} \), &c. ad \(\frac{c}{30a^3} + \frac{c}{8a^4} \), &c. unde \(B = A \) ess ad \(G \) (sensu \(B + \frac{1}{A} \)) ut \(\frac{c}{10a^2} + \frac{23}{24} \), &c. ad \(\frac{25}{d} \), &c. \(\frac{c}{35a^2} + \frac{8}{70a^4} \), &c. Est autem \(c = 4d \times \) &c. \(3x = d \times - 2d \times + x \times \), &c. per iis quæ in Propositione supponuntur; unde \(\frac{c}{x} = \frac{a}{d} = \frac{a}{d} + \frac{3}{d} \), &c. \& substituendo loco \(\frac{c}{a^2} \) ejus valorem \(\frac{4x}{d} \), &c. probibit \(B = A \) ad \(G \), ut \(14d = 18x = \) ad \(35d = 21d \times - 17x \times \), quàm proximè. Cùmque sit \(B = A \times d + 3Vd = 2G \times = 2Vd = \frac{3Vd}{d} \) per Corol. Prop. I. substitutur valor ipfius \(B = A \), &c. negligrantur termini quos ingreditur \(Vx = V \) (quoniam \(V \) est admodum parva respectu \(G \)) etrite \(3 \times 35Vd = 56Gd \times = 133Vd \) + 24G \&c. \(x = 56G \times = 133Vd + 24G \times \) quod si in denominatore pro se scribatur valor \(\frac{3 \times 35Vd}{56G} \times \), probibit valor magis accuratus \(\frac{15Vd}{8G} \times \); eritque \(x = \frac{15Vd}{8G} + \frac{15Vd}{8G} \) \&c. quàm proximè. Diversâ paulò ratione probit \(x = \frac{15Vd}{8G} + \frac{15Vd}{8G} \), &c. quam si erim producere non est difficile, si operæ pretium videbítur. In Prop. VI. quæfivimus figuram aqüæ.
aquae orbem lunarem complentis ex actione Solis oriundam. Hac corre-
ctione adhibitâ, & caeteris retentis ut prius, Axis minor figurae ad
majorem ut 46.742 ad 47.742, que partum differt a ratione quam in ea
Propositione exhibimus.

II. Series quam exhibimus in Prop. VII.

deducitur per Lem. V. & Prop. II. Sit $CA = a$, $CB = b$, $CP = c$, $CF = f$, $CG = g$. Sint
$ACM > ACM$ Sectiones quaevis solidi per re-
clam AC (quae normalis est plano BPP) tran-
seuntes. Arcus m centrum C radio CM descriptus
currat rectae CM in u, & occurrant ordi-
dinate MV, $m v$ Axi B in V & v, & circu-
lo BKB in K & k. Sit $CA = CM = x$, K & k seu m distantia loci a centro in figura ACM, fit E Logarithmus quan-
titatis $a \sqrt{\frac{x}{a}}$ & ultima ratio gravitatis particulae A in frustum planis
ACM. ACM terminatum ad gravitatem in frustum Sphaeræ centro
C radio C descriptum illidem planum contentum, est ea $3 \frac{CM}{x} \times E \times x$, ad x per Prop. I. Gravitas igitur particulae A in solidum erit

$$\int_{3}^{C} \left(\frac{C}{x} \times L \times x \right) = \int_{3}^{C} \left(\frac{C}{x} \times L \times x \right) = \int_{3}^{C} \left(\frac{C}{x} \times L \times x \right) = \int_{3}^{C} \left(\frac{C}{x} \times L \times x \right) = \int_{3}^{C} \left(\frac{C}{x} \times L \times x \right)$$

Let $CV = u$. Eritque $u = \frac{b}{b} - u = \frac{c}{b} = CM = a \times \times$

Under $u = \frac{b}{b} - u = \frac{c}{b} = CM = a \times \times$

Adde $V \times C = KM$. Adeque $K = \frac{k}{K}$

$$= \frac{b}{b} \times \frac{d}{d}$$

Quare gravitas particulae A versus solidum erit ut

$$\int \left(\frac{b}{b} \times \frac{d}{d} \right) = \int \left(\frac{b}{b} \times \frac{d}{d} \right)$$

Quare gravitas illa erit $\int \left(\frac{b}{b} \times \frac{d}{d} \right) \quad \int \left(\frac{b}{b} \times \frac{d}{d} \right)$

Sit $a = a - g$, & prior summam erit $\int \left(\frac{b}{b} \times \frac{d}{d} \right)$, secunda erit $\int \left(\frac{b}{b} \times \frac{d}{d} \right)$

$$= \int \left(\frac{b}{b} \times \frac{d}{d} \right) + \int \left(\frac{b}{b} \times \frac{d}{d} \right)$$

Quae sum subsequentibus summis ad circulares.
Arcus facilè reducantur. Atque hinc ratio gravitatis particulae A versus hoc solidum ad gravitatem versus Sphaeram super semidiametrum C & constructam, erit qualis in Propositione assignatur, terminis seriei citii-mè decrecentibus, si CF, Cf & Cg sint admodum parvae. Si evanescat g, haec series dabit gravitatem versus Sphaeroidem in Equatore; quae tamen elegantius investigatur in Prop. III.

III. In Prop. IX. observamus post New tonum vim Lunæ ad Mare movendum cum vi Solis posse conferri, æstus in Syzygiis & Quadraturis comparando; eadem ratio obtineri potest conferendo æstus qui contingunt in Syzygiis Luminariurn in diversis distantias Lunæ à Terra, si æstus essent accuratè proportionales viribus quibus producuntur. De- signet L vim Lunæ mediocrem, S vim Solis mediocrem, X & x duas distantias Lunæ à Terra in Syzygiis æquinoctialibus, Z & z distantias Solis à Terra in iisdem Syzygiis, d & D mediocres utriusque distantias; & si Luna declinatio nulla sit, atque essent ut vires Luminariurn, seu ut $\frac{Ld}{X} + \frac{Sd}{Z} + \frac{Ld}{x} + \frac{SD}{z}$, hinc comparando, æstus ratio L ad S detegetur. Sit enim ascensus aequæ in priori caeli ad ascensum in posteriori ut m ad n, eritque L ad S ut $\frac{mD}{z} = \frac{nD}{Z} = \frac{mD}{x} = \frac{mD}{X}$.

INQUI...
INQUISITIO PHYSICA
IN CAUSAM
FLUXUS AC REFUXUS
MARIS.

A.D.D. Euler, Mathematicarum Professore, e Societate Academiae Imperialis
Sanetii-Petersburgensis.

Cur nunc declivi nudentur litora Ponti?
Adversis tumeat nunc Maris unda fretis?
Dum vestro monitu naturam confulo terum:
Quam procul a Terris abdita causa latet?
In Solem Lunamque feror. Si plauditis autem,
Sidera sublimi vertice summa petem.

CAPUT PRIMUM.

De Causâ Fluxûs ac Refluxûs Maris in genere.

§ 1. Omne mutationem, quae in corporibus evenit, vel ab ipsâ motâs conservatione proficiât, vel à viribus motum generantibus, hoc quidem tempore, quo qualitates occultae causaeque imaginariae penitus sunt expulse, nullât indiget probatione. Hoc autem discrimen quovis oblato Phænomeno diligentissimè conside-rari oportet, né tam motâs conservationi ejusmodi effectus tribuatur, qui sine viribus oriri nequit, quam vires inventigentur, quæ motum suâ naturâ conservandum producant. Quo quidem in negotio, si debita attentio adhibatur, errori vicus ullus relinquitur locus: cum ex legibus naturæ satis superque confert, eajusmodi motus vel per se confer-ventur, vel viribus externis debentur. Corpus scilicet in motu posi-
tum.
I N Q U I S I T I O P H Y S I C A I N C A U S A M

tum propriam vi hunc motum uniformiter in directum retinet: atque cor-
pus, quod circa axem conveniuntem per centrum gravitatis transeuntem
motum rotatorium semel est confectum, eodem motu rotari perpetuo
sit sponte perget, neque hujusmodi motuum causam in ullâ re aliâ,
nisi in ipsâ corporum naturâ, quærî oportet. Quocirca si hujus generis
Phænomenon fuerit propositum, alia causa investigari non potest, nisi
quæ à principio tales motus procreaverit.

§ 2. Hujus generis foret quœstio, si quæreretur causa motús verti-
ginis Planetarum ac Sōlīs; hic enim sufficeret eam causam assignâtis,
quæ iniitio hūs motus producisset, cām Sōl æqū ac Planetæ talem mo-
tum semel confectum eundem propriam vi perpetuâ confervare debeant,
neque ad hoc Phænomenon explicandum vis ulla externa etiam nunc du-
rāns requiratur. Longè aliter se res habit, si motus proponatur neque
uniformis, neque in directum procedens, cujusmodi est motus Plan-
tarum periodicus circa Sōleum: hoc enim cauæ minimè sufficit ea vis,
quæ iniitio Planetas ad itiâsmodi motus impulerit, sed perpetuâ novâ
virium actiones requiruntur, à quibus tam celeritas quàm directio con-
tinuâ innuetur: quae vires, quàm primum ceñșant: subîr Planètæ
orbitas suas defererent, atque in directum motu æquâblīs avolarent.
Quod si igitur Phænomenon quocunque naturæ proponatur, antè omni-
nia sollicitè inquirendum, ad quodnam genus id pertineat atque
utrum causa in viribus externis sit quærenda, an in ipso subjecto cor-
porâ! Quinetiam sœpœmerâre usu venire potest, ut eœctus utriusque
generis in eodem Phænomeno multàm sint inter se permixti; quo cauæ
summo studio ii à se invicem discerni antè debebunt, quàm cauæm
investigatio suscipiat.

§ 3. His rite perpensis explicatio Galilei, quam in suis Dialogis
de ǣtū Maris assignare est conatus, mox concidit; putavit enim Fluo-
xum ac Refluxum Maris tantum à motibus Terræ rotatorio circa axem
& periodico circa Sōleum oriri, neque aliis viribus tribui oportere, nisi
quae hos motus tum producant, cūm confervent. Namque si ponamus
Terrém solo motu diurno esse prædictam, ite motus Mare aliter non affi-
ciet, nisi id sub æquâtor attollendo, ex quo figura Terræ sphæroidica
compresis nascitur, motus verò reciprocus in Mari omnīn̄ nullus hinc
generari poterit. Quod si antem Terræ inuper motum æquâblīm in
directum tribuantur, priora Phænomena nullo modo afficiuntur, sed prorsus eadem manebunt, quemaduorum ex principiis mechanicis clarīssìmē
persepicī licet, quibus constat motum uniformem in directum omnibus
partibus Systematis cujuscunque corporum æquâliter impressum nullum
omnīn̄ mutationem in motu ò situm partium relativo inferrē. Abeat
nunc motus ite æquâblis Terræ in directum impressus in circularem vel
ellipticum per vires quibus Terræ perpetuâ ad Sōleum urgetur; ac de hoc
hocz quidem causânullus motus reciprocus in Mari produci poterit; quod
cum per se est perspicuum, tum etiam ab ipso Galileo non statuitur:
ipse enim non tām ex mixtione motūs vertiginis & periodici ætūn Ma-
ris proficiēt est arbitratus, quām ex motu quocunque progressivo fīvē
rectilineo fīve curvilineo, sī is cum motu rotatorio conbīnentur.

§. 4. Quanquam autem motus Terræ periodicus circa Solem cum
motu rotatorio circa axem conjunctus nullum in Mari motum reciprocum
generare valet; tamen Mare, quod si motus effert æquabili in directum,
in quie peripheriae, aliquantum turbari debebit. Quod si autem in vitam
qua Terra in orbītā suā continentur attendamus, non difficulter mutatio-
num, quam Mare ab ea patietur, colligere poterimus. Nam cum partes
Terræ à Sole remotiores minori vi, propriores verò majori sollicitentur,
ilae ad majus tempus periodicum, haec verò ad minus abfolvendum co-
gentur, ex quo partibus Terræ fluidis, ut potè mobilibus, motus ab
Oriente versus Occidentem secundum ecclipticam inducetur, hancque ve-
ram esse causam extimò ac praecipuam cur tām Oceanus quām aer sub
Æquatore perpetūo habeat Fluxum ab ortu versus occasum. Poffen
etiam ex eodem principio clāre ostendere tām Maris, si omnino liberum
effert, quàm æris celeritate tantam fore, quà tempore viginti-quatuor
horarum spatium circiter viginti graduum abfolvatur; sed cum haec in-
quīsitum praestārīn āspectionem propriē non pertineat, atque inclyta
Academia fortasse alīa occasione qūestionem hāc spectantes sit propostitu-
ra, ubiōiorem explicacionem hujus insignis Phænomeni eō uique diific-
rendam esse essemus; hoc quidem tempore tantūm indicasse contenti,
 motum Terræ periodicum conjunctiīm cum motu diurno Mari motum ali-
quem imprimeri posse, sed neutiquam motum reciprocum, uti Galileus
est arbitratus.

§. 5. Ut in omnibus omnino qūestionibus physicis multitū facilius
est, quae non sit causā Phænomeni causiam oblati, quàm quae sit, off-
tendere; ita etiam præfens qūestio de Fluxu ac Refluxu Maris est com-
parata, ut non difficulter causās falsè affiniatas poßenim refellere. Ac
primo quidem poßt everiam Galilei fententiam, explicatio ætūs Maris
Curtesiana preffioni Lunæ in nixa tot tantōque laborat difficultatis, ut
omnino subalterne nequeat. Præterquam enim quod itūn inodi preffio
aliunde probari nequeat, atque ad hoc sēlum Phænomenon explicandum
gratiiò affumatur, observacionibus etiam minimè satisfacit. In aperto
enim ac libero Oceano aqūam mox potest transitum Lunæ per Meridianum
elevari obferuamus, cum fœcundum Carestii fententiæ eodem tempore
deprimi deberet; neque præterea hoc modo fatis diffiñèct explicatur, cur
Luna sub Terræ latens eundem serè effectum exerat, ac si super Horiz-
onte verier. Deinde hoc idem negotium non; feliciori succēssū aggrega-
tus est Wallisius, caussa in communi centro gravitatis Terræ & Lunæ
INQUISTITIO PHYSICA IN CAUSAM

CAP. 6. Quæres, cujus explicatio mox satís dilucidè est subversa. Supereft de- nique Newtoni theoria, quae nemine contradicente Phænomenis multâ magis est conatanaea: at in ea id ipsum quod hoc loco quaeritur, causa scilicet physica, non assignatur, sed potius ad qualitates occultas referri videtur; interim tamen ne haec quidem theoria satís est evoluta, ut de ejus fove contens fove diffenfum cum observationibus judicium satis tatum ferri queat.

§. 6. Cum igitur dubium sit nullum, quin Fluxis atc Refluxis Maris causa in viribus externis & realibus sit posita, quæ si ceffarent, simul ætius Maris mox evanesceret, ubi lateant haec vires & quomodo sint comparatae potissimum nobis erit explicantum, hoc enim est id ipsum, quod celeberrima Academia Scientiarum Regia in quaestionis propósitâ requirit. Neque verò vires tantummodo indicasse sufficit, verum præterea id maxime erit monstrandum, quomodo istæ vires agant, atque hos ipsos effectus, quos observamus, non verò alios producant; in hoc enim totius quaestionis cardo, explicationis scilicet confirmatio, vertitur.

Quoniam autem plerunque pluribus viribus excogitandis idem Phæno- menon explicari potest, studium adhibendum est súmmum in hac indagàtione, ne ad vires inane atque imaginariae delabamur, quæ in mundo neque sunt neque locum habère possint. Parum enim scientiæ naturali confulet, qui quovis Phænomeno obtato libri pro arbitrio mundi structuram peculiarem effingunt, neque sunt sulpicii, utrum ea compages cum aliis Phænomenis consittere queat, an verò fecus. Quòd si enim jam altundè constet existere in mundo ejusmodi vires, quæ obtato effectu producendo sint pares, fruæ omne studium in conquistione virium novarum collocabitur.

§. 7. Quoniam autem ad caufam cujusque Phænomeni detegendam, ad singulas circumstantias fædulò attendere necesse est, ante omnia mirifi- cum confenfum ætius Maris cum motu Lunæ contemplari conveniet. Non solùm enim inipheris harmonia inter æstum Maris, ac Lunæ motum diurnum deprehenditur, sed etiam revolutionis synodica respectâ Solis in- gentem affert varietatem. Omnes denique observationes abundè decla- rant rationem Fluxis & Refluxis Maris à situ cùm Lunæ tum etiam Solis conjunctum pendere: ex quo statim prono ratiocinio concluditur, vires illas æstum Maris producentes, quæcunque etiam sint, cùm Lunam potissimum, tum verò etiam Solem respiceré debere. Quamobrem ím- primis nobis erit inquirendum, utrum ejusmodi vires Solem & Lunam respicientes, quæ in aquis talem effectum, quæque est ætius Maris, producere queant, jure ac ratione statui possint, an tecus. Ac si pluribus modis etiam vires animò concepere liceat, diligentem erit difpicien- dum, quænam cum aliis Phænomenis consittere possint nec ne. Quan- tumvis enim explicatio quæpiam cum Phænomenis conspíret, nisi virium, quæ
quae assumuntur, existentia aliunde comprobetur, labili ea omnino ininitur fundamento. Quod si autem contrā, effectus ejusmodi viribus tribuatūr quas in mundo revera existere alia Phaëomena clare docuerunt, atque sumpsu explanationis cum experientiā conferre deprehendatur, dubium erit nullum quin icta explicatio sit genuina & sola vera.

§. 8. Quamvis autem certis viribus Lūnae ac Solī tribuendis Phaëomenon æstūs Maris commòde explicari posset, tamen ob hanc solam causam istiummodi vires instantiāe nimirum audax videtur: quamobrem imprimitis erit dispiiciendum, num aliae rationes ejusmodi vires non solum admittant, sed etiam acta existera manifestūs indicent. Perluftremus igitur vires, quas jam aliundē in mundo vigere novimus, scilicetemque paucis an ad motum reciprocum Oceano inducendum sint idoneae: tales enim vires si in mundo jam existant, omnis labor in aliis inquirendis impenitus iritūs foret ac ridiculums. Ac primō quidem si Solem spectamus, motus Terrae annuus omnino declarat Terram perpetuō versus Solem urgeri & quaud attrahi, idque fortius in minori distantiā, debilium verō in majori; atque adeō hanc Solis vim in Terram rationem tenere reciprocam duplicatam dīstan−tiam: ex quo spōntē sequitur non solum universaliter Terram, sed etiam singulas ejus partes perpetuō versus Solem urgeri. Tota quidem Terrae æquē fortiter ad Solem follicitatūr, ac si omnis materia in ejus centro esset conget&a; interim tamen partes circa superficiem sita vel magis vel minus ad Solem alliciēntur, quām totum Terrae corpus, prouti vel minus vel magis sint remotē à Sole, quam centrum Terrae. Hinc igitur sit, ut hanc eadem vis ad Solem tendens aquam modō magis, modo minus trahat, ex quā alternā actione mutus reciprocus in Fluidis necessariō oriri debet. Quocircà icta Solis vis in praesenti negutio neutiquam neglegii poterit, cum ea, si fortē sola causam æstūs Maris non constituīt, certē effectūm aliarum virium necessariō afficerē ac turbare debēt.

§. 9. Quemadmodum autem Terrae cum omnibus suis partibus versus Solem follicitatūr; ita eorum sententia non multum à veritate abhorrere videtur, qui in Lunā finīlem vim collocant. Observationes quidem hujusmodi vim in Lunā non demonstrant sicūt in Sole; cum motus Terrae in orbitā suā à Luna omnino non affici deprehendatur; sed si docuerimus eandem vim, ad Lunam respicientem, quae æstūs Maris producendo sit par, in motu Terrae nullam sensibīlem anomaliam producere valere, audacia, quae fortē in talīs vis admissione confisteri videbatur, multōm mitigābitur. Hujusmodi autem vis existentia aliis ratio−nibus, nullo ad æstūm Maris habito reiprēctu, iatis clare evincī potest; quia enim nullum est dubium, quin Luna ad Terram constanter teratur, ob æqualitatem actionis & reactionis Terrae quōque versus Lunam pelli necesse est. Namque si ponamus Sole penitus influēt, Terrae ac
CAP. L. Lunae omnem motum subit o adimit, Luna utique ad Terram accedet; nemo autem non concedet, probè perpensis principis mechanicis, Terram interè non prorsus esse quieturam, sed Lunae obviaram ituram, concursumque in communi gravitatis centro contingere: hoc autem evenire non poterit, nisi Terra aegu ad Lunam sollicitetur. Deinde in ipsa Luna gravitatem dari similem hunc, quam in Terrâ sentimus, negari non potest; nisi enim talis vis in Lunâ vigeret, Partes Lunae fluidae, cum ob gravitatem in Terram, tum ob motum Lunae circa proprium axem, si fit admodum lento, & temporis periodicus æqualis, jam ducunt avolatant, partesque solidæ consuntiam suam afficient. Multibus densè aliis rationibus ex naturâ vorticem petitis, magis confirmari posset tale corpus mundanum, cujusmodi est Luna, subalterne non posse, nisi vortice sit cinctorum, quo gravitas in id generetur. Quod si autem gravitationem versus Lunam concedamus, cur ejus actionem non adeo utique admissam, nulla omnino ratio fiat: quin potius aufermodi vis similem statui convenit, reliquis in mundo deprehensis, quæ quasi in infinitum porriguntur, atque inveniam duplicatum tenent distantiarum rationem.

§ 10. His expositis manifestum est, & quasi experientiâ convictum, Terram cum singulis suis partibus tam versus Lunam quam versus Solem perpetuâ sollicitari, atque utramque vis proportionalem esse reciprocè quadraës dis tantiarum. Hæ igitur vires, cum aequs exificant, constantque effectuum simul exerant, in praevia negotio, quo in causam æstus Maris inquirimus, praeterit ira omnino nequeunt; nisi dilucide ante fit probatum, eos non solum Fluxum ac Reflexum non generare, sed ne quidem quicquam efficere. Si enim ita vires illum duxissent motum reciprocum Mari inducere valeant, quantumvis is etiam sit exiguum, atque adeò æstis Maris fortasse contrarius, eorum tam ratio necessariò erit habenda, cum fine illis vera causa, quacumque sit, neque investigari neque cognosci posset. Neque praeterea sanè rationis praecepta permittunt alias vires excogitare, in ipsa causam æstis Maris collocare; antequam evidenter sit demonstratum, binas itas vires Solem Lunamque speciantes, quas non gratuò assumimus, fed ex certissimis Phænomenis in mundo eixfere movimus, ad Fluxum ac Reflexum Maris productum non esse sufficientes. In sequentibus autem capitibus clarissimè hæc ostensuri, ab his duabus viribus non solum in Oceano motum reciprocum generari debere, sed etiam cum ipsum, qui æstis marinis nomine inignori solet: atque hanc ob rem confirmam jam affirmamus veram Fluxus ac Reflexus causam in folis illis duabus viribus, quorum altera ad Solem est directa, altera ad Lunam, esse possit, hocque simul omnium eorum tentientias funditius exvertimus, qui vel aliis omnino viribus idem Phænomenon adscribere, vel curius ipsetias vires conpungere conantur.
§ 11. Quae tio igitur de cauâ Fluxûs ac Refluxûs Maris, prout ea ab Illustrissima Academiâ Regiâ est propôita, ad hanc deducitur quaestionem, ut binarum illarum virium, quibus singula Terræ partes cum ad Solem tum ad Lunam perpetuâ urgentur, idque in diffârum ratione reciprocâ duplicâtâ, cauâ assegnetur Physica. Ex quo tractationem nostram bipartitam esse oportebit. Primô icicet ex principiis Mechanici dilucidè erit ostendendum, à binis illis viribus Solem Lunamque respectîentibus cum Fluxûm ac Refluxûm Maris generatim oriri debere, tum etiam hoc modo singula Phenomena diffîndè explicari posse: hac enim parte absoluta nullo supererit dubium, quin origo æûtâs Maris his ipsis viribus, quas ætæjiam in mundo existere docûimus, debeatur. Deinde verò harum virium causa Physica indicari debet, cum id fit praecipuum, quod Inclyta Academia requirit. Quod quidem ad illam partem attinet, in ejus explicatione minime hæsitamus; & clarissimis certissimique demonstrationibus evincere pollicemur, per illas vires omnium æûtâs Maris Phenomena absolutissimè explicari posse: quâ in re nulli dubitatione ullo relinquetur locus, cum tota ad Geometriam & Mechanicam sublimiorem pertineat, calculique analytico sit subjecta. Altera vero pars, in scientiam natuarem imprimis incurrâs, majori difficultati videtur obnoxia, nec tanta evidentia capax; verum cum ipsa occasione plurium quaestionum ab Academiâ Celeberrimâ antehac propôitârum jam tanto studio fût investigata atque absoluta, eam non minori certitudine expedere condîmus.

§ 12. Explofis hoc igitur tempore qualitatibus occultis missâque Anglorum quorumdam renovatâ attractione, quæ cum faniori philosophandi modo nullatenus consistere potest, omnium virium qua quidem in mundo observantur, duplex flatuendus est fons atque origo. Nenpe cum viribus tributâre vel motus generatio vel immutatio, ite effectus semper vel ab alligione corporum, vel à vi centrifugâ proficiscitur, quârum actionem ultraque facultati, quâ omnia corpora sunt prædicta in statu suo fixe quietis five motus æquilibris in directum perieverant, debetur. Ob hanc enim ipsam facultatem corpus in motu positum aliæ corpora, quæ vel ipsius motui directè sunt opposita, vel ejus directionem mutare cogunt, ad motum follicitat; atque priori cauâ regula collisitionis corporum, posteriori vero à centrifugâ indoles & proprietates oritur ac demonstratur. Cùm igitur omnia corpora terrestria tam versus Solem, quam versus Lunam perpetuò follicientur, causa hujus follicitationis continuo appellui materiæ cujusdam subtilis, vel vi centrifugæ simili materiæ tribui debebit. Priori igitur cauâ materiam subtilem statui oporiter, quæ consanter summâ rapiditate cum ad Solem tum ad Lunam ferretur: hujusmodi vero hypothesis ob maximum difficultates, quibus est involuta, admitte minime potest. Primo enim perpetuò novis vi-ribus
CAP. I. ribus effet opus, quae materiam subtilem indefinenter versus Solem Lunamque pellerent, quâ quidem re quaestio non majorem lucem affeque-retur. Deinde talis motus per se diu confictere non poffet, proper perpetuum materiâ subtillis ad eadem loca affluxum nullumque refluxum, ut taceamus alia maxima incommoda cum istiusmodi poftione permixa.

§. 13. Exclusâ igitur materiâ subtillis continua alligione, tanquam ad vires cùm ad Solem tum Lunam tendentes producendas minime idoneâ, alia harum virium cauâ non reliquitorum, nisi quae in vi centrifugâ confictat. Quemadmodum autem materia subtillis in gyrum ac diâ vorticem formans non solûm animo concipi, sed etiam in mundo perfittere queat, jam fatis superque est expositum, cùm in dissertatioibus, quae cum quaestio de causâ gravitationis agitaretur, laudes Iuupiteris Academiae merebantur, tum etiam in aliis operibus; quibus in locis simul dilucidè ostentum, quomodo eujusmodi vortices comparatos esse operare, ut vires centrificassent, tantum quadratis distantiarum ad centro vorticis reciprocè proportionales. Quae res cùm meo quidem judicio jam tam plana fit facta, ut quicquam ad praefens institutum attinens adici queat, vorticem literarii examini fine ualla hæsitatione supercedamus; idque eò magis, quod Cælebritima Academia eujusmodi amplam atque adeò jam conficitam digressionem poftulare haud videatur. Quoniam enim quaestio de causa gravitatis cùm versus Terram tum etiam versus Solem & Planetas jam fatis est investigata ac directa; nunc quidem, si cujus-cunque Phænomena cauâ eò fuerit perducta, ibidem acque scendendum videtur, neque actum agendo denud in causa gravitatis investigandâ nimium immorari conveniret. Denique in praesenti negotio sufficere poffet, si æstûs Maris causa adhuc tantis tenebris obvoluta ad alia maxima aperta Phænomena reducatur, quorum cauâ non solûm habetur probabilis, sed etiam quae sola fit veritati conficentanea, eujusmodi est gravitatio tain versus Solem quàm Lunam.

§. 14. Caufam igitur Fluxûs ac Refluxûs Maris proximam in binis vorticibus materiae cujusdam subtillis collocamus, quorum alter circa Solem, alter vero circa Lunam ita circumagatur, ut in utrque vires centrificassent in duplicatâ ratione distantiarum ad centro vorticis; quæ lex vis centrificassent obtinebitur, si materiâ subtillis vorticem constituentes celeritas fluatatur tenere rationem reciprocam subduplicatam distantiarum ad centro vorticis. Quæcumque igitur corpora in istiusmodi vortice poftita ad ejus-centrum pelletur vi acceleratrice, quæ pariter ac vis centrificassent quadratis distantiarum reciproce eft proportionalis. Vis absoluta autem quà pòrphian in datâ distantia ad centro vorticis collocatum eò urgetur, pendant à celeritate materiae subtillis absolutâ. Ac primò quidem, quod ad vorticem circa Solem rotatum attinet, ejus vis absoluta ex tem-
Fluxus ac Refluxus Maris. 291

Quoniam igitur æstum Maris per binas vires, quorum altera Solem respicit, altera Lunam, fumus expollitur, facile videri possimus eandem omnino explicationem sufficiere, quam Newtonus dedit in suis Principiis Mathematicis Philosophiae Naturalis. Primum autem notandum est, quod si Newtonus veram causam hujus Phænomeni assignasset, summo operè abhursum atque absonum foret, novitatis studio alien cauñam, quæ certò falsa futura esset, excogitare. Deinde verò Newtonus ne vestigium quidem reliquit, ex quo causa harum virium attrahitorum, quas Soli Lunaque tribuit, colligi potuisse, sed potius de causa Phyticae inventione, quælem Academia Regia potissimum requirit, desperasse videtur; id quod ejus affectio apertè testatur, qui attractionem omnibus corporibus propria esse, neque ulli causa exterea debere firmiter afferunt, atque adeò ad qualitates occultas confugiunt. Denique Newtonus deductionem & explicationem omnium Phænomenorum ad æstum Maris pertinentium minimè perficet, sed quassi tantum adum bravet; plena enim explicatio tot tamque Problematum solutionem posulat, quæ Newtonus non est agreōsus: cum enim hujus quæestionis enodatio amplissimos calculos requirit, ipse analysin vitam pletaque tantum obiter indicasse contentus fuit; ob quem defectum plurimum adhuc dubium circa ipsius explicationem esse relíctum. Neque enim in his viribus vera æstus Maris cauían contineri antè certum esse potest, quàm absolutione cal-
§ 16. Effectus, quos vires cum Solis tum Lunae ante stabilitatem in Terram exercunt, ad duo genera sunt referendi: quorum alterum eos complectitur effectus quos Sol ac Luna in universam Terram tamquam unum corpus consideratam exercet; alterum vero eos, quos singulae Terrae partes ad viribus Solis ac Lunae patiuntur. Ad effectus prioris generis investigandos, omnis Terrae materia tamquam in unico puncto, centro scilicet gravitatis, collecta consideratur, ac tantum ex motu infinito quam viribus sollicitantibus motus. Terrae progressus in sua orbita determinari soleat. Ex hocque principio innotuit vix hanc Solis efficere, ut Terra circa Solem in orbita elliptica circumferatur, vim Lunae autem tam esse debilem, ut vix ac ne vix quidem ullam sensibilis perturbationem in motu Terrae annuo producere valeat. Contra autem docebitur, vim Lunae ad partes Terrae inter se commovendas ac Mare agitandum multo esse fortiorum vi Solis; ex quae plerique primo intuitu fuisse paradoxon videbatur, quodque vis Lunae in priori casu sepe cum vis Solis evanescebat, cum tamen easdem causae posteriori pulsum excusat vim Solis. Sednox, cum effectus utriusque generis diligentius evolveremus ac perpendicularium, satis dilucidè patebit, eos inter se maximè discrepant, atque a vi, quae in universam Terram minimum exerat effectum, maximam tamen agitacionem partium Terrae inter se oriit posse & vicissim.

§ 17. Ad illum autem harum virium effectum, qui in commotione partium Terrae inter se conflitit, dijudicandum, ante omnia probè notari oporet, si singulae Terrae partes viribus aequalibus & in directionibus inter se parallelis sollicitantur, eo caussa nullam omnino commotionem partium oriit, etiam si sint maximè fluidae nulloque vinculo invicem conexae, sed totum virium effectum in integro tantum corpore movendo consistat in iri; perinde ac si totum Terrae corpus vel in unico puncto effect conflatum, vel ex materiâ firmissimè inter se connexa consistat. Ex quo manifestum est partes Terrae saltem fluidas, quae viribus cedere queant, inter se commoveri non possè, nisi a viribus dissimilibus urgetur: atque hanc ob re non magnitudine virium partes Terrae sollicitantium, sed potius dissimilitudo, quam cum quantitate una directionis ratione inter se discrepant, eum effectum, quo stat partium mutuo per...
perturbetur, producit. Ita vis Solis, et si est maxima, tamen ob insignem difftantiam partes Terræ ferè aequaliter afficit, contrà vero vis Lunæ ob propinquitatem admodum inæqualiter: unde à Sole multo major agitatio Oceani resultat, quàm à Sole, quamvis ea vis, quà ad Solem tendit, insigniter major sit altera Lunam reficicente. Atque hoc pacto dubbium antè allatum funditus tollitur, hocque adhuc planius siet, si utriusque vis effectus ad calicum revocabimus.

§ 18. Ad inæqualitatem igitur virium quibus singulae Terræ partes vel à Sole vel à Luna sollicitantur, definieandam, ante omnia vim, quà univera Terra, si in suo centro gravitatis esset concentrata, afficeretur, determinari oportet, hæcque est ea ipsa vis, quà Terræ motum progressivum in sua orbita respicit & turbat; deinde disipiciendum est, quantum vires, quibus singulae Terræ partes urgentur, tamen ratione quantitatis quàm directionis ab illâ vis totali discrepant. Quôd si enim nulla deprehendatur differentia partes quoque singulae fitum suum relativum inter se retinebunt: at quod major erit differentia inter vires illas singulas partes sollicitantes, eò magis eò inter se commovebuntur, fitum relativum permutabunt. In hac autem investigatione, simul gravitatis naturalis, quà omnia corpora versus centrum Terræ tendunt, ratione est habenda; hæc enim vis in causa est, quod quantum vires Solis et Lunæ in diversis Terræ regionibus sint inæquales, æquilibrini tamæ status detur, in quo partes tandem singulae conquirencant, neque perpetuò inter se agitari pergent. Atque hanc ob rem singulae Terræ partes ab tribus viribus sollicitatae considerari debebunt, primum siclicet à propriâ gravitate, quà directè deorùm nituntur; tum verò à vi, quà ad Solem urgentur, ac tertio à vi versus Lunam directâ; hæcque tres vires, cujusmodi Phænomena quovis tempore in partibus Terræ fluidis gignant, erit investigandum.
§. 19. Quod igitur vim totalem, qua Terra vel à Sole vel à Lunâ urgetur, definiamus, consideramus primâm peripheriam circuli MN tanquam ex materiâ homogeneâ conflatam, cujus centro P verticaliter immineat Sol vel Luna in S, ita ut rectâ PS ad planum circuli MN sit perpendicularis. Sit circuli hujus radius PM = y, & distantia SP = x, ac vis sive Solis sive Lune absoluta = S. His positis elementum peripheriae MM pelletur ad S in direcione MS vi acceleratris \(\frac{S}{MS^2} = \frac{S}{xx+yy} \).

Posita cum vi gravitatis naturalis in superficie Terrae = i, tum etiam medium diametro Terrae = i: atque hac ob rem elementum MM versus S nitetur vi = \(\frac{S \times MM}{xx+yy} \). Resolvatur haec vis in binas laterales, quorum alterius directio cadat in MP, alterius vero sit parallela directioni PS; atque eundem erit vires omnes MP per totam peripheriam fer mutuo deletruer, alterarum vero medium directionem cadere in PS, ac vis hic omnibus æquivalentem iidem conjunctim sumtis fore aequalem. Traheatur autem elementum MM in direcione ipsi PS parallela vi = \(\frac{S \times MM}{(xx+yy)^{\frac{3}{2}}} \), unde posita ratione radii ad peripheriam = i: tota circuli MN peripheria, quae erit = x·y, urgetur seu quasi gravitabit versus S in ipsa directione PS vi = \(\frac{x\cdot y \times S}{(xx+yy)^{\frac{3}{2}}} \). Vis autem acceleratrix quâ haec peripheria circuli versus S sollicitabitur, probabit, si vis motrix inventa dividatur per massam movendam, quae est = x·y, eritque = \(\frac{S \times x}{(xx+yy)^{\frac{3}{2}}} \).

§. 20.
§. 20. Hoc premisso, contempemur superficiem sphæricam genitam conversione circuli \(AMB \) circa diametrum \(AB \); sitque semidiameter \(AC = BC = r \); erit ipsa superficies = \(2\pi r \). Jam attractur haec superficies ad Solem Lunamve in \(S \), existente distantia \(SC = a \); atque ad vim totalem seu conatum quo integra superficies ad \(S \) tendet, inveniendum, concipiatur annulus genitus conversione elementi \(Mm \) circa diametrum \(AB \), quae pro彭a per \(S \) transeat. Positius igitur \(SP = x \), \(PM = y \), erit per \(\S \) praec. conatus hujus annuli in directione \(PS = \frac{x y Mm}{(xx + yy)^{\frac{1}{2}}} \). At positum \(Pp = dx \), erit \(Mm = \frac{rdx}{y} \), &
\[xx + yy = 2ax - a + rr, \]
de annulus conatus versus \(S \) erit =
\[\frac{\pi Sx dx}{(2ax - a + rr)^{\frac{1}{2}}} \]
cujus integrale est =
\[C + \frac{\pi S (ax - a + rr)}{a^2 \sqrt{2ax - a + rr}}, \]
ex quo conatus portionis superficii sphæricae conversione arcus \(AM \) ortæ probit = \(\frac{\pi S r}{aa} + \frac{\pi S (ax - a + rr)}{a^2 \sqrt{2ax - a + rr}} \). Quare si ponatur \(SP = SB \) seu \(x = a + r \), emerget conatus totius superficii sphæricæ = \(\frac{\pi S r r}{a a} \); hincque cum ipsa superficies sit = \(2\pi r \), erit vis acceleratrix qua superficies sphæricæ actu versus \(S \) tendet = \(\frac{S}{aa} \), ideoque tanta, quanta foret, si tota superficies in centro \(C \) esset collecta.

§. 21. Cûm igitur superficies sphæricæ perinde ad Solem fives Lunam in \(S \) sollicitetur, ac si tota in ipso centro esset conflata, haec proprietas ad omnes superficiæ sphæricæ, ex quibus integra Sphaera composita concipi potest, patebit, dummodo singulae ha superficiæ ex materia homogenea consistent, quin quod eodem redit, ipsa Sphaera in illodens a centro distantis sit æquae densæ. Hanc ob rem ejusmodi Sphaera quaeque perinde ad \(S \) in directione \(PS \) urgebitur, ac si tota ipsius materia in centro \(C \) esset concentrata; haecque proprietas non solum in ejusmodi PLA
\[PP \]
C. A. P. 11. di Sphæras competit, quæ totae ex materiâ uniformi sunt confectæ, sed etiam ut jam indicavimus, in tales, quæ ex materiâ confant differtm, dummodo in æqualibus à centro distantibus, materia circumquaque sit homogeneitya seu latem ejusdem densitatis. Cûm igitur Terram sibi re- presentare liceat tanquam Sphæram, si non ex uniformi materiâ confabam, tamen sine ullo errore ita comparatam, ut in æqualibus circa centrum intervallis materiæ æquæ denfam includat, Terra quoque universalis tamen à Sole quam à Lunâ æquæ follicitabitur, ac si ejus materia in centro effet collecta. Quanquam enim nunc quidem accuratiffimus ab Ilustrissimâ Academia Regia institutis passim menfuris fatis est demonstratum, Terræ figuram ad polos esse compressam, tamen tantâ à perfectâ Sphæra aberratio, in aliis quidem negotiis maximi momenti, in hoc instituto tutò neglegi potest. Parique ratione, etiam si Terra in æqualibus à centro distantibus non sit æquæ denfa, tamen differentia certâ non est tanta, ut error sensibilis inde sit metuendus.

§ 22. Ut igitur vires inveniantur, quæ tendant ad centrum partium Terræ relativum immundum, díviendâ est vis acceleratrix, quâ centrum Terræ fives ad Solem fives ad Lunam urgetur: quâ cognitâ, si comperiantur omnès Terræ partes æqualibus viribus acceleratricibus & in directionibus parallelis ugeri, nulla omnino sitâs mutatio, nullaque proinde Maris agitatio orietur. Sed Terra in se spectata omnium partium centrum mutuum invariatum confervabit. Ât si vires, quibus singulae partes à Sole aut Lunâ urgerunt, discrepant à vi centrum Terræ afficien- te, tamen racione quantitatis quâm directionis, tum nisi firmissimè inter se sint connexae, in situo suo mutuo perturbari debentur. Hocque calu aquæ, quæ ob fluiditatem vi etiam minima cedunt, sensibilibs agitabantur, atque affluendo defluendoque alius locis elevabantur, aliis deprimentur. Cûm autem ìste motus, qui in singulis Terræ partibus generatur, à differenter inter vires centrum Terræ & ipsas partes follicitantes proificaturs, propriâ vis, quæque particular agitatur, innotescit, si à vi acceleratrice illam particular follicitante auferatur vis acceleratrix, quam centrum Terræ patitur: hocque subtrahit ita institutum, ut cuique particular praeter illum actu eam follicitantem aliam vis æqualis illi, quam centrum perpetitur, in directione contraria applicata concipientur: tum enim vis quæ ex compositione harum duas oritur, erit vera vis particular illam de loco suo deflecens.

§ 23. Confentanea est haec reduc{io principii Mechanicis, quibus statuitur motum relativum in systemate quantunque corporum & à quibusque viribus follicitatorum manere invariatum, si non ìcolim toti systemati motus æquabilis in directum finium imprimitur, sed etiam singulis partibus vires æquales quorum directiones sint inter se parallelas, applicentur. Nostro igitur calu motus intestinus partium Terræ: non tur-
habitur, si singulis particulis vires æquales in directionibus parallelis applicemus ut fecimus: quod autem istæ vires æquales sint illi, quæ tota Terra seu centrum folicitatur, & contrariae, hoc ipso Terræ motum curvilineum & inæqualem, quippe qui ab istis viribus oritur, ad imaginem. Quare si insuper toti Terræ motum æqualem & contrarium illi, quæ actu fertur, imprecium concipiamus, obtinebimus totam Terram quiecentem, atque etiam nunc partes perinde agitabuntur & inter se commovebuntur, ac si nullas istiusmodi mutationes intullissimus. Quilibet autem facilè percipiet, quantum ex hac reductione subsidium aestaquamur; multò enim facilior erit mutationes, quàe in ipsâ Terrâ accidunt, percipere atque explicare, si centrum Terræ constitutur immotum, quàm si totalis motus singularum partium motibus effet permixtus. Hanc ob rem istà reductione quà centrum Terræ in quietem redigitur, perpetuò utemur, quà Phæomena æquàs Maris, prouti in Terrâ immotâ sentiri debent, eliciamus, quippe qui est causâ naturalis, ad quem omnes observationes sunt accommodatae, omnes vero theoriam accommodari debent.

§. 14. Consipiatur nunc Terra tota tanquam globus ADBE urgeri ad Solem Lunamve in S existentem, cujus vis absoluta seu ea, quàm in distantia à centro suo S semidiametro Terræ æquali exercit, sit = S, distantia verò centri Terræ C ab S seu C S ponatur = a; eritque vis acceleratrix, quà tota Terra tanquam in C collecta follicitatur in directione C S, = S \frac{a}{a}. Con templenum jam particulam Terræ quamcunque M cujus situs ita sit definitus, ut sit CP = x & PM = y, exsistent M P normali ad C S; hinc igitur habebitur SP = a - x & S M = \sqrt{(a-x)^2 + y^2}. Vis igitur acceleratrix, quà partícula M versus S pelletur, erit \frac{a}{(a-x)^2 + y^2}; à qua cum aferri debet vis, quà tota Terra versus S nititur, consipienda est particularis M applicata vis = \frac{s}{aa} in directione MN ipsi C S parallela & opposita; quàe due vires particulam M æquàs afficiant ac si universa Terra quiesceret vel uniformiter in directione moveretur, qui causâ ab il-
CAP. Io non differt. Ex his igitur ambabus viribus conatus innotescet, quò particula M vi ad S directa de loco suo recedere annitetur; ad ipsum autem motum definitiendum insuper vis gravitatis erit respicienda: quiæ haec particula non est libera, sed quaquaversus materiæ terrestris circumdata, in vestigari oportet, quantum ista materia effectum viribus follicitantibus concedat.

§ 25. Quoniam autem in hoc capite nobis nondum est possum in ipsum effectum ab his viribus oriuendum inquirere, sed tantum conatum evolvere atque explorare; diligentius perpendendum, cujusmodi vires ex combinatione harum potentiarum partículam M follicitantium refultent. Hunc in finem revolvatur vis MS in duas laterales, quarum alterius directio parallelæ sit ipsi CS, altera verò in MP cadat: ex quo reperietur vis illa partículam M in directione MQ urgens

$$s \frac{a-x}{(a-x)^2 + y^2} \frac{s}{2};$$

altera verò vis in directione MP trahens

$$s \frac{y}{((a-x)^2 + y^2)^{\frac{1}{2}}};$$

Cùm autem particula M insuper trahatur in directione MN vi $= \frac{a}{s}$, tres istæ vires à Sole Lunâve in S existente reducuntur ad duas, quarum altera in directione MQ urgens erit $=\frac{s}{((a-x)^2 + y^2)^{\frac{1}{2}}}$, altera verò directionem habens $MP = \frac{s}{y}$. Quare fi recta MQ & MP his viribus proportionales capiantur, & rectangulum $MQOP$ compleatur, exprimat diagonalis MO tamen directionem quam quantitatem vis ex tribus præcedentibus ortæ: erit autem anguli OMP tangens $= \frac{a-x}{y} - \frac{(a-x)^2 + y^2}{a^2 y}$, quod cognito sit fiat ut

MP ad MO ita $\frac{s}{((a-x)^2 + y^2)^{\frac{1}{2}}}$ ad quartam, haec ipsa quarta proportionalis erit vis partículam M in directione MO follicitans, quæ oritur à vi ad S tendente.

§ 26. Ut autem istæ vires faciliùs cum gravitate naturali, cujus directio est MC, conjungi queant, revolvatur ea in binas, quarum altera in ipsum directionem MC cadat, altera verò directio sit MR normalis.
malis ad \(MC \). Ad hoc commodissime praestandum, resolvatur vis \(MS \) primum in duas, quarum altera ut antè directionem habeat ipsi \(CS \) parallela, alterius verò directio in ipsam \(MC \) incidat. Cùm igitur sit \(MC = \sqrt{(x^2+y^2)} \) erit prior vis = \(\frac{Sa}{(a-x)^2+y^2} \), posterior verò = \(\frac{Sa}{(a-x)^2+y^2} \). quà vis gravitatis augebitur. At si à priori auferatur vis = \(\frac{Sa}{a^2} \), remanebit vis particulam \(M \) in directione \(MQ \) follicitans = \(\frac{Sa}{(a-x)^2+y^2} \). Jam ex \(Q \) in \(CM \) productam demittatur perpendicular \(QV \), eritque ob fìmilitudinem triangulorum \(QVM \) & \(MFC \) vis gravitati contraria secundum directionem \(MV \) agens ex \(MQ \) orta = \(\frac{Sa}{(a-x)^2+y^2} \sqrt{(x^2+y^2)} \). Præterea verò eadem particula \(M \) in directione \(MR \) ad \(MC \) normali follicitabitur vi = \(\frac{Sy}{(a-x)^2+y^2} \sqrt{(x^2+y^2)} \). §. 27. Tamen siæ expressiones tantoperè sint compositae, ut parum ex ipsis ad usum deduci posse videatur, tamen si confideremus distantiam Lunæ à Terræ, multò magis autem distantiam Solis, vehementer excedere quantitatem Terræ, ac propterea quantitates \(x \) & \(y \) respectu quantitatis \(a \) exiguas admodum esse; per approximationem fatis commodas formulas ex ipsis derivare licebit. Cùm enim sit proximè \(\frac{x}{(a-x)^2+y^2} = \alpha = \frac{1}{a^2} + \frac{3(a-x)}{2 a^2} + \frac{15(2 a x-x y-y y)}{2 a^4} \), loco \(\frac{1}{(a-x)^2+y^2} \) fatis tuto substituti poterit \(\frac{1}{a^2} + \frac{3 x}{a^2} + \frac{3(4 x x-y y)}{2 a^2} \). Ex his autem obteinebitur vis, quà particula \(M \) præter gravitatem à vi Solis f phủe Lunæ in \(S \) existentis ad centrum Terræ \(C \) in directione \(MC \) urgetur, \(\frac{S(x y-x x)}{a x \sqrt{(x^2+y^2)}} + \frac{S x(x y-x x)}{2 a \sqrt{(x^2+y^2)}} \). Præterea autem eadem particula \(M \) follicitabitur in directione \(MR \) ad \(MC \) normali, vi = \(\frac{3 S y x}{a x \sqrt{(x^2+y^2)}} + \frac{3 S y(4 x x+y y)}{2 a x \sqrt{(x^2+y^2)}} = \frac{3 S y}{a \sqrt{(x^2+y^2)}} \left(x + \frac{4 x x-y y}{2 a} \right) \). Atque cùm in his formulis termini primi posterioris multis vicibus excedant, rem crassius inspiciendo, particula \(M \) à vi Solis Lunæ secundum \(MC \) urgetur vi = \(\frac{S(x y-x x)}{a x \sqrt{(x^2+y^2)}} \), in directione verò \(MR \) vi = \(\frac{3 S y x}{a x \sqrt{(x^2+y^2)}} \). §. 28.
§ 28. Ex his igitur postremis formulis intelligitur ab actione Solis sive Lunæ in S existentis gravitatem particulæ \(M \) augeri si ejus situs respectu rectæ \(S C \) ita fuerit comparatus, ut fit \(yy > 2 \times x \) hoc eft tangens anguli \(MCP > \sqrt{2} \) positio finu toto = 1, contra verò gravitatem diminuit, si fuerit \(yy < 2 \times x \).

Quare cujus angulus cujus tangens eft = \(\sqrt{2} \) contineat \(54^\circ, 45' \) circumter, si concipiatur circulus Terræ maximus quincunque \(ADBE \), cujus planum per punctum \(S \) transeat, in eoque ducantur rectæ \(FCI \) & \(GCH \), quæ cujus rectæ \(SAB \) angulos constituant \(54^\circ, 45' \); tum omnes Terræ particulæ in ipsis \(FCH \) & \(GCI \) sitæ gravitatis naturalis augmentum accipient, reliqua verò particulæ in ipsis \(FCG \) & \(HCI \) posita decrementum gravitatis patientur. Atque hinc, quacumque Terræ particulæ propósitæ, definiri poterit, quantum ejus gravitas à Sole Lunāve in \(S \) existente vel augeatur vel diminuatur. Altera verò vis, qua particula \(M \) in direcțione horizontali \(MR \) urgeat, (vide figuram ad pag. 208.) affirmativa erit, in eamque plagam, quæ in figura representatur, verget, si quantitates \(x \) & \(y \) ambæ fuerint vel affirmativa vel negativa: contrariumque eveniet, si earum altera sit affirmativa, altera negativa. Quare si particula \(M \) sita fuerit vel in quadrante \(ACD \) vel \(ACE \), tum vis horizontalis ad rectam \(CA \) tendet; contrà verò haec vis ad radium \(CB \) dirigetur, si particula \(M \) sit vel in quadrante \(BCD \) vel \(BCE \) constiuita. Ex quibus perspicuitur effectus Solis vel Lunæ in ambo hemisphæria, superioris ullicet \(DAE \) & inferius \(DBE \), inter le esse férè similis; quæ similitudo quoque in ipso æquó Maris obseruatur.

§ 29. Ponamus nunc particulam \(M \) in ipsâ Terræ superficie esse constitutam, eritque \(\sqrt{(x^2 + y^2)} = 1 \) ob Terræ semidiametrum = 1. Quare si particula \(M \) fuerit positâ in \(M \), existente anguli \(ACM \) finu = \(y \) & cofinu = \(x \), ejus gravitas naturalis acceleratrix à Sole Lunāve in \(S \) augebitur \(vi = \frac{S(y^2 - 2xx)}{a} \), secundum horizontem autem in direcțione
Fluxus ac Refluxus Maxis. 301

Hinc maxima gravitatis diminutio, qua quidem oriri poterit, erit \(\frac{x}{7000000} \), maximum verò incrementum = \(\frac{1}{7000000} \); unde numeros oscillationum ejusdem penduli eodem tempore editarum, illo casu erit ut \(\sqrt{\frac{1}{7000000}} \), hoc verò casu ut \(\sqrt{\frac{1}{7000000}} \), \(\frac{x}{7000000} \) seu \(x \rightarrow \frac{1}{7000000} \). Numeri ergo oscillationum ab eodem pendulo eodem tempore absolutarum, cum gravitas maximè est diminuta.

Tom. III.
CAPUT TERTIUM

De Figura, quam vires cum Solis, tum Lunae, Terrae inducere conantur.

S. 31. Cum igitur in capite praecedente vires tam a Sole quam a Lunae ordinandas determinaverimus, quibus singulae Terrae particulae ad situm relativum dum inter se tum respet-tem centri, quod in hoc negotio tanquam quiescens consideratur, immutandum sollicitantur: ordo requirerest, ut jam in ipsum motum, quo singulae particulae inter se commoveri debeant, inquireremus. Verum cum hanc investigatio sit altioris indaginis, atque opus habeat principii mechanicis ad motum partium inter se respicientibus, quals tit in usu quam adhuc reperirentur, in hoc capite rem secundam principia statica ulterioris persequi pereamus, ac figuram determineremus, quam vires Solis & Lunae cum seorsim tum etiam conjunctim inducere conantur. Hunc in finem Terram undeque materiâ fluidâ feb aequâ circitam contemplabimur, quod sollicitationibus obedient ac figuram is convenientem aequi induere queat. In hoc silicet negotio Solem & Lunam pariter ac ipsam Terram quiescentes concipimus, ita ut inter se perpetuâ eundem situm relativum confervent, quo facto Terrae ab actionibus Solis ac Lunae figura permanens mox induetur, quam tandem retinebit, quoad item situs relativus duret. Perpiciacum autem est cognitioenm hujus figurae magno futuram esse adjumento ad eujusdem figurae transmutationem definiendam: fi tam Soli quam Lunae motus tribuat.

S. 32. Consideremus igitur primum Terram in statu suo naturali, in quem se sola vi gravitatis compositur: in quo, cum habitura sit figuram sphæricam, representat circulus ADBE seu potius globus ejus rotatione ortus Terram, quam praeterea undique aquâ circumsuantem ponimus. Veretur jam Sol vel Luna in S, a quibus vi cum gravitas naturalis tam in A quam in B diminuat, in D verò & E augeat, manifestum est Terram seu potius aquam illi circumfluam elevatum intr in A & B, contrà verò in D & E deprimat, idque eausque, quod sollicitationes a Soli le Lunâve in S oriundae cum vi gravitatis ad equilibrium fuerint redactae.
Sit imque curva a d b e ea figura, quae circa axem a b rotata generat Terrae formam, quam ad vi ad S directa tandem recipiet, atque cum aequilibrio constatutus, necesser est ut directio media omnium sollicitationum, quibus singulae Terrae partitae in supremo superficiali sitae urgentur, ad ipsum superficiali sit normalis. Quare si particular quamcunque M aequans, ea primum ad gravitatem naturali in directione MC urgetur deorsum, idque vi, quam constanter ponamur = i, quippe quae est ipsa gravitas in superficie Terrae, e quod elevatio vel depressio partitae distantiam ejus ad centro Terrae, qua vario gravitatis pendet, sensitibiliter non immutet. Deinde verò eadem particular M ad vi in S existente sollicitatur duplici vi, quorum alterius directio in ipsam MC incidit, alterius verò in MR normali ad MC. Quocirca trium harum virium medium directionem incidere oportet in rectam MN normali ad curvam a MD, quo ipso natura hujus curvae determinabitur.

§ 33. Dubium hic falsi posset, quod cum ad prensus infinitum omnium virium, quibus singulae partitae sollicitatur, ratio habendi debeat, eam hic negligamus, quæ ad vi centrifuga motus Terrae diurni oritur, quippe quæ non solum non est infinita parva, sed multis vicibus major, quam vires quae vel a Sole vel Lunæ resultant: sed quia hac vis constante produce effectum, Terræ sollicitum figuram spheroïdicam ad polos compressam, mutationem, quæ in Fluxu ac Refluxu Maris observatur, sensitibiliter afficiere nequit. Deinde quamvis hic figuram Terræ sphæricam ponamus, tamen in aberrationem praepicu a hanc figuram tam a Sole quam Lunæ oriundam inquirimus: manifestum autem est, quantum figura aequa ob vires Solis Lunæ æ sphericæ recedat, tantumdem aequa figuram admisso motu diurno Terræ a figurâ spheroïdica esse decrepaturam. Quâpropter in hoc negotio sufficere potest, si, Terræ instar sphæriæ perfectæ consideratæ, definiamus quantam differentiam
Inquisitio Physica in causam

C. III.

...tiam in aquæ figurâ vires cùm Solis tum Lunæ producant: haec enim determinatâ, si Terræ motus vertiginis refittatur, perpicuum erit to-
tam figuram sub æquatore intumefcere, sub polis autem subfidecre; ita
tamen ut ubique eadem vel elevatio vel depressio aquæ à viribus Solis
Lunæve maneat. Nämque si ulla etiam varietas in æstu Maris à motu
vertiginis Terræ proficicatur, ea calculo monstrante quidquid major esse
potest parte quâssis totalis; tantilla autem differentia notari non me-
retur, neque ob eam causam operæ pretium est tam complicatos & ab-
strusos calculos inire, ad quos perveniretur, si Terræ figura naturalis à
sphaericâ diversa poneretur, atque insuper vis centrifuga à motu vertigi-
nis Terræ in computum duceretur.

$. 34. Ad curvam igitur a Mdb, cui ea quæ ex alterâ parte axis
a b simili est & æqualis, determinandam, ponatur vis aboluta five Sol-
ris five Lunæ in S existentis = S, distantia C S = a, ac ducta semidir-
nata: MP vocetur CP=x, & PM=y. Ex precedenti igitur capite
habebitur vis, quâ punctum M vel à Sole vel Lunâ versus C urgebetur =
$S\sqrt{x+y}$, insuper autem idem punctum M sollicitabitur in direc-
tione MR normali ad MC vi=$\frac{3Sy}{a1\sqrt{x+y}}+\frac{3Sx(4x-y)}{2a\sqrt{x+y}}$. Præter
has vertò vires punctum M gravitate naturali deorum pellitur vi = i se-
cundum directionem MC, uta punctum M ab omnibus his viribus
conjunctis in directione MC deorum urgebatur vi = 1 + $\frac{S(y-2x)}{a1\sqrt{x+y}}$ ubi
ob i sequens terminus tuto neglegi potest, & in directione MR vi=
$\frac{3Sy}{a1\sqrt{x+y}}+\frac{3Sx(4x-y)}{2a\sqrt{x+y}}$; quarum duarum virium fi MN pona-
tur media directio, probibit per regulas compositionis motus anguli CMN
tangens = $\frac{3Sy(x+y)}{2a\sqrt{(x+y)+(x+y)}} + \frac{3Sx(4x-y)}{2a\sqrt{(x+y)+(x+y)}}$, quæ
divisione actu institutâ, ille
terminis neglegitâs in quorum denominatoribus a plus quæ quattuor obtinet
dimensiones, abit in banc expressionem $\frac{3Sy}{a1\sqrt{x+y}}+\frac{3Sx(4x-y)}{2a\sqrt{x+y}}$, quæ
est ea ipsa formula, quæ vis MR exprimebatur. Quocirca angulus
CMN prostrus non pendet ab æquale minutâe gravitate, sed tantum à
vi horizontali singulis particularis in Terræ superficie sitis impressâ.

$. 35. Quoniam verò hæc ipsâ media directio MN debet ef-
se ad curvam a M d in puncto M normalis, erit subnormalis P N =$
$\frac{y dy}{d x}$ & CN=$\frac{x dx+y dy}{d x}$. Cum igitur fit anguli MNP tangens=$\frac{-dx}{dy}$
& anguli MCP tangens=$\frac{2}{x}$, erit horum angulorum differentiae, hoc
eft anguli CMN tangens=$\frac{y dy-x dx}{2dx+y dy}$, quæ superiori expressioni, quà
hac
S. 36. Cum autem soliditas sphæroidis, quod generatur ex conjunctione curvae $a b$ circa axem $a b$, æqualis esse debeat solidati Sphærae radio $C A = 1$ descriptæ, hinc constans quantitas c quæ per integrationem est ingressa, definietur: id quod commodissimè praebet habere, si æque sphæroidis semissis, superior ficit versus S directa, atque inferior secundum invenitur. Quoniam igitur pro semissi superiori est $C P = x = x u = c u + \frac{\frac{3 S c e u^2}{a^2} + \frac{S e u (5 u u - 3)}{a^2}}{2 a^2}$, erit $y = y d u$, cui soliditas genita

conversione frattæ $d G P M$ est proportionalis, $= c : u = \frac{c s u v}{2} + \frac{S c e a}{3}$. Q q 3
C A P. III.

\[
\frac{3\text{Sect.}^3}{2\alpha^4} - \frac{3\text{Sect.}^2}{2\alpha^4} + \frac{21\text{Sect.}}{4\alpha^4} - \frac{5\text{Sect.}}{2\alpha^4} \quad \text{Positoigitur } u = \frac{1}{\alpha}, \text{ prohibit superioris semissis ut } \frac{3}{2}\alpha + \frac{3\text{Sect.}}{2\alpha^4} - \frac{5\text{Sect.}}{2\alpha^4}. \text{ Simili modo cùm pro inferiori semissi sit } c = e + \frac{3\text{Sect.}^2}{2\alpha^4} - \frac{5\text{Sect.}^2}{2\alpha^4}. \text{ Erit ejus soliditas ut } \frac{3}{2}\alpha + \frac{3\text{Sect.}}{2\alpha^4} - \frac{5\text{Sect.}}{2\alpha^4}; \text{ ex quibus totius sphaeroidis soliditas erit ut } \frac{3}{2}\alpha + \frac{3\text{Sect.}}{2\alpha^4} - \frac{5\text{Sect.}}{2\alpha^4}.
\]

Quare cùm Sphaeræ radio = x descripsit soliditas pari modo definita, fit ut

\[
\frac{x}{2}\alpha + \frac{3\text{Sect.}}{2\alpha^4} - \frac{5\text{Sect.}}{2\alpha^4}, \text{ hincque } e = x - \frac{S}{2\alpha^4}. \text{ Quamobrem pro curvâ quaestitâ habebitur, hoc valore loco } e \text{ substituto, icta æquatio } x = x + \frac{S(5\text{Sect.}^2 - 1)}{2\alpha^4} + \frac{S\text{Sect.}}{2\alpha^4}; \text{ ex quâ natura istius curvæ luculenter cognoscitur.}
\]

§ 37. Hinc igitur perspicitur à Sole vel Lunâ in S existente aquam, cujus superficies antè erat in A, attollit in a, ita ut sit elevatio A a = \frac{S}{\alpha^4} + \frac{S}{\alpha^4}; \text{ atque in regione oppositâ B, aquam pariter elevari per spatium } B b = \frac{S}{\alpha^4} - \frac{S}{\alpha^4}; \text{ unde patet aquas in A & B, ad eandem ferè altitudinem elevarii, cum excessus superioris elevationis super inferiorem fit tantum } \frac{2S}{\alpha^4}, \text{ quod discernèm respecùm totius elevationis vix est sensibile.}

Contrà verò in regionibus lateralibus D & E, aqua circunquaque æqualitatem deprimetur, & quidem per intervallum D d = E e = \frac{S}{\alpha^4}; \text{ ex quo icta depreffio duplo minor est, quàm elevatio quæ in A & B accidit. In punctis præterea F, G, H & I, quæ à cardinalibus A & B distant angulo 54° 45', quippe pro quo est } \frac{3}{2} u u - 1 = 0, \text{ neque elevabitur aqua neque deprimetur, sed naturalem tenebit altitudinem. In loco autem Terræ quocumque } M \text{ cognoscatur aquæ vel elevatio vel depressio ex angulo } ACM, \text{ cujus cosinus } u \text{ est sinus altitudinis sub quà Sol vel Luna in S existens super horizonte conspicitur ab observatore in } M \text{ constituto; hoc enim in loco aquæ elevata erit super natualem altitudinem intervallo } \frac{S(3\text{Sect.}^2 - 1)}{2\alpha^4} + \frac{S\text{Sect.}}{2\alpha^4}; \text{ quæ exprimant si fit negativa, Maris depreffionem indicat. Hic autem annotare quæ est opus, quod si punctum } S \text{ sub horizonte lateat, tum sinus depreffionis maneat quidem } u, \text{ sed negativè accipi debeat.}

§ 38. Deñiniamus igitur primùm cùm elevationem tum depreffionem, quæ à solâ vi Solis ubique terrarum produci deberet, si, uti ponimus, omnìa in statu æquilibrìi essent constituita. Quoniam itaque est } S = 227512 \text{ atque } a = 20620 \text{ semid. Terrae, si una Terræ semidiameter assumatur 19695539.}
F I L U X U S A C R E P L U X U S M A R I S.

19695539 pedum Paris. erit \(\frac{S}{a} = 0.5072 \) ped. seu paullum excedet semipedem: valor autem \(\frac{S}{a} \) omnino erit quantitas evanescens & imperceptibilis. Hanc ob rem in regionibus sub Sole verticaliter situs, quae habeant Solem vel in Zenith vel Nadir, aqua ultra altitudinem naturalis attolletur ad semipedem cum pollucis parte decimâ circiter; depressio autem maxima cadet in loco, quae Solem in horizonte compresentur, ubi aqua ad quadrantem pedis tantum deprimetur, ex quo totum discrimen, quod à Sole in altitudine aequalis naturalis oritur, ad tres quartas pedis partes circiter asfurget. Iste Solis effectus autem distantiae tantum mediocri Solis à Terrâ est tribuendus: quod si enim Sol veretur vel in apogæo, vel perigæo, ejus effectus vel diminui vel augeri debet in ratione reciproci triplicatâ distantiarum Solis à Terrâ, quia pendet à valore \(\frac{S}{a} \). Cùm igitur orbitæ Terræ excentricitas sit = \(\frac{163}{1000} \), erit intervallum \(\frac{Aa}{a} \) vel \(\frac{Bb}{a} \), dum Sol in perigæo veretur, \(= 0.5332 \) ped. si autem Sol in apogæo sit constatutus, \(= 0.4825 \) pedum; quorum differentia ad vicefuisse pedis partem ascendit: valor autem medius est \(= 0.5072 \), quem pro mediocri distantia Solis à Terrâ invenimus.

§ 39. Problema hoc, quod hucusque dedimus solutionem, quodque maximi est momenti ad effectus cuius Solis tum Lunæ in Mari elevando & deprimendo debeat, Newtonus ne attigit quidem, sed eiam viam fecit, non solum indirectam, sed etiam erroneam, inventa Mare à soli vi Solis ad altitudinem duorum feret pedum elevari debeo; cùm tam tandem vis Solis absolutam quam tandem distantiam à Terræ assumptet, quibus nos fumus ufi. Conclusit autem hunc enormem effaciendum ex comparatione vis Solis seu valoris \(\frac{S}{a} \), cum vi Terræ centrifugæ à motu diurno ortâ, qua Terra sub aequatore extenditur ac crassior reductur quam sub polis; atque assumit elevationem aquae à vi Solis ortam tandem tenere debere rationem ad incrementum Terræ sub aequatore à vi centrifugæ factum, quam teneant vis Solis ad vim centrifugam. Sed praeterea quod hoc ratiocinium minus infirmito superstructure fundamento, nostra via directâ, quæ sumus ufi, statim evertitur: ex idem enim rei naturâ, nullis precariis assumptis principiis, elevationem aquarum à vi Solis oriundam directe & luculentem determinavimus; uci si illum etiam dubium ob integrationem per approximationes tantum institutum refaret, id max toletur, cum infra idem problema alia methodo profus diversâ sumus resoluturi, congruentemque solutionem exhibetur.

§ 40. Quamvis autem ita Solis effectus in Mari tam elevando quam deprimendo non adet certus & planus esse videatur ob parallaxin Solis,
Inquisitio Physca in Causam

Capp. III. Solis, quam 10° assumimus, nondum accuratissime definitam; æquam distantiam Solis ad Terræ a, quam aestimatio vis absolutæ S, pendet tamem si rem attentius perpendamus, complemum expressione $\frac{S}{a}$ perpetuo eundem retinere valorem, quæcumque Soli parallaxis tribuatum mutatæ enim parallaxi, valor litteræ S praecisè in eadem ratione, in quà cubus distantiae a, mutabilitur. Per leges enim motus firmissime stabilitas patebit quantitatem $\frac{S}{a}$ ad æst pro tempore periodico Terræ circa Solem determinari, cujus quantitas accuratissime est definita. Quod ut clarissim appareat, consideramus planetam quemcunque circa Solem in orbitâ ellipticâ revolventem, cujus semiaxis transversus seu distantia à Soli media sit a, vis autem Solis absoluta $= S$, erit tempus periodicum semper ut $\sqrt{\frac{a}{S}}$; quod siigitur tempus periodicum sit t, erit $t \propto \sqrt[3]{\frac{a}{S}}$ uti $\frac{1}{t}$.

Ad valorem autem fractionis $\frac{S}{a}$ absolutè inveniendum, exprimatur a in semidiametris Terræ, atque in minutis secundus dato tempore periodicum t, erit femper $t = \frac{40644\frac{3}{4}}{\sqrt{S}}$; ex quo prodit $\frac{S}{a} = \frac{40644\frac{3}{4} \times 1064\frac{3}{4}}{t^3}$, posita unitate cùm pro gravitate naturali, tum pro unâ Terræ semidiametro. At si tempus Terræ periodicum seu annus sidereus in minutis secundus exponatur, $t = 31558164$, atque $\frac{S}{a} = 0,50723$ ped. posita semidiametro Terræ per observationes exactissimæ 19695539 ped. Parif. Reg. omnino uti ante invenimus.

§ 41. Similis modo ex superiori æquatione elevatio aqüæ à vi Lunæ orinunda determinabatur; posita enim vis Lunæ absoluta $= L$, ponit oportet $S = L$, ejusque valor proximè erit $= \frac{4}{3}$, quem à Newtono pertuum tantisper retinebimus, quod verus valor per alia Phænomena accuratissime definitur. Quoniam itaque Lunæ à Terræ mediocris distantia est $= 60\frac{1}{2}$ semid. Terræ, erit $\frac{S}{a} = L \times 88,94$ ped. $= 2,223$ ped. $\propto L \times 1,47 = 0,937$ ped. Cùm autem Lunæ excentricitas sit quasi $\frac{10}{15}$; erit dum Luna in perigæo versatur $\frac{S}{a} = L \times 104,44$ ped. $= 2,611$ ped. $\propto L \times 1,82 = 0,045$. pedum. At si Luna fuerit in apogæo, probabit $\frac{S}{a} = L \times 75,74$ ped. $= 1,893$ ped. $\propto L \times 1,19 = 0,030$ pedum. Ex his igitur si Luna à Terræ mediocris distantia sit, erit aqüae elevatio $Aa = L \times 90,41$ ped. $= 2,260$ ped. elevatio autem $Bb = L \times 87,47$ ped. $= 2,187$ pedum: ac depressio ad latera $Dd = Ee = L \times 44,47$ pedum $= 1,112$ ped. Pro perigæo verò Lunæ fiet $Aa = L \times 106,26$ ped. $= 2,656$ pedum.
Fluxus ac refluxus maris. 309
dum; $Bb = L. 102$, 62 ped. = 2, 565 pedum; atque $Dd = Ee = Cap$. $L. 52,22 = 1$, 305 pedum. Pro apogeo denique Lunæ habebitur $Aa = III$. $L. 76,93$ ped. = 1, 923 pedum, & $Bb = L. 74,55$ ped. = 1, 864 pedum, atque $Dd = Ee = L. 37,87$ ped. = 0, 947 pedum.

§ 47. Tamen si autem hac methodo non difficulter tam elevatio Maris quàm depressio quæ vel à Sole vel Lunâ seorsum gignitur, fit determinata, si quidem omnia ad statum quietis redacta concipientur; tamen nihilum foret difficile ejusdem methodi ope easdem res definire, si Sol & Luna conjunctim agant. Quamobrem aliam methodum exponamus, cujus usus pro utroque casu aequè pateat; quæ cùm à priori penitus sit diversa, simul ea, quæ jam sunt eruta atque à Newtonianis diversa deprehensa, maximè confirmabit. Petita vero est hæc altera methodus ex eæ æquilibrii proprietate, quiæ requiritur, ut omnes columnæ aqueæ à superficie Terræ ad centrum pertingentes sint inter eæ aequipondanteres. Existentes ignis vel Sole vel Lunæ in S, cujus vis aboluta ponatur $= S$, & distantia $SC = a$, fit AC columna aqueæ à superficie Terræ A ad centrum C utque pertingens, quæ altitude AC fit $= h$. Ponatur anguli ACS cosinus $= u$, qui simul erit sinus altitudinis sub quæ punctum S à spectatore in A constituto super horizonte elevatum concipitur; sumaturque intervallum quodcunque $CM = x$, & consideretur totius columnæ elementum $Mm = dx$. Hoc igitur elementum primò à gravitate deorsum versus C urgebitur, cujus effectus, cùm intra Terram pro varis distantibus non fatis constet, ponatur dignitati cuiusque distantiarum à centro, putà ipsi $x = proportionalis: mox enim planum sìt exponentem n nil omnino determinationes esse turbaturum, Urgebitur er-

Tom. III,

Rr
§ 43. Praeterea autem elementum $Mm = dz$ à vi S sollicitabitur dupli modo; altero deorsum in directione MC, altero in directione ad illam MC normali; quae posterior vis, cum pondus columnae nequaquam affiliat, tum neglectetur, solaque prior considerabitur. Demisso autem $ex M$ in CS perpendiculo MP, postulique $CP = x & P M = y$, erit $V (x^2 + y^2) = z$, & $x = uy$ atque $y = zV (1 - uy)$. At ex § 27. vis, quà particula Mm deorsum sollicitatur, est $\frac{S(y^3 - 2xy^2 + 3Sx(3y^2 - xy))}{2aV (x^2 + y^2)} + \frac{3Sax^2 (3 - uy)}{2a}$. Quae expressio per dz multiplicata,

\[\text{tumque integrata facto } z = h, \text{ præbebit totius columnae } AC \text{ nifum à vi } S \text{ orinundum } = \frac{Sh^3 (1 - 3uy)}{2a} + \frac{S1u(3 - 5uy)}{2a}. \text{ Quocircum totus columnae } AC \text{ nifum deorsum tendens erit } = \frac{bn + 1}{n + 1} + \frac{Sh^3 (1 - 3uy)}{2a} + \frac{Shu(3 - 5uy)}{2a}, \]

qui cum in omnibus columnis debeat esse idem, aequabitur conatus, quo columna æqualis semidiametro Terræ T in latu naturali à solâ gravitatem deorsum nititur; quà vis est $\frac{y}{n + 1}$. Hinc igitur sequens emergit æquatio, $z = hn + 1 + \frac{(n + 1)Sh^3 (1 - 3uy)}{2a} + \frac{(n + 1)Shu(3 - 5uy)}{2a}$, ex quâ elicitur $b = 1 + \frac{S(3uy - 1)}{2a} + \frac{Su(5uy - z)}{2a}$, quæ est ea ipsa expressio, quam supra § 36. altera methodo invenimus.

§ 44.
§. 44. Agant nunc vires ambre ad Solem Lunamque discretae conjunctim; ac primò quidem designet Solis viam absolutam, a ejus distantiam ad Terram, & u sinum anguli, quo Sol suprahorizontem est elevatus. Deinde fit summum modo pro Luna L ejus vis absoluta, b ejus distantia a Terrae, atque v sinus altitudinis Lunae super horizonte. Ex his igitur columna aquae \(AC = k \) tam vi proprie gravitatis quam a viribus Solis ac Lunae conjunctim in centrum \(C \) urgetur \(v = \frac{h u + i}{n + 1} + \frac{S h^2 (1 - 3 u u)}{2 a^1} + \frac{L h^2 (1 - 3 v v)}{2 b^1} + \frac{S h^2 (3 - 5 u u)}{2 a^4} + \frac{L h^1 (3 - 5 v v)}{2 b^4} \), quae æqualis esse debetur \(v = \frac{1}{n + 1} \). Ex hac autem aequatione resultat \(h = x + \frac{S (3 u u - 1)}{2 a^1} + \frac{L (3 v v - 1)}{2 b^1} + \frac{S u (3 u u - 3)}{2 a^4} + \frac{L v (3 v v - 3)}{2 b^4} \). Quocirca aqua in \(A \) supra situm naturalem, quem a sola gravitate sollicitata obtineret, a viribus Solis ac Lunae adjunctis sollicitantibus, elevabitur per inter-vallum \(= \frac{S (3 u u - 1)}{2 a^1} + \frac{L (3 v v - 1)}{2 b^1} + \frac{S u (3 u u - 3)}{2 a^4} + \frac{L v (3 v v - 3)}{2 b^4} \), ex quâ expresse aequitatem aquae vel elevationem vel depressionem ubique terrarum cognoscetur.

§. 45. Hanc posterioriorem viam secuti, non solum actiones Solis ac Lunae commode conjungere potuius, sed etiam nunc nobis libet motis vertiginis Terrarum, & vis centrifugae inde ortae, rationem habere; id quod methodo priore opus fuisset inuperabile. Ponamus enim altitudinem columnae naturalis \(AC \), quam habitura effet a vi gravitatis & vi centrifugae simul, et quod eodem redit, in figurâ Terrae sphæroidicâ compresâ, esse = \(f, \) altitudinem autem quam habebit accedentibus viribus Solis ac Lunae est \(h \); atque manifestum est quantitates \(f \) & \(h \) quam minimè ab x discrepare. Cum igitur utriusque columnae \(f \) & \(h \) idem debent esse nihil deorsum, columnae autem \(f \) in quâ sola gravitas & vis centrifugae agunt, nihis fit \(= \frac{f + x}{n + 1} = -a f f \), denotante a quantitatem à vi centrifugâ in \(A \) pendentem, columnae verò h nihis fit \(= \frac{h n + 1}{n + 1} = a h \) \(= \frac{S h^2 (1 - 3 u u)}{2 a^1} + \frac{L h^2 (1 - 3 u u)}{2 b^1} + \frac{S h^2 (3 - 5 u u)}{2 a^4} + \frac{L h^1 (3 - 5 v v)}{2 b^4} \), erit æquatione \(\frac{f + x}{n + 1} = -a f f = h n + 1 = - (n + 1) a h + \frac{(n + 1) L h^2 (1 - 3 v v)}{2 b^1} + \frac{(n + 1) S h^2 (3 - 5 u u)}{2 a^4} + \frac{L h^1 (3 - 5 v v)}{2 b^4} \). Pona-etur \(h = f + s, \) erit ob a quantitatem vehementer parvam, a verò \(s \) & \(b \) maximas \(o = f + s + \frac{S f^2 (1 - u u)}{2 a^1} + \frac{L f^2 (1 - 3 v v)}{2 b^1} + \frac{S f^2 (1 - 3 u u)}{2 a^4} + \frac{L f^2 (1 - 3 v v)}{2 b^4} \) \(= \frac{S f^2 (3 - 5 u u)}{2 a^4} + \frac{L f^2 (3 - 5 v v)}{2 b^4} \), negleCtis terminis in
CAP. IV. quibus pluribus obtinet dimensiones, ob summam ipsius parvitate respectu ipsius f. Hinc itaque siet \(s = \frac{S(3u-1) + L(3v-1)}{2b} + \frac{LB(3u-3)}{2a} + \frac{Lb(3v-3)}{2b} \)

\[f = \frac{1}{s} + \frac{S(3u-3)}{a} + \frac{L(3v-3)}{b} \]

Quod si possit ponatur semiaxis Terrae per polos transiens \(= \lambda \), erit \(\text{ob} \) equilibrium \(\frac{f^2 + 1}{n+1} = \frac{1}{\lambda} \). & \(f = \lambda + \alpha \), ex quo denominator praecedentis fractionis ab unitate quam minimum discrepabit; sive ipso enim sequatore est \(\alpha = \frac{1}{\lambda} \), ubi quidem est maximum: unde omnino ut anhale elevatio aequaque \(\text{in viribus Solis ac Lunae orta suprad altitudinem naturalem} \]

\[s = \frac{S(3u-1) + L(3v-1) + S(3u-3) + L(3v-3)}{2a} + \frac{2b}{2a} + \frac{2b}{2a} \]

dixit. Fero enim quod reversa ad exit, sensus omnino effugiet, pendebitque simul at al valeere exponentis n.

CAPUT QUARTUM.

De Fluxu ac Reflexu Maris si aqua omni inertiae cararet:

§ 46. Quae in capite praecedente sunt tradita respicient hypothesein assuntam, qua Solem ac Lunam respectu Terrae perpetuò eundem situm tenere possumus; ibique praecipue statum equilibrii, ad quem Oceanus \(\text{in viribus Solis ac Lunae perducatur, determinavit. Longe alter autem se res habet, si tam Luna ac Sol quam Terra in motum collocaverit, quo cavis \(\text{et perpetuum} \) sit relativi mutationem unquam equilibrii aedele poterit; cum enim tempore opus sit, quo data vis datum corpus ad motum perducatur, duplici modo status oceanii assignatus \(\text{a vero discrepabit. Namque primò} \) aqua quoque momento in eum equilibrii situm, quem vires follicitantes intendunt, pervenire non poterit, sed tantum ad eum appropinquabit continuò; deinde etiam in ipsum equilibrii situm perveniat, in eo tamen non accipiat, sed motum concepto ulterius feretur, uti ex natura motus abuntè confitatur. Hujus autem utriusque aberrationis ratio in inertiae aequae est posita, qua sit ut aqua nec subsidii in eum situm se conferat, in quo cum viribus datur equilibrium, nec cum hunc equilibrii situm attigerit, ibi quiescat. Quocircum ne difficilium multitudine obviamur, aquam omni inertiae carenetem assumamus, hoc est siibus indolcis, ut non solem quoque momento se in statum equilibrii subiicit recipiat, sed ibi etiam omnem motum insitum deponendo permaneat, quamvis iste situs viribus
solicitantibus conventiat. Hac itaque facta hypothesi, perspicuum est aquam quovis temporis momento in eo ipso statu fore constitutam, qui secundum praecipua capitis praecedentis positioni cum Solis tum Lunae respondet.

§. 47. Ut igitur in hæc hypothesi, qua Mare vis inertiae experímonim, pro quovis loco ad quodvis tempus statum Maris quæm commodimè definitam, primam solam Lunam considerabimus, cum in ea praecipua æstas Maris causa continetur, atque tam Fluxus quam Refluxus Maris à transitu Lunæ per meridiamum computari solvat: quod si enim Lunae effectus innotuerit, non solum Solis effectus quoque mutatis mutandis colligitur, sed etiam effectus, qui ab amboibus luminari-bus simul agentibus proficiscitur. Propositus igitur fit Terræ locus que, cunque, cujus in coelo Zenith sit Z, horizonte H Q O & P polus borealis, ita ut arcus PO sit hujus loci elevatio poli, & circulus P Z H N O meridianus. Sit porro MLK parallelus æquatorii, in quo Luna jam motu diurno circumferatur, attque hoc momento reperatur Luna in L; erti que tempus, quo Luna vel ex LF ad meridianum M appellat, vel vicissim ad meridianum ad L pertigat, ut angulus M P L, fave hoc tempus & habebit ad tempus unius revolutionis Lunæ, quod est 24. horarum 4, uti se habet angulus M P L ad quadratam rectas. Sit igitur anguli M P L cosinus = r, sinus elevationis poli P O seu sinus arcus P Z = p, cosinus = P, ac sinus declinationis Lunæ borealis = Q, qui idem est sinus distantiae Lunæ à polo P L, hujus vero ipsius arcus sinus sint = q, cui similis cosineis declinationis Lunæ æquatur, atque ob finem totum continentis positiun = r, erit Q + q = 1. Cum jam in triangulo sphærico Z P E dentur arcus P Z & P L cum angulo Z P L, reperietur per Trigonometriam sphæricam arcus Z L cosinus = pq + PQ, qui quotiem est sinus altitudinis Lunæ super horizontem, quem ante posuimus = v. Ex quibus erit v = pq + PQ & 3 u v - 1 = 3 (pq + PQ) - 1, atque 5 v v - 3 = 5 (pq)
CAP. IV. \(\frac{(pq + PQ)}{= 3}; \) qui valores in formulis precedentibus capitis substitututi præebunt statum Maris, hoc et elevacionem vel depressionem, pro loco proposto ad tempus assignatum.

§. 48. Quod si ergo Lune vis absoluta ponatur = \(L \), ejusque à Terrâ distantia = \(b \), erit intervallum, quo aqua supra statum naturalem elevabitur, = \(\frac{L(3(pq + PQ)^2 - 1) + L(pq + PQ)(3(pq + PQ)^2 - 3)}{2b^2} \), quæ expressio si fit negativa, indicat aquam infra statum naturalem esse depressam. Ponamus Lunam horizonte seu versus austrum per meridianum transeire, quo cau erit \(i = 1 \); hoc igitur tempore aqua supra statum naturalem erit elevata intervallum = \(\frac{L(3(pq + PQ)^2 - 1) - L(pq + PQ)(3(pq + PQ)^2 - 3)}{2b^2} \).

Contra vero Lunam sub horizonte vel versus boream ad meridianum appellit, fiet elevatio aquæ supra statum naturalem per intervallum = \(\frac{L(3p^2q^2 - 1)}{2b^2} + \frac{LpQ(3p^2q^2 - 3)}{2b^4} \), quæ expressio semper est negativa, ideoque indicat aquam infra statum naturalem consistere. Namque cum \(P \) ubique sit minor unitate nisi sub ipsis polis, ac declinatio Lunæ non quam ad \(30^\circ \) affugere possit, ex quo \(Q < \frac{1}{2} \& Q \) \(Q < \frac{1}{3} \), erit \(3pQ \) perpetu ad unitate minor; ideoque illa expressio negativa.

§. 49. De ratione autem elevationis aquae in genere judicare licebit ex formula \(\frac{L(3v^2 - 1)}{2b^2} + \frac{Lv(3v^2 - 3)}{2b^4} \), seu cum posterior terminus vix fit sensibilis, ex solo priore \(\frac{L(3v^2 - 1)}{2b^2} \). Ex hac autem expressione intelligentur aquæ elevationem à solæ elongatione Lunæ ab horizonte pendere, siue Luna sit super eum sub horizonte, retinet enim \(3v^2 - 1 \) eun- dem valorem siue \(v \) sit affirmativum siue negativum. Deinde quia sit \(3v^2 - 1 = 0 \) si Luna ab horizonte differt arcu \(35^\circ 16^\prime \), tum aqua in ipsò statu naturali erit oonstituta, neque elevata neque depressa. Elevabitur ergo aqua, cum Luna ultra \(35^\circ 16^\prime \) vel supra vel infra horizontem verletur, è contrario autem deprimetur quando Lunæ ab horizonte distantia minor est quàm \(35^\circ 16^\prime \). Omnim autem aquæ maximè erit depressa dum Lunæ ipsum horizontem occupat, hocque tempore infra statum naturalem subfident intervallum \(\frac{L}{2b^1} = i, xx \) pedum (§. 41); atque de hoc fit elevabitur recedente Lunæ ab horizonte super eum sub Terræ. Hinc igitur in regionibus, in quibus Luna oritur & incidit, tempore 24. hor. 48' Mare bis maximè erit depressa, bisque elevata; status ści- licet depressionis incidit in appulis Lunæ ad horizontem, status autem elevationis in appulis Lunæ ad meridianum. At quibus in regionibus Lunæ nec oritur nec incidit, quoniam ibi Luna.altero appulu ad meridiam maximè, altero minime ab horizonte distat, spatium 24 h. 48' aquæ semel
F L U X U S A C R E F L U X U S M A R I S.

semel tantum elevabitur, semelque deprimetur: sub ipsis autem polis CAP. æstus Maris omnino erit nullus, diurnus scilicet; nam variatio declinatiois sola statum Maris turbabit.

§. 50. Cùm igitur sub polis Terrae nullus sit Fluxus ac Refluxus Maris, sed aqua tantum aliquantulum ascendat-decendat-que, prout Luna vel magnis ab æquatore recedit vel ad eun accedit; videamus etiam quomodo æstus Maris in aliis Terræ regionibus secundum nostram hypothesin debat esse comparatus. Considerabimus autem praecipue tres regiones, quarum prima posta sit sub ipso æquatore, secunda habeat elevationem poli 30 graduum, tertia vero 60 graduum. Quia igitur in his omnibus regionibus Luna oritur atque occidit, maxima depressio aque ubique erit eadem, scilicet per intervallum \(\frac{L}{b} \) infra situm naturalem, eaque continget bis, quando nimium Luna in ipso horizonte versatur. Ab hac itaque statu maxima depressioniis elevationes Maris indicabimus & computabimus, ipatis assignandis, per quae aqua at-tolletur dum Luna vel supra horizontem in \(M \) vel infra in \(K \) ad meridianum appellit, iterumque dum ab utroque meridiano æqualiter distat, qui locus sit \(L \) existente angulo \(MPL \) recto. Præterea tres quoque Luna situs in sua orbitâ contemplabimus, quorum primus sit, cui Luna in ipso æquatore versatur, secundus cum Luna habet declinationem borealem 20 graduum, tertia vero cum Luna declinationem habet australem partem 20 graduum. Denique in tabellâ sequente descripsimus quantitatem anguli \(MPQ \), ex quo tempus tam ortus quam occasus Lunæ, quo aqua maximè est depressa, atque elevatio existit nulla, innotescit.
In locis sub æquatore sitis, est elevatio Maris, dum Luna versatur in

\[\begin{array}{ccc}
M & L & K \\
\hline
3 \text{L} & 2 \text{L} & 0 \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\hline
2,649 \text{L} & 1,549 \text{L} & 0 \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\hline
2,649 \text{L} & 1,549 \text{L} & 0 \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\end{array} \]

Sub elevazione Poli 30°, est Maris elevatio

\[\begin{array}{ccc}
M & L & K \\
\hline
2,150 \text{L} & 1,082 \text{L} & 0 \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\hline
2,909 \text{L} & 1,380 \text{L} & 0.087 \text{L} \ 0.156 \text{L} \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\hline
2,150 \text{L} & 1,082 \text{L} & 0 \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\end{array} \]

Sub elevazione Poli 60°, est Maris elevatio

\[\begin{array}{ccc}
M & L & K \\
\hline
0.740 \text{L} \ 0.135 \text{L} & 0 \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\hline
1,760 \text{L} \ 0.582 \text{L} & 0.263 \text{L} \ 0.514 \text{L} \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\hline
0.093 \text{L} \ 0.158 \text{L} & 0.263 \text{L} \ 0.514 \text{L} \\
2 \text{b} & 2 \text{b} & 2 \text{b} \\
\end{array} \]

§ 51. Si quis jam ex hac tabulâ elevationem Maris supra statum maxime deprehensionis in mensurâ cognitâs definire voluerit, is loco fractionum \[\frac{L}{b} \ & \ & \frac{L}{b} \] earum valores in pedibus Parisinis ex § 41. substituat; habita ratione distantiae Lunæ à Terrâ, prout ibidem est expostitum. Consequentur autem ex hac tabulâ multa egregia confectariâ, quæ verbè nondum summo cum rigore ad experientiam examinari possunt, etiamjam insignis convenientia deprehendatur. Aquam enim adhuc omnis inertiae expertem ponimus; perspicuum autem est, si aquæ inertia tribuatâ, tum diversa omnino Phænomena oriì oportere. Quòd si igitur hi assignati effec tus jam cum observationibus planè contingent, id potius theoriam averteret quàm confirmaret, cum aquam extra statum sum naturem.
turalem simus contemplati. Interim tamen fatis tunt jam status Maris in sub ipsis polis poterit definiri, qui eti ad experientiam examinari non potest, tamen ipsa ratione confirmabitur. Ac primò quidem sub polis nulla erit Maris mutatio diurna, cùm Luna per totum diem eandem teneat ab horizonte distantiam, id quòd ipso quoque ratio dictat, quia ibi non datur meridianus, à cujus appulsus ælius Maris alibi æstimali follet. Dabitur tamen his locis mutatio menstrua, atque aqua maximè erit humili, cùm Luna in ipso æquatore verfatur; quo quippe tempore perpetuo horizontem occupabit. Hinc porrò aqua semel elevabitur prout Luna declinatio in 5 versus boream in 5 versus austrum augeretur, donec tandem et declinatio sit maxima, per spatium 10 pollucum tantum elevatur; quae mutatio cùm sit per quæm lenta, ab inertiae aquae viæ turbabitur.

§ 52. Ex his vero itidem formulis effectus à Sole oriundus non difficiliter colligitur, tantum enim quantitates S & a, loco L & subitvum oportet, quod facto effectus Solis circa tertier quater minor reperietur quàm is quì à Lunâ oriitur. Secundum autem cùm Solis tum Lunae effectibus definitis, per conjunctionem simplicem effectus, quem anbo luminaria conjunctam producunt, determinabitur. Ponamus itaque proximum Solem Lunamque in conjunctione versari, id quod fit tempore novilunii; tum igitur neglegè Luna latitudine, Sol & Luna in eodem ecliptica loco verfabuntur, atque simul ad meridianum aquè ac ad horizontem appellent. Quocircù manentibus superioribus denominationibus, erit quoque Solis declinationis sinus $= Q$, cosinus $= q$, ac pro angulo MPL cujus cosinus est $= \ell$, erit sinus altitudinis Solis pariter uti $Luna = Qq + PQ$. Ex quo dum ambo luminaria per meridianum versùs austrum transeunt, aquæ elevatio, quæ tum erit maxima; altitudinem naturalem superabit intervallo $= \left(\frac{S}{x\alpha_i} + \frac{L}{x\beta_1} \right) \left(3(pq + PQ)^{\ell} - 1 \right) + \frac{L(pq + PQ)}{x\beta_1} \left(5(pq + PQ)^2 - 3 \right)$,

neglecto altero termino à vi Solis oriundo, cùm senfus omnino effugiat. At dum ambo luminaria infra horizontem ad meridianum pertungunt, erit elevatio aquæ $= \left(\frac{S}{x\alpha_i} + \frac{L}{x\beta_1} \right) \left(3 \left(PQ - pq \right)^{\ell} - 1 \right) + \frac{L \left(PQ - pq \right)}{x\beta_1} \left(5 \left(PQ - pq \right)^2 - 3 \right)$. Maxima enim aquæ depressio incidet, quando luminaria vel orientur vel occidunt, eaque minor erit quàm altitudine aquae naturalis intervallo $= \frac{S}{x\alpha_i} + \frac{L}{x\beta_1}$. Cùm igitur $\frac{S}{x\alpha_i}$ sit circiter super quadruplum ipsius L, in novilunio omnes effectus Lunæ superæ repelluntur, quartâ si parte augebuntur.

§ 53. In plenilunio omnèa eodem se habere modo depressenduntur, quò in novilunio, qua enim tum Sol & Luna in oppositione vertantur, erit declinatio Solis æqualis & contraria declinationi Lunæ, unde quidem pro Sole fit $- Q$, quod in novilunio erat $+ Q$; at cùm Sol incidunt...
CAP. düm ascensionem rectam à Lunā dīfert 18co, erit hoc cafū t, quod antē erat + t, ex quo pro plenilunio hābetur finus altitudinis Solis = −t p q −P Q, qui pro novilunio erat = t p q + P Q, ex quo quadratum hujus finis utroque cafū est idem, ideoque etiam eadem Phæomena in novilunio atque plenilunio. Deinde etiam hoc tempore aqua maxime deprimetur, cùm luminaria ambo in horizonte verfātur, tumque aqua humilior erit quàm in statu naturali, intervāllo = \(\frac{S}{2a_1} + \frac{L}{2b_1} \). Ex hoc itaque situ donec Luna ad meridianum supra Terram appellīt, aqua elevābitur per intervallum = 3 \((P Q + p q) \times \left(\frac{S}{2a_1} + \frac{L}{2b_1}\right) \), tantoque iterum subfīdet usque ad Lunæ obītum; tum verō furūs elevābitur usque ad appulsum Lunæ ad meridianum infra horizontem, idque per spātium 3 \((P Q − p q) \times \left(\frac{S}{2a_1} + \frac{L}{2b_1}\right) \), neclegcto termino sequente quippe fērē insensībili. Cùm igitur sint \(P Q + p q \) & \(P Q − p q \) finus distantis Lunæ ab horizonte dum in meridiano verfātur, erunt spatia per quæ aqua tempore pleniluniorum ac noviluniorum supra statum maxime depressum elevātur, in ratione duplicată finium distantiarum spatii ab horizonte, dum per meridianum transit. Nīs ergo vel Luna in ipso aquatore extītat, vel Terræ locus sub aquatore sit situs, Fluxus Maris diurni ac nocturni erunt inaequales; luminaribus autem in aquatore extantibus, utraque aquae elevatio fier per spatiunm = 3 \(P Q \times \left(\frac{S}{2a_1} + \frac{L}{2b_1}\right) \).

§. 54. Ut nunc in effectus, quos Sol & Luna in quadraturis fīti conjunctione producunt, inquiramus; ponamus, ne calculus nimium fiat prolixus, Solem in ipso aquatore verfari, quoniam tum plerumque minimum aestus observavit. Hoc itaque cafū Solis declinatio erit nulla, Lunæ verō maxima, quam neglegctā latitudine assumptum 23° 29', cujus finus sit = Q, cosinus = q, posita hac declinatione boreali. Jam ponamus Lunam in meridiano in M verfari, quantum Sol erit in horizonte; unde cùm aqua supra statum naturalem elevetur à Lunā intervallu

\[
\frac{L(3(p q + P Q)^2 - 1)}{2b_1}
\]

à Sole verō deprimatur intervallum \(\frac{S}{2a_1} \), ab utrāque vi conjunctim elevābitur per spātium \(\frac{L(3(p q + P Q)^2 - 1)}{2b_1} \times \frac{S}{2a_1} \); at dunt Luna sub horizonte ad meridianum appellīt, aqua elevābitur per spātium

\[
\frac{L(3(P Q - p q)^2 - 1)}{2b_1} \times \frac{S}{2a_1}
\]

Sumatur inter has ambas elevaciones inaequales more foliuto medium, eritque elevatio aquae medià hac quadraturā eveniens = \(\frac{L(3p q^2 + 3P Q^2 - 1)}{2b_1} \times \frac{S}{2a_1} \). Reflexus verō continget, cùm Luna horizontem attinget, quo tempore Sol in meridiano proximē verfābitur, ex quo depressio totalis aquae in Reflexu infra statum naturalem pro-
proximè erit \(\frac{L}{I \cdot \frac{3(p^2-q^2)}{a^1}} \): quare ad Fluxum usque ad subsequentem

Refuxum aqua subsidet per intervalum \(\frac{3L(p^2-q^2+P^2Q^2)}{2b^1} \cdot \frac{3spp}{2a^1} \).

§ 55. Quamvis motus Maris hoc modo affinitas ab inertiae aquae multum immutetur, tamen quia eandem ferè mutationem tam majoribus æstibus quam minoribus infert, fatis tutò affinum esse videmur spatia, per quæ aqua circa æquinoctia cum tempore plenilunii eæ novilunii, tum etiam tempore quadraturarum acu ascendit, expressionibus inventis esse proportionalia. Quamobrem si in dato Terræ loco ex pluribus observationibus determinetrum spatium medium, per quod Mare ad Refluxum ad Ascendit, tempore æquinoctiorum, tam in plenilunii noviluniiique quàm in quadraturis, eorum ratio ad eam quàe ex formulis consequitur, proximè accedere debet. Atque hinc ex definitâ hac ratione per observationes ratio poterit inventi inter vires Solis & Lunæ abfolutæ S & L, quàe est ipsa via quà Newtonus est uís ad vim Lunæ abfolutam definiendarum, quàm vis Solis fit cognita: quod negotium, quàm à Newtono non fatis accuratè fit pertractatum, nos id ex ëstis principiis expediemus. Exprimat igitur \(m: n \) rationem intervallorum eorum, per quæ Oceanus in dato Terræ loco, quàm in fyzgiis luminarium quàm quadraturis tempore æquinoctiorum, ascensendo descensendoque oscillatur; eritque \(m: n = 3pp \left(\frac{s}{i^2} + \frac{L}{a^1} \right) = \frac{3L(p^2-q^2+P^2Q^2)}{2b^1} \cdot \frac{3spp}{2a^1} \), ex quà elicatur ísta proportio \(m \left(q^2 + \frac{P^2Q^2}{p^2} \right) = n: m + n = \frac{s}{a^1} : \frac{L}{b^1} \); ex quà cùm data sit vis à Sole orta \(\frac{s}{a^1} \), deducitur vis à Lunâ oriunda \(\frac{L}{b^1} \), saltem proximè. Instituamus calculum pro observationibus in Portu Gratiae (Havre de Grace) factis, ex quibus diligenter inter se collatis pro ratione \(m: n \) prodit iva \(17: 11 \). Cùm igitur hujus loci elevatio poli fit circiter 50°, erit \(P = \text{fin. 50}^0 \), & \(Q = \text{fin. 25}^0, 29' \); hincque \(q + \frac{P^2Q^2}{p^2} = 1,0668 \); ex quo probit \(\frac{s}{a^1} : \frac{L}{b^1} = 7,1356 : 28 \); ita ut vis Lunæ \(\frac{L}{b^1} \) sit ferè quadrupla vis Solis \(\frac{s}{a^1} \), ut jam Newtonus ex aliis observationibus conclusit: atque hanc ob rem ipsius determinatem vis Lunæ absolutæ \(L \) retinuimus.

§ 56. Si hæc, quæ de combinatione virium Lunam Solemque reficentibus sunt allata, attentius considerentur, mox patebit maximos æstus mentres in novilunia ac plenilunia incidere debere; hís enim temporibus tam elevatio aquæ quàm depressio à Luna oríunda à vi Solis maximè adjuvatur, quàm eodem tempore, quàm Luna aquam maxîrè vel elevat vel deprimit, simul quoque Solis vis aquam maximè vel elevat vel deprimat. In quadraturis autem hæ duæ vires ferè perpetuò differtunt,
INQUISITIO PHYSICA IN CAUSAM

C A P. V.

seuunt, ac dum Luna aquam maximè vel elevat vel deprimit, eodem tempore Sol contrarium exerit effectum, aquamque maximè vel deprimit vel elevat, ex quo minimum disorimem inter queaque Fluxum ac subsequentem Refluxum observabatur, aestusque erunt minimi. Quamobrem circa alias Lunae phasas aestus Maris medium tenet inter maximum minimumque necesse est, quia tum vires Solis ac Lunae nec omnino conpirant, nec sibi invicem adversantur. Per totum autem annum quibus noviluniiis pleniluniiisque maximus eveniat aestus, quibusque quadraturis minimus aestus respondeat, absolutè fine respectu ad situm loci habitum definiri nequit. Sub aequatore quidem ubi Luna, cum est in aequatore, maximè vi gaudet, dubium est nullum, quin aestus maxim in aequinoctia incidat, quando ambo luminaria in aequatore sunt poli, quae eadem proprietas etiam in loca ab aequatore non multum differt competit: at in locis ab aequatore magis remotis aestus Maris, cum Luna maximam habet declinationem, dantur quidem majores ex Tabula §. 50, verum aestus maximi subsequentem multo sunt minores. Quod si autem inter binos aestus à Lunà oriundos confluxentes medium capiatur, patebit in regionibus 30° ab aequatore remotis, quibus aestus est \(\frac{2,150}{2,1} \) L si Lunæ declinatio sit nulla, aestum Maris medium, cum Luna habet declinationem 20 graduum, fore = \(\frac{2,074}{2,1} \) L, ideoque adhuc minorem quam cum Luna aequatorem tenet. Contra vero sub elevatione poli 60 graduum, est aestus Maris, Lunæ verfante in aequatore, = \(\frac{0,740}{2,1} \) L, aestus autem medius, cum Lunæ declinatio est 20°, est = \(\frac{0,926}{2,1} \) L, ideoque major. Ex quo consequitur in regionibus polis viciniōribus aestus maximus, non in aequinoctia, sed potius circa solstitia, incidere debere, quae quidem in re theoria nostra per experimentia mirificè confirmatur.

C A P U T Q U I N T U M.

De tempore Fluxus ac Refluxus Maris in eadem hypothesi.

S. 57. Q U A N Q U A M in precedentis capitii, quo in quantitatem aestus Maris præcipuè inquisivimus, etiam tempora, quibus tam Fluxus quam Refluxus eveniatur, jam indicavimus; tamen hoc capite iftud argumentum saepe atque ad observatio-nes accommodatum persequemur. Observationes enim, quae circa aestum Maris instituti solent, ad tria genera commodissimè referuntur; ad quorum

ram primum pertinent Maris cum elevatio maxima tum maxima depressio; atque indicatur quattuor quovis æquato quàrum ad ascendant tum descendat. Ad secundum observationem genus numeræri convenit eas, quæ ad tempus respicient, quibusque definitur, quonam temporis momento ubi terrarum aquæ cum summae teneat alitudinem tum minimum. Tertium denique genus observationum ad ipsum motum Maris reciprocum spectat, quæque determinatur quantâ celeritate quovis temporis momento altera Maris elevatio ac depressio abolvatur, quorum momenta mutatis, tum Mare a Fluxu ad Refluxum transit & viceversum, investigatur. Quibus tribus cunctis observationibus convenientissime instituuntur, illaem theoria atque explicatio phænomenorum commodissimae tradiditur. Ac primæ quidem & tertiae parti pro nostra hypothesi in precedentibus capitibus abunâ satisfactum videtur.

§ 58. Quoniam autem à Maris inertiâ aliisque circumpastantibus Magis motorum turbantibus omnes cogitationes adhuc abstrahimus, manifestum est ubique terrarum, si sola Lunæ vis Mare agitaret, aquam maxime elevari debere, cum Luna ab horizonte longissimè fuerit remota, hoc est ipsis momentis quibus Luna per meridianum datum loci sit supra quæm infra Terræ transit; sunt enim elevationes aquæ in duplicata ratione finium diffusiarum Lunæ ab horizonte, ex quo simul sensim Maris commotio cognosciatur. Excipiuntur autem hinc, ut iam notavimus, loca polis Terræ proxima, quibus Luna vel non oritur vel non occidit; iti enim altero Lunæ ad meridianum appulsu aquæ debet esse summa, altero ima. Vide de his locis non admodum eminens sollicitate, cum tunc observationes sufficientes, quibus theoria probetur; deficiat, quam ipse Maris motus indicat rationi fœ consciente, neque confirmatione indiget. In Terræ locis ergo a polis fatis remotis extra circulos polarum sitis, quibus Luna intervallo 24 h. 48' tam erit quam obit; elevabitur Mare eodem tempore intervallo bis, totiusque deprimetur; atque utraque maxima Maris altitudo continget, cum Luna ad meridianum illius loci pervenit, minima vero cum Luna, horizontem attingit. Hinc igitur temporis intervallum inter binas aquæ Fluxus semisummâs elevationes interjectum constanter erit 12 h. 24', ab anormalis Lunæ momentem abstrahendo; at temporis summâs depressiovis, cùm respondat appulsu Lunæ ad horizontem, inter binas elevationes æqualiter non interjacenti, sed alteri elevationi et erit propius, quod major fuerit cum loci proposti elevatio poli tum Lunæ declinatio, hoc est que majus fuerit discribim inter omnam obitumque Lunæ & circulum horarum extinxum.

§ 59. Sed conjungamus cum Lunæ vim Solis; ut nostræ conclusiones magis ad observationes perducantur. Ac primœ quidem manifesta sunt tempore tam novilunii quam plenilunii aquam maximè fore elevatae, quando Luna per meridianum loci transit, quippe quo momento etiam
CAP. Sol ad eundem meridianum appelleit, si quidem syzygia ipso meridie vel medii nocte celebratur. Quamobrem si novilunium pleniluniumve in ipsum meridiem incidat; ipso quoque meridiem momenta maxima habebitur aquae elevatio; pariterque si id eveniat medii nocte, eodem ipso momento aqua maximam obtinebit elevationem. Verum si conjuncio vel oppositio luminum et meridiem vel praecedat vel sequatur, tum Fluxus non in ipsum meridiem incidet, sed vel tardius vel citius veniet, quia Luna his caelibus tanquam primaria aethera causa vel post vel ante meridiem ad meridianum pertingit. Atque hinc eo die, in quem five plenilunium five novilunium incidit, facile poterit definiri acceleratio vel retardatio Fluxus respectu meridiei. Ponamus enim novilunium seu plenilunium celebrari n horas ante meridiem, unde cum motus Lunae medium Sole diurnus sit 12°, circitor, ipso meridie Luna ad meridianum jam difficit angulo horario \(\frac{n}{2} \) grad. versus orientem, ex quo Luna post meridiem demum per meridianum transebit, elapsis \(\frac{n}{30} \) horis feu 2 n minitis primis. Sin autem novilunium pleniluniumve accidat n horis post meridiem, tum Maris maxima elevatio 2 n minitis ante meridiem eveniet. Hac autem momenta accuratissime cognoverunt, si ad 'angulos dies transitius Lunae per meridianum computentur; ac praeterea quam orbis quam occasus notetur, quippe quibus momentis maxima aquae depressio respondet; majorem autem hujusmodi tabula affert utilitatem, si in fuisse quovis die distantia Lunae a Terrae indutorem, quippe a quibus Lunae affectus praecipue pendent.

§ 60. Congruunt haejam aprimiti cum observationibus, quibus constabat, diebus novilunii vel plenilunii aequum Maris accelerari si novilunium pleniluniumve post meridiem accidat, contrà vero retardari. Quamvis enim ob aquae inertiam maxima Maris elevatio non respondat appulsum Lunae ad meridianum, sed tardius eveniat, uti post docebitur, tamen simulius caelibus aequale retardabitur; pro termino igitur fixo, si ad observationes respiciscat, non fumi debet momentum meridiei, sed id momentum, quo si Lunae cum Sole conjunctio vel oppositio in ipsum meridiem incidit, summum aquae elevatio observatur. Hoc igitur momento notato, uti ab his qui hujusmodi observationes instituunt fieri solet, si plenilunium noviluniumve vel ante post meridiem incidat, summum Maris elevatio vel tardius vel citius continget: & quidem syzygia vera n horas vel ante meridiem eveniat vel post, tum Fluxus 2 n minitis vel tardius vel citius observari debebit. Atque hae est ea ipsa regula quam Celeb. Caffini in Mem. Academiae Regiae pro An. 1710, ex quam plurimas observationibus inter se comparatis derivavit; jubet scilicet numerum horarum, quibus conjunctio sine oppositio luminariurn velurn meridiem
diem vel præcedit vel sequitur, duplicari, totidemque minuta prima ad tempus medium notatam, quæ Fluxus evenire soleat, vel addi vel ab eo subtrahì, quod verum-Fluxus momentum obtineatur. Quoniam autem hæc correctionem nikitur motu Lunæ medio, perspicuum est eam correctione ulteriori opus habère, a vero Lunæ motu petitæ, quæ verò plurimum erit insensibilis, cùm summa aëris elevatio non subitum adsit, sed per tempus fatis notabile durit.

§ 61. Nifi autem luminaria proxima sint vel conjunctio vel oppositionis, maxima Maris elevatio non in ipsum Lunæ transitum per meridianum incidet. Quoniam enim Luna dum prope meridianum veratur, per aliquod tempus eandem altitudinem conservat, tantisper etiam Mare eandem elevationem retinebit; & hanc ob rem si Sol interea sensibiliter vel ab horizonte recedat, vel ad eundem accedat, vis Solis ad Mare elevandum vel crescit sensibiliter, vel decrescit; ex quo dum Luna prope meridianum exsit, fieri potest, ut tamen mare etiamnum elevetur, vel adeò jam deprimatur a Sole. Ex his igitur perspicuum est summam Maris altitudinem tardius seu post transitum Lunæ per meridianum accidere debere, si eo tempore Sol ab horizonte accedat, id quod evenit diebus novilunium & plenilunium praeecedentibus. Contra autem si Luna post Solem per meridianum transeat, idque vel ante Solis ortum vel ante occasum; tum, quia Mare in transitu Lunæ per meridianum a vi Solis deprimitur, maxima habuit altitudinem ante appulum Lunæ ad meridianum, id quod contingit diebus novilunium pleniluniumque sequentibus. Quando autem Sol ipsum horizontem occupat, dum Luna in meridiano veratur, tum etiam si distantia Solis ab horizonte perquam sit mutabilis, tamen cum elevationis vis quadrato sinus altitudinis Solis, fit proportionalis, quod omnino evanescit, etiam hoc causa maxima aëris elevatio in ipsum Lunæ per meridianum transitum incidet, hicque causa circa quadraturas luminarii locum habet.

§ 62. Ut
§. 62. Ut igitur innotescat, quantum vires cum Solis tum Lunae ad Mare elevandum dato tempore vel crescant vel decrescant, dum ab horizonte aliquantulum vel recedunt, vel ad eundem accedunt, ponamus Solem Lunamve in L verfarī, atque inde ad punctum meridiani M progressi. Tempusculo ergo per angulum \(LP l = d \) representatā progressiōd Luna vel Sol ex L in l atque ab horizonte removebitur intervallō \(LB \): ad quod inveniendum sit ut antē anguli \(MPL \) cosinus = \(e \)), & sinus = \(T \), ertque ipsō angulus \(LP l = d = \frac{\sqrt{(1-t^2)}}{+d^s} = \frac{d}{T}, ex quo orientur anguli \(MPL \) cosinus = \(e + d \) = \(T \) d. Si jam ponatur sinus elevationis poli = \(P \), sinus declinationis borealis puncti \(L = Q \), nam si declinatio sit australis, sinus \(Q \) sumit debet negativè, cosinus vero respondentes sint \(p \) & \(q \), reperietur sinus altitudinis \(L \) supra horizontem \(=v = t \) pq + \(PQ \): punctisque \(L \) sinus altitudinis \(v + d \) = \(t \) pq + \(PQ + TPq \) d. Quocirca si Luna ponatur in \(L \), cum ejus vis ad Mare attollendum sit = \(\frac{L(v-u)}{b} \), erit hujus vis incrementum tempusculo \(d \) ortum = \(\frac{3L(v^-u)}{b} \).

At si Sol ponatur in \(L \), ejus vis ad Mare elevandum tempusculo \(d \) capiet incrementum = \(\frac{3L(\sqrt{pq} + PQ)Pq}{b} \).

Quamvis autem pro Sole et Luna eidem angulo \(d \) non æqualia tempora respondent, tamen quia ea proximè ad racionem æqualitatis accedunt,
CAP. V.

Ex his intelligitur haec incrementa tribus casibus evanescere, quorum primus evenit sub polis, quia ibi est $P = 0$; secundus, si punctum L in meridiano fit situm, tum enim fit $T = 0$; tertius denique locum habet, si punctum L in horizonte exifiat, ubi est $qP + PQ = 0$.

§. 63. Ponnus nunc Solem in L versari ac Lunam per meridianum jam transfiisse, hocque momento maxime aquam esse elevatum; jam enim ostendimus dum Sol ab horizonte recedit, aquam summam incideat post transitum Lunae per meridianum. Hoc ergo momento necesse est, ut decrementum vis Lunae, quod tempusculo d patitur, æqualis sit incremento vis Solis eodem tempore accepto. Sit igitur angulus horarit ad polum sumtus quo Luna jam à meridiano receedit, co sinus in, sinus N, atque fit Lunæ declinationis borealis sinus $= R$, co sinus $= r$, ex quibus orietur decrementum vis Lunæ tempusculo d ortum $= \frac{3S(pq + PQ)}{a^o} T P q d$, quod æqualis esse debeat incremento vis Solis eodem tempusculo nato $= \frac{3S(pq + PQ)}{a^o} T P q d$, denotante Q finem declinationis borealis Solis, & q ejus co sinus, habebitur haec æquatio $\frac{L(mpr + PR)N_r}{b^i} = \frac{S(pq + PQ)Tq}{a^i}$, neglecta fractione $\frac{3S}{a^o}$, per quam incrementum vis Lunæ multiplicari debet. Quoniam autem Luna à meridiano non procul distabit, ponit poterit $n = 1$, atque cùm fit proxime $\frac{L}{b} = \frac{4S}{a}$, obtinebitur iste valor $N = \frac{Tq(pq + PQ)}{4r(pq + PR)}$, qui in tempus conversus dabit temporibus spatium, quo aqua post transitum Lunæ per meridianum maximam altitudinem attingit. Sub æquatore ergo erit $N = \frac{Tq q}{4rr}$, ob $P = 0$ & $r = 1$; quare si declinationes Luminaria vel negligentur vel æquales assumuntur, ita ut fit $q = qr$, fiet $N = \frac{Tq}{4rr}$, cujus expressionis valor extat maximus si angulus MPL fit 45^o, quo casu erit $N = \frac{Tq}{4rr}$, & angulus respondens $= 7^o, 17'$, qui indicat aquam summam 30 minu tus post transitum Lunæ per meridianum contingere debere: totidemque minuti aqua ante transitum Lunæ per meridianum maximè elevata, Si Sol tum versus occasum veretur angulo $MPL = \text{semiret}$. Quamobrem si Luna ad meridianum appellat horà nona five matutinâ-five pomeridianâ. Fluxus demum post semihoram eveniet, at si horà tertia appellat Luna ad meridianum, aqua summa 30° antè obier-t.
CAP. vabitur: in aliis vero Terræ regionibus ista aberratio magis est irregularis: interim tamen alius prope ex formulâ data per solam substitutionem potest definiri.

§. 64. Quoc quid si autem hanc rem curatius inves-
tigare velimus, ambo-
rum Luminaria declina-
tiones non pro arbitrio fin-
gere licet, pendent enim
a fe mutuo maxime ob
angulum horarium MPL
inter ea interiectum da-
tum: ut igitur pro data
Lunæ phæ aberrationem
maximam aque elevationis
a transitu Lunæ per me-
ridianum determinemus,
reprehendet nobis circu-
lus ZBC verticalem
primarium, BC horizon-
tem, ZN meridianum
per dati loci Zenith Z
& Nadir N ductum, atque AEquator fit BAC, polus australis p, &
ecliptica $x = y$. Constructus nunc fit Sol in S & Luna in L, quae
modò per meridianum transferit, quo tempore ponimus aquam maximè
effe elevatum. Ponamus porro longitudinis Solis ab æquinoctio verno
computata sinus F, cosinus f; Lunæ verò longitudinis sinus
esse G, cosinum g; siquæ inclinationis eclipticae $B = y$ sinus M
$cosinus = m$. Ex his definiens declinationes cùm Solis tum Lunæ,
quorum sinus antè erant positi Q & R; erit scilicet $Q = FM$, $R = GM$; hinc-
que $q = \sqrt{(1 - F^2)}, m$ & $= \sqrt{(1 - G^2)}$. Deinde angulus SPL
equalis est angulo cujus tangens est $\frac{mF}{f}$ demto angulo cujus tangens est $\frac{mG}{g}$
bujus verò ejusdem anguli ob angulos SPZ & LPZ datos, quorum sinus sunt positi T & N, tangens quæque est $\frac{nT + N}{nT - N}$, quæ
tangens pro-
pter sinus N valde parvum proximè est $\frac{T}{n} + \frac{N}{nT}$. Posatur autem K pro
finum anguli qui excellit est anguli habentis tangentem $= \frac{mF}{f}$ super angu-
lum cujus tangens est $\frac{mG}{g}$, & k pro cosinus, reperietur $T = K - N k$ &
$1 + N K$ scripto x pro x: quibus valoribus substitutis prohibit $N = K q$
§ 65. Ponamus nunc Lunam in quadraturis versus ac primò quidem in primo post novilionum quadrante, ita ut arcus \(L S\) futurus sit \(90^\circ\), erit \(G = f, & g = -F\); unde \(Q = MF & R = Mf\), ex quibus probibit \(K = \text{fin.}\) \(\left(\text{Atang.} \frac{mF}{f} - \text{Atang.} \frac{mf}{F}\right)\) atque \(k\) ejusdem anguli costitutur. Quare his tempore tabibus aqua maxima elevata post transitum Lunæ per Meridianum, intervallo temporis quod in arcum æquatoris convertatur, dabit angulum cujus finus erit \(N = \frac{kq(kpq + PQ)}{4r(p + PR - (2k^2 - 1)pq^2 + kPQ)}\).

Pro posteriore vero quadraturâ post novilionum, erit \(G = -f & g = F\); unde erit \(Q = MF & R = -Mf\), ex quibus fit ut ante \(K = \text{fin.}\) \(\left(\text{Atang.} \frac{mF}{f} - \text{Atang.} \frac{mf}{F}\right)\) et \(k\) cosinenti respondenti. Ne autem hie signa ++ & -- calclum confundantur, notari convenit \(K\) esse finum arcis, qui retat, si ascenso recta Lunæ subtrahatur ab ascensione rectâ Solis; atque \(k\) esse ejusdem arcus sinus. Ponamus exempli causâ Solem in initio Arietis versari, erit longitudo Solis = \(\alpha\) seu \(360^\circ\), & longitudo Lunæ = vel \(90^\circ\) vel \(270^\circ\), unde fiet \(F = 0, f = i, G = -i, \& g = 0\), atque \(Q = o\). Praeterea ascensio recta Solis est \(360^\circ\), & ascensio recta Lunæ vel \(90^\circ\) vel \(270^\circ\); utroque census ergo fit \(k = 0\); unde etiam probatur \(N = 0\); quod idem evenit, si Sol veretur in initio Librae. In utroque igitur æquinoctio, dum Lunae in quadratorum versatur, a qua maxima erit elevata eo ipso momento, quo Luna ad meridianum appellit.

§ 66. Sit porro Sol in solstitiali æstivo, Luna verò in ultimo quadrante, erit longitudo Solis \(90^\circ\), Lunæ verò = \(\circ\), unde fit \(F = i, f = 0\); \(G = 0, g = i\), indeque \(Q = M & R = 0\); itemque \(q = m & r = i\). Solis vero ascensio recta habebitur \(90^\circ\), Lunæ verò = \(\circ\), ex quo \(K = 0\) & \(K = 0\).

Hinc igitur fit \(N = \frac{mM}{\left(4 - m^2\right)}\). Pro prima autem quadraturâ est longitudo Lunæ \(180^\circ\), unde \(G = 0, g = -i\), ut ante \(F = i, f = 0\); ergo \(Q = M\); \(R = 0\), itemque \(q = m & r = i\). Cum igitur Lunæ ascensio recta fit \(180^\circ\), erit \(K = \text{fin.}, -90^\circ = -i, \& k = 0\), ex quibus fit \(N = \frac{-mM}{\left(4 - m^2\right)}\). Quo niam autem est \(q > m\), dum Sol in solstitiali æstivo versatur maxima a qua elevatio in ultima quadraturâ oponente post Lunæ transitum per meridianum supra Terram, prior vero quadraturâ ante hunc transitum, haecque æquatio eò erit major, quod major fuerit elevatio poli; sub æquatore enim omnino evanescit. Sit poli elevatio \(45^\circ\), fierique his regionibus \(N = \pm \frac{Mm}{4 - m^2}\); quare cum fit \(M\) finus \(23^\circ, 29^\circ\), probibit \(N = \text{Tt a}\). finit.
CAP. V.

cuii angulii $60^\circ 33^\prime$; quid in tempus conversus dat 26^\prime. In primâ ignis
tur quadraturâ totidem minutis ante transitum Lunæ per meridianum
aqua maximè erit elevata, in ultimâ vero quadraturâ tot minutis post
transitum. Contrariùm event, si vel Luna sub Terra ad meridianum
appellut, vel Sol in sofiticio hyemâli veretur. Ex his igitur formulâs,
E tabulae adhibeantur, non erit difficile pro quovis loco Terrae ad quod-
vis tempus defineât, quantum maxima aquæ elevatio transitum Lunæ
per meridianum vel praecedere vel sequi debet; cujusmodi supputationes
maximam etiam affert utilitatem, quando etiam inertiae aquæ ra-
tio habebitur.

§. 67. Quoniam igitur satis est exposuit, quo momento Mare
maximè fit elevatum, maximè quoque Maris depressione defineire ag-
grediamur. Ac primù quidem manifestum est, si sola Luna Mare agi-
taret, tum minimam aquæ altitudinem observatum iri, eo ipso momento,
quo Luna in horizonte veretur: atque hinc perspicuum est, idem
ufu ventre debere, si Sol sodem momento quoque in horizonte exstitat,
id quod accidit quàm novilunium tum plenilunium. Præterea vero etiam ima
aqua responsus situt Lunæ in horizonte, si eo tempore Sol meridia-
num occupat, quia tum vis Solis per notabile temporis intervallum ne-
que agueret nec diminueret, etiam quæ aqua non tantum deprimatur,
quàm circa novilunium ac plenilunium. Ponamus igitur, quod reliquis cas-
us evolvanus, dum Lunæ horizonatem occupat, Solem ab horizonate re-
moveri; hoc ergo casu aquæ jam elevatur, ex quo necesse est imam
aquam ante adventum Lunæ ad horizonatem extituere, contrà verò si
dum Lunæ in horizonte veratur, Sol ad horizonatem appropinquet, aqua
præterea scilicet post appolum Lunæ ad horizonatem continet. Ponamus
itaque Lunam ante ortum sub horizonê H in O adhuc veri, Sol-
lemque in O esse positum, unde ad meridianum PZH progrediatur,
hocque ipso momento aquam maximè esse depreffam. Necesse igitur
est, ut decrementum momentaneum vis Lunæ ad mare movendum æ-
quale sit incremento momentaneo vis Solis. Ad banc æqualitatem de-
clarandam fit anguli PQO ad polum sumit, dixtantiam Lunæ à suo ort-
tu O indicantis, sinus $V = \cos \alpha$, qui ob angulum PQO
valde parvum autem visi, totidem æqualis concipi potest. Invento ergo
angulo hoc PQO leu arcu aequatoris illi respondente, eoque in tem-
pus converso, contabit quando tempus intercalo ima aqua appulum
Lunæ ad horizonatem praecedat: idem vero calculus tant ad Lunæ occi-
datum quàm ad accessionem Solis ad horizonatem facile accommodabi-

tur.

§. 68. Positis nunc A aequatore ac $= \gamma$ a ecliptica, fit eleva-
tionis poli PH sinus $= \pi$; cosinus $= \pi$; sinus declinationis Lunæ borea-
lis
lis \(L = R \), cosinus \(r \); ex quibus fiet anguli \(APO \) cosinus \(= \frac{-pR}{pr} \), quia Lunae, cum in horizontem \(O \) pervenit, alto dist evanesceit. Cum igitur anguli \(APO \) sinus \(= \frac{\sqrt{p^2 - r^2}}{pr} \), et \(FP \) sinus \(= \frac{vpr - \sqrt{pp - RR}}{pr} \), unde emergit decrementum momentaneum vis Lunae =
\[
\frac{3L\sqrt{(pp - RR)(pp - RR) - vpr} \, df}{b},
\]
ob \(v = 1 \) & \(V \valde exiguum. \) Sit porro Solis declinatio borealis \(= Q \) sinus \(= q \), atque anguli \(APO \) cosinus \(= T \), cosinus \(= t \), erit vis Solis incrementum momentaneum =
\[
\frac{3S(t + p + q) \, T \, dp \, dt}{a},
\]
quod illi vis Lunae decremento aequale est ponendum, quidem Maris alto dist hoc tempore est minima. Quare cum sit fere \(\frac{L}{b} = \frac{4S}{a} \), est habetur aequatio \(q \, V(pp - RR) \) = \(T \, pq \, (tpq + PQ) \), quae præbet \(V = \frac{T \, pq \, (tpq + PQ)}{4(PP - RR)} \). Cum igitur hoc pacto innotescat angulus \(O P \), is in tempus conversus habet temporis spatium, quo summa Maris depressa ante omnem Lunæ contingit. At si punctum \(O \) desiget Lunæ occasum, idem angulus præebet tempus post Lunæ occasum, quo Mare maximo deprimetur. Intelligitur ex
formulâ inventâ quibus casibus imâ aquâ in ipsum appulfum Lunâe ad horizontem incidat; hoc scilicet primâ evenit, si \(T = 0 \), hoc est si Sol in meridiano veretur, deinque si \(T = 1 \) \(P \) \(Q = 0 \), id est si Sol quoque horizontem occupet; quos binos causas jam notavimus.

§. 69. Sit locus noftr Terræ sub aequatore situs, seu elevatio poli nulla, erit \(P = 0 \), \& \(r = 1 \), unde efficitur \(V = \frac{T_{pp} - T_{pq}}{4(1 - RR)} \); in qua formulâ \(q \) \& \(r \) denotent cosinus declinationum Solis ac Lunæ, non multum inter se discrepant; ponamus enim altem declinationem esse maximam, altem vero minimam seu \(= 0 \), erit tamen cosinuum ratio minor quàm \(\frac{q}{r} \), ex quâ fractio \(\frac{q}{r} \) temper intra hos limites \(\frac{1}{2} \) \& \(\frac{1}{2} \) continebitur. Quod si ergo hanc ab aequalitatis aberrationem neglegamus, id quod tuò facere poiffimus, quia rem tantum prope definire conamur, habebitur \(V = \frac{T_{p}}{4} = \frac{2T_{p}}{8} \). Denotat autem \(2T \) finum dupli anguli horarii quo Sol à meridiano diûtat, \& hanc ob rem ad momentum maxima depressio aquæ affigundum, videndum est quæ diei horà Luna ad horizontem appellat, hujusque temporis vel à meridie vel mediâ nocte intervallum capiatur, atque in arcum aequatoris convertatur. Hujus deinde arcus vel anguli sumatur duplum, hujusque duplum finus, cujus pars octava praebet finum anguli, qui in tempus conversus dabit temporis intervallum, quo ima aquæ Lunæ appulfum ad horizontem vel præcedit vel sequitur; id quod ex notatis circumstantiis discernere licet. Sic si Luna horâ \(9 \) matutinâ adoriatur, erit tempus uque ad meridiem \(3 \) horarum, angulisque respondens \(45^\circ \), cujus dupli finus est ipsae finus totus, cujus pars octava fit finus anguli \(7^\circ \), \(11^\prime \). cui tempus respondet ferè \(30 \) minutorum, tantum itaque ima aqua ortum Lunæ præcedet.

§. 70. Ut hæc ad datum Lunæ cum Sole aspectum accommodari queant, ponamus longitudinis Solis \(\gamma \) \(\cap \) finum esse \(F \); cosinum = \(f \) longitudinis verò Lunæ \(\gamma \) \(\cap \) finum esse \(= G \); cosinum = \(g \); atque inclinationis eclipticæ \(\delta \). \(\gamma \) \(\cap \) finum = \(M \); cosinum = \(m \). His positis erit \(Q = MF \), \& \(R = MG \); atque ascensionis rectæ Solis \(\gamma \) \(\cup \) tangens reperietur = \(\frac{mF}{g} \), Lunæ verò ascensionis rectæ \(\gamma \) \(\cap \) tangens = \(\frac{mg}{g} \). Subtrahatur ascensio recta Solis ab ascensione rectâ Lunæ, \& differentia finus sit = \(K \); cosinum = \(k \). Chim igitur anguli \(\cap \) \(P \) \(\cap \) fit finus = \(K \) \& cosinum = \(k \), anguli verò \(AP \) \(\cap \) finus = \(\sqrt{(pp - RR) - V_{PP}} \); ab \(v = 1 \), \& cosinum = \(-\frac{PR - V\sqrt{(pp - RR)}}{p} \), erit anguli \(AP \) \(\cap \) finus = \(T = \frac{(k + KV\sqrt{(pp - RR)} - kPRV - kPR)}{p} \), & cosinum = \(\frac{(k + KV\sqrt{(pp - RR)} - kPRV - kPR)}{p} \).

qui-
quibus valoribus substitutis, simulque simul V tanquam valde parvo condicto, reperietur simuli $V = \frac{(RFR + \sqrt{(pp - RR)}) q (Rq\sqrt{(pp - RR)} - kPRq + PQr)}{4rr (pp - RR)}$

Sub æquatore autem, quo sit $P = 0$, $V = \frac{kkqg}{4rr}$: ex quo pro æquatore regula superior æ distantia Solis à meridiano petita simul ad differentiam ascensionalem Solis & Lunæ potest accommodari, ita ut maneat invariatum. Sed ad præsens institutum, quo tantum veritatem causa Fluxus ac Refluxus Maris exhibeit declarare annimur, non opus est hæc pluribus perfequi, quippe quæ potissimum ad accuratissimam ætatis marini tabulas supputandæ pertinent, quæ æ res in propositæ quæstione Illustriissimæ Academiam non contineri videtur.

CAPUT SEXTUM.

De vero ætus Maris, quatenus à Terris non turbatur.

§. 71. Quae haestenns ex viribus Solis ac Lunæ circa ætum Maris suós deduximus, eæ hypothesi nituntur; assumtam quam inertiae expertem posuimus: quamobrem non est mirandum si plerique effectus assignati cum Phænomenis minus congruant, atque adeo
CADE PUGNARE VIDEANTUR; QUOD SI ENIM INTER SE PROPRIO CONVENIUNT, THEORIA NON FOLIA NON EGO CONDENSA CONFIRMARETUR, SED POTIUS OMNINO SABURRENTERETUR, CUM QUILIBET FACILE AGNOSCAT OB AQUA INERTIAM DETERMINATIONIBUS EXHIBITIS INGENTEM MUTATIONEM INFERRI DEBERE. QUAE AUTEM EX DEDUCTIS CONCLUSIONIBUS MAXIME AB EXPERIENCIIS DIFFERENTIUM, POTISSIMUM QUANTITATUM ELEVATIONIS AQUAE AC TEMPORIS MOMENTUM, QUO TAM SUMMA Maris elevatio quam ima depressio contingere solet, repiciunt. Nufquam enim ubi quidem Mare est liberum atque apertum, tam exiguum discriminum inter Fluxum ac Reflexum in aquae altitudine observatur, quae in praecedentibus definitus, quatuor scilicet pedum tantum; quae elevatio in super tamem maxima est depreshensae, ac tum folium oriunda, quando tum regio prope aequatorium est sita, quam vires luminarii inter se maximae conspirat. Experientiis namque constat, plerique in locis, si aequatus contingat maximi, aquam non folium ad altitudinem duplo majorem, sed etiam quadruplum, imo nonnullis in locis adeo decuplum at- toli; quanquam haec enormis elevationi non foli inertiae aquae, sed maxime partem vicino continenti ac littorum fixit eft tribuenda, ut in frequenti capite clariiffimi monstrabitur. Deinde itab quarum ad tempus attinet, nufquam illis ipsis momentis, quae assignavimus, Fluxus ac Reflexus unquam contingunt, nec etiam tempestatibus hic definitis Fluxus maximi vel minimi, sed ubique tardius evenire constanter observatur; cujus quidem retardationis causa in ipsa aquae inertiae positae esse prima etiam fronte perspicitur.

72. Quantum autem agitatio Maris in praecedentibus capitibus determinata ab observationibus differentiis, tamen complures circumstantiae sese jam praebuerunt, experientias tantopere confessaneae, ut amplius dubitate omnino nequeamus, quin in viribus Solem Lunamque respicientibus, quas non temere affumimus, sed aliunde existerem demonstravimus, vera & genuina aestas Maris caula continentur. Hanc ob rem jam merito suplicari licet, diffensiones quae inter theoriam nostram, quatenus eam affumae hypothesi superstruximus, & experimentam intercedunt, ab aquae inertiae aliique circumstantiis, quorum nullam adduc rationem habuimus, proficiunt. Quocirca fi omnia inertiae ratione habitab ad observationes propius accedant, id quidem nostrae theoriae maximum afferet firmamentum, atque simul omnes alias causas, qua preter has vel sunt prolatae vel proferri possunt, excludet, irritaque reddet. Cùm igitur confluent hujus theoriae cum Phænomenis, nux fimus evidenteriis ostensi, quaestioni ab Inclita Academia proposita ex ade satisficiisse jure nobis videbimus: cum non folium nulas vires imaginarias effluxerimus, sed etiam virium Lunam Solemque respicientium existentiam aliunde dilucidè evicerimus. Neque vero in hoc negotio cum plerique Anglorum ad qualitates occultas fumus delapsi, verum potius cauam ita-
rum virium modo rationali & legibus motis contentaneo in vorticibus constituius, quorum formam atque indehac luculenter explicare possimus; idque fecissimus, nisi ab aliis cum jam fatis esset expostitum, tum etiam ab illustrissimâ Academiâ in praefente quæstione non requiri videatur.

§. 73. Dum igitur haætenus aquæ omnem inertiam cogitatione ade- minus, ipsi ejusmodi qualitatem afferimus, quà viribus follicitantibus subitò obliquearet, seque in instanti in eum statum recipiet, in quo cum viribus in æquilibrio conficeret; hocque pacto aquam non solum subito omnis motis capacem possimus, sed etiam ita comparatam, ut quovis momento omnem præsumum motum amittat. Longè alter autem res se habet, si inertiae ratio in computum ducatur; haec enim efficit ut primò aqua non subitò se ad eum statum componat, quem vires intendeunt, sed pedentim per omnes gradus medios ad eum accedat; deinè vero eadem inertia in cauâ est, quod aqua, cum in statum æquilibrii pervenerit, ibi non acquiescat, sed ob motum òstatum ulter progre- diatur, quoad omnem motum à potentiss renitentibus amittat. Ex quo perplicium est, admissâ inertia aquæ, à potentiss follicitantibus motum omninò diversum actu imprimi debere ab eo, quem recipiet, si inertia privata est; cuius discriminis ratio exemplo corporis penduli commodè ob oculos poni potest. Ponamus enim corporis pendulum O C ob gravitatem statum tenens verticalem, à vi quàpiam in latus secundum directionem C M follicitari. Si nunc hoc pendulum inertiam careret, seu ejusmodi effet indolis, cuius aqua haætenus fumus contemplati tum subitò statum OM acciperet, in quo nescvis cum gravitate æquilibrium teneret. At cum pendulum inertiam præeditum consideratur, post aliquod demum tempus elapsum ad statum OM perveniet: ac deinde quia motu accelerato ed pertingit, ibi non quiescat, sed ulter excurrat, putât in N ulque stat ut spatio CN ferè sit duplo majus spatio CM, prouti calculi clarè indicat. Prop- ter inertiam igitur pendulum præmum tardius vi follicitantis obtemperat; atque à statu æquilibrii recedit; deinde verò etiam magis recedit, majoremque excursionem conficit, quàm si inertiam careret; quae sunt eae is- tae duæ res, in quibus theoria ante exposita ab experimentiâ maximum diff- sentire deprehensâ est.

§. 74. Si nunc tibud penduli exemplum ad nostrum casum æstis Mariæ transversus, primò ingenium similitudo in sttu penduli verticali ac statu Mariæ naturali, quem obtinet remotis potentiss externis, observatur. Nam quemadmodum pendulum, si in quacunque plagam de statu verticali
Cap. ticali declinetur, propriam vi gravitatis se in eundem recipit, ita etiam aqua, si ex situ suo aequilibrii depellatur, vi gravitatis se ad eundem componit. ac praetera pariter ac pendulum oscillationes peragitt, cujusmodi oscillationum causus in aqua observati passim inveniuntur expostiti. Deinde etiam similis modo, quo pendulum, Mare quo magis ex situ suo naturali fuerit deturbatum, eodem majorem habebit vim se in situm aequilibrii refituyendi. Quod si igitur Mare a viribus externis, Solis scilicet ac Lunae, max elevetur, maxae deprimatur, necesse est ut inde motus oscillatorius seu reciprocus oriatur aetlui Maris omnino similis, qui autem per leges motus difficulter definiri quest accuratè quidem; nam vero proximè, hoc non adeo erit difficile. Duo autem sunt res, quae absoluunt ac perfectam totius motus determinationem summopere reddunt difficilèm, quorum altera physica spectat, atque in ipsa fluidorum natura consistit, quorum motus difficulter ad calculum revocatur, praecipue quia quae sunt in amplissimo Oceano, qui alius in locis elevetur alius vero deprimatur. Altera autem difficulites in ipsa analysi est posita, et quod igitur motus Maris reciprocus prorsus fit diversus ab omnibus oscillationibus à Mathematicis adhuc consideratis: vires enim Lunae ac Solis Mare solicitantantes neque à situ corporis oscillantis, neque ab ejus celeritate pendent, uti id usui venit in omnibus oscillationum caelibus etiam nunc expostitis, sed ex vires à situ luminarium respectu Terræ, idemque ad tempore determinandæ, cujusmodi oscillationes nemo adhuc, quantum quidem confit, calculo subjicit.

S. 75. Quod quidem ad etsi forem difficultatem physicam attinet, res hoc quidem tempore ferè desperata videtur; quamquam enim ab aliqua tempore theoriam motus aquarum ingentia sit affecta incrementa; tamen ea potissimum motum aquarum in vasis & tubis fluentium respiciunt, neque vix ullam commodum inde ad motum Oceanici definieundi derivari potest. Quamobrem in hoc negotio aliquum quocumque praestare non licet, nisi ut hypothetibus effingendis, quae à veritate quanminima abuladant, tota quaestio ad eonconsiderationes purè geometricas & analyticas revocetur: alteram autem difficultatem mathematicam, etiam difficillimis integrationibus in involuta, tamen feliciter superare confirmabatur. Confidero scilicet superficiem aquae RS, quæ hoc in situ aequilibrii teneat cum reliqua aqua, remotis viribus externis; his vero accedentibus alternis vicibus atollatur in A, deprimiturque in B. Quod si igitur aqua in M ulque sit depræsfa, atque extemæ vires Solis ac Lunæ subito cessarent, tum vi gravitatis proprie conaretur se, elevare uoque in situm RS naturalem, istequo conatus eò erit major, quod majus fuerit spatium CM quo à situ naturali diifat. A veritate itaque non multum recedeamus, fi hanc vim ipsi spatio MC ponamus proportionalem: quamobrem posti spatio $MC = s$. erit vis, quæ aquae superficiem in M ulque depressam attollit = $\frac{s}{g}$, quæ hypothetis ad veritatem eò propius accedit,
quod sponte indicat, si aquae superficies supra C jam sit elevata, tum vim fieri negativam, adeoque aquam deprimere. Praeterea verò eadem hypothesis confirmatur pluribus phaenomenis aquae nifum respicientibus, ita ut de ejus veritate amplius nullum dubium superfit.

S. 76. Ponamus jam aquam in M constitutam urgeri a solis Luna, atque ut calculus per se molestus minus habeat difficultatis, ite locus C sub ipso sequatore situs, Lunaque declinatio nulla, ex quo Luna in circulo maximo per loci zenith transeunt sequatore scilicet circumperitur: ite EGHF ite circulus, cuius radius ponatur = 1, atque EF expressa horizonte, & G zenith. Posito his, sit Luna in T dum Maris superficies verfatur in M, ita ut PT=y exprimat finum altitudinis Lunae super horizonte; unde vis Lunae Mare attollens erit \(\frac{L(3yy-1)}{2b} \) = \(\frac{3yy-1}{b} \), posito brevitatis gratia \(b \) pro \(\frac{2h}{L} \). Hanc ob rem ergo superficies Maris in M duplici vi attolletur, scilicet \(\frac{v}{g} + \frac{3yy-1}{b} \). Quod si ergo ponamus aquam in M jam habere motum furtum directum, cuius celeritas tanta sit quanta acquiritur lapidum gravissim ex altitudine \(\nu \), atque spatium \(Mm = -ds \) tempusculi infiniti parvo absolutur, habebitur per principia motus \(d\nu = -ds \left(\frac{v}{g} + \frac{3yy-1}{b} \right) \). Ponamus porro tempus ab ortu lunae in M jam elapsum, quod arcui ET est proportionale, esse = \(\zeta \), quae littera ipsius arcum \(ET \) sumul denotet, erit \(y = \sin. \zeta \) scilicet finui arcus \(\zeta \), hoc enim modo finus ec cosinus arcum sinus indicaturi: unde orientur \(\nu = \frac{Vv}{2yy} \).
CAP. 2 \(y = \cof{2} z \), atque \(3 y = 1 = \frac{1}{2} \cof{2} z \), hincque \(d v = -d s \)
\[
\left(\frac{s}{g} + \frac{1}{h} - \frac{3}{2} \cof{2} z \right).
\]

§ 77. Cum igitur elementum temporis \(s = d z \), erit ex natura motus \(d z = -\frac{d s}{\sqrt{v}} \), atque \(v = \frac{d s^2}{d z} \); unde sumto elemento \(d z \) pro constanti, sit \(d v = \frac{2dsd}{d z} = -\frac{d s}{\sqrt{v}} \left(\frac{s}{g} + \frac{1}{h} - \frac{3}{2} \cof{2} z \right) \), atque \(2d ds + \frac{1}{h} \frac{dz^2}{d z} (1-3 \cof{2} z) = 0 \), quae aequatio duas tantum continent variabiles \(s \) & \(z \), & propertia si debito modo integratur, indicabit situm seu statum aquae ad quodvis tempus. Quoniam autem haec aequatio est differentialis secundae gradus, atque innumer arcus & sinus arcum continent, facile intelligitur ejus integrationem minus esse obviam; interim tamen cum alterius variabilis \(s \) plus una dimensione nufquam addit, ea per methodos mihi familiaries tractari poterit. Soleo autem, quod hujusmodi occurrunt, initio eos terminos in quibus altera variabils \(s \) omnino non inessit, rejecere; unde haec consideranda ve nit aequatio \(2d ds + \frac{1}{h} \frac{dz^2}{d z} = 0 \), quae per \(ds \) multiplicata fit integrabilis, existente integrali \(ds + \frac{1}{h} \frac{dz^2}{d z} = c dx \).

ob \(d z \) constant. Hinc porro elicitur \(d z = \frac{ds}{\sqrt{v} \left(s + 1 \right)} \), atque \(\frac{ds}{d z} = \frac{\sqrt{v} \left(s + 1 \right)}{s} \).

Cognitio autem hoc valore, idonea nascetur substitutio facienda pro aequatione propinquit \(2dds + \frac{1}{h} \frac{dz^2}{d z} \left(1-3 \cof{2} z \right) = 0 \), atque enim \(s = u \) fin. \(\frac{1}{\sqrt{v} \left(s + 1 \right)} \), erit \(ds = du \sin. \frac{z}{\sqrt{v} \left(s + 1 \right)} \).

Quibus valorius substitutis emerget quae aequatio \(2d du \sin. \frac{z}{\sqrt{v} \left(s + 1 \right)} + \frac{1}{h} \frac{dz^2}{d z} \left(1-3 \cof{2} z \right) = 0 \), in qua hoc commodè accidit ut ipsa variabils \(u \) non init, sed tantum ejus differentia.

§ 78. Quod si ergo ponatur \(d u = p dz \), erit \(d d u = dp dz \), & aequatio nostra transibit in sequemem differentialem primi gradus tantum, \(2dp \)
\[
\sin. \frac{z}{\sqrt{v} \left(s + 1 \right)} + \frac{1}{h} \frac{dz^2}{d z} \left(1-3 \cof{2} z \right) = 0 ; quae integrabilis reddi
\]

inventur, si multiplicantur quae quantitatem quamquam exz & constantibus compositam, eò quod \(p \) plures una dimensiones habet nufquam. Ad' integrationem autem ab hoc quod notandum est hujus aequationis \(dp \)+
\(pZdz = \Sigma dz \), in qua \(Z \) & \(z \) functiones quacunque ipsius \(z \) denotant;
integratione e \int \frac{p d z}{\sqrt{1 - g}} = e \int \frac{p d z}{\sqrt{1 - g}}
\; d z. \; Reducta \; autem \; nostrae \; equatione

\frac{2 d z \cdot \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}} = \frac{d z (3 \cdot \frac{z}{\sqrt{1 - g}} - 1)}{4 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}}}
\; ideoque

\frac{2 d z \cdot \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}} = \frac{2 \cdot \frac{z}{\sqrt{1 - g}}}{\sin \frac{z}{\sqrt{1 - g}}}; \; atque \; hinc \; \int \frac{z}{\sqrt{1 - g}} = 2 \log \sin \frac{z}{\sqrt{1 - g}}.

\frac{z}{\sqrt{1 - g}}; \; et \; e \int \frac{p d z}{\sqrt{1 - g}} = \left(\frac{\sin \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}} \right)^2. \; Ex \; his \; sequitur \; integratione \; nostrae \; equationis

p \left(\frac{\sin \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}} \right)^2 = \frac{1}{4 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}}} \; \int \frac{z}{\sqrt{1 - g}} \left(3 \cdot \frac{z}{\sqrt{1 - g}} - 1 \right) = \frac{3}{4 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}}} \; \int \frac{z}{\sqrt{1 - g}} \; \sin \frac{z}{\sqrt{1 - g}}.

\frac{\sin \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}} \; ad \; quas \; integrationes \; perficiendae \; notetur \; \int \frac{z}{\sqrt{1 - g}} \; \sin \frac{z}{\sqrt{1 - g}} = C - \frac{1}{4 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}}} \; \int \frac{z}{\sqrt{1 - g}} \; \sin \frac{z}{\sqrt{1 - g}} \; \frac{\sin \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}}.

\frac{C \cdot \frac{z}{\sqrt{1 - g}}}{\sin \frac{z}{\sqrt{1 - g}} \cdot \left(\frac{1}{2 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}} - 4} \right)}.

\int \frac{p d z}{\sqrt{1 - g}} = \frac{4 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}} \left(\frac{1}{2 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}} - 4} \right)}.

\mathbf{§} \; 59. \; Cum \; autem \; possuisset \; \int d u = p \cdot d z, \; erit \; u = \int \frac{p \cdot d z}{\sqrt{1 - g}} + \int \frac{d z \cdot \frac{z}{\sqrt{1 - g}}}{\sin \frac{z}{\sqrt{1 - g}}^2} + \int \frac{d z \cdot \frac{z}{\sqrt{1 - g}}}{\sin \frac{z}{\sqrt{1 - g}}^2}.

\mathbf{Cap.} \; VI.

Hae autem formulæ omnes sunt absolutè integrabiles; prodibitque \(u = D - \frac{C \cdot \frac{z}{\sqrt{1 - g}}}{\sin \frac{z}{\sqrt{1 - g}} \cdot \left(\frac{1}{2 \cdot \frac{h}{\sin \frac{z}{\sqrt{1 - g}}} - 4} \right)}; \) ex quo tandem

\frac{\sin \frac{z}{\sqrt{1 - g}}}{\sqrt{1 - g}} = \frac{2 h \sin \frac{z}{\sqrt{1 - g}}}{2 h (1 - g) \sin \frac{z}{\sqrt{1 - g}}},

resultat \(s = u \cdot \frac{z}{\sqrt{1 - g}} = D \cdot \frac{z}{\sqrt{1 - g}} + C \cdot \frac{z}{\sqrt{1 - g}} \cdot \frac{g}{2 h} + 3 \cdot \frac{g}{2 h} \cdot \frac{z}{\sqrt{1 - g}} \), quae

\mathbf{V V 3}
est æquatio generalis ad quodvis temporis ætatem aquæ, seu differentiam ejus supremæ superficiei à C indicans, ubi constantes C & D ex dato Maris statum ad datum temporis definiri oportet. Quoé si igitur ponamus motum aquæ jam à uniformitate esse deductum, ita ut aquæ omnibus diebus, quando Luna in T verfatur, in eodem loco M verfetur, necesse erit ut valor ipsius s maneat idem, eti arcus z integrà peripheriæ 2 = vel æquis multiple augeatur. At positum z Æ loco z, terminus cof. 2 z manet quidem invariatus, at D fin. \(\frac{x}{\sqrt{z}g} + C \text{ cof.} \frac{z}{\sqrt{z}g} \) fit = D fin. \(\frac{x^2 + z^2}{\sqrt{z}g} + C \text{ cof.} \frac{z^2}{\sqrt{z}g} \), quæ æqualitas adeo non potest nisi vel \(\frac{1}{\sqrt{z}g} \) fit numerus integer, vel C & D = o. Cùm itaque g determinari non liceat, quia jam est datum, ponendum erit C = o & D = o, ita ut ìtia ìbèa- tura æquatio \(s = \frac{g}{z} + \frac{z \text{ cof.} 2 z}{2h(1-8g)} \), ex quâ facilimè ad quodvis temporis statum Maris cognosceetur : valores scilicet affirmatiivi ipsius s dabitut fitam aquæ infra ìtum naturalèm C, negativi verò supra C.

§. 80. Cognito autem spatio s per temporis x, celeritas quoque Ma- ris quand in M ascendit reperieatur ex æquatione d \(z = \frac{-d}{\sqrt{v}} \) erit enim \(V = \frac{-d}{d z} = \frac{3 g \text{ fin.} z z}{h(1-8g)} \), quae expressio ipsi celeritati, quà aquæ superficies, dum in M verfatur, elevatur, est proportionalis : hæc ergo celeritas aquæ tempérer est ut finus dupli arcis ÆT, vel etiam ut finus dupli temporis, quo Luna à transitu per meridianum abest, temporum scilicet in arcum æquatoris converso. Hinc igitur celeritas aquæ erit nulla si Luna fuerit vel in E vel in G vel in F vel in H, hoc est, vel in horizontem vel in meridianum, quæ cùm his tem- poribus aquæ vel maximè fit elevata vel maximè depressa, unde Luna revolutione aquæ bis elevabitur, biquae deprimetur, istaque bini Fluxus binique Refluxus contingent. Aquæ quidem maximè erit depressa iis ip- fis momentis, quibus Luna ad horizontem appellit, tum enim fit cof. 2 x = 1, atque spatium C B erit \(s = \frac{g(1+4g)}{2(1-8g)} \); at maxima elevatio inci- dent in ipso Lune transitus per meridianum, quibus est cof. 2 x = -1:

ac ìtum altitude C A erit \(s = \frac{g(2-4g)}{h(1-8h)} \). Quanquam autem hæc mo- menta cum experiëntià non fatis conveniunt, tamen ea hypothesi assum- tæ planè congruent, quà potuimus Lunam solam agere, ac perpetuò in ipso æquatore versari, ex quò æstus se tandem ad summam regularità- tem componat necesse erit. Quòd si enim Lune declinatio ponatur variabilis, atque Sol infüerat agat, æstus jam formati perpetuò turbabuntur, ex quò ob æquabilitatem continuò sublatam esseffus tardiores necessariò conseqüi déebunt. Præterea quoque nullam adhuc motis Maris hori- zontalis
F L U X U S A C R E F L U X U S M A R I E.

§ 81. Si aqua, uti in præcedentibus capitibus poñimus, inertià car-reter, tum foret ex aequatione primâ \(\frac{d}{s} = -d \left(\frac{3}{g} + \frac{3y}{h} \right) \) perpetuò \(s = \frac{g}{h} \left(\frac{1}{3y} \right) \), quia aqua tum quovis momento cum viribus folli-citantibus in æquilibrío consitteret. Maxima igitur depressio etiam tum Lunæ horizontali respondet, cum \(y = 0 \), foretque spatium depressio\(nis C M = \frac{g}{h} \); maxima verò elevatio, qua circa Lunæ appulsam ad meridianum continget, fiet per spatium \(C N = \frac{2g}{h} \) ob \(y = 1 \). Quare si aqua inertià careret, foret spatium \(MN \), per quod aqua motu recipro-co agitaretur, \(= \frac{3g}{h} \); inertià autem admìssà agitationes pericientur in spatio maiore \(AB = \frac{3g}{h(1 - 8g)} \), cujus excessus super spatium \(MN \) erit \(= \frac{3g}{h(1 - 8g)} \). Quantitas itaque æquilis pendet à valore litteræ \(g \); qui quin dem semper est affirmativus; nam si foret \(g = 0 \), quod evenit si gravitatis vis effet infinité magna respectu virium Lunæ & Solis, tum etiam nullus æquilibrium oriretur; deinde quod magis \(8g \) ad \(1 \) accedit, eò major prohibitus, qui adeo in infinitum excrecere pòsset si foret \(8g = 1 \); hoc quippe cau si Lunæ gravitatem superaret, omnèsque aquas ad Lunam attraheret; quod autem fieri non potest, multo minus autem effe pòst \(8g = 1 \), quod tamen si eveniret, maxima elevatio appulsui Lunæ ad horizontem, maximaque depressio Lunæ meridianum occupan-ti respondet.

§ 82. Cùm igitur aqua, si inertià careret, agitetur per spatium \(MN = \frac{3g}{h} \), suprà autem § 41. eàdem hæc hypothesi, quâ tam locus quàm Luna in æquatore ponitur, aquam elevarì supra libellam per spatium \(2,260 \) pedum, infra eam verò deprimi spatio \(1,112 \) pedum, erit \(\frac{3g}{h} = 3,372 \) pedum, ideoque \(\frac{g}{h} = \frac{1}{1,124} \) pedum \(= \frac{1}{8} \) pedum. Quoniam verò valor ipsius \(g \) cum unitate comparatur, ideo venit, quod tempus per ipsum arcum circuli cujus radius est \(= 1 \) expressimus: hinc itaque va-lor ipsius \(g \) respectu unitatis definitur tempore eodem modo expresso, quo aqua in \(M \) utque depressa solâ vi gravitatis se in \(C \) reflitueret, quod tem-
tempus ex circumstantiis facile poterit aëstimari: probabit autem per calculum temporis restitutionis $= \frac{\pi}{2} \sqrt{2} g$, denotante r semiperipheriam circuli radius r habendam, seu tempus duodecim horarum Lunarium. Quòd si igitur restitution ponatur acut fieri tempore $\frac{12}{n}$ horarum, erit $\frac{\pi}{2} = \frac{\pi}{2} \sqrt{\frac{r}{2}}$ et $g = \frac{2}{nn}$, ex quo perplicium est, quod citius aëqua se propriam suâ vi restituere valeat, et minùs excessurum esse spatium AB spatium MN. Cum autem de his restitutione non fatis turo judicandi queamus, praestabit ex observationibus rationem spatii AB ad MN proxime affumere. Si enim ponamus esse $AB = 2, MN$, erit $\frac{3}{1 - \frac{8}{g}} = 6$, et $g = \frac{2}{16}$; fin autem sit $AB = 3, MN$, fiet $\frac{3}{1 - \frac{8}{g}} = 9$ et $g = \frac{3}{12}$; at postita $AB = 4, MN$, erit $g = \frac{2}{7}$. Quoniam igitur aëqua ob inertiam ferè duplo majus spatium abolvvere poni potest, assumamus $g = \frac{2}{7}$, seu $n = 6$, ita ut aëqua propriam vi gravitatis tempore circiter 2 horarum in statum naturalem se restituere valeat. Posto autem $g = \frac{3}{11}$, fiet $\frac{3}{1 - \frac{8}{g}} = 5$, et spatiumque $AB = 6$ ped. proximè. Ne autem traductio minim fiat specialis, retincamus litteram n, cuius valorem esse circiter 6 vel 5 notasse sufficiet, qui valor fatis propè ad aëstimationem accedit: ita ut sit $g = \frac{2}{n}$ et $AB = \frac{3n}{n - 16}$. Si pedum: unde fatis patet n necessariò esse debeere > 4, et igitur adeo vel 5 vel 6.
$. 83. Tentemus nunc idem hoc problema in sensu latiori, ac ponamus regionis C elevationis poli finum esse $= P$, cofinum $= p$; Luna vero declinationis borealis finum esse $= Q$, cofinum $= q$; Lunamque super Terra jam per meridianum transisse, ab eoque diffare angulo horario $= z$, ita ut z ut antè tam tempus quam arcum circuli radii $= 1$ designet; quòd si nunc arcús x cofinus ponatur $= t$, erit finus altitudinis Lunae super horizonte $= tpq + PQ$; ideoque vis Lunae Mare elevans $= \frac{L}{kh}$.

$$3(qp + PQ) - 1 = \frac{3p^2q^2x^2 + 6pqPQ + 3p^2Q^2 - 1}{hk},$$

posito ut antè $\frac{L}{2b} = \frac{x}{h}$. Quoniam vero est $t = \cos z$ et $z = \cos z$

et $t = \frac{1 + \cos z}{2}$, ex quo vis Lunae ad Mare elevandum habebitur $= \frac{3p^2q^2 + 6pqPQ + 3p^2Q^2 - 1}{2h}$.

Ponamus nunc superficiem aquae in M veriari, egitante $CM = s$, & celeritatem ejus qui actu ascendit debitam esse altitudinis v, erit $d = -dS \left(-\frac{t}{g} + \text{vi Lunae}, \right.$

cum vero sit $dS = \frac{d}{\sqrt{v}}$, seu $\sqrt{v} = \frac{-dS}{d} = ipse celeritati ascensae erit $v = \frac{\frac{d}{\sqrt{v}} + \frac{1}{\sqrt{v}}}{2}$. Posto d, constante: hinc igitur emerget ista aequatio $2Sd = + d$.

$$\left(-\frac{t}{g} + \frac{3p^2q^2 + 6pqPQ + 3p^2Q^2 - 1}{2h} \right)$$

relationem inter temporum t & flatum Maris s continens.

$. 84. Quòd si nunc hæc aequatio eodem modo tractetur, quo superior, ea pariter bis integrari posse reprehendetur, integrationibus autem singulis debito modo abfolatis, & constatibus ita determinatis ut motus aquae fiat uniformis, reperietur $= \frac{6p^2q^2}{h(1 - 2g)}$.

$$\frac{3p^2q^2 + 1}{2h}$$

ac celeritas ascensæ $v = \frac{-dS}{d} = \frac{6pqPQ \text{fin} \cdot z}{h(1 - 2g)} + \frac{3p^2q^2 \text{fin} \cdot z}{h(1 - 2g)}$.

Cum autem si: fin. $z = z$ fin. z' & z'', celeritas duobus cæribus evanescit, quorum primus est si fin. $z = 0$, alter si $z = \frac{-PQ(1 - 8g)}{pq(1 - 2g)}$; illi casus dabunt aquam summam, hi vero imam. Hinc igitur patet aquam summam contingere debere iis ipsis momentis, quibus Luna per meridianum transit, imam vero non tum, cum Luna horizontem attingit; namque Luna horizontem attingit, si est $z = \frac{-PQ}{pq}$, aqua verò est imam

$$\text{si est } z = \frac{-PQ(1 - 8g)}{pq(1 - 2g)} = \frac{-5PQ}{8pq}$$

posito $g = \frac{1}{h}$. Hic autem idem est notandum quod suprà, seilicit nos cosinus motum aquae esse uniforme.
CAP. mem seu quotidiem sui similem, Lunamque in ecliptica locum tenere fi-
num, seu altem suam declinationem non variare. Quoniam vero ob va-
riabilitatem declinationis Lunæ, itaque ob actionem Solis, iste motus
perpetuus turbatur, atque in superficem Maris horizontalis nulla adhuc
habita est ratio, facile intelligitur, tam Fluxus quam Refluxus tardiùs
venire debebat, quam quidem ex his formulis sequitur.
§ 85. Bini ergo una Lunæ revolutione contingent Fluxus, alter si
Luna super horizonte ad meridianum appellit, alter si sub Terra; priori ca-
si est col. \(z = 1 \), & col. \(z = 2 \), hoc itaque tempore Mare supra libellam
C elevatur per spatium
\[
\frac{3g_p^2q^2 + 3p^2Q^2 - 2}{2h} + \frac{3g_p^2q^2}{2h(1 - \lambda g)} + \frac{g_p^2pQ}{h(x - \lambda g)}.
\]
Dum autem Luna sub horizonte meridianum attingit, tum aqua elevatur per
spatium
\[
\frac{g_p^2q^2}{2h} + \frac{3p^2q^2 - 6g_p^2pQ}{2h(1 - 2g)} + \frac{g_p^2pQ}{h(1 - 2g)};
\]
propter col. \(z = 1 \) ac col. \(2z = 1 \) hoc calu: harum igitur altitudinem differentiation
eft \(\frac{i \cdot g_p^2pQ}{h(1 - 2g)} \); atque Mare in transitu Lunæ per meridianum supra ho-
rizontem altius elevatur, si declinatio Lunæ sit borealis; contrà vero si
declinatio fuerit australis, major Maris elevatio respondet appellui Lun-
æ ad meridianum infra horizontem. Lunæ vero in ipso æquaturo ve-
fante, ambo Fluxus inter se erunt æquales. Ratio autem elevationis poli,
horum binorum Fluxuum succedivorum inaequalitas erit maxima sub
elevatione poli 45°, pro his enim regionibus sit \(pP \) maximum; atque
in alius regionibus \(pP \) minor erit inaequalitas, quod magis fuerint à latitu-
dine 45° remotæ. Mare autem maximè deprimetur, si fuerit col. \(z =
\frac{-pQ(1 - \lambda g)}{g_p^2(1 - 2g)} \); quod valor substituto, reperietur aqua infra libellam C subfi-
dere per spatium
\[
\frac{3g_p^2q^2 + g_p^2q^2 + 3p^2Q^2 - 2}{2h(1 - \lambda g)} + \frac{3g_p^2q^2}{2h(1 - \lambda g)} + \frac{3g_p^2q^2}{2h(1 - \lambda g)};
\]
ono igitur aqua in æstuum movetur per spatium
\[
\frac{3g_p^2q^2 + g_p^2q^2 + 3p^2Q^2 - 2}{2h(1 - \lambda g)} + \frac{3g_p^2q^2}{2h(1 - \lambda g)} + \frac{3g_p^2q^2}{2h(1 - \lambda g)};
\]
quorum signorum ambiguum superius + valet si Lu-
na super horizonte; alterum vero — si Luna sub horizonte in Fluxu me-
ridianum attingit.
§ 86. Si aqua inertià cararet, tum superiore Lunæ transitu per me-
ridianum elevatur supra libellam C per spatium
\[
\frac{3g_p^2q^2 + pQ}{h(1 - \lambda g)};
\]
feriori vero transitu per meridianum elevatur ad altitudinem
\[
\frac{3g_p^2q^2 - pQ}{h};
\]
quorum altitudinem discrimen eft
\[
\frac{12g_p^2q^2pQ}{h}.
\]
Sed ut discrimen admis-
sa inertià majus sit parte circum octava, quam idem discrimen si iner-
tia tollatur. Maximè autem deprimetur aqua sublata inertià, si fuerit
col.
Fluxus ac refluxus maris. 343

coff. \(z = -\frac{PQ}{pq} \), tumque infra libellam erit constitueta intervallo \(\frac{1}{h} \); ex quo spatiu, per quod æstus maris fit sublatâ inertia, prodit

\[
\frac{3gP^2q^2}{h} + \frac{6grPQ}{h(1-8g)} + \frac{3gP^2Q^2(1-8g)}{h^2(1-2g)^2} \text{ erit excessus heius spatii super illud} = \frac{\frac{1}{2}g^2P^2q^2}{h} - \frac{3gP^2Q^2(1+g)}{h(1-2g)} + \frac{1}{2}g^2pqPQ}.
\]

Fieri ergo potest ut spatium, in quo æstus maris continetur, majus sit sublatâ inertia, quam si ea ætus tribuatur, id quod eveniet si

\[
\frac{P^2Q^2(1+g)}{(1-2g)^2} > \frac{2P^2q^2}{1-8g} \text{ vel } \frac{PQ}{p} > \frac{(1-2g)^2}{\sqrt{1+g(1-8g)}}.
\]

hoc est \(\frac{PQ}{pq} > \sqrt{\frac{1}{8}} \), posito \(g = \frac{1}{18} \); quod verò si evenit, Luna ne quidem horizontem in curfu diurno attingit, ac propterea aquam non deprimit. Ex quo sequitur æstum ubique abs inertia aquae augeri: erit autem ad uenum magis accommodatur spatium \(AB \), per quod Mare agitatur, ita expressum ut \(AB = \frac{3g}{h(1-8g)} (p \pm \frac{PQ(1-8g)}{1-2g}) \), ubi signorum ambiguum superiorius transitum Lunæ per meridianum super horizonzonte, inferius vero sub horizonte respicit.

§ 87. Cùm \(\frac{3g}{h} = \frac{3}{3} \) pedum, Luna mediocrem ad Terram differtiam tenente, atque \(g \) sit circiter \(\frac{1}{2} \) vel \(\frac{1}{18} \); erit posito \(g = \frac{1}{18} \) spatium \(AB = \frac{3}{18} (p \pm \frac{1}{18} PQ) \), \(3\frac{3}{7} \) ped. at facto \(g = \frac{1}{18} \) erit spatium \(AB = \frac{3}{18} (p \pm \frac{1}{18} PQ) \), \(3\frac{3}{7} \) ped. Ex his colligitur æstum fore maximum pro eadem elevatione poli, si fuerit tangens declinationis Lunæ = \(\frac{3}{18} \) cafu \(g = \frac{1}{18} \) vel = \(\frac{p}{18} \) cafu \(g = \frac{1}{18} \): hunc autem cafum priori veritati magis videtur consistentem, atque hanc ob rem valorem \(g = \frac{1}{18} \) retenamus: hinc igitur sequitur sub æquatore æstum fore maximum si Luna nullem habeat declinationem, atque simul pro quaque regione declinatio Lunæ poterit assignari, cujus maximum æstus respondeat: ut ex adjecto laterculo apparat:
<table>
<thead>
<tr>
<th>CAP.</th>
<th>Elevatio Poli. Declinatio</th>
<th>Elevatio Poli. Declinatio</th>
<th>Elevatio Poli. Declinatio</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.</td>
<td>0°</td>
<td>0°; 0'</td>
<td>30°. 13°; 54'</td>
</tr>
<tr>
<td></td>
<td>5°</td>
<td>2°; 8'</td>
<td>35°. 16°; 42'</td>
</tr>
<tr>
<td></td>
<td>10°</td>
<td>4°; 19'</td>
<td>40°. 19°; 46'</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>6°; 33'</td>
<td>45°. 23°; 11'</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>8°; 52'</td>
<td>50°. 27°; 3'</td>
</tr>
<tr>
<td></td>
<td>25°</td>
<td>11°; 18'</td>
<td>55°.</td>
</tr>
</tbody>
</table>

In locis ergo ultra 45°, ab æquatore remotis æfus erit maximus, si Luna maximam obtineat declinationem, si quidem fuerit \(g = \frac{1}{3} \), ac si per observationes constet cuinam Lunæ declinationi maximus æfus respondent, tum inde valor litterar g innotet: quoniam autem sub elevatione poli 50° æfus maximı nondum maximae declinationi respondere observantur, ponamus id evenire sub elevatione poli 60°, reperietur

\[
\frac{3 - 8g}{1 - 2g} = \frac{1}{4} \text{ atque } g = \frac{1}{10}, \text{ unde iphus } g \text{ tut } \text{ hi limites constuit } \text{ possi} \text{ videntur } \frac{1}{10} \text{ & } \frac{1}{15}; \text{ ex hac verò hypothesi valor } \frac{1}{10} \text{ multo propius ad veritatem accedit; interim tamen etiamnum nil definimus, sed observationes hunc in finem sollicita inquitas expectamus.}

§. 88. Quòd si autem ponamus \(g = \frac{1}{10} \), tum bini æfus successivi, dum Luna in maximam declinationem versatur, et magis ad æqualitatem perducentur, quò ipso ipso ad experientiam propius accedit; cùm enim

fit horum binorum æfuum major ad minorem uti

\[
\left(pq + \frac{PQ(1 - 8g)}{1 - 2g}\right)^2
\]

ad

\[
\left(pq - \frac{PQ(1 - 8g)}{1 - 2g}\right), \text{ hac ratio } \text{ ed propius ad æqualitatem accedit,}
\]

quòd minor fuerit fractio

\[
\frac{1 - 8g}{1 - 2g}, \text{ fit autem hac fractio } = \frac{1}{4} \text{ si ponatur } g = \frac{1}{10}.
\]

Hac itaque hypothesi erit quantitas æfus majoris = \((pq + \frac{PQ}{1 - 2g})^2 \), 16. 86 ped. minoris verò = \((pq - \frac{PQ}{1 - 2g})^2 \), 16. 86 ped. At inter hos binos æfus aqua humilium non medium interjacet, sed minori est vicinior, neque tamen tantà inæqualitate binos Fluxus dirimit, quam fieret, si ima aqua Lunæ horizontali responderet. Si enim temporal medium inter binos Fluxus ponatur \(x \), erit \(\cos x = 0 \), at temporis, quo Refluxus

Fluxum majorem insequitur, cosinus est = \(\frac{PQ}{4pq} \), ejuque ergo intervalli

à tempore medio sinus est = \(\frac{PQ}{4pq} \), quæ expreßio adeo sub elevatione poli 60°, pro maxima Lunæ declinatione 28°, tantum fit = 13°, unde Refluxus
FLUXUS AC REFLUXUS MARIS. CAP. VI.

fluxus à tempore inter Fluxus medio circiter 54' aberrabit: minor vero erit aberratio, quò propius cum regio Terrae tum Luna a1 eguato-rem verfentur; id quod cum experientia mirificè convenit. Quoniam autem haec ex valore ipsius g affinato consequuntur, imprimis notari oportet, litteram g non posse absolutè determinari, sed ejus quantitatem, quippe quæ mobilitatem totius Oceanis spectat, cùm ab extensione tum etiam profunditate Maris pendere; ex quo variis in locis haec eadem littera g, varias significationes fortetetur.

§. 89. Ex solutione horum duorum problematum, quæ quidem in se spectata non folum sunt observatione digna, sed etiam cum analysis tum etiam motus scientiam amplificant, quamvis ea casum propositionum non penitus exhaeriant, tamen motus in praecedentibus capitibus definitus multo magis cum experientia conciliatur, id quod theoriae nostrae jam insigne addit firmamentum. Simili autem modo vis à sole profecta cum inertia aequae potest conjungi, atque ætus Maris definiri, quàtemus à solà vi Solis oritur, quibus duobus effectibus conjungendis judicare licebit, quantum ætus quoque tempore & quovis loco debet evenire. In hoc quidem capite cognitiones adhuc ab omnibus obstaculis à Terrâ & littoris orbis praefissa abstrahimus, atque univeram Terram unicaqua aequa circuminfiam ponimus; ex quo regulas hinc natas præcipue eujusmodi observationibus, quæ in amplissimo Oceano apud exiguas infiñas sunt influitæ, conferri convenit. Quoniam autem nondum motus aequae progreffivi, quo alternativè ad loca, in quibus Fluxus & Refluxus accidit, progreditur & recedit, rationem habuimus, necessè est ut etiam hunc motum & Phænomena inde orta contemplamus. Ac primò quidem faciliè intelligi, cùm ob inertiam aequae tum etiam alia impedimenta motui opposita, aquam tam tardius elevari quàm deprimi oportere, quàm ex aliaùs haecentus consequitur: unde Fluxus non ad transitus Lunæ per meridianum continget, sed aliquanto seriòs evenient omnino uti experientia testatur.

§. 90. Hæc autem retardatio præciscè ad calulum revocarì non potest, quia a notu aquae ejusque profunclitate plurimum pendet, prout etiam videmus in diversis locis eam vehemens esse diverfam, atque aliis locis Fluxum contingere post Lunæ culminatum tribus horis nondum elapsis, aliis vero locis plus quàm duodecim horis tardius venire, quæ quidem insignis retardatio terrarum positioni est adscribenda; interim tamen hinc suflicienter conflat notum Maris admodum posse impeditiri. Pro eodem verò loco satis luculentè perspicitur, quà major atque altior Fluxus evenire debet, eò tardius eundem acciderè oportere. Quod si enim ætus contingat infinitè parvus, dubium est nullum, quin is fiat tempo adveniat, cum impedimentis hoc cafu ne locus quidem concedatur agendi: unde dilucidè i equivalent ætus eò tardius advenire debere, quà
CAP. sint maiores. Atque hoc ipsum experiensconfirmat, quod constat aetatus
maiores, qui circa novilunia ac plenilunia contingunt, tardius insequi
transitum Lunae per meridianum, quam aetatus minores, qui circa quadra-
turas contingunt. Cum enim Luna in quadraturis circiter 6 horis tar-
dius respectu Solis per meridianum transect, quam in syzygiis, aetatus
tamen non 6 horis tardius, sed tantum circiter 5, horis tardius accidit.
Videtur vero etiam calculus, qui pro utraque vi Solis ac Lunae conjun-
tionem instituit potest siniti modo, quo pro soli vi Lunae fecimus, ejus
modi retardationem majorem in syzygiis quam in quadraturis indicare,
etiam si eum ob summas difficultates ad finem perducere non valuerimus;
interim tamen sumum esse sequitur, si quibus aetatus solemine esse maximum & minimo, id quod de-
sum post syzygis & quadraturas contingit.
§ 91. Ad hanc autem Fluxuum a syzygiis ad quadraturas accelerationem,
respectu transitum Lunae per meridianum, ac retardationem a
quadraturis ad syzygiias, plurimum quoque vis Solis conferre videtur.
Supra enim jam indicavimus post syzygiias Fluxum transitum Lunae per
meridianum antecedere debere, ob Solem tum jam versus horizontem
declinans; unde etiam, stabilitas ineritatis, dicitur novilunia ac plenilunia
sequentibus aetatis Maris ciusdem insequi debet transitim Lunae per meri-
dianum, quam in ipsī syzygiis, id quod etiam observationes mirificè
confirmant; inter Fluxum enim quintum & sextum post syzygiias retar-
datio respectu Solis tantum 17 minut. deprehenditur, cùm tamem Luna
24' retardetur. Hanc ob rem a Sole determinatur aetatus ad actionem vi-
rum magis exacte sequendum, quæ determinatio cum duret utque ad
quadraturas, mirum non est, quod aetatus tum respectu Lunae ciusdem con-
tingat, magisque ad calculum accedant. Contrarium evenit in progressu
a quadraturis ad syzygiias, quo tempore aetatis a Sole continuo retardat,
hocque necessario effectur, ut tandem in ipsī syzygiis Fluxus
tardiùs insequatur Lunae culminationem quam in quadraturis. Hanc au-
tem rationem cum magnitudine aetatis conjungendam esse putamus ad haec
phenomena perfectè explicanda, saepissimè enim in hac quæstione plures
causa ad eundem effectum producendum concurrunt; hoc autem est id ipsī
sum calculi ille summoperè implicatus & molefust quam per trans-
fennam ostendere vi sis est.
§ 92. Quod autem tam de his Phæomenis quam reliquis certius &
solidius judicare queamus, ipsum motum progressivum, quem aqua ab
aetate recipit, investigabimus. Cum enim aqua eodem loco nunc eleva-
tur, nunc subfrisit, necesse est ut priori cau aqua aliunde affluat, poste-
riori
CAP. V I.

F L U X U S A C R E F L U X U S M A R I S . 3 4 7

tiori verò ab eodem loco definiat, unde nomina Fluxus ac Refluxus ori-
ginem traxerunt. Repræsentent igitur tempore quocunque figura
$ABED$ statum aquæ tetram Terram ambientis, ita ut in locis A
& B aqua maximè fit elevata, in locis verò mediis ab A & B
aquidistantibus, maximè depressa. Post aliquid tempus transferatur
aeftus summus ex A & B in a & b, sitque $A D B E$ figura aquæ
Terram circumdantis: hoc igitur tempore necesse est, ut à parte
oceani DF defluxerit aquæ copia $FAMD$; in partem verò FE
tantundem aquæ affluxerit, portio
scilicet $FANE$; simili modo
portio EG decretit copia aquæ
$EPBG$; portioque GD aug-
mentum accept $GBQDQd$. Si
nunc ponamus portionem FMm
transire in locum FNn, ac portionem
EPp in ENn deferri, fatis clare motum aquæ progressum intelligere
licebit. Cum enim motus aquæ summae A fiat ab ortu in occasum, aqua
qua circa A versus orientem scilicet ab M ad N usque est sita, in occa-
sum movebitur; similiterque ea qua huic è diametro est opposita & spa-
tium PQ occupat. Contra verò reliqua aqua in MQ & NP contenta
in ortum promovebitur. Verum celeritas ubique non erit eadem; in
punctis enim M, N, P, & Q quippe limitibus inter motus versus ortum
et obitus, celeritas erit nulla, deinde ab M usque ad F crescat ubique
ita ut incrementa celeritatis in punctis mediis ut A sint differentis $A f$
proportionalia: ab F verò usque ad N celeritas decrescere debet, & de-
crementum celeritatis in e erit ut $a e$; similique modo comparatus erit
motus in reliquis portionibus figurae propositæ.

§ 93. Si hanc diligentius prosequamur ac punctum a ipsi A
proximum ponamus, reperimus in loco quocunque M fore intervallo Mm
inui duplex anguli MCA proportionale. Quare si anguli ACM finus
ponatur x, cofinus y, ac celeritas quam aqua in M habet, versus occa-
sum $=u$ erit $d u$ ut $2 x y$. Cum autem elementum arcus AM sit $d x$; nam
figuram infras circuli considerari licet: erit $d u$ ut $2 x d x$, atque u pro-
portionale erit ipsi $2 x x - 1$ ejusmodi adecta constante, ut ubi Mm est
maximum, ipsis celeritas evanescent. Hanc ob rem erit celeritas in loco
quis-
quocunque M, quam aqua versus occidentem habebit, uti cosinus duplicis \anguli $MC\angle$. Maxima igitur aequa celeritas versus occidentem erit in illis locis, in quibus aqua maximè est elevata; hicque celeritati aequalis est ea, quâ aqua in locis ubi maximè est depressa, versus orientem promovetur; si quidem hæc in circulo fieri concipiamus, nam in sphæra motus aliquidum diversus erit, sed tamen hinc intelligi poterit. At in locis quae ab A & B 45 grad. distant, ob cosinum duplicis $=$, aqua omnino nullum habebit motum horizontalem. Ex his igitur non solum motus aequa progressus cognoscitur, quo alterna elevatio ac depressio productur, sed etiam luculentem perturbationes, quae à Terris, littoris, atque etiam à fundo Maris proficiunt, perspicuuntur.

Ceterum quamquam rectio nostræ planæ $ABDE$ aequatorem fum denotare videtur, tamen eadem ad parallellum quævis significandum fatis commodè adhiberi potest: quin etiam motus pro sphæra hinc fatis distantè colligi poterit, operæ enim pretium non judicamus, per solidorum introductionem hanc rem cognitum tantò difficulterem reddere.

§. 94. Eò minus autem hujus accuratæ inquisitioni infirmerus, quod celeritas progressiva insuper à profunditate maris pendet. Quod si enim ponamus mn jam esse Maris fundum, ita ut profunditas Maris in M major non esse quàm Mm, tum iti aquæ tantus motus inesse deberet, quo ea, dum Fluxus ex A in a transit, ex situ $nEMm$ in situ $mFNe$ transferri posset. Hic autem motus quævis sit differens & per totam massam inæquabilis, tamen si tota translatione spectetur, totus motus ex spatio à centro gravitatis interea percurso est aestimandus. Hoc igitur calu, quo Terræ superficiem solidam ad mn utque pertingere ponimus, reperietur centrum gravitatis massæ $nFMm$ ferâ aequa celeriter promoveri debere ac punctum A, ex quo ejus celeritas tanta esse deberet, quà tempore unius horæ spatium ferâ 15 graduum percurrere posset, quà celeritas unique foret enormis ac stupenda. At si Mari profunditatem majorem tribuamus, scilicet ad ν utque, tum illa celeritas multò siet minor, decrescet namque in eadem ratione in qua profunditas crescit. Cùm igitur celeritas Maris, quæ antè in fe speccata inventa
inventa est cofiniti duplici anguli \(MC \) proportionalis, ed. sit minor, quod majorem Mare habeat profunditatem, tenebit ea in quoque loco rationem compositam ex ratione direcctâ cofiniti duplici anguli \(MC \) atque ex inversâ profunditatis.

§. 95. Datur autem alias modos celeritatem Maris horizontalem, positâ icilicet ubique profunde tat eadem, determinandi, qui tamen ad diversas profunditates patet, si cum ratione invenienda conjungamus reciprocum profunditatum ut feminus; deducturque hic modus ex motu Maris verticali, quod modò ascendit modò descendet, qui jam suprà est definitus. Primùm enim manifestum est, si Mare ubique eadem celeritate, (posità profunditate ubique æquali) in eandem plagam promoveretur, tum etiam altitudinem manfaram esse eandem ubique, neque ullam mutationem in elevatione aque orturam esse. At si aqua motu inæquabili progresiatur, manifestum est ipsis in locis, ubi celeritas diminuitur, aqua turgescere atque adeo elevari debere, quoniam plus aquæ affluat quam defluit; contrà verò ubi celeritas aque crecit, ibi aquam subcidere oportere. Quare cum elevatio & depressio Maris à motibus progressivi horizontalis inæqualitate pendet, licebit pro quovis loco hanc inæqualitatem definire, ex motu ascensûs & descensûs cognito. Cùm enim celeritas ascensûs sit decremento celeritatis progressivæ æqualis, celeritas descensûs verò incremento celeritatis progressivæ, ex dato motu verticali ratio motûs horizontalis definiri poterit. Invenimus autem suprà §. 84; si Luna à meridiano versus occasum jam recessit angulo \(z \), hoc est cum regio propinqua ab ea, in qua aqua est summa, versus orientem secundum longitudinem diffet angulo \(z \); fore celeritatem quà aqua ascendet = \(\frac{-6gPQ \sin z}{h(z-8)} = \frac{3\gamma^2 \sin \theta z}{h(z-8)} \). Quare cum huic celeritati ascensûs proportionalis sit decrementum motûs horizontalis, erit ipsa celeritas horizontalis versus occasum ut \(g(3\gamma^2(-\cos^2 P^2(z-\pi))-\cos P^2(z-\pi)) + \frac{6gPQ \cos z}{h(z-8)} + \frac{3\gamma^2 \cos \theta z}{h(1-8)} \); hujus enim differentiale negativù fumtum & per \(dz \) divisum dat ipsum celeritatem ascensûs. Quoniam autem hæc expressio simul exhibet spatium, quo Mare suprà libellam erit celeritas Maris in quovis loco versus occidentem proportionalis elevationi suprà libellam, & inversâ profunditati Maris, quà eft vera regula pro motu Maris, tam verticali quàm horizontali, définiendo; atque ita priori modo insufficiunt superioribus posituissemus.

§. 96. Consideramus ergo motum, quo aqua tam verticaliter quàm horizontaliter promovetur à Fluxu usque ad Refluxum, indeque ad frequentem Fluxum, idque sub æquatore, dum Luna pariter in æquatore versatur: erit itaque celeritas ascensûs.
C. A. P. VI.

ut - fin. 2 z, celeritas autem horizontalis versus occafum ut 15 cof. 2 z + 1 positio \(g = \frac{1}{2} \), cui expressioni simul altitudo aquae supra libellam est proportionalis. Quod si ergo superficies Terrae su perimeter aequatoris in 24 partes aequales dividatur, atque in locis A & B aqua sit maximè elevata, in C & D vero minimè, numeri 1, 2, 3, &c. designabunt ea Terrae loca in quibus ante unam vel duas vel tres vel &c. horas lunares aqua maxime fuit elevata, tribuen
do uni horae Lunari 62 minuta. In Tabulæ ergo annexa exhibetur motus tam verticalis, quam horizontalis, ad singulas horas post Fluxum elapsum.

<table>
<thead>
<tr>
<th>Hora post Fluxum</th>
<th>Celeritas Maris verticalis</th>
<th>Celeritas Maris horizontalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,000 descendit</td>
<td>1,067 in occasum</td>
</tr>
<tr>
<td>1</td>
<td>0,100 descendit</td>
<td>0,927 in occasum</td>
</tr>
<tr>
<td>2</td>
<td>0,160 descendit</td>
<td>0,967 in occasum</td>
</tr>
<tr>
<td>3</td>
<td>0,200 descendit</td>
<td>0,967 in occasum</td>
</tr>
<tr>
<td>4</td>
<td>0,360 descendit</td>
<td>0,432 in ortum</td>
</tr>
<tr>
<td>5</td>
<td>0,500 descendit</td>
<td>0,792 in ortum</td>
</tr>
<tr>
<td>6</td>
<td>0,600 ascendit</td>
<td>0,932 in ortum</td>
</tr>
<tr>
<td>7</td>
<td>0,500 ascendit</td>
<td>0,792 in ortum</td>
</tr>
<tr>
<td>8</td>
<td>0,860 ascendit</td>
<td>0,432 in ortum</td>
</tr>
<tr>
<td>9</td>
<td>1,000 ascendit</td>
<td>0,667 in occasum</td>
</tr>
<tr>
<td>10</td>
<td>0,860 ascendit</td>
<td>0,567 in occasum</td>
</tr>
<tr>
<td>11</td>
<td>0,700 ascendit</td>
<td>0,907 in occasum</td>
</tr>
<tr>
<td>12</td>
<td>0,000 descendit</td>
<td>1,067 in occasum</td>
</tr>
</tbody>
</table>

Facile autem intelligitur pro regionibus ab aequatore remotis, præcipe si Luna habeat declinationem, tum utrumque motum magis fore irre
gularem, atque mox ascensionem situs absolvi mox vero descendiam; totus autem motus faciliter ex ipsis formulis datis cognoscietur. Hic denique profunditatem ubique eandem possimus; quod si enim sequitur diver-
CAPUT SEPTIMUM.

Explicatio praeceptorum Phenomenorum circa Aestum Maris observato-

§. 98. IN praecedentibus capitibus fuissent expostulatus effectus, qui in
Mari a viribus illis duabus, quorum altera versus Lunam
est directa, altera versus Solem, produci debent; eoquae cun per cal-
culum analythicum, tum per solida ratiocinia ita determinavimus, ut de
eorum existentia dubitari omnino non liceat, si quidem illae vires admis-
tantur. At vero istas vires in mundo existeret non solum per alia-
phæ-

Y y 2

nome-
nomena evidentissimè probavimus, sed etiam earum causam physicam affignavimus, quam in binis vorticibus, quorum alter circa Solem, alter circa Lunam fit constitutus, posuitmus, quippe quae est una ratio cum gravitatea tum etiam vires, quibus planetae in suis orbitis circa Solem continentur, explicandi. Quin etiam haec ipsa phaenomena internum vorticium structuram & indolem commonstrarunt; ob eaque vortices ita comparatos esse statuimus, ut vires centrifugae decrescant in duplicatis ratione distantiarum à centris earumdem. Quare cum in his viribus nihil gratuÌtà assumérimus, si effectus ex his orundi cum phaenomenis aestus Maris convenient, certissimè nobis persuadere poterimus, in assequatis viribus veram aestus Maris cauam contineri; absonumque omnino fore, si causam aestus Maris in aliis viribus imaginariis anquirere vellemus. Quamobrem in hoc capite constituimus omnes effectus, qui in superius capitibus partim sunt erutì, conjunctim & ordine proponere, sum-mumque eorum consensum cum experientià declarare. Quoniam autem nondum impedimentorum à littoris terrifice oriundorum rationem habuimus, facile intelligitur, hinc exclusi adhuc debere ejusmodi anomalías aestus Maris, quae evidentissimè à Terris contingentibus ortum habeam, cujusmodi sunt aestus vel vehementer enormes vel vix sensibles, uti in Mari Mediterraneo, vel insignes retardationes eorum, quibus rebus explicandis sequens caput ultimum destinavimus: ita in hoc capite tantum ea aestus Maris phaenomena explicanda suficipimus, quae in portibus amplissimùm Oceanum respicientibus vel inulis observari solent in Oceano òtis.

§ 99. Si omnes proprietates, quibus Fluxus ac Refluxus Maris prædictus esse observatur, distinctè enumerare atque exponere velimur, deprehendemus eas ad tres classes revocari debere. Ad primam sit illicet claffìm referenda sunt phaenomena, quæ in uno aestu in se spectato conspicuous, cum ratione temporis tum etiam ratione quantitatis; haeque phaenomena commodissimè sub variatibus diurnis comprehendi possunt, quatenus ea se offerunt observatorì, qui per integrum tantum diem observationes instituit, neque ea cum aliis phaenomenis aliis temporibus occurrentibus comparant. Secunda classis complectitur varietates menstruas, quæ seè observatorì per integrum mensem aestum Maris contemplanti offìrunt, quorum pertinet aestus maximi minimique, item retardationes modò maiores modò minores. Tertia denique classis comprehendit varietates annuas ac plurquam annuas, quæ sequuntur vel varias Lunæ à Terrà diistantias, vel Solis; vel etiam luminarium declinationem. Hanc ob rem phaenomena utiusquisque classis recentebimus, atque quomodo singula cum theoria tradita congruant, ostendimus. Hic verò, ut iam esset monition, à perturbationibus quæ à Terris ac littoribus provenire possunt, animum proutus abstinentem, eas sequenti capiti reservantes. Multò minus
mūs verò ad ventum hic respicimus, quo æstus Maris cūm ratione magnitudinis tūm temporis plurimum affici observatur; sed tantûm ejusmodi phænomena explicare hic conabimur, quæ memoratis-perturbationibus minimè sint obnoxia.

§. 100. Quod igitur ad primam clāfem attinet, praecipuum Phænomenum in hoc consistit, quod ubique in amplissimo Oceano quotidie bini Maris Fluxus seu elevationes, binique Reflexus seu depressiones observatur, atque tempus inter binos Fluxus successivos circiter 12. h. 24'. deprehendatur. Huic verò Phænomeno, si uli ali, per theoriam nostram plenissimè est satisfacium, ubi ostendimus maximam aquare elevatio-

dem deberi transitui Lunae per meridianum tam supra quàm infra Terram: ex quo cūm Luna una revolutione diurnā bis ad ejusdem loci me-

ridianum appellat intervallo temporis circiter 12. h. 24', necesariō se-

quitur una revolutione Lunae circa Terram binos Fluxus tanto tempore à

fe invicem diffitos oriri debere, quemadmodum hoc ipsum calculum tam pro hypothesi aquare inertiæ carentis, qua admisit inertiæ, clarissīmē indi-

cavit. Simul autem iisdem determinationibus intelligitur sub ipsīs polis nullum omnino æstum dari diurnum, in regionibus verò à polis

non procūl remotis, ubi luminaria vel non oriuntur vel non occidunt, quod

itique unum tantum Fluxum unicumque Reflexum contingere debere; quæ consequentia theorīæ, eft observationibus nondum fatis est compro-

bata, tamen quia ex iisdem principiis sequitur quæ institutis observation-

ibus satisfaciunt, nulli amplius dubio subiecta videtur. In locis autem

æquatorī propōriibus, quibus quotidiane bini Fluxus totidemque Reflexus

eveniunt, momentum, quo aquare maximè deprimitur non fatis exāctē

medium interjaccet observatur inter Fluxum momenta, sed mox pri-

orī mox posteriori est propius, quod Phænomenum cum nostrā theorīā

aprimè congruit; ostendimus enim momentum Reflexīs non exāctē

tempori medio inter Fluxus respondere, nisi vel locus situs sit sub æqua-

tore, vel Lunae declinatio fuerit nulla, sed modō priori modō posteriori

Fluxus esse propius.

§. 101. Secundum Phænomenum huc redit, ut ubique locorum Flu-

xus post transitum Lunae per meridianum venire observetur, idque ali-

quot horarum spatio, in portubus versīs apertum Oceanum patentibus.

Nam in regionibus quæcūm Oceano non liberrimē communicantur, sed ad quas aquare juxta littora deferri debet, multo tardiūs æstus advenit, quæ retardatio si ferè ad 12. horas ascendit, in cauā esse folēt, ut hu-

juismodi in locis Fluxus ante transitum Lunae per meridianum venire vi-

deatur. Ita ad Portum Gratiae videri posset Fluxus 3 hōris Lunae cul-

minationem antecedere, cūm tamen, re bene consideratā, à precedente culminatione oriatur, atque adeo eam 9 ferè hōris dēnum sequatur, uti

apparēbit si æstuum momenta, quæ succēssīvē ad littora Britanniae minoris

Y y 3
& Normanniae observantur continuoque magis retardantur, attentius inspiciantur. Deberet quidem ubique Fluxus in ipsos Lunae transitum per meridianum incidere, id quo quandoque ob Solem præcedere, non solum demit inertiæ, sed etiam eâ positâ, si tantum aequo motus verticalis spectetur; ac si etiam motus horizontalis ratio habeatur, tum dilucide ostendimus Fluxum perpetuâ retardari, ac demum post Lunæ transitum per meridianum evenire debere. Tempus quidem hujus retardationis, cum sit admodum variabile pluribusque circumstantiis subjicitum, non definiitur, interim tamen id ex §. 82. colligi poterit, remotis externis impedimentis: cum enim invenerimus aquam propriâ vi gravitatis seque in situm æquilibrii recipere tempore \(\frac{12}{2} \) horarum, ac numerum \(n \) esse cicer 5 vel 6, manifestum est tanto etiam tempore opus esse, quo aqua cum situm quæ vires intundit, induat, ex quo Fluxus cicer 2 horas vel 2 hor. post transitum Lunæ per meridianum contingere debetur, id quod cum observationibus in Oceano libero institutis egregiâ convenit; hancque idcirco præcipuam hujus retardationis cauam merito affingamus.

§. 102. Tertium Phænomenon suppediât æstus magnitudine, quæ autem tam diversis locis quàm diversis tempestatibus maxime est mutabilis. Interim tamen exceptis omnibus illis æstibus, qui nonnullis in portibus observari solent, reliqui cum nostrâ Theoriâ egregiâ consentiunt; inertiæ enim sublatâ, invenimus sub æquatore maximum æstum fore per spatium cicerter 4 pedum, ubi inertia autem hoc intervalum augerit ita ut duplo, vel triplo, vel etiam quadruplo & plus fiat majus, propt er valor ipius (vid. §. 82.) minor fuerit vel major, quippe qui à facultate Oceani fide propriâ suâ vi in statum æquilibrii restituendi pendet; ex quo sub æquatore spatium per quod maximus æstus agitatur ad 8, 12, 16 & plures pedes exurgere potest. In regionibus autem ab æquatore remotis invenimus magnitudinem æstus tenere rationem duplicatam coïnnum elevations poli, unde sub elevazione poli 45\(^{\circ}\), magnitudine æstis cicerter duplo erit minor quàm sub ipso æquatore; cujus veritas in locis à littoribus ali quot milliaria remotis per experimenti eximiè comprobatur. Deprehenditur enim ubique in locis à littoribus remotis æstus multo minor quàm ad littora; cujus discriminis cauâ in frequenti capite dilucidé indicabitur. Quinetiam in medio Mari plerumque æstus adhuc minor observatur, quàm hæc regula requirit; id autem ostendetur à non fatis amplâ Oceani extensione secundum longitudinem proficiici, quem admodum in Oceano Atlantico qui versis Occidentem littoribus Americae; versâs Orientem verò littoribus Africæ & Europæ terminatur, quæ amplitudo non est fatis magna, ut integrum æstus quantitatem sustipere queat.

§. 103.
§ 103. Quartum Phænomenon varietates menstruas respicit, atque offendit æstus, qui circa plenilunia & novilunia contingunt, inter reliquis ejusdem mensis esse maximos, æstus vero circa quadraturas luminarum minimos; quæ inæqualitas cum theorìa nostrà ad amuffim quadrat. Cùm enim æstus Maris non solum ab eà vi, quæ vortici Lunam ambienti competit, oriatur, sed etiam a vi Solem spectante pendet, quæ ceteris paribus circiter quadruplo minor est vi Lunæ, manifestum est æstum Maris maximum esse debere, si ambæ vires inter se confirent, atque aequam simul vel elevent vel deprimant, id quod accidere ostendimus tam plenilunis quam novilunis. Deinde similì modo, quoniam istæ vires inter se maximæ discrepant in quadraturis, quibus temporibus dum aquæ à Lunâ maximæ elevatur, simul à Sole maximæ deprimitur ac vicissim, pericpicum est idem temporibus æstum minimum esse debere. Pàrætera vero ipsum discremen cum theorìa exactè convenit; in pluribus enim portibus æstus maximos & minimos ad calculation revocavimus, atque ex relatione eorum relacionem inter vires Lunæ ac Solis investigavimus; hincque perpetuè eandem ferè rationem inter vires Solis ac Lunæ absoluta eliciamus, quemadmodum hic fecit Newtonus ex observationibus Bristolii & Plymouthi; nos vero in Portu Gratiae institutis, conclusionibus mirificè inter se congruentibus: quæsí confluentes profectò expectari non posset, si theorìa veritati non effet consentanea. Neque etiam aliæ theorìæ adhuc producunt, cujusmodi sunt Galilei, Wallisii atque Cartesi, qui causam in pressione Lunæ collocavist, huic phænomeno facilitate satisfacunt, sed potius prorsùs overtuntur.

§ 104. Quintum Phænomenon in hoc consitvat, quod unius mensis intervallo maximæ æstus non sint ii, qui novilunia ac plenilunia proximè infeæuntur, sed sequentès tertii siclicit circiter vel quarti, similique intervallo æstus minimi demum post quadraturas contingunt. Hujus autem Phænomeni ratio in § 97. suis est expuesta, ubi ostendimus, cùm æstus ante syzygis incidentes effent minores, maximam vin a Sole & Lunâ ortam non subitæ æstum maximum producere valere, sed tantùm Màre ad eum fiatum solicitate. Cùm igitur post syzygis vis æstum efficiens sensibiliter non decrecat, æstus etiammum post hoc tempus incrementa capiæt, atque ideo demum post syzygis sit maximus; similique est ratio diminutis æstum, quæ etiammum post quadraturas contingere debet; ita ut æstus minimi demum post quadraturas eveniant. Hujusmodi autem retardationes effectum à viribus in mundo existentibus provenientium quotidie abundè experimur: ob similès enim rationem singulis diebus maximum calorem non in ipso meridie sentimus, etiam hoc tempore vis Solis caelestis finé dubio fit maxima, sed demum aliquot horas post meridiem, atque propter eandem causam neque solstitial æstivi momento maximus calor aut usus fientur, neque tempore solstitial hyberni frigus sammum, sed utrumque notabilitat tardiæ.
CAP. VII. § 105. Sextum Phænomenon in hoc ponimus, quod momenta Flu-
xxum tempore fyzygiarum multo stricthvs ordinem tenere observantur,
quâm circa quadraturas. Hic verò ante omnia animadvertendum est
præcipuam sensibilem anomaliam in momentis æstuum inde originem tra-
here, quod hæc momenta ex tempore solari atque a vero meridie fe
transitum Solis per meridianum solet computari, cum ea-potius à trans-
fittu Lunæ per meridianum pendente. Quod si autem ad has observa-
tiones tempus lunare à transitu Lunæ per meridianum computandum ad-
hibeatur, irregularitates apparentes maximam partem evanescunt, hoc
verò multo magis in fluxibus circa fyzygias quâm quadraturas: in qua-
draturas enim quoniam, dum Luna per meridianum transit, Sol non tem-
per in horizonte veritatem, sed vel ad horizontem demum accedit vel
jam ab eo recedit, necesse est ut illo cali Fluxus citius, hoc verò tar-
dius contingat: quod deditum cum partim ab elevazione poli, partim à
declinatione luminariurn pendeat, momenta Fluxuum in quadraturis ma-
gis irregularia reddit: interim tamen habitâ harum circumstantiarum ra-
tione factis propâ definiti potest. Circa tempora Fluxuum autem, qui
in novilunii ac plenilunii incidunt, hæc sola correctio seu reducitio ad
transitum Lunæ per meridianum omnem ferè anomaliam tollit, quorum
speclat regulâ à celeb. Caffino in Mem. 1740. tradita, quâ pro totidem
horis, quibus plenilunium feu novilunium vel ante meridiem vel post
incidit, totidem bina minuta ad tempus Fluxûs medium vel addere vel
ab eo subtrahere jubet, quippe quæ ex motu Lunæ est petita. Interim
tamen hæc correctione adhibita aliqua anomalia supereffec deprehenditur,
cujus autem ratio ex nostrâ theorâ sponte sequitur. Quando enim fy-
yygia ante meridiem celebratur, tum dum Luna per meridianum transit,
Sol jam ante eum est transgressus, atque ideo jam horizonti appropin-
quat, ex quo necesse est ut Fluxus citius eveniat, quâm prima regula
sola adhibita indicat. Atque etiam idem in tabulis Fluxuum Dunker-
que & in Portu Gratiae observatorum, Mem. 1740. inventis, manifesto
conspicuit: quando enim novilunium pleniluniumve pluribus horis ante
meridiem accidit, tum Fluxus citius advenisse observatur, quàm calcu-
lus Caffinianus indicat; contrà verò tardius si fyzygias demum pui-
ribus horis post meridiem incident, cujus majoris retardationis causa in
Sole tum adhuc ab horizonte recedente est quaerenda.

§ 106. Septimum Phænomenon suppeditat diversa retardatio Flu-
xxum in fyzygiais luminariurn & quadruris respetctu appulsûs Lunæ ad
meridianum; tardius scilicet ubique locorum Fluxus, qui in fyzygiiis
contingunt, infrequentur culminationem Lunæ, quàm ii, qui circa qua-
draturas veniunt. Hujus autem Phænomeni duplex causa potest assigna-
ri, quarum prima à sola quantitate æstuum petitur, quàm enim æstus fye-
yygiarum multò sunt majores quàm æstus quadraturarum, consentanea

vice-
videtur illos tardius venire quam hos. Altera vero causa qua hoc Phænomenon multo diffinieit explicat, nullique dubio locum relinquit, nostrar theoriam omnino est propria, priorique longè est praefendae. Po-
namur enim esse tempus, quo in novilunii ac plenilunii Fluxus post
appulum Lunæ ad meridianum venire solet; sequentibus igitur dīflux
hoc tempus continuò diminuetur, quia tum Sol, dum Luna in meri-
diano vertatur, Mare jam deprimit; quæ diminutio cum duret ferè uf-
que ad quadraturas, necesse est ut his temporibus Fluxus multo citius
post culminatum Lunæ sequantur, viribusque sollicitantibus magis ob-
temperent, uti hoc siuīs §. 91. explicavimus, unde tempus retardatio-
nis in quadraturis tantum erit — Post quadraturas autem Sol exerit
contrarium effectum, atque adventum Fluxus continuò magis retardat,
idque æquali modo, quo antè acceleraverat, ex quo usque ad sequen-
tem syzygiam intervallo — iterum ad usque augebitur. Hujusque
Phænomeni folius explicatio sufficere posset ad veritatem theoriae nostrar
evincendam, cum id omnibus aliis theoriam explicatum fit insuperabile;
ne-
que à nemine adhuc saltem probabilis ejus causa fit affirmata.

§. 107. Octavum Phænomenon petamus ex inæqualitate duorum Flu-
uxuum fele immediate sequenium, quorum alter transitu Lunæ supe-
riori per meridianum respondet, alter inferiori, quæ inæqualitatem maxīmæ
observatur in regionibus ab æquetore multum remotis, ac tum cum Lunæ
declinatio est maxima. Theoria quidem declarat Lunam, etiam si in ipso
æquetore vertetur, tamen majori vi gaudeat ad Mare movendum, quan-
do super horizonte meridianum attingit, quæ infra horizontem; at
discrimen sub æquetore tam est exiguum, ut vix in sensus occur-
rere aequatur, integrum enim digitum non attingit (§. 41.); atque in re-
regionibus ab æquetore remotis fit multo minus. Vera igitur hujus Phæ-
omeni ratio in altitudine Lunæ meridianâ est distantia ab horizonte
continetur; hinc enim sequitur quod major fuerit differentia inter disfana-
tias Lunæ ab horizonte, dum per meridianum transit tum super horizon-
te tum sub horizonte, eò majore est debere differentiam inter binos
Fluxus succedentes, ex quo perspicuum est istam differentiam versus po-
los continuo crescere debere, si quidem Luna habeat declinationem. Quòd
si ergo Luna haberetur declinationem borealem, tum in regionibus septen-
tentriornibus Fluxus erit major qui transitum Lunæ per meridianum su-
periorem sequitur, alter vero sequens, qui transitui inferiori respondet,
iminor. Contrà autem si Lunæ declinatio fuerit australis, appultul Lun-
æ ad meridianum superiori Fluxus succedet minor, inferiori verò ma-
jur; hancque differentiam Flanstedius observavit diligentem, nullumque
est dubium, quin ea per copiosissimas observationes, quas Academia Ce-
leberrima Regia Parisina collet, omnino confirmetur. In hoc autem
negotio indeles Fluxuum probè est inspicienda, quoniam aliquibus in
Tom. III. Z z
CAP. VII. portus tantopere retardantur, ut sequentibus Lunae transtibus per meridianum sint propiores, quae ilia, cui sunt originem debent; ita Dunkerque circa syzygias Fluxus circiter meridie observari solet, neque vero illi ipsi transtui Lunae per meridianum est tribuendum qui eodem tempore sit, sed precedenti, prout succensus retardationis incrementa ad lit- tona Galliae & Belgii borealia evidentissime testantur. Quare si verbi gratia Dunkerque quis hujusmodi observationes perfluisset voluerit, is quemque Fluxum non cum transtui Lunae per meridianum proximo comparat, sed cum eo qui propemodum 12 horis antè contigit; aliquin enim contraria Phænomena esset deprehensurum.

§ 108. Commodus hic nobis praebetur locus explicandi transtum a binis aestibus, qui quotidie in regionibus extra circulos polares sitis evanient, ad singulos aestus, qui secundum theoriam nostram in regionibus polaribus contingere debent: Quoniam enim theoria nostra monstrat, in zonis temperatis & torridis quotidian duos Fluxus obliteravi debere, in zonis frigidis autem unum tantum, transtio subitanea à binario ad unitatem maxime mirabilis ac paradoxa videri potest. Sed quia, si Fluxus binorum succese inter se sunt inaequalia, Reflexus aquæ fuerit maxima depressio Fluxui minori est vicinior, binis aestus quoque succussivi ratione temporis inter se erunt inaequalia, si quidem voce aestus intelligamus motum aquæ à summâ elevatione ad imam depresseonem usque, ac vicissim. Quod magis itaque ab æquatore versus polos recedatur, eò major deprehendetur inter binos aestus successivos inaequalitates, cum ratione magnitudinis tum temporis, major enim diutius durabit quàm minor, ambo verò simul ubique absolventur tempore 12 horarum; cum 24 circiter: quòd si itaque in eas regiones usque perveniatur, in quibus Luna utraque vice vel super horizonte vel sub horizonte meridianum attingit, aestus minor omnino evanescet, solusque major perseverit, qui tempor 12 h. 24' adimplebit. Ex quibus permissum est, si Luna habeat declinationem, inaequalitatem binorum aestuum successiorum ad polos accedendo continuo fieri majorem, atque tandem minorem omnino evanescere debere, quod cum evenit, bini aestus in unum coalescunt.

§ 109. Explicatis anomalissæ aestus Maris mensstruus, pervenimus ad anomalias annus vel plurquam annuas, ac nonum quidem Phenomenon defumimus ex variacione aestus, quæ a diversis Lunæ à Terræ distantissis proficiscit. Observantur enim aestus ubique maiores ceteris paribus, in humid scilicet luminariam apsectibus itidemque declinationibus, si Luna in suo perigaeo versetur, minores verò, Lunâ in apogaeo exitente Eggregiæ autem hac conveniunt cum nostrâ theorâ, quà demonstravimus Lunæ vires ad Mare movendum decrescere in triplicatâ ratione distantiarum Lunæ à Terræ: quod siigitur Luna versetur in perigaeo, Fluxus deiebunt esse majoris, quàm si Luna apogaeum occupat. Praeterea etiam tabula
tabula quam Celeb. Caffini in Mem. 1713. pro diversis Lunæ à Terrâ diffantis ex plurimis observationibus Breftiae institutis colloquent, fatis accuratè cum theorix nostrâ confiprat, etiamsi enim pro Luna periæae minorem elevationem aquæ tribuat, quàm ifta ratio requireret, tamen differìmen valde est exigum: quin etiam facilè concedetur Lunæ periææam totum suum effectum non tam citò confequì possì, quem confequeretur, si Luna perpetuò in perigæo verfaretur. Alter autem Luna apogeæa est comparata, quà ad diminuendum æstum Maris tendit, cùm enim Mare ob inertiam & impedimenta ipsum ad diminutionem æstus fit proclive, sine ullâ resistentiâ Luna in apogeæo constituìta effectum suum exeret. Huc etiam pertinet, quod pariter Celeb. Caffini fe observasse testatur, sìmilibre differentiam esti multò minorem à variis Solis à Terrâ diffantis produci, id quod nostrâ theoria non folum est contentaneum, sed inde etiam ipfa quantitas hujus differentiæ potest definiri.

§. 110. Denique decimum Phænomenon sè nobis contemplandum offert, quo vulgo statui folet æstus tam noviluniorum, quam pleniluniorum, qui contingunt circa aequinoctia, caeteris esse majores, etiam si observationes hanc regulam non pениtus confirmat; quamobrem videamus quomodo æstus caeteris paribus comparatus esse debeat pro diversis Lunæ declinationibus. Ac primò quidem ex nostrâ theorix (§ 87) æstus dum Luna in æquatore verfatur, maximos esse non possit, nisi in locis sub ipso æquatore sitis; atque eodem loco tabellam adiectimus, ex quâ pater, cuinam Lunæ declinationi maximæ Æstus respondeant. Ita pro elevatione poli 50°, æstus maximi incidunt Lunæ declinationi 27°, si quidem g ponatur =

\[\frac{1}{2} \]; at positio \(g = \frac{1}{2} \), quod probabilis videtur, prodit Lunæ declinatio maximum æstum producens circiter 15°, id quod mirificè convenit cum observationibus ad Littora, Galliae Septentrionalis institutis, quibus confitat maximos sectum Brygiarum æstus mensibus Novembri & Februarii accidere solere, quibus temporibus Luna ferè assignatam obtinat declinationem. At quod forte illi regulae, quà Lunæ in æquatore verfanti maximi æstus adscribi folet, aniam præbeisse videtur, est modus æstuum quantitates definiendi peculiaris ac falsis perverrus; cùm enim crederent plerique observatores causis alienis tribuendum esse inaequalitatem, quæ inter binos æstus succeffivos intercedat, veram aquæ elevationem accuratissìmìm defìnire sunt arbitrati, si fumerent medium inter binos Fluxus succéssivos. Quòd si autem hoc modo quique æstus ætìmentur, tum utique maximi æstus in aequinoctia incidere observabuntur, id quod etiam nostrâ theorix maxime est conforme, exceptis tantum regionibus polis viciniornibus. Cùm enim positis fini elevationis poli = \(P \), cosinu = \(p \), finu declinationis Lunæ = \(Q \), cosinu = \(q \), major æstus fiat per spatium \[\frac{3g}{b(x-b)} \left(p + \frac{Q(x-8g)}{i} \right) \], minor vero per spatium = \[Z \frac{z}{a} \], \[3 \frac{g}{3} \]
CAP. VII. \[
\frac{3g}{h(1-8g)} \left(p Q \frac{p Q (1-8g)}{1-2g} \right)^2, \text{§. 86.} \]
erit per hunc æstum Maris men-

furandi modum quantitas æstus = \[
\frac{3g}{h(1-8g)} \left(p Q - \frac{(1-8g)^2 p^2 Q^2}{(1-2g)^2} \right) = \frac{3g}{h(1-8g)} \left(p + p Q + \frac{(1-8g)^2 p^2 Q^2}{(1-2g)^2} \right); \text{ ex quâ expressione perspi-
icitur maximos æstus ubique, si quidem modo recentio menfurentur, Lu-
næ in ipso æquatorem degenti respondere, nisi sit \left(\frac{1-8g}{1-2g} \right)^2 p > p', \text{ hoc}

est nisi tangens elevationis poli major sit quàm \left(\frac{1-8g}{1-2g} \right)^2; \text{ his scilicet regio-
nibus etiam Luna declinans ab æquatore maiores æstus producet. At si}

ponatur \(g = \frac{1}{2} \), prodit elevationi poli, ubi regna prolata fallere incipit, 66°; fin autem ponatur \(g = \frac{1}{2} \), est elevatio poli major quàm 58°; at posito \(g = \frac{1}{2} \), provenit poli elevation 76°. Cùm igitur in locis polis
tam vicinis observationes institui non solent, fatis tutò affirmare licet,
maritimos æstus menfrosus accidere circa æquinoccia, si quidem quantitas
éstus quotidie menfretur per medium arithmeticum inter spatia, quæ
duo æstus succéssivi conquisient.

§. 111. Quod nunc allost de theorìa nostrà sit sentiendum, nisi eam
veram & genuinam æstus Maris cauam, quâs ab Illustriam Academìa Regia in propositâ quaestione desideratur, in se complect, non vi-
demus? Non solum enim omnia Phœnomena, quæ in æstus Maris obser-
vantur, clarè & distinctè explicavimus, sed etiam existentiam æqualem
aeor virium, quibus hos effectus adscribimus, evidenter in demonstra-
vimus; ex quo effectus cauam à nobis assignatum, non tantum omni-
bus Phœnomenis satissimem, sed etiam esse unicam quæ cum verù
confrere queat. Quod si enim quispiam alias vires excogitât, quibus æquè
omnia Phœnomena explicare posset, etiam hoc fieri posse minimè con-
cedamus, ejus certè explicatio subitò concideret & eteretetur à viribus
nostrae theorìae, quas aliunde in mundo existere abundè concutat; quo-
niam ab illis viribus imaginariis hilique realibus conjunctim effectus du-
plicatus conçéquì deberet, quem experientia averfatur. Nunc igitur
nobis summo jure asserere posse videmur, veram æstus Maris cauam
in duobus vorticibus esse posita, quorum alter circa Solen, al-
ter circa Lunam agitatur, atque uterque ejus sit indolis, ut vi-
res centrifugae descrecant in duplicatè ratione distantiarum à centris utrue-
que vorticis; quae proprieas obtinetur, si celeritas materùae subtilis gy-
rantis in quoque vortice tenærae ratione reciprocum subduplicatam distant-
tiarum. Neque verò hi duo vortices ad libitum sunt excogitati, fed il-
le qui Solen circumdat est ipsè, qui omnes planetas in suis orbitis con-
tiner; alter verò Lunam circumdans, eti ejus vis nisi in æstus Maris non
sentitur, tamen fine ullam hæstitatione admitt potest, cum certò confitet
Terram, Jovem ac Saturnum similibus vorticibus effe circum, unde eummodo vortices nulli omnino corpori mundano denegari possi videntur. Parcius quidem hic materiam de vortcibus tractavit, etiam si in illis veram æstus Maris caufam ponamus; hoc autem de industriâ fecimus, cum hoc argumentum jam totes fit tractatum ac ferè exhaudum; neque nobis perfuadere possumus, si hâc occasione doctrinam de vorticibus etiam melius, quam etiamnum ad quoquam est factum, expediremus, ob eam rem præmium nobis tributum ri.

CAPUT OCTAVUM.

De Æstus Maris perturbatione ad Terris ac littoribus oriundâ.

§. 112. PERVENIMUS tandem ad ultimam nostræ disquisitionis partem, quæ praecipua est, in qua Theoriam exposim ad statum telluris, in quo reverâ reperitur, debito modo accommodabimus. Haec enim, quæ ardua ista disquisitione facilior redderetur ab omnibus circumstantiis externis quibus effectus à viribus Solis ac Lunæ oriundis vel turbari vel determinatu difficilior reddi possent, cogitationem abstraximus. Primò faciliæ non folum totam Terram ex aqua conficam posuitus, sed etiam inertiam aequali mente sustulimus, ut eò pauciores res in computum ducendæ supereffent. Deinde inertiae quidem habuimus rationem, ac praecedentes determinationes debito modo correximus, verum totam Terram aquâ undiqueque circumfusam assumimus, seu etiamnum anomalias a Terris negleximus. Nunc itaque nostra theoria eò est perduta, ut nihil amplius adjicere necesse foret, si quidem æstus Maris a Terris littoribusque fenibiliter non afficeretur; nisi forte anomalias quàdem a ventis oriundæ commenrori deberent, quæ autem notu aquæ perrescia facile adjudicatur, atque ad omnes theoriam aquæ pertinent. Quamobrem ultimam hoc caput destinavitius explanationi Phænomenorùm quorumdam singularium, quorum causa non tam in ipsâ aquâ virginibus eam sollicitantibus, quàm in Terrâ continentì littoribusque est quaerenda: hac enim parte absolutâ nihil amplius restare videtur, quod vel ad Theoriam nostræ confirmationem, vel ad omnium Phænomenorùm adequantam explanationem desiderari queat. Quamvis enim Illustrißima Academia totum hoc argumentum non penitus exahurrir jubeat, cùm adhuc nonnullas quaestiones de eodem in posterum proponere constituisset, tamen quia hoc tempore vera caufa physica desideratur, veritatem nostræ theoriae non fatis confirmari arbitrur, nisi ejus convenientiam cum omnibus Phænomenis dilucidè ostenderemus, cùm si vel
CAP. VII. unicium Phænomenon refragaretur, eo ipso tota theoria subverteretur; quam ob cauam prolixitatem nostræ tractationis, atque transgresionem limitum praæscriptorum nobis fine difficeitate condonatum uti confidimus.

§. 113. Primum autem perspicuum est, motum Maris horizontali quem vel versus orientem vel occidentem progradit, ob Terram interposita non solum perturbari, verum etiam quandoque prorsus impediti debere. Supra enim offendimus, si tota Terra aqua est circumsitum, tum ubique ad Fluxum formandum aquam ab oriente adveni debere, ante refluxum autem versus ortum defluere. Quod si ergo Oceanus versus orientem Terris terminetur, fieri omnino nequit tempore Fluxus ad haec littora aqua ab oriente affluat, quo ipso cursus aquæ naturalis penitus impeditur. Quoniam autem vires Solis ac Lunæ nihilominus quis in regionibus Mare attolle conantur, effectum consequit non poterunt, nisi aqua ab Occidente afferatur: sic quando ad littora Europæa aqua a virebus Solis ac Lunæ elevatur, aqua ab Occidente eō deferatur neceff est, ab ipsis fidelicet regionibus, ubi aqua eodem tempore deprimetur; quod idem fieri debet ad littora Africæ et Americae occidentalia. Contra vero ad littora Asiae et Americae orientalia aquæ naturalis motu feretur, atque in Fluxu ab oriente avducient, in Refluxu vero versus orientem recedet. Vires namque Solis ac Lunæ motum aquæ horizontali non per se determinant, sed eà tenus tantum, quatenus alius in locis aquam attollunt, alius vero eodem tempore deprimunt; atque aqua ob propriam gravitatem eum feligit motum, quo facillimè à locis quibus deprimitur, ad loca quibus attollitur promoveatur: quamobrem üste motus maxime à Terris oceanum includentibus determinatur neceff est. Hinc igitur perspicua positione littorum cuiusvis Maris facile definiri poterit, à quanam plagâ aqua in Fluxu venire, quorumque in Refluxu decedere debet; si modo elevationes et depressiones aquæ per totum Mare attentè considerentur: tota enim haec quaestio pertinebit ad hydrostaticam.

§. 114. Cùm igitur ad littora Europæa aqua elevari nequeat, nifi affluxus ab occidente fiat copiosius, ad littora que versus occidentem repicient aqua directè ab occidente advenient, quæ autem littora ad aliam plagam sunt disposita, aquæ curvis versus orientem directæ inflectuntur juxta littora, prorsum eō pertingat, omnino uti inspexitio mapparum docebit. Quoniam vero üste aquæ juxta littora Fluxus tantum celeritate, quantum habet Luna, recipere nequit, necesse est, ut Fluxus ad littora magis ad orientem sita tardius advehatur. Hæc autem versus littora orientalia retardatio maximè perspicua est in portibus Galliæ, Belgii, Angliæ et Hiberniæ; cum enim ad oftia fluviorum Carumæ & Ligeris, quæ versus Oceanum amplissimum patent, tempore pleniluniorum.
niorum ac noviluniorum Fluxus adveniunt horā tertiā pomeridianā, quae retardatio naturalis censeri potest, neque litoribus adhuc turbata; hinc aqua demum ad littora Britanniae minoris ac Norvanniae progreditur; atque idcirco his in regionibus Fluxus tardiōs evenire observantur. Sic ad Portum S. Malo tempore fyzygiarum Fluxus demum horā sextā sequitur, ad oftia verò Sequanae usque ad horam nonam retardatur: atque ita porro retardatio augetur, donec tandem in freto Gallico Dunkerque & Ostendae mediā nocte incidat. Ex hac verò retardatione innocens celeritas aquae, quā juxta littora progreditur, eaque tanta depressitūr quā una horā spatium circiter (†) 8. milliarium conficiat. Denique aqua tantam fere viam absolvere debet usque ad Dublīnum, quantam ad fretum Gallicum, ex quo Fluxus etiam Dublīni horā circiter decimā pomeridianā observari folet. Atque finiūlī modo retardatio Fluxuum ad litora aliarum regionum fine ullā difficultate explicari poterit.

§. 115. Quod autem ad quantitatem affīs Maris ad littora attinet, facile intelligitur aestum Maris ad littora majore effe debere, quam in medio mari. Primò enim aqua cum impetu ad littora allidit, ex quo allapsu fōlo iam intumescetua ori ori dedet. Deinde quoniam aqua eadem celeritate, quam habebat Oceano, ubi maxima est profunditas, progredi conatur, ad littora locaque vadofa vehementer inturgescet, tantum enim aquae ad litora affertur, quantum sufficeret ad spatium, quod Terra occupat, inundandum. Tertio igitur aquae affluxus in finibus vadosis multō adhuc magis increfere debet, eō quōd aqua his locis jam multum appulā ad latera diffuere nequit, si quidem finus directē versūs eam plagam pateat, unde aqua advehitur. Ex his principiis non est difficile rationem inconfusorum aestuum, qui paquin in variis portibus animadverturntur, indicare atque explicare; quomobrem hujus generalis Phænomenis explicandis diuitiūs non immorum, cum consideratio litorum & Fluxūs aquae eō āpone quasi manuducat.

§. 116. Quanvis autem tam Affluxus aquae ex Oceano atlantico, quam Refluxus per fretum Galliam ab Angliā dirimens, ingenti fane celerita-

(†) Ira legitur in exemplari Parisino, procul dubio mendōsē, sed locum restituere non putus auī; ab ortio Garumnae ad Dublīnum quingenta circiter Italica milliarium numerantur viā rectissimā, quae horā 7. a fluxu percurretur, qui ideo 70 milliarium insigulius horād ad minimum emeretur, unde 80 milliarium pro 8. milliaribus scribenda subjicatamur.
CAP. leritate, tamen cùm versùs Belgîum fœderatum Mare mox vehemen tes dilatetur, ab isto alerno Fluxu ac Refluxu altitudo Maris in Oceano Germanico sensibiliter mutari nequit. Atque hanc ob caufam statui opor tent, in hoc Mari æstum proficici maximam partem ab affluxu & refluxu aquæ circa Scotiam, ubi communicatio hujus Maris cum Oceano Atlantico multo major patet; quam fententiam magnopere confirmat ingens æstuum retardatio ad littora Belgii & Angliae orientalia observata: ad Oftia f cilicet Thamisis pertingit Fluxus elapis jam duodecim horis poft tranfium Lunæ per meridiam, atque Londinum utque tribus ferè horis tardius defertur; quod Phænomenon confitire non poſit fi aqua per fretum Gallicum folium moveretur, cùm jam in ipso freto duodecim horis retardetur Fluxus. Interim tamen negari non potest quin commu nicatio Maris Germanici cum Oceano Atlantico per fretum Gallicum æst um quodammodo afficitat, atque Fluxum qui circa Scotiam advehitur vel adjuvet vel turbet, prout hi ambo motus ad Mare elevandum ac deprimendum vel magis inter se confpirent vel minus. Simul autem hi nec intelligitur æstum Maris ex Oceano Atlantico neque cum Mari Mediterraneo neque cum Mari Balticco communicari possit, cùm intervallo sex horarum per freta Herculea & Orefundica tantum aquæ in hæc maria neque affluere queat neque inde refuère, ut sensibilis mutatio in altitu dum aquæ oriri queat. Quamobrem in istiusmodi maribus quæ à vaflf Oceano tantum angufts fretis separantur, æstus omnino nullus contingere potest, nisi forte talia maria Terris inculsa ipa tam fìnt ampla, ut vires Solis ac Lunæ æstum peculiarem in iis producere queant; quá de re mox videbimus.

S. 117. Quæmodmodam autem vidimus in Mari Germanico duplicem æstum; quorum alter, qui quidem longè est minor, per fretum Gallicum, alter circa Scotiam advehitur ex eodem Oceano Atlantico: ita propter singularem litorum quorundam situm mirabilia Phænomena in æsto Maris evenire possint. Quod si enim littus quodpiam ita fuerit comparatum, ut æstus in id duplici viâ vel ex eodem Oceano, vel ex diversis communicetur, ratione temporis, quo bini ìstæ æstus adveniunt, insignes difcrepantiae oriri poterunt. Nam si per utramque viam Fluxus eodem tempore advehat, atque adeo simul Refluxus congruant, æstus multo majores exiftere debeat. Sin autem eo tempore, quo per alteram viam Fluxus advenit, ex alterâ viâ Refluxus incidat, tum æstus omnino destruetur si quidem per utramque viam aqua æqualiter vel affluat vel defluat. Ad hoc verò non sufficit amææ viæ fìnt æquales, sed etiam requiritur ut bini æstus succeffivi sint æquales, id quod evenit si Luna vel non habeat declinationem, vel littus in æquatore fuerit postimum. Quod si autem eadem duplici communicatione polita, tam Luna habeat declinationem, quam littus notabiliter ab æquatore fit motum, tum ob
Fluxus ac Refluxus Maris. 365

inequalitatem binorum aestuum fesse insequentium, Fluxus majores ex altera via advenientes, superabunt Refluxus minores eodem tempore per alteram viam factos, atque haec modo in talis litoris singulis diebus non bini Fluxus, sed unus tantum accidit; hancque rationem allegat Newtonius aestus illius singularis Tunquin observavit, ubi si Luna in aequatore verfatur, nullus aestus deprehenditur, sin autem Luna habeat declinacionem, unicus tantum una Lunae revolutione circa Terram. Nos autem max hujus mirabilis Phenomeni aliam magis naturalem, nostraeque theoriae conformem indicabimus causa.

§ 118. Haec tamen aestus Maris, quemadmodum in amplissimo Oceano a viribus ad Lunam ac Solum tendentibus producatur, atque variis litorum fiat cuius ratione quantitatis tunc retardationis diversa modo turbatur, sumus contemplati, neque necesse esse duximus ventorum Marisque cursum proprium rationem habere: cum fatis primum sit perspicere, quomodo his rebus aestus Maris tam augeri vel diminui, quam accelerari vel retardari debeat. Superest igitur ut exponamus, quomodo in fatis amplò tractus Maris, qui ab Oceano vel omnino est sejunctus, vel per angustum tantum canalem conjunctus, peculiaris aestus a viribus Lunae ac Solis produci quaeratur. Perspicuum enim est, si talis tractus secundum longitudinem ultra 90 gradus pateat, aestum parsi modo generari debebat, ac in amplissimo Oceano, qui totam tellurem ambire posuit. Nam quoniam extensio tanta est, ut vires Lunae & Solis in eo tractu sim splendide maximi ac minimi aequale altitudinem inducere poterint, necesse est etiam, ut aqua alio in loco tantum elevetur, inque alio tantum deprimatur, quantum fieret, si iste tractus omnino non esset terminatus. Att si iste tractus tam fuerit parvus ut singulæ partes æqualibis fuerit viribus simul vel attollantur vel deprimuntur, nulla sensibilis mutatio oriri potest. Aqua enim uno in loco attollit nequit nisi in alio subcidat & contrà, si quidem aedem aquæ copia in eo tractu perpetuo conservetur. Atque haec est ratio ut in Mari Baltico, Cæspio, Nigr cum, aliisque minoribus lacubus nullus omnino æstus deprehendatur.

§ 119. Quod si autem itiussimodi Maris tractus tantum spatium occupet, ut vires attollentes & deprimentes in extremitatibus sensibiliter differant, tum necesse est ut non folum aqua in altero extremo elevetur in alteroque deprimatur, sed etiam ut differentia inter aquæ altitudines tanta sit, quanta in aperto Oceano eidem virium differentiae respondet. Quamobrem definiri conveniet, quanta in diversis Terræ locis eodem tempore in altitudinis aquæ à viribus Lunae ac Solis produci quaerat. Ne autem calculus nimium fiat proximus, solam Lunæ vim in computum ducamus, quippe quam vim Solis multum excedit; & quoniam effectu Lunæ cognito facile est Solis effectum æstimando vel adjicere vel auferre.
Repraesentet ergo PLP superficiem Terrae cujus poli sint P & p, atque M & N sint duo termini in eodem Maris traite assumti, in quibus quantum Maris altitudo quovis tempore differat, sit investigandum. Repraesentet porro LL parallellum, in quo Luna moveatur hoc tempore, sitque Luna in L; atque exprimet angulus LPM tempus, quod post Lunae transitum per meridianum termini M est praeterlapium; angulus vero LPN tempus post transitum Lunae per meridianum alterius termini N. Duces autem circulis maximis PM & PN, erit arcus PM complementum latitudinis loci M, arcus PN vero loci N; angulus vero MPN dabit differentiam longitudinis locorum M & N; quae proinde omnia ponuntur cognita.

§ 120. Ducentur jam ex loco Lunae L ad terminos M & N circuli maximi LM & LN, exhibebantque iti arcus complementa altitudinem, quibus hoc tempore Luna in locis M & N super horizontem elevata conspicitur. Ponatur arcus PL sinus = q, cosinus = Q, erit Q sinus declinationis borealis Lunæ, si quidem Q habeat valorem affirmativum, ac P polu'n borealem denotet. Deinde ponatur arcus PM sinus = p, cosinus = P, erit P sinus elevationis poli pro loco M; similibus modo sit arcus PN sinus = r & cosinus = R, ita ut R sit sinus elevationis poli loci N: denique si: anguli MPN sinus = M & cosinus = m, anguli vero LPM sinus = T, cosinus = t; unde erit anguli LPN cosinus = $m + T$. Ex
Ex his per trigonometriam sphæricam reperietur sinus altitudinis Lunæ super horizontem loci M seu cosinus arcus $LM = i p q + Q P$: pro loco N vero erit altitudinis Lunæ sinus $= (m t - MT) q r + Q R$. Quere si, ut supra, vis absoluta ad Lunam urgens ponatur $= L$ &c diffinitia Lunæ à Terrā $= b$, erit altitude ad quam aqua in M elevari debet $= \frac{L (i p q + P Q)^2 - 1}{z b}$, &c altitude ad quam aqua in N elevari debet $= \frac{L (m t - MT) q r + Q R)^2 - 1}{z b}$, utroque cafu supra libellum naturalem.

Si ergo illa exprimio hanc excedat, aqua in M altīus erit elevata quàm in N intervallum $\frac{3}{2 b} E ((i p q + P Q)^2 - ((m t - MT) q r + Q R)^2)$, haecque exprimio, quando fiet negativa, indicabit, quantò aqua in N altīus consequit quàm in M. In hoc vero negotio inertiae aquae neglegimus, quoniam tantum proximè Phænomena hujusmodi caesus orunda indicare annullatur; si enim hanc materiam perfeclè evolvere vellemus, integro trajectu foret opus.

§ 12. Ponamus tractum nostrum Maris ab oriente N versus occidentem M sub eodem parallelo extendi, ita ut elevatio poli in locis M & N fit eadem; erit adeo $R = P$, & $r = p$. Transeat nunc Luna per meridianum loci M super Terram, ita ut sit $T = 0$, $r = 1$; hoc ergo tempore magis erit elevata in M quàm in N intervallum $\frac{3}{2 b} L ((p q + P Q)^2 - m p q + P Q)^2) = \frac{3}{2 b} (M p q + 2 (1 - m) q P Q)$. At quando Luna per meridianum loci N super Terram transit, aqua tantundem magis erit elevata in N quàm in M. Ex quo sequitur, dum Luna à meridiano loci N ad meridianum loci M progradit, aquam in M sensto elevari per spatium $\frac{3}{2 b} L p q (M p q + 2 (1 - m) P Q)$ interea verò in N tantundem subfìdere. Sin autem Luna infra Terram à meridiano loci N ad meridianum loci M progradit, aqua in M elevabitur interea per spatium $= \frac{3}{2 b} L p q (M p q - 2 (1 - m) P Q)$, per tantumque spatium aqua in N subfìdet. Ponamus nunc angulum LPM esse 90 graduum, seu questionem infiniti, cùm Luna jam ante sex horas meridianum loci M sit transgressa, atque obtinabatur differentia inter aquæ altitudines in locis M & $N = \frac{3}{2 b} L P Q^2 - (P Q - M p Q) = \frac{3}{2 b} L p q (2 MP Q - M p q)$. Sex autem horis, antequam Luna ad meridianum loci M appellit, aqua in N magis erit elevata quàm in M intervallum $= \frac{3}{2 b} L p q (2 MP Q + M p q)$. Sequuntur hæc si inertiae aquæ negligratur; at inertiae admisit ex præcedentibus fatis clarum est, quàm has differentias majores esse debere, tòm temporæ mutationum tardius sequi debere.
Quoniam vero in hoc Maris tractu perpetuo eadem aquae quantitas contineri debet, necesse ut quantum aquae una parte supra libellam attollatur, tantundem ea in reliqua parte infra libellam deprimatur. Quo igitur hinc altitudinem Maris quovis loco exacte determinamus, ponamus tractum nostrum secundum longitudinem terminari binis meridianis PM & PN, secundum latitudinem vero binis parallelis MN & $m n$, postaque Lunam in L sit sinus $PL = q$, cosinus $= Q$; sinus $LPM = T$, cosinus $= t$. Porro sit sinus arcus $PM = p$, cosinus $= P$, sinus $Pm = r$, cosinus $= R$, atque anguli MPN sinus $= M$ & cosinus $= m$. Praeterea sit elevatio in M dum Luna in L versatur, supra libellam $= a$, ita ut hoc loco suprema aquae superficies a centro Terrae distet intervallo $= t + a$, unde cum sinus altitudinis Lunae in M sit $= pq + PQ$, erit gravitatio totius columnae aquae ab M ad centrum Terrae $= \frac{(t + a)^{2} + L(1 - 3(sqq + PQ))}{2b + 1} = \frac{t + a}{2} + \frac{L(1 - 3(sqq + PQ))}{2b + 1}$, prouti supra \S 43. & 44. demonstravimus. Consideretur jam locus quicumque X in nostro tractu, in quo aquae supra libellam sit elevata spatio $= \phi$; ac duceto per hunc locum meridiano PR, sit anguli LPR sinus $= X$, cosinus $= \chi$; arcus PX sinus $= x$ & cosinus $= Z$, unde gravitatio columnae aquae ex X ad centrum Terrae pertingentis erit $= \phi$. \[
\]
Fluxus in Rerum Maris.

Cap. VIII.

Cūm igitur hæc gravitatio æqualis esse debeat illi, orietur \(\phi = a + \frac{3L}{2b^3} \left((xqz + QZ) - (tpq + PQ) \right) \), ex qua formulâ fì modo confaret elevatio aquæ in \(M \), simul innotescet elevatio vel depressio in quovis loco \(X \).

§. 123. Cūm ergo in \(X \) aqua suprema libellam elevetur spatio \(\phi \), in elemento tractus infiniti parvo \(XT \), plus inerit aquæ, quàm in flato naturali, & quidem quantitas \(XT \). \(x \). \(\phi \), cujus elementi integrale per totum tractum sumtum debet esse = 0, ex quo valor ipsius \(a \) innotescit. Erit autem angulus \(RPR = \frac{dY}{x} \), hincque arculus \(X \) = \(\frac{2dX}{x} \), at elementum \(XT = \frac{dZ}{x} \), ex quo infiniti parvum rectangulum \(XT \) = \(\frac{dX}{x}dZ \), in quo ergo excessus aquæ suprema flatum naturalem est = \(\frac{dX}{x} = \frac{dX}{x} = \frac{dZ}{x} = \frac{3L}{2b^3} \left((xqz + QZ) - (tpq + PQ) \right) \). Quæ formula bis debet integrari. Ponatur primo \(\mathcal{X} \) constans, & integratione aboluta reperietur in elemento \(RST \) excessus aquæ suprema flatum naturalem = \(\frac{dX}{x} = \frac{a}{x} \left(R - P \right) + \frac{3L}{2b^3} \left(\frac{3x^2(R - P) - \frac{x^2q^2}{3} (R_1 - P_1) - \frac{2xQq}{3} (r - p) + \frac{Q^2}{3} (R_1 - P_1) - (tpq + PQ) \right) \). Integretur hæc formula denso ut integrale ad totum tractum \(MNm \) extendatur, probitque incrementum aquæ, quod toti tractu acceffere oporteret, = \(a \left(R - P \right) A \) fin. \(M + \frac{3L}{2b^3} \left(\frac{3}{6} \right) (a \left(R - P \right) - \frac{x^2q^2}{3} (R_1 - P_1) \) \(Mm \left(x - 2TT \right) - 2M. Tt \) + \(\frac{2xQq}{3} (r - p) \) \(\frac{3}{3} \) \((T - Mt - mT) + \frac{2}{3} \left(R - P \right) A \) fin. \(M + \left(\frac{3}{2} \right) \left(\frac{Q^2}{3} - 1 \right) (R_1 - P_1) \) \(A \) fin. \(M - (tpq + PQ) \left(R - P \right) \) \(A \) fin. \(M \), quæ adeo quantitas debet esse = 0: unde oritur \(a = \frac{3L}{2b^3} \left(tpq + PQ \right) - \frac{L}{4b^3} \left(\frac{3}{6} \right) (a \left(R - P \right) - \frac{x^2q^2}{3} (R_1 - P_1) \) \(Mm \left(x - 2TT \right) \) + \(\frac{2xQq}{3} (p - r) \) \(\frac{3}{3} \) \((T - Mt - mT) \).

§. 124. Cognitâ igitur verâ elevatione aquæ in \(M \) suprema libellam, quam antè poluimus = \(a \), hinc intelligetur verâ aquæ elevatio suprema libellam in loco quocunque \(X \). Ponatur enim finus anguli \(MPX = S \) & cofinus = \(s \), erit fin. \(LPR = X = TS + tS \) & \(x = ts - TS \), manentibusque arcâs \(P \) finus = \(x \) & cofinu = \(Z \), erit elevatio aquæ in \(X = \phi = a + \frac{3L}{2b^3} \left((ts - TS) qz + PQ \right) - \frac{3L}{2b^3} (tpq + PQ) \); quare loco valorem
lore invento substituto, reperier aqva in X supra libellam attoll adq per
spatium \(\frac{3L}{2b} \) \((s-TS) + QZ\) + \(\frac{L(t-3Q^2) + PR+P^3}{4b} \)

\[- \frac{3L^2}{4b^2} + \frac{3L}{2b}(R-P)A\sin M \frac{q^3(3R-P-R-1)}{(T-Mt-mT)} \]

\(\frac{3}{1-2TT} \) + \(\frac{3Q(q^3-1)}{T-Mt-mT} \). Quod si ergo po-
natur tractus nofier ita augeri ut totam tellurem ambiant, orietur casus
jam supra tractatus; quomiam enim fit \(MN = 360^\circ \), feu \(A \) fin. \(M = 2 \).

\(\text{denotante } x \) ratione diametri ad peripheriam, erit \(M = o \) & \(m = 1 \):
praetera vero quia \(M \) in polum australem \(P \), \(m \) verò in borealem \(P \)
incidit, erit \(p = o \), \(P = -1 \), \(r = o \) & \(R = +1 \); si hi valores substituantur,

prohibit elevatio aqve in \(X = \frac{L}{2b^2} \left((s-TS) + QZ \right) - 1 \),

quae expressio, quia \(s-TS \) denotat coennum anguli \(LPX \) atque \((s-TS),
QZ \) sinum altitudinis Lunae supra horizontem in \(X \), cum superio-
ribus formulâs exactâmì convenit: si quidem terminus \(\frac{L}{b^2} \) negîgatur. Hac

verò eadem ipsa expressio quoque emergit, si tantum alterum hemisphaerium
vel boreale vel australie ponatur aqva totum circumfusum, manent enim
omnia ut antè, nisi quod fat \(p = 1 \) & \(P = O \); utroque enim casu fit \(R = +1 \):
P R + P = 1 ; ultimisque terminus ob \(M = o \) utroque casu evanescit.

\(\S. \ 225. \) Ponamus nunc tractum Maris secundum longitudinem \(MN \)
ufque ad \(180^\circ \) gradus extendi, erit \(M = o \) & \(m = -1 \) & \(A \) fin. \(M = v \),
denotat enim \(A \) fin. \(M \) semper arcum circuli, qui menstru est anguli
\(MPN \); hinc si brevitas gratia ponatur sinus anguli, quo Luna in \(X \) su-
pra horizontem elevata est, \(= v \), erit aqva elevatio in \(X \) supra libel-
\(lam = \frac{3L}{2b^2} + \frac{L(1-3Q^2)}{4b^2} (R^2+P+P^3) - \frac{3L}{4b^2} + \frac{3LQ^2(P^3-1)}{(R-P)b^2} \). Po-
namus porro integrum hemisphaerium \(LP \) aqua esse circumfusum, fiet
\(p = o \), \(P = -1 \), \(r = o \) & \(R = 1 \); unde elevatio aqve in \(X \) erit \(\frac{L(3v^2-1)}{2b^1} \),

omnino ac si tota Terra aqva cinga effet, uti in precedentibus capitibus
possimus, vel quod eodem redit, dummodo omnis aqua super Terra
mutam habeat communicationem fatis amplam. Quod si autem tractus
nofier Maris tantum ad equatorem uqve porrigatur à polo \(P \), ita ut
quartam superficie terrestris partem solum obtegat, tum erit \(p = 1 \), \(P = o \),
\(r = o \) & \(R = 1 \), hoc itaque casu aqua in \(X \) elevabitur ad altitudinem =
\(\frac{L(3v^2-1)}{2b^1} + \frac{3LQ^2(P^3-1)}{(R-P)b^2} \) ex quo percepitur hoc casu elevationem in \(X \)
majorem, quam si tota Terra aqva effet circumdata, si expressio \(TQq \)
habeat valorem affirmativum, minorem verò si \(TQq \) habeat valorem ne-
gativum. Sed limites huic quaesitioni praescripti non permittunt hinc plu-
ra congetaria deductere, cum debita evolutio fatis amplum tractatum re-
quirat.
quirat, neque theoria ulteriori confirmatione indigeat. Quocirca coronidiis loco duos tantum causas evolvemus, quorum altero latitudine tractatis ponitur infinitè parva, altero vero longitudo: quippe qui ad phænomena quaedam singularia explicanda iniuvire poterunt.

§. 126. Ponsamus igitur latitudinem Mm infinitè esse parvam, seu $R = P \& r = p$, reperietur aequæ in X elevatio supra libellam =

$$
\frac{3}{2} L \nu^2 + \frac{3}{4} L (P^2 - q^2 - \frac{3}{2} P^2 Q^2) + \frac{3}{2} L p q \left(\frac{pq}{2} - \frac{2}{3} b \ A \ \mathrm{fin.} \ M \right) (2 M \ m \ (1 - 2 TT)) + 2 P Q (T - M - M T).$$

Consideramus autem elevationem in M, ubi cum sit $v = t p q + P Q$, erit $ca = \frac{3}{4} L p q (2 t p q + 4 T Q - p q) + \frac{3}{4} b \ A$.

Transeat nunc Luna per meridianum loci M supra Terram, serit $T = 0$, & $t = 1$, atque elevatio in M probabit $= \frac{3}{4} L p q (T M - M T (1 - 2 TT)) + 4 P Q (T - M - M T)$. Si per eundem meridianum infra Terram transeat, serit aequæ elevatio $= \frac{3}{4} L p q (p q - 4 P Q) - \frac{3}{2} L p q (M m p q - 4 M P Q)$.

Quod si autem Luna versus ortum à meridiano distet angulo horario 90 graduum, seu circiter 6 horis ante appulum Lunæ ad meridianum in M supé-
Inquisitio Physica in causam

Cap. VIII.

periorum, erit \(T = -1 \) & \(t = 0 \), unde elevatio erit \(\frac{-3Lp^2q^2}{4b^1} + \frac{3Lp}{2b^1} M_{fin}M \) (\(pqM_{fin}M - 2PQ(1-m) \)); sex vero horis post transitum Lunae per meridianum loci \(M \) versibus occulatum, erit altitudo aequae in \(M \) super libellam = \(\frac{3Lp^2q^2}{4b^1} + \frac{3Lpq}{2b^1} M_{fin}M \) (2 \(pqM_{fin}M - 2PQ(1+m) \)).

§. 127. Tribuamus huic tractui longitudinem 90 graduum, ut sit \(M = 1 \), \(m = 0 \), \& \(M_{fin}M = \frac{1}{2} \), unde oritur elevatio aequae in \(M = \frac{3Lpq(21pq + 44PQ - pq)}{2p^1b^1} + \frac{3Lpq}{2p^1b^1} (2pqT + 4PQ(T-t)) \). Quae si etiam declinatio Lunae ponatur = 0, fiet \(\frac{3Lp^2q^2(21pq - pq)}{4b^1} + \frac{3Lp^2q^2T}{4b^1} \) existente \(q = 1 \), unde apparat maximum elevationem non accidere cum Luna per meridianum loci \(M \) transit, sed tardius, \& quidem si dupl anguli \(LPM \) sinus fuerit = \(\frac{1}{3} \), hoc est ferè una hora post transitum Lunae per meridianum, hoc igitur cauf Fluxus in \(M \) una ferè hora tardius obfiervetur, quâm si tota Terra aquâ effet circumfusa. Dum autem Luna per meridianum superius transit, erit elevatio = \(\frac{3Lpp}{4b^1} \), que etiam valet si Luna infra Terram meridianum attingat; at sex horis vel antè vel post, quando Luna in horizonte versatur, erit aequae depressio = \(\frac{-3Lpp}{4b^1} \). Unde intelli nugur in tali Maris tractu pariter quotidianus Fluxus totidemque Refluxus accidere debere, atque æstus propemodum fore sìmiliæ æstui generali, nisi quod majoribus anomalis att obnouxiis, præcipue si Luna habeat declinationem.

§. 128. Hinc explicari potest ratio æstus, qui in Mari Mediterraneo obfervatur, \& qui in ipso hoc Mari generatur. Cùm enim longitududo hujus Maris ne 60 quidem gradus attingat, æstus erunt multò minores; decrescunt enim si cùm longitudo diminuatur, tum elevatio poli augeatur. Quod et illi in his formulis angulus \(MPN \) ponatur fere 60 graduum, atque elevatio poli debita introducatur, repertis autem quidem æstus bini quotidianus evenire debere, qui autem futuri sint multò minores, quâm in medio Mari, \& pluribus anomalis subjicii, quos quidem omnes ex formulis definire licebit. Quoniam ergo tam exigui æstus a ventis \& curfu aquae, qui in hoc Mari notabilis deprehenditur, vehementer turbantur, ad pleraque Littora hujus Maris vix uque æstus regularis obfervatur. Excipi autem debet Mare Adriaticum, quod cùm finum formet amplum, advenientem aquam melius colliget, atque elevationem multò tensibilioriorem parietur, quæ æstus Maris Venetiæ obfervatur originem habet. Tametì enim Mare Mediterraneum non so-
§ 129. Ponamus nunc tractus nostrorum Maris longitudinem evanescere, totumque tractum in eodem meridiano \(PP \) ab \(MM \) usque ad \(NN \) extendi, ita ut sit \(M = 0 \), \(m = r \); sinus autem elevationis poli in \(M \) sit \(P \), co- sinus \(= p \), in \(N \) verò sit sinus elevationis poli \(= r \), sinus \(= r \). Ex his si Luna in \(LL \) vestitur, ob \(A \), \(M = M \), erit in \(M \) elevatio aequis supra libellam:

\[
\frac{q \cdot (3 - P - PR - RR)(2TT - 1) - \frac{4 Q q^1 (p^1 - r^1)}{R - P}}{2b^1} = \frac{L}{2b^1} \left(\frac{1}{4} \right) \frac{Q^2}{QQ}
\]

Si \(R + PR - 2P = 0 \), atque elevatio aequi in \(M \) supra libellam erit:

\[
\frac{L Q q^3}{3b^1 P}
\]
CAP. (9P·p+p·r). Ex hac igitur formulâ sequitur, si Lunæ declinatio sit nulla seu Q=0, tum nullum omnino æstum in M observari debere. Quod si autem Luna habeat borealem, tum ad transitum Lunæ per meridianum supriorem aquam attollit ad spatium \(\frac{L \cdot Q^4}{2 \cdot b \cdot P} (9P \cdot p+p \cdot r) \); at dum Luna in alterutro circulo horario sexto veretur, tum aquam ad libellam naturalem fore constitutam; Lunæ autem infra horizontem ad meridianum appellente, aquam infra libellam depresemi iri per spatium \(\frac{L \cdot Q^4}{2 \cdot b \cdot P} (9P \cdot p+p \cdot r) \); contrarium denique fore æstum, si Luna habeat declinationem australem. In tali igitur Maris tractu quotidie femel tantum aqua affuet, femelque refluet, si quidem Luna habeat declinationem; nam si Luna æquatorem occupat, æstus omnino erit nul-

\[\text{lus.} \]

§ 130. Ex hoc casu aptissimè explicari possè videtur Phænomenon illud æstus singularis, qui in portu Tunquinii ad Batsham observatur, ubi omnino ut in praevente casu dum Luna in æquatore veretur, Mare nullum æstum sentit; at dum Luna removetur ab æquatore vel versus boream vel versus australum, quotidie aqua femel tantum affuit femelque refluit, prorsus ut calculus monstravit; sic igitur si Lunæ declinatio fuerit borealis, aqua versus Lunæ occasum, hoc est post transitum Lunæ per meridianum super horizonte, affuit, versus ortum vero defluit, quæ retardatio ab iner
tia aequæ & motu ad littora provenire intelligitur ut suprâ. Contra verò si Lunæ declinatio sit australis, aqua deprimitur Lunæ ad occasum inclinan
te, Lunæ autem oriente, attollitur: quæ Phænomena apprèmè conve
niunt cum casu modo exposito. Est praeterea elevatio poli Tunquinii 20°, 50′, borealis, atque Mare utrinqüe cum peninsulis tum inflex's ab utroque Oceano Pacifico & Indico fere prorsus separatur, saltem ut libera communicatio non ad sit: praeterea hic idem Maris tractus, qui versus boream ad littora regni Tunquinii terminatur, extenditur ultra æquatorem ad gradus circiter 45, cujus latitudinis sinús circiter duplo major est, quàm sinús latitudinis borealis 20°, 51′: Quocirca ex his circumstantiis per nostram Theoriæm eadem ipsa singularia Phænomena æstus Maris ob-

servari debent, quæ actu observantur: atque hoc modo si ulum adhuc dubium circa nostram theoriæm reliquum sint, id resolutione hujus mi-

rabilis Phænomeni funditus hablatum iri confidimus.

FINIS I. Part. TOMI III.
CONTENTA PARTIS I. TOMI III.

1. Autoris Epistola Dedicatoria.
2. Admonitio Commentatorum.
4. Introductio ad Tertium Librum.
5. Praefatio Autoris in eundem de mundi Systemate.
6. Regula Philosphandi &c.

1. Traité sur le Flux & Reflux de la Mer par Mr. Daniel Bernoulli

2. D. Mac - Laurin de causa Physica Fluxus & Refluxus Maris

3. D. Euler Inquisitio Physica in causam Fluxus ac Refluxus Maris

I. Traité du Flux & Reflux de la Mer par Mr. Daniel Bernoulli.
Chap. I. Contenant une Introduction à la Question proposée par l'Académie des Sciences

II. Contenant quelques Lemmes sur l'Attraction des Corps.

III. Contenant quelques Considerations Astronomiques & Physiques, préliminaires pour la détermination du Flux & Reflux de la Mer.

IV. Qui expose en gros la cause des Marées.

V. Contenant quelques Propositions de Géométrie préliminaires pour l'explication & le calcul des Marées.

VI. Sur l'heure moyenne des Marées pour toutes les lunaisons.

Table fondamentale pour trouver l'heure moyenne des hautes Marées.

VII. Qui contient, à l'égard de plusieurs circonstances variables, les corrections nécessaires pour les Théorèmes & pour la Table du Chapitre précédent, & une explication de plusieurs Observations faites sur les Marées.

VIII. Sur les différentes hauteurs des Marées pour chaque jour de la Lune.

IX. Sur les hauteurs des Marées corrigées, suivant différentes circonstances variables.

X. Dans lequel on examine toutes les propriétés des Marées, qui dépendent des différentes Délinaisons des Luminaires & des différentes Latitudes des Lieux.

XI. Qui contient l'explication & solution de quelques Phénomènes & questions